xref: /openbmc/linux/drivers/tee/optee/smc_abi.c (revision 0aa7be05)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015-2021, Linaro Limited
4  * Copyright (c) 2016, EPAM Systems
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/arm-smccc.h>
10 #include <linux/errno.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irqdomain.h>
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/tee_drv.h>
24 #include <linux/types.h>
25 #include <linux/workqueue.h>
26 #include "optee_private.h"
27 #include "optee_smc.h"
28 #include "optee_rpc_cmd.h"
29 #include <linux/kmemleak.h>
30 #define CREATE_TRACE_POINTS
31 #include "optee_trace.h"
32 
33 /*
34  * This file implement the SMC ABI used when communicating with secure world
35  * OP-TEE OS via raw SMCs.
36  * This file is divided into the following sections:
37  * 1. Convert between struct tee_param and struct optee_msg_param
38  * 2. Low level support functions to register shared memory in secure world
39  * 3. Dynamic shared memory pool based on alloc_pages()
40  * 4. Do a normal scheduled call into secure world
41  * 5. Asynchronous notification
42  * 6. Driver initialization.
43  */
44 
45 /*
46  * A typical OP-TEE private shm allocation is 224 bytes (argument struct
47  * with 6 parameters, needed for open session). So with an alignment of 512
48  * we'll waste a bit more than 50%. However, it's only expected that we'll
49  * have a handful of these structs allocated at a time. Most memory will
50  * be allocated aligned to the page size, So all in all this should scale
51  * up and down quite well.
52  */
53 #define OPTEE_MIN_STATIC_POOL_ALIGN    9 /* 512 bytes aligned */
54 
55 /*
56  * 1. Convert between struct tee_param and struct optee_msg_param
57  *
58  * optee_from_msg_param() and optee_to_msg_param() are the main
59  * functions.
60  */
61 
62 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
63 				  const struct optee_msg_param *mp)
64 {
65 	struct tee_shm *shm;
66 	phys_addr_t pa;
67 	int rc;
68 
69 	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
70 		  attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
71 	p->u.memref.size = mp->u.tmem.size;
72 	shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
73 	if (!shm) {
74 		p->u.memref.shm_offs = 0;
75 		p->u.memref.shm = NULL;
76 		return 0;
77 	}
78 
79 	rc = tee_shm_get_pa(shm, 0, &pa);
80 	if (rc)
81 		return rc;
82 
83 	p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
84 	p->u.memref.shm = shm;
85 
86 	return 0;
87 }
88 
89 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
90 				   const struct optee_msg_param *mp)
91 {
92 	struct tee_shm *shm;
93 
94 	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
95 		  attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
96 	p->u.memref.size = mp->u.rmem.size;
97 	shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
98 
99 	if (shm) {
100 		p->u.memref.shm_offs = mp->u.rmem.offs;
101 		p->u.memref.shm = shm;
102 	} else {
103 		p->u.memref.shm_offs = 0;
104 		p->u.memref.shm = NULL;
105 	}
106 }
107 
108 /**
109  * optee_from_msg_param() - convert from OPTEE_MSG parameters to
110  *			    struct tee_param
111  * @optee:	main service struct
112  * @params:	subsystem internal parameter representation
113  * @num_params:	number of elements in the parameter arrays
114  * @msg_params:	OPTEE_MSG parameters
115  * Returns 0 on success or <0 on failure
116  */
117 static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
118 				size_t num_params,
119 				const struct optee_msg_param *msg_params)
120 {
121 	int rc;
122 	size_t n;
123 
124 	for (n = 0; n < num_params; n++) {
125 		struct tee_param *p = params + n;
126 		const struct optee_msg_param *mp = msg_params + n;
127 		u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
128 
129 		switch (attr) {
130 		case OPTEE_MSG_ATTR_TYPE_NONE:
131 			p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
132 			memset(&p->u, 0, sizeof(p->u));
133 			break;
134 		case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
135 		case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
136 		case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
137 			optee_from_msg_param_value(p, attr, mp);
138 			break;
139 		case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
140 		case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
141 		case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
142 			rc = from_msg_param_tmp_mem(p, attr, mp);
143 			if (rc)
144 				return rc;
145 			break;
146 		case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
147 		case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
148 		case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
149 			from_msg_param_reg_mem(p, attr, mp);
150 			break;
151 
152 		default:
153 			return -EINVAL;
154 		}
155 	}
156 	return 0;
157 }
158 
159 static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
160 				const struct tee_param *p)
161 {
162 	int rc;
163 	phys_addr_t pa;
164 
165 	mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
166 		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
167 
168 	mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
169 	mp->u.tmem.size = p->u.memref.size;
170 
171 	if (!p->u.memref.shm) {
172 		mp->u.tmem.buf_ptr = 0;
173 		return 0;
174 	}
175 
176 	rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa);
177 	if (rc)
178 		return rc;
179 
180 	mp->u.tmem.buf_ptr = pa;
181 	mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
182 		    OPTEE_MSG_ATTR_CACHE_SHIFT;
183 
184 	return 0;
185 }
186 
187 static int to_msg_param_reg_mem(struct optee_msg_param *mp,
188 				const struct tee_param *p)
189 {
190 	mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
191 		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
192 
193 	mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
194 	mp->u.rmem.size = p->u.memref.size;
195 	mp->u.rmem.offs = p->u.memref.shm_offs;
196 	return 0;
197 }
198 
199 /**
200  * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
201  * @optee:	main service struct
202  * @msg_params:	OPTEE_MSG parameters
203  * @num_params:	number of elements in the parameter arrays
204  * @params:	subsystem itnernal parameter representation
205  * Returns 0 on success or <0 on failure
206  */
207 static int optee_to_msg_param(struct optee *optee,
208 			      struct optee_msg_param *msg_params,
209 			      size_t num_params, const struct tee_param *params)
210 {
211 	int rc;
212 	size_t n;
213 
214 	for (n = 0; n < num_params; n++) {
215 		const struct tee_param *p = params + n;
216 		struct optee_msg_param *mp = msg_params + n;
217 
218 		switch (p->attr) {
219 		case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
220 			mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
221 			memset(&mp->u, 0, sizeof(mp->u));
222 			break;
223 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
224 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
225 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
226 			optee_to_msg_param_value(mp, p);
227 			break;
228 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
229 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
230 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
231 			if (tee_shm_is_dynamic(p->u.memref.shm))
232 				rc = to_msg_param_reg_mem(mp, p);
233 			else
234 				rc = to_msg_param_tmp_mem(mp, p);
235 			if (rc)
236 				return rc;
237 			break;
238 		default:
239 			return -EINVAL;
240 		}
241 	}
242 	return 0;
243 }
244 
245 /*
246  * 2. Low level support functions to register shared memory in secure world
247  *
248  * Functions to enable/disable shared memory caching in secure world, that
249  * is, lazy freeing of previously allocated shared memory. Freeing is
250  * performed when a request has been compled.
