1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015-2021, Linaro Limited 4 * Copyright (c) 2016, EPAM Systems 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/arm-smccc.h> 10 #include <linux/errno.h> 11 #include <linux/io.h> 12 #include <linux/sched.h> 13 #include <linux/mm.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_platform.h> 17 #include <linux/platform_device.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/tee_drv.h> 21 #include <linux/types.h> 22 #include <linux/workqueue.h> 23 #include "optee_private.h" 24 #include "optee_smc.h" 25 #include "optee_rpc_cmd.h" 26 #define CREATE_TRACE_POINTS 27 #include "optee_trace.h" 28 29 /* 30 * This file implement the SMC ABI used when communicating with secure world 31 * OP-TEE OS via raw SMCs. 32 * This file is divided into the following sections: 33 * 1. Convert between struct tee_param and struct optee_msg_param 34 * 2. Low level support functions to register shared memory in secure world 35 * 3. Dynamic shared memory pool based on alloc_pages() 36 * 4. Do a normal scheduled call into secure world 37 * 5. Driver initialization. 38 */ 39 40 #define OPTEE_SHM_NUM_PRIV_PAGES CONFIG_OPTEE_SHM_NUM_PRIV_PAGES 41 42 /* 43 * 1. Convert between struct tee_param and struct optee_msg_param 44 * 45 * optee_from_msg_param() and optee_to_msg_param() are the main 46 * functions. 47 */ 48 49 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr, 50 const struct optee_msg_param *mp) 51 { 52 struct tee_shm *shm; 53 phys_addr_t pa; 54 int rc; 55 56 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 57 attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT; 58 p->u.memref.size = mp->u.tmem.size; 59 shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref; 60 if (!shm) { 61 p->u.memref.shm_offs = 0; 62 p->u.memref.shm = NULL; 63 return 0; 64 } 65 66 rc = tee_shm_get_pa(shm, 0, &pa); 67 if (rc) 68 return rc; 69 70 p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa; 71 p->u.memref.shm = shm; 72 73 /* Check that the memref is covered by the shm object */ 74 if (p->u.memref.size) { 75 size_t o = p->u.memref.shm_offs + 76 p->u.memref.size - 1; 77 78 rc = tee_shm_get_pa(shm, o, NULL); 79 if (rc) 80 return rc; 81 } 82 83 return 0; 84 } 85 86 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr, 87 const struct optee_msg_param *mp) 88 { 89 struct tee_shm *shm; 90 91 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + 92 attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 93 p->u.memref.size = mp->u.rmem.size; 94 shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref; 95 96 if (shm) { 97 p->u.memref.shm_offs = mp->u.rmem.offs; 98 p->u.memref.shm = shm; 99 } else { 100 p->u.memref.shm_offs = 0; 101 p->u.memref.shm = NULL; 102 } 103 } 104 105 /** 106 * optee_from_msg_param() - convert from OPTEE_MSG parameters to 107 * struct tee_param 108 * @optee: main service struct 109 * @params: subsystem internal parameter representation 110 * @num_params: number of elements in the parameter arrays 111 * @msg_params: OPTEE_MSG parameters 112 * Returns 0 on success or <0 on failure 113 */ 114 static int optee_from_msg_param(struct optee *optee, struct tee_param *params, 115 size_t num_params, 116 const struct optee_msg_param *msg_params) 117 { 118 int rc; 119 size_t n; 120 121 for (n = 0; n < num_params; n++) { 122 struct tee_param *p = params + n; 123 const struct optee_msg_param *mp = msg_params + n; 124 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK; 125 126 switch (attr) { 127 case OPTEE_MSG_ATTR_TYPE_NONE: 128 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 129 memset(&p->u, 0, sizeof(p->u)); 130 break; 131 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT: 132 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: 133 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: 134 optee_from_msg_param_value(p, attr, mp); 135 break; 136 case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT: 137 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: 138 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: 139 rc = from_msg_param_tmp_mem(p, attr, mp); 140 if (rc) 141 return rc; 142 break; 143 case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT: 144 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: 145 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: 146 from_msg_param_reg_mem(p, attr, mp); 147 break; 148 149 default: 150 return -EINVAL; 151 } 152 } 153 return 0; 154 } 155 156 static int to_msg_param_tmp_mem(struct optee_msg_param *mp, 157 const struct tee_param *p) 158 { 159 int rc; 160 phys_addr_t pa; 161 162 mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr - 163 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 164 165 mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm; 166 mp->u.tmem.size = p->u.memref.size; 167 168 if (!p->u.memref.shm) { 169 mp->u.tmem.buf_ptr = 0; 170 return 