1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2021, Linaro Limited
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/arm_ffa.h>
9 #include <linux/errno.h>
10 #include <linux/scatterlist.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 #include <linux/tee_drv.h>
15 #include <linux/types.h>
16 #include "optee_private.h"
17 #include "optee_ffa.h"
18 #include "optee_rpc_cmd.h"
19
20 /*
21 * This file implement the FF-A ABI used when communicating with secure world
22 * OP-TEE OS via FF-A.
23 * This file is divided into the following sections:
24 * 1. Maintain a hash table for lookup of a global FF-A memory handle
25 * 2. Convert between struct tee_param and struct optee_msg_param
26 * 3. Low level support functions to register shared memory in secure world
27 * 4. Dynamic shared memory pool based on alloc_pages()
28 * 5. Do a normal scheduled call into secure world
29 * 6. Driver initialization.
30 */
31
32 /*
33 * 1. Maintain a hash table for lookup of a global FF-A memory handle
34 *
35 * FF-A assigns a global memory handle for each piece shared memory.
36 * This handle is then used when communicating with secure world.
37 *
38 * Main functions are optee_shm_add_ffa_handle() and optee_shm_rem_ffa_handle()
39 */
40 struct shm_rhash {
41 struct tee_shm *shm;
42 u64 global_id;
43 struct rhash_head linkage;
44 };
45
rh_free_fn(void * ptr,void * arg)46 static void rh_free_fn(void *ptr, void *arg)
47 {
48 kfree(ptr);
49 }
50
51 static const struct rhashtable_params shm_rhash_params = {
52 .head_offset = offsetof(struct shm_rhash, linkage),
53 .key_len = sizeof(u64),
54 .key_offset = offsetof(struct shm_rhash, global_id),
55 .automatic_shrinking = true,
56 };
57
optee_shm_from_ffa_handle(struct optee * optee,u64 global_id)58 static struct tee_shm *optee_shm_from_ffa_handle(struct optee *optee,
59 u64 global_id)
60 {
61 struct tee_shm *shm = NULL;
62 struct shm_rhash *r;
63
64 mutex_lock(&optee->ffa.mutex);
65 r = rhashtable_lookup_fast(&optee->ffa.global_ids, &global_id,
66 shm_rhash_params);
67 if (r)
68 shm = r->shm;
69 mutex_unlock(&optee->ffa.mutex);
70
71 return shm;
72 }
73
optee_shm_add_ffa_handle(struct optee * optee,struct tee_shm * shm,u64 global_id)74 static int optee_shm_add_ffa_handle(struct optee *optee, struct tee_shm *shm,
75 u64 global_id)
76 {
77 struct shm_rhash *r;
78 int rc;
79
80 r = kmalloc(sizeof(*r), GFP_KERNEL);
81 if (!r)
82 return -ENOMEM;
83 r->shm = shm;
84 r->global_id = global_id;
85
86 mutex_lock(&optee->ffa.mutex);
87 rc = rhashtable_lookup_insert_fast(&optee->ffa.global_ids, &r->linkage,
88 shm_rhash_params);
89 mutex_unlock(&optee->ffa.mutex);
90
91 if (rc)
92 kfree(r);
93
94 return rc;
95 }
96
optee_shm_rem_ffa_handle(struct optee * optee,u64 global_id)97 static int optee_shm_rem_ffa_handle(struct optee *optee, u64 global_id)
98 {
99 struct shm_rhash *r;
100 int rc = -ENOENT;
101
102 mutex_lock(&optee->ffa.mutex);
103 r = rhashtable_lookup_fast(&optee->ffa.global_ids, &global_id,
104 shm_rhash_params);
105 if (r)
106 rc = rhashtable_remove_fast(&optee->ffa.global_ids,
107 &r->linkage, shm_rhash_params);
108 mutex_unlock(&optee->ffa.mutex);
109
110 if (!rc)
111 kfree(r);
112
113 return rc;
114 }
115
116 /*
117 * 2. Convert between struct tee_param and struct optee_msg_param
118 *
119 * optee_ffa_from_msg_param() and optee_ffa_to_msg_param() are the main
120 * functions.