251  *
252  * Functions to register and unregister shared memory both for normal
253  * clients and for tee-supplicant.
254  */
255 
256 /**
257  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
258  *			      in OP-TEE
259  * @optee:	main service struct
260  */
261 static void optee_enable_shm_cache(struct optee *optee)
262 {
263 	struct optee_call_waiter w;
264 
265 	/* We need to retry until secure world isn't busy. */
266 	optee_cq_wait_init(&optee->call_queue, &w);
267 	while (true) {
268 		struct arm_smccc_res res;
269 
270 		optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
271 				     0, 0, 0, 0, 0, 0, 0, &res);
272 		if (res.a0 == OPTEE_SMC_RETURN_OK)
273 			break;
274 		optee_cq_wait_for_completion(&optee->call_queue, &w);
275 	}
276 	optee_cq_wait_final(&optee->call_queue, &w);
277 }
278 
279 /**
280  * __optee_disable_shm_cache() - Disables caching of some shared memory
281  *				 allocation in OP-TEE
282  * @optee:	main service struct
283  * @is_mapped:	true if the cached shared memory addresses were mapped by this
284  *		kernel, are safe to dereference, and should be freed
285  */
286 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
287 {
288 	struct optee_call_waiter w;
289 
290 	/* We need to retry until secure world isn't busy. */
291 	optee_cq_wait_init(&optee->call_queue, &w);
292 	while (true) {
293 		union {
294 			struct arm_smccc_res smccc;
295 			struct optee_smc_disable_shm_cache_result result;
296 		} res;
297 
298 		optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
299 				     0, 0, 0, 0, 0, 0, 0, &res.smccc);
300 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
301 			break; /* All shm's freed */
302 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
303 			struct tee_shm *shm;
304 
305 			/*
306 			 * Shared memory references that were not mapped by
307 			 * this kernel must be ignored to prevent a crash.
308 			 */
309 			if (!is_mapped)
310 				continue;
311 
312 			shm = reg_pair_to_ptr(res.result.shm_upper32,
313 					      res.result.shm_lower32);
314 			tee_shm_free(shm);
315 		} else {
316 			optee_cq_wait_for_completion(&optee->call_queue, &w);
317 		}
318 	}
319 	optee_cq_wait_final(&optee->call_queue, &w);
320 }
321 
322 /**
323  * optee_disable_shm_cache() - Disables caching of mapped shared memory
324  *			       allocations in OP-TEE
325  * @optee:	main service struct
326  */
327 static void optee_disable_shm_cache(struct optee *optee)
328 {
329 	return __optee_disable_shm_cache(optee, true);
330 }
331 
332 /**
333  * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
334  *					allocations in OP-TEE which are not
335  *					currently mapped
336  * @optee:	main service struct
337  */
338 static void optee_disable_unmapped_shm_cache(struct optee *optee)
339 {
340 	return __optee_disable_shm_cache(optee, false);
341 }
342 
343 #define PAGELIST_ENTRIES_PER_PAGE				\
344 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
345 
346 /*
347  * The final entry in each pagelist page is a pointer to the next
348  * pagelist page.
349  */
350 static size_t get_pages_list_size(size_t num_entries)
351 {
352 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
353 
354 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
355 }
356 
357 static u64 *optee_allocate_pages_list(size_t num_entries)
358 {
359 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
360 }
361 
362 static void optee_free_pages_list(void *list, size_t num_entries)
363 {
364 	free_pages_exact(list, get_pages_list_size(num_entries));
365 }
366 
367 /**
368  * optee_fill_pages_list() - write list of user pages to given shared
369  * buffer.
370  *
371  * @dst: page-aligned buffer where list of pages will be stored
372  * @pages: array of pages that represents shared buffer
373  * @num_pages: number of entries in @pages
374  * @page_offset: offset of user buffer from page start
375  *
376  * @dst should be big enough to hold list of user page addresses and
377  *	links to the next pages of buffer
378  */
379 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
380 				  size_t page_offset)
381 {
382 	int n = 0;
383 	phys_addr_t optee_page;
384 	/*
385 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
386 	 * for details.
387 	 */
388 	struct {
389 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
390 		u64 next_page_data;
391 	} *pages_data;
392 
393 	/*
394 	 * Currently OP-TEE uses 4k page size and it does not looks
395 	 * like this will change in the future.  On other hand, there are
396 	 * no know ARM architectures with page size < 4k.