0; 171 } 172 173 rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa); 174 if (rc) 175 return rc; 176 177 mp->u.tmem.buf_ptr = pa; 178 mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED << 179 OPTEE_MSG_ATTR_CACHE_SHIFT; 180 181 return 0; 182 } 183 184 static int to_msg_param_reg_mem(struct optee_msg_param *mp, 185 const struct tee_param *p) 186 { 187 mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr - 188 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; 189 190 mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm; 191 mp->u.rmem.size = p->u.memref.size; 192 mp->u.rmem.offs = p->u.memref.shm_offs; 193 return 0; 194 } 195 196 /** 197 * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters 198 * @optee: main service struct 199 * @msg_params: OPTEE_MSG parameters 200 * @num_params: number of elements in the parameter arrays 201 * @params: subsystem itnernal parameter representation 202 * Returns 0 on success or <0 on failure 203 */ 204 static int optee_to_msg_param(struct optee *optee, 205 struct optee_msg_param *msg_params, 206 size_t num_params, const struct tee_param *params) 207 { 208 int rc; 209 size_t n; 210 211 for (n = 0; n < num_params; n++) { 212 const struct tee_param *p = params + n; 213 struct optee_msg_param *mp = msg_params + n; 214 215 switch (p->attr) { 216 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE: 217 mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; 218 memset(&mp->u, 0, sizeof(mp->u)); 219 break; 220 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT: 221 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT: 222 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT: 223 optee_to_msg_param_value(mp, p); 224 break; 225 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT: 226 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT: 227 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT: 228 if (tee_shm_is_registered(p->u.memref.shm)) 229 rc = to_msg_param_reg_mem(mp, p); 230 else 231 rc = to_msg_param_tmp_mem(mp, p); 232 if (rc) 233 return rc; 234 break; 235 default: 236 return -EINVAL; 237 } 238 } 239 return 0; 240 } 241 242 /* 243 * 2. Low level support functions to register shared memory in secure world 244 * 245 * Functions to enable/disable shared memory caching in secure world, that 246 * is, lazy freeing of previously allocated shared memory. Freeing is 247 * performed when a request has been compled. 248 * 249 * Functions to register and unregister shared memory both for normal 250 * clients and for tee-supplicant. 251 */ 252 253 /** 254 * optee_enable_shm_cache() - Enables caching of some shared memory allocation 255 * in OP-TEE 256 * @optee: main service struct 257 */ 258 static void optee_enable_shm_cache(struct optee *optee) 259 { 260 struct optee_call_waiter w; 261 262 /* We need to retry until secure world isn't busy. */ 263 optee_cq_wait_init(&optee->call_queue, &w); 264 while (true) { 265 struct arm_smccc_res res; 266 267 optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 268 0, 0, 0, 0, 0, 0, 0, &res); 269 if (res.a0 == OPTEE_SMC_RETURN_OK) 270 break; 271 optee_cq_wait_for_completion(&optee->call_queue, &w); 272 } 273 optee_cq_wait_final(&optee->call_queue, &w); 274 } 275 276 /** 277 * __optee_disable_shm_cache() - Disables caching of some shared memory 278 * allocation in OP-TEE 279 * @optee: main service struct 280 * @is_mapped: true if the cached shared memory addresses were mapped by this 281 * kernel, are safe to dereference, and should be freed 282 */ 283 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped) 284 { 285 struct optee_call_waiter w; 286 287 /* We need to retry until secure world isn't busy. */ 288 optee_cq_wait_init(&optee->call_queue, &w); 289 while (true) { 290 union { 291 struct arm_smccc_res smccc; 292 struct optee_smc_disable_shm_cache_result result; 293 } res; 294 295 optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 296 0, 0, 0, 0, 0, 0, 0, &res.smccc); 297 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) 298 break; /* All shm's freed */ 299 if (res.result.status == OPTEE_SMC_RETURN_OK) { 300 struct tee_shm *shm; 301 302 /* 303 * Shared memory references that were not mapped by 304 * this kernel must be ignored to prevent a crash. 