121 */
122
from_msg_param_ffa_mem(struct optee * optee,struct tee_param * p,u32 attr,const struct optee_msg_param * mp)123 static void from_msg_param_ffa_mem(struct optee *optee, struct tee_param *p,
124 u32 attr, const struct optee_msg_param *mp)
125 {
126 struct tee_shm *shm = NULL;
127 u64 offs_high = 0;
128 u64 offs_low = 0;
129
130 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
131 attr - OPTEE_MSG_ATTR_TYPE_FMEM_INPUT;
132 p->u.memref.size = mp->u.fmem.size;
133
134 if (mp->u.fmem.global_id != OPTEE_MSG_FMEM_INVALID_GLOBAL_ID)
135 shm = optee_shm_from_ffa_handle(optee, mp->u.fmem.global_id);
136 p->u.memref.shm = shm;
137
138 if (shm) {
139 offs_low = mp->u.fmem.offs_low;
140 offs_high = mp->u.fmem.offs_high;
141 }
142 p->u.memref.shm_offs = offs_low | offs_high << 32;
143 }
144
145 /**
146 * optee_ffa_from_msg_param() - convert from OPTEE_MSG parameters to
147 * struct tee_param
148 * @optee: main service struct
149 * @params: subsystem internal parameter representation
150 * @num_params: number of elements in the parameter arrays
151 * @msg_params: OPTEE_MSG parameters
152 *
153 * Returns 0 on success or <0 on failure
154 */
optee_ffa_from_msg_param(struct optee * optee,struct tee_param * params,size_t num_params,const struct optee_msg_param * msg_params)155 static int optee_ffa_from_msg_param(struct optee *optee,
156 struct tee_param *params, size_t num_params,
157 const struct optee_msg_param *msg_params)
158 {
159 size_t n;
160
161 for (n = 0; n < num_params; n++) {
162 struct tee_param *p = params + n;
163 const struct optee_msg_param *mp = msg_params + n;
164 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
165
166 switch (attr) {
167 case OPTEE_MSG_ATTR_TYPE_NONE:
168 p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
169 memset(&p->u, 0, sizeof(p->u));
170 break;
171 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
172 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
173 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
174 optee_from_msg_param_value(p, attr, mp);
175 break;
176 case OPTEE_MSG_ATTR_TYPE_FMEM_INPUT:
177 case OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT:
178 case OPTEE_MSG_ATTR_TYPE_FMEM_INOUT:
179 from_msg_param_ffa_mem(optee, p, attr, mp);
180 break;
181 default:
182 return -EINVAL;
183 }
184 }
185
186 return 0;
187 }
188
to_msg_param_ffa_mem(struct optee_msg_param * mp,const struct tee_param * p)189 static int to_msg_param_ffa_mem(struct optee_msg_param *mp,
190 const struct tee_param *p)
191 {
192 struct tee_shm *shm = p->u.memref.shm;
193
194 mp->attr = OPTEE_MSG_ATTR_TYPE_FMEM_INPUT + p->attr -
195 TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
196
197 if (shm) {
198 u64 shm_offs = p->u.memref.shm_offs;
199
200 mp->u.fmem.internal_offs = shm->offset;
201
202 mp->u.fmem.offs_low = shm_offs;
203 mp->u.fmem.offs_high = shm_offs >> 32;
204 /* Check that the entire offset could be stored. */
205 if (mp->u.fmem.offs_high != shm_offs >> 32)
206 return -EINVAL;
207
208 mp->u.fmem.global_id = shm->sec_world_id;
209 } else {
210 memset(&mp->u, 0, sizeof(mp->u));
211 mp->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID;
212 }
213 mp->u.fmem.size = p->u.memref.size;
214
215 return 0;
216 }
217
218 /**
219 * optee_ffa_to_msg_param() - convert from struct tee_params to OPTEE_MSG
220 * parameters
221 * @optee: main service struct
222 * @msg_params: OPTEE_MSG parameters
223 * @num_params: number of elements in the parameter arrays
224 * @params: subsystem itnernal parameter representation
225 * Returns 0 on success or <0 on failure
226 */
optee_ffa_to_msg_param(struct optee * optee,struct optee_msg_param * msg_params,size_t num_params,const struct tee_param * params)227 static int optee_ffa_to_msg_param(struct optee *optee,
228 struct optee_msg_param *msg_params,
229 size_t num_params,
230 const struct tee_param *params)
231 {
232 size_t n;
233
234 for (n = 0; n < num_params; n++) {
235 const struct tee_param *p = params + n;
236 struct optee_msg_param *mp = msg_params + n;
237
238 switch (p->attr) {
239 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
240 mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
241 memset(&mp->u, 0, sizeof(mp->u));
242 break;
243 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
244 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
245 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
246 optee_to_msg_param_value(mp, p);
247 break;
248 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
249 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
250 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
251 if (to_msg_param_ffa_mem(mp, p))
252 return -EINVAL;
253 break;
254 default:
255 return -EINVAL;
256 }
257 }
258
259 return 0;
260 }
261
262 /*
263 * 3. Low level support functions to register shared memory in secure world
264 *
265 * Functions to register and unregister shared memory both for normal
266 * clients and for tee-supplicant.