397 	 * Thus the next built assert looks redundant. But the following
398 	 * code heavily relies on this assumption, so it is better be
399 	 * safe than sorry.
400 	 */
401 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
402 
403 	pages_data = (void *)dst;
404 	/*
405 	 * If linux page is bigger than 4k, and user buffer offset is
406 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
407 	 * because they bear no value data for OP-TEE.
408 	 */
409 	optee_page = page_to_phys(*pages) +
410 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
411 
412 	while (true) {
413 		pages_data->pages_list[n++] = optee_page;
414 
415 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
416 			pages_data->next_page_data =
417 				virt_to_phys(pages_data + 1);
418 			pages_data++;
419 			n = 0;
420 		}
421 
422 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
423 		if (!(optee_page & ~PAGE_MASK)) {
424 			if (!--num_pages)
425 				break;
426 			pages++;
427 			optee_page = page_to_phys(*pages);
428 		}
429 	}
430 }
431 
432 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
433 			      struct page **pages, size_t num_pages,
434 			      unsigned long start)
435 {
436 	struct optee *optee = tee_get_drvdata(ctx->teedev);
437 	struct optee_msg_arg *msg_arg;
438 	struct tee_shm *shm_arg;
439 	u64 *pages_list;
440 	int rc;
441 
442 	if (!num_pages)
443 		return -EINVAL;
444 
445 	rc = optee_check_mem_type(start, num_pages);
446 	if (rc)
447 		return rc;
448 
449 	pages_list = optee_allocate_pages_list(num_pages);
450 	if (!pages_list)
451 		return -ENOMEM;
452 
453 	shm_arg = optee_get_msg_arg(ctx, 1, &msg_arg);
454 	if (IS_ERR(shm_arg)) {
455 		rc = PTR_ERR(shm_arg);
456 		goto out;
457 	}
458 
459 	optee_fill_pages_list(pages_list, pages, num_pages,
460 			      tee_shm_get_page_offset(shm));
461 
462 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
463 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
464 				OPTEE_MSG_ATTR_NONCONTIG;
465 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
466 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
467 	/*
468 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
469 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
470 	 */
471 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
472 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
473 
474 	if (optee->ops->do_call_with_arg(ctx, shm_arg) ||
475 	    msg_arg->ret != TEEC_SUCCESS)
476 		rc = -EINVAL;
477 
478 	tee_shm_free(shm_arg);
479 out:
480 	optee_free_pages_list(pages_list, num_pages);
481 	return rc;
482 }
483 
484 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
485 {
486 	struct optee *optee = tee_get_drvdata(ctx->teedev);
487 	struct optee_msg_arg *msg_arg;
488 	struct tee_shm *shm_arg;
489 	int rc = 0;
490 
491 	shm_arg = optee_get_msg_arg(ctx, 1, &msg_arg);
492 	if (IS_ERR(shm_arg))
493 		return PTR_ERR(shm_arg);
494 
495 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
496 
497 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
498 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
499 
500 	if (optee->ops->do_call_with_arg(ctx, shm_arg) ||
501 	    msg_arg->ret != TEEC_SUCCESS)
502 		rc = -EINVAL;
503 	tee_shm_free(shm_arg);
504 	return rc;
505 }
506 
507 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
508 				   struct page **pages, size_t num_pages,
509 				   unsigned long start)
510 {
511 	/*
512 	 * We don't want to register supplicant memory in OP-TEE.
513 	 * Instead information about it will be passed in RPC code.
514 	 */
515 	return optee_check_mem_type(start, num_pages);
516 }
517 
518 static int optee_shm_unregister_supp(struct tee_context *ctx,
519 				     struct tee_shm *shm)
520 {
521 	return 0;
522 }
523 
524 /*
525  * 3. Dynamic shared memory pool based on alloc_pages()
526  *
527  * Implements an OP-TEE specific shared memory pool which is used
528  * when dynamic shared memory is supported by secure world.
529  *
530  * The main function is optee_shm_pool_alloc_pages().
531  */
532 
533 static int pool_op_alloc(struct tee_shm_pool *pool,
534 			 struct tee_shm *shm, size_t size, size_t align)
535 {
536 	/*
537 	 * Shared memory private to the OP-TEE driver doesn't need
538 	 * to be registered with OP-TEE.
539 	 */
540 	if (shm->flags & TEE_SHM_PRIV)
541 		return optee_pool_op_alloc_helper(pool, shm, size, align, NULL);
542 
543 	return optee_pool_op_alloc_helper(pool, shm, size, align,
544 					  optee_shm_register);
545 }
546 
547 static void pool_op_free(struct tee_shm_pool *pool,
548 			 struct tee_shm *shm)
549 {
550 	if (!(shm->flags & TEE_SHM_PRIV))
551 		optee_pool_op_free_helper(pool, shm, optee_shm_unregister);
552 	else
553 		optee_pool_op_free_helper(pool, shm, NULL);
554 }
555 
556 static void pool_op_destroy_pool(struct tee_shm_pool *pool)
557 {
558 	kfree(pool);
559 }
560 
561 static const struct tee_shm_pool_ops pool_ops = {
562 	.alloc = pool_op_alloc,
563 	.free = pool_op_free,
564 	.destroy_pool = pool_op_destroy_pool,
565 };
566 
567 /**
568  * optee_shm_pool_alloc_pages() - create page-based allocator pool
569  *
570  * This pool is used when OP-TEE supports dymanic SHM. In this case
571  * command buffers and such are allocated from kernel's own memory.