305 */ 306 if (!is_mapped) 307 continue; 308 309 shm = reg_pair_to_ptr(res.result.shm_upper32, 310 res.result.shm_lower32); 311 tee_shm_free(shm); 312 } else { 313 optee_cq_wait_for_completion(&optee->call_queue, &w); 314 } 315 } 316 optee_cq_wait_final(&optee->call_queue, &w); 317 } 318 319 /** 320 * optee_disable_shm_cache() - Disables caching of mapped shared memory 321 * allocations in OP-TEE 322 * @optee: main service struct 323 */ 324 static void optee_disable_shm_cache(struct optee *optee) 325 { 326 return __optee_disable_shm_cache(optee, true); 327 } 328 329 /** 330 * optee_disable_unmapped_shm_cache() - Disables caching of shared memory 331 * allocations in OP-TEE which are not 332 * currently mapped 333 * @optee: main service struct 334 */ 335 static void optee_disable_unmapped_shm_cache(struct optee *optee) 336 { 337 return __optee_disable_shm_cache(optee, false); 338 } 339 340 #define PAGELIST_ENTRIES_PER_PAGE \ 341 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) 342 343 /* 344 * The final entry in each pagelist page is a pointer to the next 345 * pagelist page. 346 */ 347 static size_t get_pages_list_size(size_t num_entries) 348 { 349 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); 350 351 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; 352 } 353 354 static u64 *optee_allocate_pages_list(size_t num_entries) 355 { 356 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); 357 } 358 359 static void optee_free_pages_list(void *list, size_t num_entries) 360 { 361 free_pages_exact(list, get_pages_list_size(num_entries)); 362 } 363 364 /** 365 * optee_fill_pages_list() - write list of user pages to given shared 366 * buffer. 367 * 368 * @dst: page-aligned buffer where list of pages will be stored 369 * @pages: array of pages that represents shared buffer 370 * @num_pages: number of entries in @pages 371 * @page_offset: offset of user buffer from page start 372 * 373 * @dst should be big enough to hold list of user page addresses and 374 * links to the next pages of buffer 375 */ 376 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, 377 size_t page_offset) 378 { 379 int n = 0; 380 phys_addr_t optee_page; 381 /* 382 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h 383 * for details. 384 */ 385 struct { 386 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; 387 u64 next_page_data; 388 } *pages_data; 389 390 /* 391 * Currently OP-TEE uses 4k page size and it does not looks 392 * like this will change in the future. On other hand, there are 393 * no know ARM architectures with page size < 4k. 394 * Thus the next built assert looks redundant. But the following 395 * code heavily relies on this assumption, so it is better be 396 * safe than sorry. 397 */ 398 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); 399 400 pages_data = (void *)dst; 401 /* 402 * If linux page is bigger than 4k, and user buffer offset is 403 * larger than 4k/8k/12k/etc this will skip first 4k pages, 404 * because they bear no value data for OP-TEE. 405 */ 406 optee_page = page_to_phys(*pages) + 407 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); 408 409 while (true) { 410 pages_data->pages_list[n++] = optee_page; 411 412 if (n == PAGELIST_ENTRIES_PER_PAGE) { 413 pages_data->next_page_data = 414 virt_to_phys(pages_data + 1); 415 pages_data++; 416 n = 0; 417 } 418 419 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; 420 if (!(optee_page & ~PAGE_MASK)) { 421 if (!--num_pages) 422 break; 423 pages++; 424 optee_page = page_to_phys(*pages); 425 } 426 } 427 } 428 429 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, 430 struct page **pages, size_t num_pages, 431 unsigned long start) 432 { 433 struct optee *optee = tee_get_drvdata(ctx->teedev); 434 struct optee_msg_arg *msg_arg; 435 struct tee_shm *shm_arg; 436 u64 *pages_list; 437 int rc; 438 439 if (!num_pages) 440 return -EINVAL; 441 442 rc = optee_check_mem_type(start, num_pages); 443 if (rc) 444 return rc; 445 446 pages_list = optee_allocate_pages_list(num_pages); 447 if (!pages_list) 448 return -ENOMEM; 449 450 shm_arg = optee_get_msg_arg(ctx, 1, &msg_arg); 451 if (IS_ERR(shm_arg)) { 452 rc = PTR_ERR(shm_arg); 453 goto out; 454 } 455 456 optee_fill_pages_list(pages_list, pages, num_pages, 457 tee_shm_get_page_offset(shm)); 458 459 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; 460 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 461 OPTEE_MSG_ATTR_NONCONTIG; 462 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; 463 msg_arg->params->u.tmem.size = tee_shm_get_size(shm); 464 /* 465 * In the least bits of msg_arg->params->u.tmem.buf_ptr we 466 * store buffer offset from 4k page, as described in OP-TEE ABI. 467 */ 468 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | 469 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 470 471 if (optee->ops->do_call_with_arg(ctx, shm_arg) || 472 msg_arg->ret != TEEC_SUCCESS) 473 rc = -EINVAL; 474 475 tee_shm_free(shm_arg); 476 out: 477 optee_free_pages_list(pages_list, num_pages); 478 return rc; 479 } 480 481 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) 482 { 483 struct optee *optee = tee_get_drvdata(ctx->teedev); 484 struct optee_msg_arg *msg_arg; 485 struct tee_shm *shm_arg; 486 int rc = 0; 487 488 shm_arg = optee_get_msg_arg(ctx, 1, &msg_arg); 489 if (IS_ERR(shm_arg)) 490 return PTR_ERR(shm_arg); 491 492 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; 493 494 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 495 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; 