267 */
268
optee_ffa_shm_register(struct tee_context * ctx,struct tee_shm * shm,struct page ** pages,size_t num_pages,unsigned long start)269 static int optee_ffa_shm_register(struct tee_context *ctx, struct tee_shm *shm,
270 struct page **pages, size_t num_pages,
271 unsigned long start)
272 {
273 struct optee *optee = tee_get_drvdata(ctx->teedev);
274 struct ffa_device *ffa_dev = optee->ffa.ffa_dev;
275 const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops;
276 struct ffa_mem_region_attributes mem_attr = {
277 .receiver = ffa_dev->vm_id,
278 .attrs = FFA_MEM_RW,
279 };
280 struct ffa_mem_ops_args args = {
281 .use_txbuf = true,
282 .attrs = &mem_attr,
283 .nattrs = 1,
284 };
285 struct sg_table sgt;
286 int rc;
287
288 rc = optee_check_mem_type(start, num_pages);
289 if (rc)
290 return rc;
291
292 rc = sg_alloc_table_from_pages(&sgt, pages, num_pages, 0,
293 num_pages * PAGE_SIZE, GFP_KERNEL);
294 if (rc)
295 return rc;
296 args.sg = sgt.sgl;
297 rc = mem_ops->memory_share(&args);
298 sg_free_table(&sgt);
299 if (rc)
300 return rc;
301
302 rc = optee_shm_add_ffa_handle(optee, shm, args.g_handle);
303 if (rc) {
304 mem_ops->memory_reclaim(args.g_handle, 0);
305 return rc;
306 }
307
308 shm->sec_world_id = args.g_handle;
309
310 return 0;
311 }
312
optee_ffa_shm_unregister(struct tee_context * ctx,struct tee_shm * shm)313 static int optee_ffa_shm_unregister(struct tee_context *ctx,
314 struct tee_shm *shm)
315 {
316 struct optee *optee = tee_get_drvdata(ctx->teedev);
317 struct ffa_device *ffa_dev = optee->ffa.ffa_dev;
318 const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops;
319 const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops;
320 u64 global_handle = shm->sec_world_id;
321 struct ffa_send_direct_data data = {
322 .data0 = OPTEE_FFA_UNREGISTER_SHM,
323 .data1 = (u32)global_handle,
324 .data2 = (u32)(global_handle >> 32)
325 };
326 int rc;
327
328 optee_shm_rem_ffa_handle(optee, global_handle);
329 shm->sec_world_id = 0;
330
331 rc = msg_ops->sync_send_receive(ffa_dev, &data);
332 if (rc)
333 pr_err("Unregister SHM id 0x%llx rc %d\n", global_handle, rc);
334
335 rc = mem_ops->memory_reclaim(global_handle, 0);
336 if (rc)
337 pr_err("mem_reclaim: 0x%llx %d", global_handle, rc);
338
339 return rc;
340 }
341
optee_ffa_shm_unregister_supp(struct tee_context * ctx,struct tee_shm * shm)342 static int optee_ffa_shm_unregister_supp(struct tee_context *ctx,
343 struct tee_shm *shm)
344 {
345 struct optee *optee = tee_get_drvdata(ctx->teedev);
346 const struct ffa_mem_ops *mem_ops;
347 u64 global_handle = shm->sec_world_id;
348 int rc;
349
350 /*
351 * We're skipping the OPTEE_FFA_YIELDING_CALL_UNREGISTER_SHM call
352 * since this is OP-TEE freeing via RPC so it has already retired
353 * this ID.
354 */
355
356 optee_shm_rem_ffa_handle(optee, global_handle);
357 mem_ops = optee->ffa.ffa_dev->ops->mem_ops;
358 rc = mem_ops->memory_reclaim(global_handle, 0);
359 if (rc)
360 pr_err("mem_reclaim: 0x%llx %d", global_handle, rc);
361
362 shm->sec_world_id = 0;
363
364 return rc;
365 }
366
367 /*
368 * 4. Dynamic shared memory pool based on alloc_pages()
369 *
370 * Implements an OP-TEE specific shared memory pool.