572  */
573 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
574 {
575 	struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
576 
577 	if (!pool)
578 		return ERR_PTR(-ENOMEM);
579 
580 	pool->ops = &pool_ops;
581 
582 	return pool;
583 }
584 
585 /*
586  * 4. Do a normal scheduled call into secure world
587  *
588  * The function optee_smc_do_call_with_arg() performs a normal scheduled
589  * call into secure world. During this call may normal world request help
590  * from normal world using RPCs, Remote Procedure Calls. This includes
591  * delivery of non-secure interrupts to for instance allow rescheduling of
592  * the current task.
593  */
594 
595 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
596 					 struct optee_msg_arg *arg)
597 {
598 	struct tee_shm *shm;
599 
600 	arg->ret_origin = TEEC_ORIGIN_COMMS;
601 
602 	if (arg->num_params != 1 ||
603 	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
604 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
605 		return;
606 	}
607 
608 	shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
609 	switch (arg->params[0].u.value.a) {
610 	case OPTEE_RPC_SHM_TYPE_APPL:
611 		optee_rpc_cmd_free_suppl(ctx, shm);
612 		break;
613 	case OPTEE_RPC_SHM_TYPE_KERNEL:
614 		tee_shm_free(shm);
615 		break;
616 	default:
617 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
618 	}
619 	arg->ret = TEEC_SUCCESS;
620 }
621 
622 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
623 					  struct optee *optee,
624 					  struct optee_msg_arg *arg,
625 					  struct optee_call_ctx *call_ctx)
626 {
627 	phys_addr_t pa;
628 	struct tee_shm *shm;
629 	size_t sz;
630 	size_t n;
631 
632 	arg->ret_origin = TEEC_ORIGIN_COMMS;
633 
634 	if (!arg->num_params ||
635 	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
636 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
637 		return;
638 	}
639 
640 	for (n = 1; n < arg->num_params; n++) {
641 		if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
642 			arg->ret = TEEC_ERROR_BAD_PARAMETERS;
643 			return;
644 		}
645 	}
646 
647 	sz = arg->params[0].u.value.b;
648 	switch (arg->params[0].u.value.a) {
649 	case OPTEE_RPC_SHM_TYPE_APPL:
650 		shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
651 		break;
652 	case OPTEE_RPC_SHM_TYPE_KERNEL:
653 		shm = tee_shm_alloc_priv_buf(optee->ctx, sz);
654 		break;
655 	default:
656 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
657 		return;
658 	}
659 
660 	if (IS_ERR(shm)) {
661 		arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
662 		return;
663 	}
664 
665 	if (tee_shm_get_pa(shm, 0, &pa)) {
666 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
667 		goto bad;
668 	}
669 
670 	sz = tee_shm_get_size(shm);
671 
672 	if (tee_shm_is_dynamic(shm)) {
673 		struct page **pages;
674 		u64 *pages_list;
675 		size_t page_num;
676 
677 		pages = tee_shm_get_pages(shm, &page_num);
678 		if (!pages || !page_num) {
679 			arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
680 			goto bad;
681 		}
682 
683 		pages_list = optee_allocate_pages_list(page_num);
684 		if (!pages_list) {
685 			arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
686 			goto bad;
687 		}
688 
689 		call_ctx->pages_list = pages_list;
690 		call_ctx->num_entries = page_num;
691 
692 		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
693 				      OPTEE_MSG_ATTR_NONCONTIG;
694 		/*
695 		 * In the least bits of u.tmem.buf_ptr we store buffer offset
696 		 * from 4k page, as described in OP-TEE ABI.
697 		 */
698 		arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) |
699 			(tee_shm_get_page_offset(shm) &
700 			 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
701 		arg->params[0].u.tmem.size = tee_shm_get_size(shm);
702 		arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
703 
704 		optee_fill_pages_list(pages_list, pages, page_num,
705 				      tee_shm_get_page_offset(shm));
706 	} else {
707 		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
708 		arg->params[0].u.tmem.buf_ptr = pa;
709 		arg->params[0].u.tmem.size = sz;
710 		arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
711 	}
712 
713 	arg->ret = TEEC_SUCCESS;
714 	return;
715 bad:
716 	tee_shm_free(shm);
717 }
718 
719 static void free_pages_list(struct optee_call_ctx *call_ctx)
720 {
721 	if (call_ctx->pages_list) {
722 		optee_free_pages_list(call_ctx->pages_list,
723 				      call_ctx->num_entries);
724 		call_ctx->pages_list = NULL;
725 		call_ctx->num_entries = 0;
726 	}
727 }
728 
729 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
730 {
731 	free_pages_list(call_ctx);
732 }
733 
734 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
735 				struct tee_shm *shm,
736 				struct optee_call_ctx *call_ctx)
737 {
738 	struct optee_msg_arg *arg;
739 
740 	arg = tee_shm_get_va(shm, 0);
741 	if (IS_ERR(arg)) {
742 		pr_err("%s: tee_shm_get_va %p failed\n", __func__, shm);
743 		return;
744 	}
745 
746 	switch (arg->cmd) {
747 	case OPTEE_RPC_CMD_SHM_ALLOC:
748 		free_pages_list(call_ctx);
749 		handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
750 		break;
751 	case OPTEE_RPC_CMD_SHM_FREE:
752 		handle_rpc_func_cmd_shm_free(ctx, arg);
753 		break;
754 	default:
755 		optee_rpc_cmd(ctx, optee, arg);
756 	}
757 }
758 
759 /**
760  * optee_handle_rpc() - handle RPC from secure world
761  * @ctx:	context doing the RPC
762  * @param:	value of registers for the RPC
763  * @call_ctx:	call context. Preserved during one OP-TEE invocation
764  *
765  * Result of RPC is written back into @param.
