xref: /openbmc/linux/drivers/tee/optee/call.c (revision feac8c8b)
1 /*
2  * Copyright (c) 2015, Linaro Limited
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  */
14 #include <linux/arm-smccc.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/slab.h>
20 #include <linux/tee_drv.h>
21 #include <linux/types.h>
22 #include <linux/uaccess.h>
23 #include "optee_private.h"
24 #include "optee_smc.h"
25 
26 struct optee_call_waiter {
27 	struct list_head list_node;
28 	struct completion c;
29 };
30 
31 static void optee_cq_wait_init(struct optee_call_queue *cq,
32 			       struct optee_call_waiter *w)
33 {
34 	/*
35 	 * We're preparing to make a call to secure world. In case we can't
36 	 * allocate a thread in secure world we'll end up waiting in
37 	 * optee_cq_wait_for_completion().
38 	 *
39 	 * Normally if there's no contention in secure world the call will
40 	 * complete and we can cleanup directly with optee_cq_wait_final().
41 	 */
42 	mutex_lock(&cq->mutex);
43 
44 	/*
45 	 * We add ourselves to the queue, but we don't wait. This
46 	 * guarantees that we don't lose a completion if secure world
47 	 * returns busy and another thread just exited and try to complete
48 	 * someone.
49 	 */
50 	init_completion(&w->c);
51 	list_add_tail(&w->list_node, &cq->waiters);
52 
53 	mutex_unlock(&cq->mutex);
54 }
55 
56 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
57 					 struct optee_call_waiter *w)
58 {
59 	wait_for_completion(&w->c);
60 
61 	mutex_lock(&cq->mutex);
62 
63 	/* Move to end of list to get out of the way for other waiters */
64 	list_del(&w->list_node);
65 	reinit_completion(&w->c);
66 	list_add_tail(&w->list_node, &cq->waiters);
67 
68 	mutex_unlock(&cq->mutex);
69 }
70 
71 static void optee_cq_complete_one(struct optee_call_queue *cq)
72 {
73 	struct optee_call_waiter *w;
74 
75 	list_for_each_entry(w, &cq->waiters, list_node) {
76 		if (!completion_done(&w->c)) {
77 			complete(&w->c);
78 			break;
79 		}
80 	}
81 }
82 
83 static void optee_cq_wait_final(struct optee_call_queue *cq,
84 				struct optee_call_waiter *w)
85 {
86 	/*
87 	 * We're done with the call to secure world. The thread in secure
88 	 * world that was used for this call is now available for some
89 	 * other task to use.
90 	 */
91 	mutex_lock(&cq->mutex);
92 
93 	/* Get out of the list */
94 	list_del(&w->list_node);
95 
96 	/* Wake up one eventual waiting task */
97 	optee_cq_complete_one(cq);
98 
99 	/*
100 	 * If we're completed we've got a completion from another task that
101 	 * was just done with its call to secure world. Since yet another
102 	 * thread now is available in secure world wake up another eventual
103 	 * waiting task.
104 	 */
105 	if (completion_done(&w->c))
106 		optee_cq_complete_one(cq);
107 
108 	mutex_unlock(&cq->mutex);
109 }
110 
111 /* Requires the filpstate mutex to be held */
112 static struct optee_session *find_session(struct optee_context_data *ctxdata,
113 					  u32 session_id)
114 {
115 	struct optee_session *sess;
116 
117 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
118 		if (sess->session_id == session_id)
119 			return sess;
120 
121 	return NULL;
122 }
123 
124 /**
125  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
126  * @ctx:	calling context
127  * @parg:	physical address of message to pass to secure world
128  *
129  * Does and SMC to OP-TEE in secure world and handles eventual resulting
130  * Remote Procedure Calls (RPC) from OP-TEE.
131  *
132  * Returns return code from secure world, 0 is OK
133  */
134 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
135 {
136 	struct optee *optee = tee_get_drvdata(ctx->teedev);
137 	struct optee_call_waiter w;
138 	struct optee_rpc_param param = { };
139 	struct optee_call_ctx call_ctx = { };
140 	u32 ret;
141 
142 	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
143 	reg_pair_from_64(&param.a1, &param.a2, parg);
144 	/* Initialize waiter */
145 	optee_cq_wait_init(&optee->call_queue, &w);
146 	while (true) {
147 		struct arm_smccc_res res;
148 
149 		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
150 				 param.a4, param.a5, param.a6, param.a7,
151 				 &res);
152 
153 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
154 			/*
155 			 * Out of threads in secure world, wait for a thread
156 			 * become available.