371 * The main function is optee_ffa_shm_pool_alloc_pages().
372 */
373
pool_ffa_op_alloc(struct tee_shm_pool * pool,struct tee_shm * shm,size_t size,size_t align)374 static int pool_ffa_op_alloc(struct tee_shm_pool *pool,
375 struct tee_shm *shm, size_t size, size_t align)
376 {
377 return optee_pool_op_alloc_helper(pool, shm, size, align,
378 optee_ffa_shm_register);
379 }
380
pool_ffa_op_free(struct tee_shm_pool * pool,struct tee_shm * shm)381 static void pool_ffa_op_free(struct tee_shm_pool *pool,
382 struct tee_shm *shm)
383 {
384 optee_pool_op_free_helper(pool, shm, optee_ffa_shm_unregister);
385 }
386
pool_ffa_op_destroy_pool(struct tee_shm_pool * pool)387 static void pool_ffa_op_destroy_pool(struct tee_shm_pool *pool)
388 {
389 kfree(pool);
390 }
391
392 static const struct tee_shm_pool_ops pool_ffa_ops = {
393 .alloc = pool_ffa_op_alloc,
394 .free = pool_ffa_op_free,
395 .destroy_pool = pool_ffa_op_destroy_pool,
396 };
397
398 /**
399 * optee_ffa_shm_pool_alloc_pages() - create page-based allocator pool
400 *
401 * This pool is used with OP-TEE over FF-A. In this case command buffers
402 * and such are allocated from kernel's own memory.
403 */
optee_ffa_shm_pool_alloc_pages(void)404 static struct tee_shm_pool *optee_ffa_shm_pool_alloc_pages(void)
405 {
406 struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
407
408 if (!pool)
409 return ERR_PTR(-ENOMEM);
410
411 pool->ops = &pool_ffa_ops;
412
413 return pool;
414 }
415
416 /*
417 * 5. Do a normal scheduled call into secure world
418 *
419 * The function optee_ffa_do_call_with_arg() performs a normal scheduled
420 * call into secure world. During this call may normal world request help
421 * from normal world using RPCs, Remote Procedure Calls. This includes
422 * delivery of non-secure interrupts to for instance allow rescheduling of
423 * the current task.
424 */
425
handle_ffa_rpc_func_cmd_shm_alloc(struct tee_context * ctx,struct optee * optee,struct optee_msg_arg * arg)426 static void handle_ffa_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
427 struct optee *optee,
428 struct optee_msg_arg *arg)
429 {
430 struct tee_shm *shm;
431
432 if (arg->num_params != 1 ||
433 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
434 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
435 return;
436 }
437
438 switch (arg->params[0].u.value.a) {
439 case OPTEE_RPC_SHM_TYPE_APPL:
440 shm = optee_rpc_cmd_alloc_suppl(ctx, arg->params[0].u.value.b);
441 break;
442 case OPTEE_RPC_SHM_TYPE_KERNEL:
443 shm = tee_shm_alloc_priv_buf(optee->ctx,
444 arg->params[0].u.value.b);
445 break;
446 default:
447 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
448 return;
449 }
450
451 if (IS_ERR(shm)) {
452 arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
453 return;
454 }
455
456 arg->params[0] = (struct optee_msg_param){
457 .attr = OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT,
458 .u.fmem.size = tee_shm_get_size(shm),
459 .u.fmem.global_id = shm->sec_world_id,
460 .u.fmem.internal_offs = shm->offset,
461 };
462
463 arg->ret = TEEC_SUCCESS;
464 }
465
handle_ffa_rpc_func_cmd_shm_free(struct tee_context * ctx,struct optee * optee,struct optee_msg_arg * arg)466 static void handle_ffa_rpc_func_cmd_shm_free(struct tee_context *ctx,
467 struct optee *optee,
468 struct optee_msg_arg *arg)
469 {
470 struct tee_shm *shm;
471
472 if (arg->num_params != 1 ||
473 arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT)
474 goto err_bad_param;