766  */
767 static void optee_handle_rpc(struct tee_context *ctx,
768 			     struct optee_rpc_param *param,
769 			     struct optee_call_ctx *call_ctx)
770 {
771 	struct tee_device *teedev = ctx->teedev;
772 	struct optee *optee = tee_get_drvdata(teedev);
773 	struct tee_shm *shm;
774 	phys_addr_t pa;
775 
776 	switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
777 	case OPTEE_SMC_RPC_FUNC_ALLOC:
778 		shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1);
779 		if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) {
780 			reg_pair_from_64(&param->a1, &param->a2, pa);
781 			reg_pair_from_64(&param->a4, &param->a5,
782 					 (unsigned long)shm);
783 		} else {
784 			param->a1 = 0;
785 			param->a2 = 0;
786 			param->a4 = 0;
787 			param->a5 = 0;
788 		}
789 		kmemleak_not_leak(shm);
790 		break;
791 	case OPTEE_SMC_RPC_FUNC_FREE:
792 		shm = reg_pair_to_ptr(param->a1, param->a2);
793 		tee_shm_free(shm);
794 		break;
795 	case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
796 		/*
797 		 * A foreign interrupt was raised while secure world was
798 		 * executing, since they are handled in Linux a dummy RPC is
799 		 * performed to let Linux take the interrupt through the normal
800 		 * vector.
801 		 */
802 		break;
803 	case OPTEE_SMC_RPC_FUNC_CMD:
804 		shm = reg_pair_to_ptr(param->a1, param->a2);
805 		handle_rpc_func_cmd(ctx, optee, shm, call_ctx);
806 		break;
807 	default:
808 		pr_warn("Unknown RPC func 0x%x\n",
809 			(u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
810 		break;
811 	}
812 
813 	param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
814 }
815 
816 /**
817  * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
818  * @ctx:	calling context
819  * @arg:	shared memory holding the message to pass to secure world
820  *
821  * Does and SMC to OP-TEE in secure world and handles eventual resulting
822  * Remote Procedure Calls (RPC) from OP-TEE.
823  *
824  * Returns return code from secure world, 0 is OK
825  */
826 static int optee_smc_do_call_with_arg(struct tee_context *ctx,
827 				      struct tee_shm *arg)
828 {
829 	struct optee *optee = tee_get_drvdata(ctx->teedev);
830 	struct optee_call_waiter w;
831 	struct optee_rpc_param param = { };
832 	struct optee_call_ctx call_ctx = { };
833 	phys_addr_t parg;
834 	int rc;
835 
836 	rc = tee_shm_get_pa(arg, 0, &parg);
837 	if (rc)
838 		return rc;
839 
840 	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
841 	reg_pair_from_64(&param.a1, &param.a2, parg);
842 	/* Initialize waiter */
843 	optee_cq_wait_init(&optee->call_queue, &w);
844 	while (true) {
845 		struct arm_smccc_res res;
846 
847 		trace_optee_invoke_fn_begin(&param);
848 		optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
849 				     param.a4, param.a5, param.a6, param.a7,
850 				     &res);
851 		trace_optee_invoke_fn_end(&param, &res);
852 
853 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
854 			/*
855 			 * Out of threads in secure world, wait for a thread
856 			 * become available.
857 			 */
858 			optee_cq_wait_for_completion(&optee->call_queue, &w);
859 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
860 			cond_resched();
861 			param.a0 = res.a0;
862 			param.a1 = res.a1;
863 			param.a2 = res.a2;
864 			param.a3 = res.a3;
865 			optee_handle_rpc(ctx, &param, &call_ctx);
866 		} else {
867 			rc = res.a0;
868 			break;
869 		}
870 	}
871 
872 	optee_rpc_finalize_call(&call_ctx);
873 	/*
874 	 * We're done with our thread in secure world, if there's any
875 	 * thread waiters wake up one.
876 	 */
877 	optee_cq_wait_final(&optee->call_queue, &w);
878 
879 	return rc;
880 }
881 
882 static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
883 {
884 	struct optee_msg_arg *msg_arg;
885 	struct tee_shm *shm;
886 
887 	shm = optee_get_msg_arg(ctx, 0, &msg_arg);
888 	if (IS_ERR(shm))
889 		return PTR_ERR(shm);
890 
891 	msg_arg->cmd = cmd;
892 	optee_smc_do_call_with_arg(ctx, shm);
893 
894 	tee_shm_free(shm);
895 	return 0;
896 }
897 
898 static int optee_smc_do_bottom_half(struct tee_context *ctx)
899 {
900 	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
901 }
902 
903 static int optee_smc_stop_async_notif(struct tee_context *ctx)
904 {
905 	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
906 }
907 
908 /*
909  * 5. Asynchronous notification
910  */
911 
912 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
913 				 bool *value_pending)
914 {
915 	struct arm_smccc_res res;
916 
917 	invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
918 
919 	if (res.a0)
920 		return 0;
921 	*value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
922 	*value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
923 	return res.a1;
924 }
925 
926 static irqreturn_t notif_irq_handler(int irq, void *dev_id)
927 {
928 	struct optee *optee = dev_id;
929 	bool do_bottom_half = false;
930 	bool value_valid;
931 	bool value_pending;
932 	u32 value;
933 
934 	do {
935 		value = get_async_notif_value(optee->smc.invoke_fn,
936 					      &value_valid, &value_pending);
937 		if (!value_valid)
938 			break;
939 
940 		if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
941 			do_bottom_half = true;
942 		else
943 			optee_notif_send(optee, value);
944 	} while (value_pending);
945 
946 	if (do_bottom_half)
947 		return IRQ_WAKE_THREAD;
948 	return IRQ_HANDLED;
949 }
950 
951 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
952 {
953 	struct optee *optee = dev_id;
954 
955 	optee_smc_do_bottom_half(optee->ctx);
956 
957 	return IRQ_HANDLED;
958 }
959 
960 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
961 {
962 	int rc;
963 
964 	rc = request_threaded_irq(irq, notif_irq_handler,
965 				  notif_irq_thread_fn,
966 				  0, "optee_notification", optee);
967 	if (rc)
968 		return rc;
969 
970 	optee->smc.notif_irq = irq;
971 
972 	return 0;
973 }
974 
975 static void optee_smc_notif_uninit_irq(struct optee *optee)
976 {
977 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
978 		optee_smc_stop_async_notif(optee->ctx);
979 		if (optee->smc.notif_irq) {
980 			free_irq(optee->smc.notif_irq, optee);
981 			irq_dispose_mapping(optee->smc.notif_irq);
982 		}
983 	}
984 }
985 
986 /*
987  * 6. Driver initialization
988  *
989  * During driver initialization is secure world probed to find out which
990  * features it supports so the driver can be initialized with a matching
991  * configuration. This involves for instance support for dynamic shared
992  * memory instead of a static memory carvout.