496 497 if (optee->ops->do_call_with_arg(ctx, shm_arg) || 498 msg_arg->ret != TEEC_SUCCESS) 499 rc = -EINVAL; 500 tee_shm_free(shm_arg); 501 return rc; 502 } 503 504 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, 505 struct page **pages, size_t num_pages, 506 unsigned long start) 507 { 508 /* 509 * We don't want to register supplicant memory in OP-TEE. 510 * Instead information about it will be passed in RPC code. 511 */ 512 return optee_check_mem_type(start, num_pages); 513 } 514 515 static int optee_shm_unregister_supp(struct tee_context *ctx, 516 struct tee_shm *shm) 517 { 518 return 0; 519 } 520 521 /* 522 * 3. Dynamic shared memory pool based on alloc_pages() 523 * 524 * Implements an OP-TEE specific shared memory pool which is used 525 * when dynamic shared memory is supported by secure world. 526 * 527 * The main function is optee_shm_pool_alloc_pages(). 528 */ 529 530 static int pool_op_alloc(struct tee_shm_pool_mgr *poolm, 531 struct tee_shm *shm, size_t size) 532 { 533 /* 534 * Shared memory private to the OP-TEE driver doesn't need 535 * to be registered with OP-TEE. 536 */ 537 if (shm->flags & TEE_SHM_PRIV) 538 return optee_pool_op_alloc_helper(poolm, shm, size, NULL); 539 540 return optee_pool_op_alloc_helper(poolm, shm, size, optee_shm_register); 541 } 542 543 static void pool_op_free(struct tee_shm_pool_mgr *poolm, 544 struct tee_shm *shm) 545 { 546 if (!(shm->flags & TEE_SHM_PRIV)) 547 optee_shm_unregister(shm->ctx, shm); 548 549 free_pages((unsigned long)shm->kaddr, get_order(shm->size)); 550 shm->kaddr = NULL; 551 } 552 553 static void pool_op_destroy_poolmgr(struct tee_shm_pool_mgr *poolm) 554 { 555 kfree(poolm); 556 } 557 558 static const struct tee_shm_pool_mgr_ops pool_ops = { 559 .alloc = pool_op_alloc, 560 .free = pool_op_free, 561 .destroy_poolmgr = pool_op_destroy_poolmgr, 562 }; 563 564 /** 565 * optee_shm_pool_alloc_pages() - create page-based allocator pool 566 * 567 * This pool is used when OP-TEE supports dymanic SHM. In this case 568 * command buffers and such are allocated from kernel's own memory. 569 */ 570 static struct tee_shm_pool_mgr *optee_shm_pool_alloc_pages(void) 571 { 572 struct tee_shm_pool_mgr *mgr = kzalloc(sizeof(*mgr), GFP_KERNEL); 573 574 if (!mgr) 575 return ERR_PTR(-ENOMEM); 576 577 mgr->ops = &pool_ops; 578 579 return mgr; 580 } 581 582 /* 583 * 4. Do a normal scheduled call into secure world 584 * 585 * The function optee_smc_do_call_with_arg() performs a normal scheduled 586 * call into secure world. During this call may normal world request help 587 * from normal world using RPCs, Remote Procedure Calls. This includes 588 * delivery of non-secure interrupts to for instance allow rescheduling of 589 * the current task. 590 */ 591 592 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx, 593 struct optee_msg_arg *arg) 594 { 595 struct tee_shm *shm; 596 597 arg->ret_origin = TEEC_ORIGIN_COMMS; 598 599 if (arg->num_params != 1 || 600 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 601 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 602 return; 603 } 604 605 shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b; 606 switch (arg->params[0].u.value.a) { 607 case OPTEE_RPC_SHM_TYPE_APPL: 608 optee_rpc_cmd_free_suppl(ctx, shm); 609 break; 610 case OPTEE_RPC_SHM_TYPE_KERNEL: 611 tee_shm_free(shm); 612 break; 613 default: 614 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 615 } 616 arg->ret = TEEC_SUCCESS; 617 } 618 619 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx, 620 struct optee_msg_arg *arg, 621 struct optee_call_ctx *call_ctx) 622 { 623 phys_addr_t pa; 624 struct tee_shm *shm; 625 size_t sz; 626 size_t n; 627 628 arg->ret_origin = TEEC_ORIGIN_COMMS; 629 630 if (!arg->num_params || 631 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { 632 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 633 return; 634 } 635 636 for (n = 1; n < arg->num_params; n++) { 637 if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) { 638 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 639 return; 640 } 641 } 642 643 sz = arg->params[0].u.value.b; 644 switch (arg->params[0].u.value.a) { 645 case OPTEE_RPC_SHM_TYPE_APPL: 646 shm = optee_rpc_cmd_alloc_suppl(ctx, sz); 647 break; 648 case OPTEE_RPC_SHM_TYPE_KERNEL: 649 shm = tee_shm_alloc(ctx, sz, TEE_SHM_MAPPED | TEE_SHM_PRIV); 650 break; 651 default: 652 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 653 return; 654 } 655 656 if (IS_ERR(shm)) { 657 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 658 return; 659 } 660 661 if (tee_shm_get_pa(shm, 0, &pa)) { 662 arg->ret = TEEC_ERROR_BAD_PARAMETERS; 663 goto bad; 664 } 665 666 sz = tee_shm_get_size(shm); 667 668 if (tee_shm_is_registered(shm)) { 669 struct page **pages; 670 u64 *pages_list; 671 size_t page_num; 672 673 pages = tee_shm_get_pages(shm, &page_num); 674 if (!pages || !page_num) { 675 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 676 goto bad; 677 } 678 679 pages_list = optee_allocate_pages_list(page_num); 680 if (!pages_list) { 681 arg->ret = TEEC_ERROR_OUT_OF_MEMORY; 682 goto bad; 683 } 684 685 call_ctx->pages_list = pages_list; 686 call_ctx->num_entries = page_num; 687 688 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 689 OPTEE_MSG_ATTR_NONCONTIG; 690 /* 691 * In the least bits of u.tmem.buf_ptr we store buffer offset 692 * from 4k page, as described in OP-TEE ABI. 693 */ 694 arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) | 695 (tee_shm_get_page_offset(shm) & 696 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 697 arg->params[0].u.tmem.size = tee_shm_get_size(shm); 698 arg->params[0].u.tmem.shm_ref = (unsigned long)shm; 699 700 optee_fill_pages_list(pages_list, pages, page_num, 701 tee_shm_get_page_offset(shm)); 702 } else { 703 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT; 704 arg->params[0].u.tmem.buf_ptr = pa; 705 arg->params[0].u.tmem.size = sz; 706 arg->params[0].u.tmem.shm_ref = (unsigned long)shm; 707 } 708 709 arg->ret = TEEC_SUCCESS; 710 return; 711 bad: 712 tee_shm_free(shm); 713 } 714 715 static void free_pages_list(struct optee_call_ctx *call_ctx) 716 { 717 if (call_ctx->pages_list) { 718 optee_free_pages_list(call_ctx->pages_list, 719 call_ctx->num_entries); 720 call_ctx->pages_list = NULL; 721 call_ctx->num_entries = 0; 722 } 723 } 724 725 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx) 726 { 727 free_pages_list(call_ctx); 728 } 729 730 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee, 731 struct tee_shm *shm, 732 struct optee_call_ctx *call_ctx) 733 { 734 struct optee_msg_arg *arg; 735 736 arg = tee_shm_get_va(shm, 0); 737 if (IS_ERR(arg)) { 738 pr_err("%s: tee_shm_get_va %p failed\n", __func__, shm); 739 return; 740 } 741 742 switch (arg->cmd) { 743 case OPTEE_RPC_CMD_SHM_ALLOC: 744 free_pages_list(call_ctx); 745 handle_rpc_func_cmd_shm_alloc(ctx, arg, call_ctx); 746 break; 747 case OPTEE_RPC_CMD_SHM_FREE: 748 handle_rpc_func_cmd_shm_free(ctx, arg); 749 break; 750 default: 751 optee_rpc_cmd(ctx, optee, arg); 752 } 753 } 754 755 /** 756 * optee_handle_rpc() - handle RPC from secure world 757 * @ctx: context doing the RPC 758 * @param: value of registers for the RPC 759 * @call_ctx: call context. Preserved during one OP-TEE invocation 760 * 761 * Result of RPC is written back into @param. 762 */ 763 static void optee_handle_rpc(struct tee_context *ctx, 764 struct optee_rpc_param *param, 765 struct optee_call_ctx *call_ctx) 766 { 767 struct tee_device *teedev = ctx->teedev; 768 struct optee *optee = tee_get_drvdata(teedev); 769 struct tee_shm *shm; 770 phys_addr_t pa; 771 772 switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) { 773 case OPTEE_SMC_RPC_FUNC_ALLOC: 774 shm = tee_shm_alloc(ctx, param->a1, 775 TEE_SHM_MAPPED | TEE_SHM_PRIV); 776 if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) { 777 reg_pair_from_64(¶m->a1, ¶m->a2, pa); 778 reg_pair_from_64(¶m->a4, ¶m->a5, 779 (unsigned long)shm); 780 } else { 781 param->a1 = 0; 782 param->a2 = 0; 783 param->a4 = 0; 784 param->a5 = 0; 785 } 786 break; 787 case OPTEE_SMC_RPC_FUNC_FREE: 788 shm = reg_pair_to_ptr(param->a1, param->a2); 789 tee_shm_free(shm); 790 break; 791 case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR: 792 /* 793 * A foreign interrupt was raised while secure world was 794 * executing, since they are handled in Linux a dummy RPC is 795 * performed to let Linux take the interrupt through the normal 796 * vector. 797 */ 798 break; 799 case OPTEE_SMC_RPC_FUNC_CMD: 800 shm = reg_pair_to_ptr(param->a1, param->a2); 801 handle_rpc_func_cmd(ctx, optee, shm, call_ctx); 802 break; 803 default: 804 pr_warn("Unknown RPC func 0x%x\n", 805 (u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)); 806 break; 807 } 808 809 param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC; 810 } 811 812 /** 813 * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world 814 * @ctx: calling context 815 * @arg: shared memory holding the message to pass to secure world 816 * 817 * Does and SMC to OP-TEE in secure world and handles eventual resulting 818 * Remote Procedure Calls (RPC) from OP-TEE. 819 * 820 * Returns return code from secure world, 0 is OK 821 */ 822 static int optee_smc_do_call_with_arg(struct tee_context *ctx, 823 struct tee_shm *arg) 824 { 825 struct optee *optee = tee_get_drvdata(ctx->teedev); 826 struct optee_call_waiter w; 827 struct optee_rpc_param param = { }; 828 struct optee_call_ctx call_ctx = { }; 829 phys_addr_t parg; 830 int rc; 831 832 rc = tee_shm_get_pa(arg, 0, &parg); 833 if (rc) 834 return rc; 835 836 param.a0 = OPTEE_SMC_CALL_WITH_ARG; 837 reg_pair_from_64(¶m.a1, ¶m.a2, parg); 838 /* Initialize waiter */ 839 optee_cq_wait_init(&optee->call_queue, &w); 840 while (true) { 841 struct arm_smccc_res res; 842 843 trace_optee_invoke_fn_begin(¶m); 844 optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3, 845 param.a4, param.a5, param.a6, param.a7, 846 &res); 847 trace_optee_invoke_fn_end(¶m, &res); 848 849 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { 850 /* 851 * Out of threads in secure world, wait for a thread 852 * become available. 