475
476 shm = optee_shm_from_ffa_handle(optee, arg->params[0].u.value.b);
477 if (!shm)
478 goto err_bad_param;
479 switch (arg->params[0].u.value.a) {
480 case OPTEE_RPC_SHM_TYPE_APPL:
481 optee_rpc_cmd_free_suppl(ctx, shm);
482 break;
483 case OPTEE_RPC_SHM_TYPE_KERNEL:
484 tee_shm_free(shm);
485 break;
486 default:
487 goto err_bad_param;
488 }
489 arg->ret = TEEC_SUCCESS;
490 return;
491
492 err_bad_param:
493 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
494 }
495
handle_ffa_rpc_func_cmd(struct tee_context * ctx,struct optee * optee,struct optee_msg_arg * arg)496 static void handle_ffa_rpc_func_cmd(struct tee_context *ctx,
497 struct optee *optee,
498 struct optee_msg_arg *arg)
499 {
500 arg->ret_origin = TEEC_ORIGIN_COMMS;
501 switch (arg->cmd) {
502 case OPTEE_RPC_CMD_SHM_ALLOC:
503 handle_ffa_rpc_func_cmd_shm_alloc(ctx, optee, arg);
504 break;
505 case OPTEE_RPC_CMD_SHM_FREE:
506 handle_ffa_rpc_func_cmd_shm_free(ctx, optee, arg);
507 break;
508 default:
509 optee_rpc_cmd(ctx, optee, arg);
510 }
511 }
512
optee_handle_ffa_rpc(struct tee_context * ctx,struct optee * optee,u32 cmd,struct optee_msg_arg * arg)513 static void optee_handle_ffa_rpc(struct tee_context *ctx, struct optee *optee,
514 u32 cmd, struct optee_msg_arg *arg)
515 {
516 switch (cmd) {
517 case OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD:
518 handle_ffa_rpc_func_cmd(ctx, optee, arg);
519 break;
520 case OPTEE_FFA_YIELDING_CALL_RETURN_INTERRUPT:
521 /* Interrupt delivered by now */
522 break;
523 default:
524 pr_warn("Unknown RPC func 0x%x\n", cmd);
525 break;
526 }
527 }
528
optee_ffa_yielding_call(struct tee_context * ctx,struct ffa_send_direct_data * data,struct optee_msg_arg * rpc_arg)529 static int optee_ffa_yielding_call(struct tee_context *ctx,
530 struct ffa_send_direct_data *data,
531 struct optee_msg_arg *rpc_arg)
532 {
533 struct optee *optee = tee_get_drvdata(ctx->teedev);
534 struct ffa_device *ffa_dev = optee->ffa.ffa_dev;
535 const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops;
536 struct optee_call_waiter w;
537 u32 cmd = data->data0;
538 u32 w4 = data->data1;
539 u32 w5 = data->data2;
540 u32 w6 = data->data3;
541 int rc;
542
543 /* Initialize waiter */
544 optee_cq_wait_init(&optee->call_queue, &w);
545 while (true) {
546 rc = msg_ops->sync_send_receive(ffa_dev, data);
547 if (rc)
548 goto done;
549
550 switch ((int)data->data0) {
551 case TEEC_SUCCESS:
552 break;
553 case TEEC_ERROR_BUSY:
554 if (cmd == OPTEE_FFA_YIELDING_CALL_RESUME) {
555 rc = -EIO;
556 goto done;
557 }
558
559 /*
560 * Out of threads in secure world, wait for a thread
561 * become available.
562 */
563 optee_cq_wait_for_completion(&optee->call_queue, &w);
564 data->data0 = cmd;
565 data->data1 = w4;
566 data->data2 = w5;
567 data->data3 = w6;
568 continue;
569 default:
570 rc = -EIO;
571 goto done;
572 }
573
574 if (data->data1 == OPTEE_FFA_YIELDING_CALL_RETURN_DONE)
575 goto done;
576
577 /*
578 * OP-TEE has returned with a RPC request.
579 *
580 * Note that data->data4 (passed in register w7) is already
581 * filled in by ffa_mem_ops->sync_send_receive() returning
582 * above.
583 */
584 cond_resched();
585 optee_handle_ffa_rpc(ctx, optee, data->data1, rpc_arg);
586 cmd = OPTEE_FFA_YIELDING_CALL_RESUME;
587 data->data0 = cmd;
588 data->data1 = 0;
589 data->data2 = 0;
590 data->data3 = 0;
591 }
592 done:
593 /*
594 * We're done with our thread in secure world, if there's any
595 * thread waiters wake up one.