993  */
994 
995 static void optee_get_version(struct tee_device *teedev,
996 			      struct tee_ioctl_version_data *vers)
997 {
998 	struct tee_ioctl_version_data v = {
999 		.impl_id = TEE_IMPL_ID_OPTEE,
1000 		.impl_caps = TEE_OPTEE_CAP_TZ,
1001 		.gen_caps = TEE_GEN_CAP_GP,
1002 	};
1003 	struct optee *optee = tee_get_drvdata(teedev);
1004 
1005 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1006 		v.gen_caps |= TEE_GEN_CAP_REG_MEM;
1007 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
1008 		v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
1009 	*vers = v;
1010 }
1011 
1012 static int optee_smc_open(struct tee_context *ctx)
1013 {
1014 	struct optee *optee = tee_get_drvdata(ctx->teedev);
1015 	u32 sec_caps = optee->smc.sec_caps;
1016 
1017 	return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
1018 }
1019 
1020 static const struct tee_driver_ops optee_clnt_ops = {
1021 	.get_version = optee_get_version,
1022 	.open = optee_smc_open,
1023 	.release = optee_release,
1024 	.open_session = optee_open_session,
1025 	.close_session = optee_close_session,
1026 	.invoke_func = optee_invoke_func,
1027 	.cancel_req = optee_cancel_req,
1028 	.shm_register = optee_shm_register,
1029 	.shm_unregister = optee_shm_unregister,
1030 };
1031 
1032 static const struct tee_desc optee_clnt_desc = {
1033 	.name = DRIVER_NAME "-clnt",
1034 	.ops = &optee_clnt_ops,
1035 	.owner = THIS_MODULE,
1036 };
1037 
1038 static const struct tee_driver_ops optee_supp_ops = {
1039 	.get_version = optee_get_version,
1040 	.open = optee_smc_open,
1041 	.release = optee_release_supp,
1042 	.supp_recv = optee_supp_recv,
1043 	.supp_send = optee_supp_send,
1044 	.shm_register = optee_shm_register_supp,
1045 	.shm_unregister = optee_shm_unregister_supp,
1046 };
1047 
1048 static const struct tee_desc optee_supp_desc = {
1049 	.name = DRIVER_NAME "-supp",
1050 	.ops = &optee_supp_ops,
1051 	.owner = THIS_MODULE,
1052 	.flags = TEE_DESC_PRIVILEGED,
1053 };
1054 
1055 static const struct optee_ops optee_ops = {
1056 	.do_call_with_arg = optee_smc_do_call_with_arg,
1057 	.to_msg_param = optee_to_msg_param,
1058 	.from_msg_param = optee_from_msg_param,
1059 };
1060 
1061 static int enable_async_notif(optee_invoke_fn *invoke_fn)
1062 {
1063 	struct arm_smccc_res res;
1064 
1065 	invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
1066 
1067 	if (res.a0)
1068 		return -EINVAL;
1069 	return 0;
1070 }
1071 
1072 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
1073 {
1074 	struct arm_smccc_res res;
1075 
1076 	invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1077 
1078 	if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
1079 	    res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
1080 		return true;
1081 	return false;
1082 }
1083 
1084 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
1085 {
1086 	union {
1087 		struct arm_smccc_res smccc;
1088 		struct optee_smc_call_get_os_revision_result result;
1089 	} res = {
1090 		.result = {
1091 			.build_id = 0
1092 		}
1093 	};
1094 
1095 	invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
1096 		  &res.smccc);
1097 
1098 	if (res.result.build_id)
1099 		pr_info("revision %lu.%lu (%08lx)", res.result.major,
1100 			res.result.minor, res.result.build_id);
1101 	else
1102 		pr_info("revision %lu.%lu", res.result.major, res.result.minor);
1103 }
1104 
1105 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
1106 {
1107 	union {
1108 		struct arm_smccc_res smccc;
1109 		struct optee_smc_calls_revision_result result;
1110 	} res;
1111 
1112 	invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1113 
1114 	if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
1115 	    (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
1116 		return true;
1117 	return false;
1118 }
1119 
1120 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
1121 					    u32 *sec_caps, u32 *max_notif_value)
1122 {
1123 	union {
1124 		struct arm_smccc_res smccc;
1125 		struct optee_smc_exchange_capabilities_result result;
1126 	} res;
1127 	u32 a1 = 0;
1128 
1129 	/*
1130 	 * TODO This isn't enough to tell if it's UP system (from kernel
1131 	 * point of view) or not, is_smp() returns the information
1132 	 * needed, but can't be called directly from here.