853 */ 854 optee_cq_wait_for_completion(&optee->call_queue, &w); 855 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { 856 cond_resched(); 857 param.a0 = res.a0; 858 param.a1 = res.a1; 859 param.a2 = res.a2; 860 param.a3 = res.a3; 861 optee_handle_rpc(ctx, ¶m, &call_ctx); 862 } else { 863 rc = res.a0; 864 break; 865 } 866 } 867 868 optee_rpc_finalize_call(&call_ctx); 869 /* 870 * We're done with our thread in secure world, if there's any 871 * thread waiters wake up one. 872 */ 873 optee_cq_wait_final(&optee->call_queue, &w); 874 875 return rc; 876 } 877 878 /* 879 * 5. Driver initialization 880 * 881 * During driver inititialization is secure world probed to find out which 882 * features it supports so the driver can be initialized with a matching 883 * configuration. This involves for instance support for dynamic shared 884 * memory instead of a static memory carvout. 885 */ 886 887 static void optee_get_version(struct tee_device *teedev, 888 struct tee_ioctl_version_data *vers) 889 { 890 struct tee_ioctl_version_data v = { 891 .impl_id = TEE_IMPL_ID_OPTEE, 892 .impl_caps = TEE_OPTEE_CAP_TZ, 893 .gen_caps = TEE_GEN_CAP_GP, 894 }; 895 struct optee *optee = tee_get_drvdata(teedev); 896 897 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 898 v.gen_caps |= TEE_GEN_CAP_REG_MEM; 899 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL) 900 v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL; 901 *vers = v; 902 } 903 904 static int optee_smc_open(struct tee_context *ctx) 905 { 906 struct optee *optee = tee_get_drvdata(ctx->teedev); 907 u32 sec_caps = optee->smc.sec_caps; 908 909 return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL); 910 } 911 912 static const struct tee_driver_ops optee_clnt_ops = { 913 .get_version = optee_get_version, 914 .open = optee_smc_open, 915 .release = optee_release, 916 .open_session = optee_open_session, 917 .close_session = optee_close_session, 918 .invoke_func = optee_invoke_func, 919 .cancel_req = optee_cancel_req, 920 .shm_register = optee_shm_register, 921 .shm_unregister = optee_shm_unregister, 922 }; 923 924 static const struct tee_desc optee_clnt_desc = { 925 .name = DRIVER_NAME "-clnt", 926 .ops = &optee_clnt_ops, 927 .owner = THIS_MODULE, 928 }; 929 930 static const struct tee_driver_ops optee_supp_ops = { 931 .get_version = optee_get_version, 932 .open = optee_smc_open, 933 .release = optee_release_supp, 934 .supp_recv = optee_supp_recv, 935 .supp_send = optee_supp_send, 936 .shm_register = optee_shm_register_supp, 937 .shm_unregister = optee_shm_unregister_supp, 938 }; 939 940 static const struct tee_desc optee_supp_desc = { 941 .name = DRIVER_NAME "-supp", 942 .ops = &optee_supp_ops, 943 .owner = THIS_MODULE, 944 .flags = TEE_DESC_PRIVILEGED, 945 }; 946 947 static const struct optee_ops optee_ops = { 948 .do_call_with_arg = optee_smc_do_call_with_arg, 949 .to_msg_param = optee_to_msg_param, 950 .from_msg_param = optee_from_msg_param, 951 }; 952 953 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn) 954 { 955 struct arm_smccc_res res; 956 957 invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); 958 959 if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 && 960 res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3) 961 return true; 962 return false; 963 } 964 965 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn) 966 { 967 union { 968 struct arm_smccc_res smccc; 969 struct optee_smc_call_get_os_revision_result result; 970 } res = { 971 .result = { 972 .build_id = 0 973 } 974 }; 975 976 invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0, 977 &res.smccc); 978 979 if (res.result.build_id) 980 pr_info("revision %lu.%lu (%08lx)", res.result.major, 981 res.result.minor, res.result.build_id); 982 else 983 pr_info("revision %lu.%lu", res.result.major, res.result.minor); 984 } 985 986 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn) 987 { 988 union { 989 struct arm_smccc_res smccc; 990 struct optee_smc_calls_revision_result result; 991 } res; 992 993 invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 994 995 if (res.result.major == OPTEE_MSG_REVISION_MAJOR && 996 (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR) 997 return true; 998 return false; 999 } 1000 1001 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn, 1002 u32 *sec_caps) 1003 { 1004 union { 1005 struct arm_smccc_res smccc; 1006 struct optee_smc_exchange_capabilities_result result; 1007 } res; 1008 u32 a1 = 0; 1009 1010 /* 1011 * TODO This isn't enough to tell if it's UP