596 */
597 optee_cq_wait_final(&optee->call_queue, &w);
598
599 return rc;
600 }
601
602 /**
603 * optee_ffa_do_call_with_arg() - Do a FF-A call to enter OP-TEE in secure world
604 * @ctx: calling context
605 * @shm: shared memory holding the message to pass to secure world
606 * @offs: offset of the message in @shm
607 *
608 * Does a FF-A call to OP-TEE in secure world and handles eventual resulting
609 * Remote Procedure Calls (RPC) from OP-TEE.
610 *
611 * Returns return code from FF-A, 0 is OK
612 */
613
optee_ffa_do_call_with_arg(struct tee_context * ctx,struct tee_shm * shm,u_int offs)614 static int optee_ffa_do_call_with_arg(struct tee_context *ctx,
615 struct tee_shm *shm, u_int offs)
616 {
617 struct ffa_send_direct_data data = {
618 .data0 = OPTEE_FFA_YIELDING_CALL_WITH_ARG,
619 .data1 = (u32)shm->sec_world_id,
620 .data2 = (u32)(shm->sec_world_id >> 32),
621 .data3 = offs,
622 };
623 struct optee_msg_arg *arg;
624 unsigned int rpc_arg_offs;
625 struct optee_msg_arg *rpc_arg;
626
627 /*
628 * The shared memory object has to start on a page when passed as
629 * an argument struct. This is also what the shm pool allocator
630 * returns, but check this before calling secure world to catch
631 * eventual errors early in case something changes.
632 */
633 if (shm->offset)
634 return -EINVAL;
635
636 arg = tee_shm_get_va(shm, offs);
637 if (IS_ERR(arg))
638 return PTR_ERR(arg);
639
640 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
641 rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs);
642 if (IS_ERR(rpc_arg))
643 return PTR_ERR(rpc_arg);
644
645 return optee_ffa_yielding_call(ctx, &data, rpc_arg);
646 }
647
648 /*
649 * 6. Driver initialization
650 *
651 * During driver inititialization is the OP-TEE Secure Partition is probed
652 * to find out which features it supports so the driver can be initialized
653 * with a matching configuration.
654 */
655
optee_ffa_api_is_compatbile(struct ffa_device * ffa_dev,const struct ffa_ops * ops)656 static bool optee_ffa_api_is_compatbile(struct ffa_device *ffa_dev,
657 const struct ffa_ops *ops)
658 {
659 const struct ffa_msg_ops *msg_ops = ops->msg_ops;
660 struct ffa_send_direct_data data = {
661 .data0 = OPTEE_FFA_GET_API_VERSION,
662 };
663 int rc;
664
665 msg_ops->mode_32bit_set(ffa_dev);
666
667 rc = msg_ops->sync_send_receive(ffa_dev, &data);
668 if (rc) {
669 pr_err("Unexpected error %d\n", rc);
670 return false;
671 }
672 if (data.data0 != OPTEE_FFA_VERSION_MAJOR ||
673 data.data1 < OPTEE_FFA_VERSION_MINOR) {
674 pr_err("Incompatible OP-TEE API version %lu.%lu",
675 data.data0, data.data1);
676 return false;
677 }
678
679 data = (struct ffa_send_direct_data){
680 .data0 = OPTEE_FFA_GET_OS_VERSION,
681 };
682 rc = msg_ops->sync_send_receive(ffa_dev, &data);
683 if (rc) {
684 pr_err("Unexpected error %d\n", rc);
685 return false;
686 }
687 if (data.data2)
688 pr_info("revision %lu.%lu (%08lx)",
689 data.data0, data.data1, data.data2);
690 else
691 pr_info("revision %lu.%lu", data.data0, data.data1);
692
693 return true;
694 }
695
optee_ffa_exchange_caps(struct ffa_device * ffa_dev,const struct ffa_ops * ops,u32 * sec_caps,unsigned int * rpc_param_count)696 static bool optee_ffa_exchange_caps(struct ffa_device *ffa_dev,
697 const struct ffa_ops *ops,
698 u32 *sec_caps,