1133 	 */
1134 	if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
1135 		a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
1136 
1137 	invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
1138 		  &res.smccc);
1139 
1140 	if (res.result.status != OPTEE_SMC_RETURN_OK)
1141 		return false;
1142 
1143 	*sec_caps = res.result.capabilities;
1144 	if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
1145 		*max_notif_value = res.result.max_notif_value;
1146 	else
1147 		*max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
1148 
1149 	return true;
1150 }
1151 
1152 static struct tee_shm_pool *
1153 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
1154 {
1155 	union {
1156 		struct arm_smccc_res smccc;
1157 		struct optee_smc_get_shm_config_result result;
1158 	} res;
1159 	unsigned long vaddr;
1160 	phys_addr_t paddr;
1161 	size_t size;
1162 	phys_addr_t begin;
1163 	phys_addr_t end;
1164 	void *va;
1165 	void *rc;
1166 
1167 	invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1168 	if (res.result.status != OPTEE_SMC_RETURN_OK) {
1169 		pr_err("static shm service not available\n");
1170 		return ERR_PTR(-ENOENT);
1171 	}
1172 
1173 	if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
1174 		pr_err("only normal cached shared memory supported\n");
1175 		return ERR_PTR(-EINVAL);
1176 	}
1177 
1178 	begin = roundup(res.result.start, PAGE_SIZE);
1179 	end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
1180 	paddr = begin;
1181 	size = end - begin;
1182 
1183 	va = memremap(paddr, size, MEMREMAP_WB);
1184 	if (!va) {
1185 		pr_err("shared memory ioremap failed\n");
1186 		return ERR_PTR(-EINVAL);
1187 	}
1188 	vaddr = (unsigned long)va;
1189 
1190 	rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
1191 					OPTEE_MIN_STATIC_POOL_ALIGN);
1192 	if (IS_ERR(rc))
1193 		memunmap(va);
1194 	else
1195 		*memremaped_shm = va;
1196 
1197 	return rc;
1198 }
1199 
1200 /* Simple wrapper functions to be able to use a function pointer */
1201 static void optee_smccc_smc(unsigned long a0, unsigned long a1,
1202 			    unsigned long a2, unsigned long a3,
1203 			    unsigned long a4, unsigned long a5,
1204 			    unsigned long a6, unsigned long a7,
1205 			    struct arm_smccc_res *res)
1206 {
1207 	arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1208 }
1209 
1210 static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
1211 			    unsigned long a2, unsigned long a3,
1212 			    unsigned long a4, unsigned long a5,
1213 			    unsigned long a6, unsigned long a7,
1214 			    struct arm_smccc_res *res)
1215 {
1216 	arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1217 }
1218 
1219 static optee_invoke_fn *get_invoke_func(struct device *dev)
1220 {
1221 	const char *method;
1222 
1223 	pr_info("probing for conduit method.\n");
1224 
1225 	if (device_property_read_string(dev, "method", &method)) {
1226 		pr_warn("missing \"method\" property\n");
1227 		return ERR_PTR(-ENXIO);
1228 	}
1229 
1230 	if (!strcmp("hvc", method))
1231 		return optee_smccc_hvc;
1232 	else if (!strcmp("smc", method))
1233 		return optee_smccc_smc;
1234 
1235 	pr_warn("invalid \"method\" property: %s\n", method);
1236 	return ERR_PTR(-EINVAL);
1237 }
1238 
1239 /* optee_remove - Device Removal Routine
1240  * @pdev: platform device information struct
1241  *
1242  * optee_remove is called by platform subsystem to alert the driver
1243  * that it should release the device
1244  */
1245 static int optee_smc_remove(struct platform_device *pdev)
1246 {
1247 	struct optee *optee = platform_get_drvdata(pdev);
1248 
1249 	/*
1250 	 * Ask OP-TEE to free all cached shared memory objects to decrease
1251 	 * reference counters and also avoid wild pointers in secure world
1252 	 * into the old shared memory range.
1253 	 */
1254 	optee_disable_shm_cache(optee);
1255 
1256 	optee_smc_notif_uninit_irq(optee);
1257 
1258 	optee_remove_common(optee);
1259 
1260 	if (optee->smc.memremaped_shm)
1261 		memunmap(optee->smc.memremaped_shm);
1262 
1263 	kfree(optee);
1264 
1265 	return 0;
1266 }
1267 
1268 /* optee_shutdown - Device Removal Routine
1269  * @pdev: platform device information struct
1270  *
1271  * platform_shutdown is called by the platform subsystem to alert
1272  * the driver that a shutdown, reboot, or kexec is happening and
1273  * device must be disabled.