system (from kernel 1012 * point of view) or not, is_smp() returns the information 1013 * needed, but can't be called directly from here. 1014 */ 1015 if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1) 1016 a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR; 1017 1018 invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0, 1019 &res.smccc); 1020 1021 if (res.result.status != OPTEE_SMC_RETURN_OK) 1022 return false; 1023 1024 *sec_caps = res.result.capabilities; 1025 return true; 1026 } 1027 1028 static struct tee_shm_pool *optee_config_dyn_shm(void) 1029 { 1030 struct tee_shm_pool_mgr *priv_mgr; 1031 struct tee_shm_pool_mgr *dmabuf_mgr; 1032 void *rc; 1033 1034 rc = optee_shm_pool_alloc_pages(); 1035 if (IS_ERR(rc)) 1036 return rc; 1037 priv_mgr = rc; 1038 1039 rc = optee_shm_pool_alloc_pages(); 1040 if (IS_ERR(rc)) { 1041 tee_shm_pool_mgr_destroy(priv_mgr); 1042 return rc; 1043 } 1044 dmabuf_mgr = rc; 1045 1046 rc = tee_shm_pool_alloc(priv_mgr, dmabuf_mgr); 1047 if (IS_ERR(rc)) { 1048 tee_shm_pool_mgr_destroy(priv_mgr); 1049 tee_shm_pool_mgr_destroy(dmabuf_mgr); 1050 } 1051 1052 return rc; 1053 } 1054 1055 static struct tee_shm_pool * 1056 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm) 1057 { 1058 union { 1059 struct arm_smccc_res smccc; 1060 struct optee_smc_get_shm_config_result result; 1061 } res; 1062 unsigned long vaddr; 1063 phys_addr_t paddr; 1064 size_t size; 1065 phys_addr_t begin; 1066 phys_addr_t end; 1067 void *va; 1068 struct tee_shm_pool_mgr *priv_mgr; 1069 struct tee_shm_pool_mgr *dmabuf_mgr; 1070 void *rc; 1071 const int sz = OPTEE_SHM_NUM_PRIV_PAGES * PAGE_SIZE; 1072 1073 invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc); 1074 if (res.result.status != OPTEE_SMC_RETURN_OK) { 1075 pr_err("static shm service not available\n"); 1076 return ERR_PTR(-ENOENT); 1077 } 1078 1079 if (res.result.settings != OPTEE_SMC_SHM_CACHED) { 1080 pr_err("only normal cached shared memory supported\n"); 1081 return ERR_PTR(-EINVAL); 1082 } 1083 1084 begin = roundup(res.result.start, PAGE_SIZE); 1085 end = rounddown(res.result.start + res.result.size, PAGE_SIZE); 1086 paddr = begin; 1087 size = end - begin; 1088 1089 if (size < 2 * OPTEE_SHM_NUM_PRIV_PAGES * PAGE_SIZE) { 1090 pr_err("too small shared memory area\n"); 1091 return ERR_PTR(-EINVAL); 1092 } 1093 1094 va = memremap(paddr, size, MEMREMAP_WB); 1095 if (!va) { 1096 pr_err("shared memory ioremap failed\n"); 1097 return ERR_PTR(-EINVAL); 1098 } 1099 vaddr = (unsigned long)va; 1100 1101 rc = tee_shm_pool_mgr_alloc_res_mem(vaddr, paddr, sz, 1102 3 /* 8 bytes aligned */); 1103 if (IS_ERR(rc)) 1104 goto err_memunmap; 1105 priv_mgr = rc; 1106 1107 vaddr += sz; 1108 paddr += sz; 1109 size -= sz; 1110 1111 rc = tee_shm_pool_mgr_alloc_res_mem(vaddr, paddr, size, PAGE_SHIFT); 1112 if (IS_ERR(rc)) 1113 goto err_free_priv_mgr; 1114 dmabuf_mgr = rc; 1115 1116 rc = tee_shm_pool_alloc(priv_mgr, dmabuf_mgr); 1117 if (IS_ERR(rc)) 1118 goto err_free_dmabuf_mgr; 1119 1120 *memremaped_shm = va; 1121 1122 return rc; 1123 1124 err_free_dmabuf_mgr: 1125 tee_shm_pool_mgr_destroy(dmabuf_mgr); 1126 err_free_priv_mgr: 1127 tee_shm_pool_mgr_destroy(priv_mgr); 1128 err_memunmap: 1129 memunmap(va); 1130 return rc; 1131 } 1132 1133 /* Simple wrapper functions to be able to use a function pointer */ 1134 static void optee_smccc_smc(unsigned long a0, unsigned long a1, 1135 unsigned long a2, unsigned long a3, 1136 unsigned long a4, unsigned long a5, 1137 unsigned long a6, unsigned long a7, 1138 struct arm_smccc_res *res) 1139 { 1140 arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1141 } 1142 1143 static void optee_smccc_hvc(unsigned long a0, unsigned long a1, 1144 unsigned long a2, unsigned long a3, 1145 unsigned long a4, unsigned long a5, 1146 unsigned long a6, unsigned long a7, 1147 struct arm_smccc_res *res) 1148 { 1149 arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res); 1150 } 1151 1152 static optee_invoke_fn *get_invoke_func(struct device *dev) 1153 { 1154 const char *method; 1155 1156 pr_info("probing for conduit method.\n"); 1157 1158 if (device_property_read_string(dev, "method", &method)) { 1159 pr_warn("missing \"method\" property\n"); 1160 return ERR_PTR(-ENXIO); 1161 } 1162 1163 if (!strcmp("hvc", method)) 1164 return optee_smccc_hvc; 1165 else if (!strcmp("smc", method)) 1166 return optee_smccc_smc; 1167 1168 pr_warn("invalid \"method\" property: %s\n", method); 1169 return ERR_PTR(-EINVAL); 1170 } 1171 1172 /* optee_remove - Device Removal Routine 1173 * @pdev: platform device information struct 1174 * 1175 * optee_remove is called by platform subsystem to alert the driver 1176 * that it should release the device 1177 */ 1178 static int optee_smc_remove(struct platform_device *pdev) 1179 { 1180 struct optee *optee = platform_get_drvdata(pdev); 1181 1182 /* 1183 * Ask OP-TEE to free all cached shared memory objects to decrease 1184 * reference counters and also avoid wild pointers in secure world 1185 * into the old shared memory range. 