699 unsigned int *rpc_param_count)
700 {
701 struct ffa_send_direct_data data = {
702 .data0 = OPTEE_FFA_EXCHANGE_CAPABILITIES,
703 };
704 int rc;
705
706 rc = ops->msg_ops->sync_send_receive(ffa_dev, &data);
707 if (rc) {
708 pr_err("Unexpected error %d", rc);
709 return false;
710 }
711 if (data.data0) {
712 pr_err("Unexpected exchange error %lu", data.data0);
713 return false;
714 }
715
716 *rpc_param_count = (u8)data.data1;
717 *sec_caps = data.data2;
718
719 return true;
720 }
721
optee_ffa_get_version(struct tee_device * teedev,struct tee_ioctl_version_data * vers)722 static void optee_ffa_get_version(struct tee_device *teedev,
723 struct tee_ioctl_version_data *vers)
724 {
725 struct tee_ioctl_version_data v = {
726 .impl_id = TEE_IMPL_ID_OPTEE,
727 .impl_caps = TEE_OPTEE_CAP_TZ,
728 .gen_caps = TEE_GEN_CAP_GP | TEE_GEN_CAP_REG_MEM |
729 TEE_GEN_CAP_MEMREF_NULL,
730 };
731
732 *vers = v;
733 }
734
optee_ffa_open(struct tee_context * ctx)735 static int optee_ffa_open(struct tee_context *ctx)
736 {
737 return optee_open(ctx, true);
738 }
739
740 static const struct tee_driver_ops optee_ffa_clnt_ops = {
741 .get_version = optee_ffa_get_version,
742 .open = optee_ffa_open,
743 .release = optee_release,
744 .open_session = optee_open_session,
745 .close_session = optee_close_session,
746 .invoke_func = optee_invoke_func,
747 .cancel_req = optee_cancel_req,
748 .shm_register = optee_ffa_shm_register,
749 .shm_unregister = optee_ffa_shm_unregister,
750 };
751
752 static const struct tee_desc optee_ffa_clnt_desc = {
753 .name = DRIVER_NAME "-ffa-clnt",
754 .ops = &optee_ffa_clnt_ops,
755 .owner = THIS_MODULE,
756 };
757
758 static const struct tee_driver_ops optee_ffa_supp_ops = {
759 .get_version = optee_ffa_get_version,
760 .open = optee_ffa_open,
761 .release = optee_release_supp,
762 .supp_recv = optee_supp_recv,
763 .supp_send = optee_supp_send,
764 .shm_register = optee_ffa_shm_register, /* same as for clnt ops */
765 .shm_unregister = optee_ffa_shm_unregister_supp,
766 };
767
768 static const struct tee_desc optee_ffa_supp_desc = {
769 .name = DRIVER_NAME "-ffa-supp",
770 .ops = &optee_ffa_supp_ops,
771 .owner = THIS_MODULE,
772 .flags = TEE_DESC_PRIVILEGED,
773 };
774
775 static const struct optee_ops optee_ffa_ops = {
776 .do_call_with_arg = optee_ffa_do_call_with_arg,
777 .to_msg_param = optee_ffa_to_msg_param,
778 .from_msg_param = optee_ffa_from_msg_param,
779 };
780
optee_ffa_remove(struct ffa_device * ffa_dev)781 static void optee_ffa_remove(struct ffa_device *ffa_dev)
782 {
783 struct optee *optee = ffa_dev_get_drvdata(ffa_dev);
784
785 optee_remove_common(optee);
786
787 mutex_destroy(&optee->ffa.mutex);
788 rhashtable_free_and_destroy(&optee->ffa.global_ids, rh_free_fn, NULL);
789
790 kfree(optee);
791 }
792
optee_ffa_probe(struct ffa_device * ffa_dev)793 static int optee_ffa_probe(struct ffa_device *ffa_dev)
794 {
795 const struct ffa_ops *ffa_ops;
796 unsigned int rpc_param_count;
797 struct tee_shm_pool *pool;
798 struct tee_device *teedev;
799 struct tee_context *ctx;
800 u32 arg_cache_flags = 0;
801 struct optee *optee;
802 u32 sec_caps;
803 int rc;
804
805 ffa_ops = ffa_dev->ops;
806
807 if (!optee_ffa_api_is_compatbile(ffa_dev, ffa_ops))
808 return -EINVAL;
809
810 if (!optee_ffa_exchange_caps(ffa_dev, ffa_ops, &sec_caps,