1274  */
1275 static void optee_shutdown(struct platform_device *pdev)
1276 {
1277 	optee_disable_shm_cache(platform_get_drvdata(pdev));
1278 }
1279 
1280 static int optee_probe(struct platform_device *pdev)
1281 {
1282 	optee_invoke_fn *invoke_fn;
1283 	struct tee_shm_pool *pool = ERR_PTR(-EINVAL);
1284 	struct optee *optee = NULL;
1285 	void *memremaped_shm = NULL;
1286 	struct tee_device *teedev;
1287 	struct tee_context *ctx;
1288 	u32 max_notif_value;
1289 	u32 sec_caps;
1290 	int rc;
1291 
1292 	invoke_fn = get_invoke_func(&pdev->dev);
1293 	if (IS_ERR(invoke_fn))
1294 		return PTR_ERR(invoke_fn);
1295 
1296 	if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
1297 		pr_warn("api uid mismatch\n");
1298 		return -EINVAL;
1299 	}
1300 
1301 	optee_msg_get_os_revision(invoke_fn);
1302 
1303 	if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
1304 		pr_warn("api revision mismatch\n");
1305 		return -EINVAL;
1306 	}
1307 
1308 	if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps,
1309 					     &max_notif_value)) {
1310 		pr_warn("capabilities mismatch\n");
1311 		return -EINVAL;
1312 	}
1313 
1314 	/*
1315 	 * Try to use dynamic shared memory if possible
1316 	 */
1317 	if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1318 		pool = optee_shm_pool_alloc_pages();
1319 
1320 	/*
1321 	 * If dynamic shared memory is not available or failed - try static one
1322 	 */
1323 	if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM))
1324 		pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm);
1325 
1326 	if (IS_ERR(pool))
1327 		return PTR_ERR(pool);
1328 
1329 	optee = kzalloc(sizeof(*optee), GFP_KERNEL);
1330 	if (!optee) {
1331 		rc = -ENOMEM;
1332 		goto err_free_pool;
1333 	}
1334 
1335 	optee->ops = &optee_ops;
1336 	optee->smc.invoke_fn = invoke_fn;
1337 	optee->smc.sec_caps = sec_caps;
1338 
1339 	teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee);
1340 	if (IS_ERR(teedev)) {
1341 		rc = PTR_ERR(teedev);
1342 		goto err_free_optee;
1343 	}
1344 	optee->teedev = teedev;
1345 
1346 	teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee);
1347 	if (IS_ERR(teedev)) {
1348 		rc = PTR_ERR(teedev);
1349 		goto err_unreg_teedev;
1350 	}
1351 	optee->supp_teedev = teedev;
1352 
1353 	rc = tee_device_register(optee->teedev);
1354 	if (rc)
1355 		goto err_unreg_supp_teedev;
1356 
1357 	rc = tee_device_register(optee->supp_teedev);
1358 	if (rc)
1359 		goto err_unreg_supp_teedev;
1360 
1361 	mutex_init(&optee->call_queue.mutex);
1362 	INIT_LIST_HEAD(&optee->call_queue.waiters);
1363 	optee_supp_init(&optee->supp);
1364 	optee->smc.memremaped_shm = memremaped_shm;
1365 	optee->pool = pool;
1366 
1367 	platform_set_drvdata(pdev, optee);
1368 	ctx = teedev_open(optee->teedev);
1369 	if (IS_ERR(ctx)) {
1370 		rc = PTR_ERR(ctx);
1371 		goto err_supp_uninit;
1372 	}
1373 	optee->ctx = ctx;
1374 	rc = optee_notif_init(optee, max_notif_value);
1375 	if (rc)
1376 		goto err_close_ctx;
1377 
1378 	if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1379 		unsigned int irq;
1380 
1381 		rc = platform_get_irq(pdev, 0);
1382 		if (rc < 0) {
1383 			pr_err("platform_get_irq: ret %d\n", rc);
1384 			goto err_notif_uninit;
1385 		}
1386 		irq = rc;
1387 
1388 		rc = optee_smc_notif_init_irq(optee, irq);
1389 		if (rc) {
1390 			irq_dispose_mapping(irq);
1391 			goto err_notif_uninit;
1392 		}
1393 		enable_async_notif(optee->smc.invoke_fn);
1394 		pr_info("Asynchronous notifications enabled\n");
1395 	}
1396 
1397 	/*
1398 	 * Ensure that there are no pre-existing shm objects before enabling
1399 	 * the shm cache so that there's no chance of receiving an invalid
1400 	 * address during shutdown. This could occur, for example, if we're
1401 	 * kexec booting from an older kernel that did not properly cleanup the
1402 	 * shm cache.
1403 	 */
1404 	optee_disable_unmapped_shm_cache(optee);
1405 
1406 	optee_enable_shm_cache(optee);
1407 
1408 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1409 		pr_info("dynamic shared memory is enabled\n");
1410 
1411 	rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
1412 	if (rc)
1413 		goto err_disable_shm_cache;
1414 
1415 	pr_info("initialized driver\n");
1416 	return 0;
1417 
1418 err_disable_shm_cache:
1419 	optee_disable_shm_cache(optee);
1420 	optee_smc_notif_uninit_irq(optee);
1421 	optee_unregister_devices();
1422 err_notif_uninit:
1423 	optee_notif_uninit(optee);
1424 err_close_ctx:
1425 	teedev_close_context(ctx);
1426 err_supp_uninit:
1427 	optee_supp_uninit(&optee->supp);
1428 	mutex_destroy(&optee->call_queue.mutex);
1429 err_unreg_supp_teedev:
1430 	tee_device_unregister(optee->supp_teedev);
1431 err_unreg_teedev:
1432 	tee_device_unregister(optee->teedev);
1433 err_free_optee:
1434 	kfree(optee);
1435 err_free_pool:
1436 	tee_shm_pool_free(pool);
1437 	if (memremaped_shm)
1438 		memunmap(memremaped_shm);
1439 	return rc;
1440 }
1441 
1442 static const struct of_device_id optee_dt_match[] = {
1443 	{ .compatible = "linaro,optee-tz" },
1444 	{},
1445 };
1446 MODULE_DEVICE_TABLE(of, optee_dt_match);
1447 
1448 static struct platform_driver optee_driver = {
1449 	.probe  = optee_probe,
1450 	.remove = optee_smc_remove,
1451 	.shutdown = optee_shutdown,
1452 	.driver = {
1453 		.name = "optee",
1454 		.of_match_table = optee_dt_match,
1455 	},
1456 };
1457 
1458 int optee_smc_abi_register(void)
1459 {
1460 	return platform_driver_register(&optee_driver);
1461 }
1462 
1463 void optee_smc_abi_unregister(void)
1464 {
1465 	platform_driver_unregister(&optee_driver);
1466 }
1467