1186 */ 1187 optee_disable_shm_cache(optee); 1188 1189 optee_remove_common(optee); 1190 1191 if (optee->smc.memremaped_shm) 1192 memunmap(optee->smc.memremaped_shm); 1193 1194 kfree(optee); 1195 1196 return 0; 1197 } 1198 1199 /* optee_shutdown - Device Removal Routine 1200 * @pdev: platform device information struct 1201 * 1202 * platform_shutdown is called by the platform subsystem to alert 1203 * the driver that a shutdown, reboot, or kexec is happening and 1204 * device must be disabled. 1205 */ 1206 static void optee_shutdown(struct platform_device *pdev) 1207 { 1208 optee_disable_shm_cache(platform_get_drvdata(pdev)); 1209 } 1210 1211 static int optee_probe(struct platform_device *pdev) 1212 { 1213 optee_invoke_fn *invoke_fn; 1214 struct tee_shm_pool *pool = ERR_PTR(-EINVAL); 1215 struct optee *optee = NULL; 1216 void *memremaped_shm = NULL; 1217 struct tee_device *teedev; 1218 u32 sec_caps; 1219 int rc; 1220 1221 invoke_fn = get_invoke_func(&pdev->dev); 1222 if (IS_ERR(invoke_fn)) 1223 return PTR_ERR(invoke_fn); 1224 1225 if (!optee_msg_api_uid_is_optee_api(invoke_fn)) { 1226 pr_warn("api uid mismatch\n"); 1227 return -EINVAL; 1228 } 1229 1230 optee_msg_get_os_revision(invoke_fn); 1231 1232 if (!optee_msg_api_revision_is_compatible(invoke_fn)) { 1233 pr_warn("api revision mismatch\n"); 1234 return -EINVAL; 1235 } 1236 1237 if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps)) { 1238 pr_warn("capabilities mismatch\n"); 1239 return -EINVAL; 1240 } 1241 1242 /* 1243 * Try to use dynamic shared memory if possible 1244 */ 1245 if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1246 pool = optee_config_dyn_shm(); 1247 1248 /* 1249 * If dynamic shared memory is not available or failed - try static one 1250 */ 1251 if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) 1252 pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm); 1253 1254 if (IS_ERR(pool)) 1255 return PTR_ERR(pool); 1256 1257 optee = kzalloc(sizeof(*optee), GFP_KERNEL); 1258 if (!optee) { 1259 rc = -ENOMEM; 1260 goto err; 1261 } 1262 1263 optee->ops = &optee_ops; 1264 optee->smc.invoke_fn = invoke_fn; 1265 optee->smc.sec_caps = sec_caps; 1266 1267 teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee); 1268 if (IS_ERR(teedev)) { 1269 rc = PTR_ERR(teedev); 1270 goto err; 1271 } 1272 optee->teedev = teedev; 1273 1274 teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee); 1275 if (IS_ERR(teedev)) { 1276 rc = PTR_ERR(teedev); 1277 goto err; 1278 } 1279 optee->supp_teedev = teedev; 1280 1281 rc = tee_device_register(optee->teedev); 1282 if (rc) 1283 goto err; 1284 1285 rc = tee_device_register(optee->supp_teedev); 1286 if (rc) 1287 goto err; 1288 1289 mutex_init(&optee->call_queue.mutex); 1290 INIT_LIST_HEAD(&optee->call_queue.waiters); 1291 optee_wait_queue_init(&optee->wait_queue); 1292 optee_supp_init(&optee->supp); 1293 optee->smc.memremaped_shm = memremaped_shm; 1294 optee->pool = pool; 1295 1296 /* 1297 * Ensure that there are no pre-existing shm objects before enabling 1298 * the shm cache so that there's no chance of receiving an invalid 1299 * address during shutdown. This could occur, for example, if we're 1300 * kexec booting from an older kernel that did not properly cleanup the 1301 * shm cache. 1302 */ 1303 optee_disable_unmapped_shm_cache(optee); 1304 1305 optee_enable_shm_cache(optee); 1306 1307 if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) 1308 pr_info("dynamic shared memory is enabled\n"); 1309 1310 platform_set_drvdata(pdev, optee); 1311 1312 rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES); 1313 if (rc) { 1314 optee_smc_remove(pdev); 1315 return rc; 1316 } 1317 1318 pr_info("initialized driver\n"); 1319 return 0; 1320 err: 1321 if (optee) { 1322 /* 1323 * tee_device_unregister() is safe to call even if the 1324 * devices hasn't been registered with 1325 * tee_device_register() yet. 1326 */ 1327 tee_device_unregister(optee->supp_teedev); 1328 tee_device_unregister(optee->teedev); 1329 kfree(optee); 1330 } 1331 if (pool) 1332 tee_shm_pool_free(pool); 1333 if (memremaped_shm) 1334 memunmap(memremaped_shm); 1335 return rc; 1336 } 1337 1338 static const struct of_device_id optee_dt_match[] = { 1339 { .compatible = "linaro,optee-tz" }, 1340 {}, 1341 }; 1342 MODULE_DEVICE_TABLE(of, optee_dt_match); 1343 1344 static struct platform_driver optee_driver = { 1345 .probe = optee_probe, 1346 .remove = optee_smc_remove, 1347 .shutdown = optee_shutdown, 1348 .driver = { 1349 .name = "optee", 1350 .of_match_table = optee_dt_match, 1351 }, 1352 }; 1353 1354 int optee_smc_abi_register(void) 1355 { 1356 return platform_driver_register(&optee_driver); 1357 } 1358 1359 void optee_smc_abi_unregister(void) 1360 { 1361 platform_driver_unregister(&optee_driver); 1362 } 1363