811 &rpc_param_count))
812 return -EINVAL;
813 if (sec_caps & OPTEE_FFA_SEC_CAP_ARG_OFFSET)
814 arg_cache_flags |= OPTEE_SHM_ARG_SHARED;
815
816 optee = kzalloc(sizeof(*optee), GFP_KERNEL);
817 if (!optee)
818 return -ENOMEM;
819
820 pool = optee_ffa_shm_pool_alloc_pages();
821 if (IS_ERR(pool)) {
822 rc = PTR_ERR(pool);
823 goto err_free_optee;
824 }
825 optee->pool = pool;
826
827 optee->ops = &optee_ffa_ops;
828 optee->ffa.ffa_dev = ffa_dev;
829 optee->rpc_param_count = rpc_param_count;
830
831 teedev = tee_device_alloc(&optee_ffa_clnt_desc, NULL, optee->pool,
832 optee);
833 if (IS_ERR(teedev)) {
834 rc = PTR_ERR(teedev);
835 goto err_free_pool;
836 }
837 optee->teedev = teedev;
838
839 teedev = tee_device_alloc(&optee_ffa_supp_desc, NULL, optee->pool,
840 optee);
841 if (IS_ERR(teedev)) {
842 rc = PTR_ERR(teedev);
843 goto err_unreg_teedev;
844 }
845 optee->supp_teedev = teedev;
846
847 rc = tee_device_register(optee->teedev);
848 if (rc)
849 goto err_unreg_supp_teedev;
850
851 rc = tee_device_register(optee->supp_teedev);
852 if (rc)
853 goto err_unreg_supp_teedev;
854
855 rc = rhashtable_init(&optee->ffa.global_ids, &shm_rhash_params);
856 if (rc)
857 goto err_unreg_supp_teedev;
858 mutex_init(&optee->ffa.mutex);
859 mutex_init(&optee->call_queue.mutex);
860 INIT_LIST_HEAD(&optee->call_queue.waiters);
861 optee_supp_init(&optee->supp);
862 optee_shm_arg_cache_init(optee, arg_cache_flags);
863 ffa_dev_set_drvdata(ffa_dev, optee);
864 ctx = teedev_open(optee->teedev);
865 if (IS_ERR(ctx)) {
866 rc = PTR_ERR(ctx);
867 goto err_rhashtable_free;
868 }
869 optee->ctx = ctx;
870 rc = optee_notif_init(optee, OPTEE_DEFAULT_MAX_NOTIF_VALUE);
871 if (rc)
872 goto err_close_ctx;
873
874 rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
875 if (rc)
876 goto err_unregister_devices;
877
878 pr_info("initialized driver\n");
879 return 0;
880
881 err_unregister_devices:
882 optee_unregister_devices();
883 optee_notif_uninit(optee);
884 err_close_ctx:
885 teedev_close_context(ctx);
886 err_rhashtable_free:
887 rhashtable_free_and_destroy(&optee->ffa.global_ids, rh_free_fn, NULL);
888 optee_supp_uninit(&optee->supp);
889 mutex_destroy(&optee->call_queue.mutex);
890 mutex_destroy(&optee->ffa.mutex);
891 err_unreg_supp_teedev:
892 tee_device_unregister(optee->supp_teedev);
893 err_unreg_teedev:
894 tee_device_unregister(optee->teedev);
895 err_free_pool:
896 tee_shm_pool_free(pool);
897 err_free_optee:
898 kfree(optee);
899 return rc;
900 }
901
902 static const struct ffa_device_id optee_ffa_device_id[] = {
903 /* 486178e0-e7f8-11e3-bc5e0002a5d5c51b */
904 { UUID_INIT(0x486178e0, 0xe7f8, 0x11e3,
905 0xbc, 0x5e, 0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b) },
906 {}
907 };
908
909 static struct ffa_driver optee_ffa_driver = {
910 .name = "optee",
911 .probe = optee_ffa_probe,
912 .remove = optee_ffa_remove,
913 .id_table = optee_ffa_device_id,
914 };
915
optee_ffa_abi_register(void)916 int optee_ffa_abi_register(void)
917 {
918 if (IS_REACHABLE(CONFIG_ARM_FFA_TRANSPORT))
919 return ffa_register(&optee_ffa_driver);
920 else
921 return -EOPNOTSUPP;
922 }
923
optee_ffa_abi_unregister(void)924 void optee_ffa_abi_unregister(void)
925 {
926 if (IS_REACHABLE(CONFIG_ARM_FFA_TRANSPORT))
927 ffa_unregister(&optee_ffa_driver);
928 }
929