157 			 */
158 			optee_cq_wait_for_completion(&optee->call_queue, &w);
159 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
160 			param.a0 = res.a0;
161 			param.a1 = res.a1;
162 			param.a2 = res.a2;
163 			param.a3 = res.a3;
164 			optee_handle_rpc(ctx, &param, &call_ctx);
165 		} else {
166 			ret = res.a0;
167 			break;
168 		}
169 	}
170 
171 	optee_rpc_finalize_call(&call_ctx);
172 	/*
173 	 * We're done with our thread in secure world, if there's any
174 	 * thread waiters wake up one.
175 	 */
176 	optee_cq_wait_final(&optee->call_queue, &w);
177 
178 	return ret;
179 }
180 
181 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
182 				   struct optee_msg_arg **msg_arg,
183 				   phys_addr_t *msg_parg)
184 {
185 	int rc;
186 	struct tee_shm *shm;
187 	struct optee_msg_arg *ma;
188 
189 	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
190 			    TEE_SHM_MAPPED);
191 	if (IS_ERR(shm))
192 		return shm;
193 
194 	ma = tee_shm_get_va(shm, 0);
195 	if (IS_ERR(ma)) {
196 		rc = PTR_ERR(ma);
197 		goto out;
198 	}
199 
200 	rc = tee_shm_get_pa(shm, 0, msg_parg);
201 	if (rc)
202 		goto out;
203 
204 	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
205 	ma->num_params = num_params;
206 	*msg_arg = ma;
207 out:
208 	if (rc) {
209 		tee_shm_free(shm);
210 		return ERR_PTR(rc);
211 	}
212 
213 	return shm;
214 }
215 
216 int optee_open_session(struct tee_context *ctx,
217 		       struct tee_ioctl_open_session_arg *arg,
218 		       struct tee_param *param)
219 {
220 	struct optee_context_data *ctxdata = ctx->data;
221 	int rc;
222 	struct tee_shm *shm;
223 	struct optee_msg_arg *msg_arg;
224 	phys_addr_t msg_parg;
225 	struct optee_session *sess = NULL;
226 
227 	/* +2 for the meta parameters added below */
228 	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
229 	if (IS_ERR(shm))
230 		return PTR_ERR(shm);
231 
232 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
233 	msg_arg->cancel_id = arg->cancel_id;
234 
235 	/*
236 	 * Initialize and add the meta parameters needed when opening a
237 	 * session.
238 	 */
239 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
240 				  OPTEE_MSG_ATTR_META;
241 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
242 				  OPTEE_MSG_ATTR_META;
243 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
244 	memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
245 	msg_arg->params[1].u.value.c = arg->clnt_login;
246 
247 	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
248 	if (rc)
249 		goto out;
250 
251 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
252 	if (!sess) {
253 		rc = -ENOMEM;
254 		goto out;
255 	}
256 
257 	if (optee_do_call_with_arg(ctx, msg_parg)) {
258 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
259 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
260 	}
261 
262 	if (msg_arg->ret == TEEC_SUCCESS) {
263 		/* A new session has been created, add it to the list. */
264 		sess->session_id = msg_arg->session;
265 		mutex_lock(&ctxdata->mutex);
266 		list_add(&sess->list_node, &ctxdata->sess_list);
267 		mutex_unlock(&ctxdata->mutex);
268 	} else {
269 		kfree(sess);
270 	}
271 
272 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
273 		arg->ret = TEEC_ERROR_COMMUNICATION;
274 		arg->ret_origin = TEEC_ORIGIN_COMMS;
275 		/* Close session again to avoid leakage */
276 		optee_close_session(ctx, msg_arg->session);
277 	} else {
278 		arg->session = msg_arg->session;
279 		arg->ret = msg_arg->ret;
280 		arg->ret_origin = msg_arg->ret_origin;
281 	}
282 out:
283 	tee_shm_free(shm);
284 
285 	return rc;
286 }
287 
288 int optee_close_session(struct tee_context *ctx, u32 session)
289 {
290 	struct optee_context_data *ctxdata = ctx->data;
291 	struct tee_shm *shm;
292 	struct optee_msg_arg *msg_arg;
293 	phys_addr_t msg_parg;
294 	struct optee_session *sess;
295 
296 	/* Check that the session is valid and remove it from the list */
297 	mutex_lock(&ctxdata->mutex);
298 	sess = find_session(ctxdata, session);
299 	if (sess)
300 		list_del(&sess->list_node);
301 	mutex_unlock(&ctxdata->mutex);
302 	if (!sess)
303 		return -EINVAL;
304 	kfree(sess);
305 
306 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
307 	if (IS_ERR(shm))
308 		return PTR_ERR(shm);
309 
310 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
311 	msg_arg->session = session;
312 	optee_do_call_with_arg(ctx, msg_parg);
313 
314 	tee_shm_free(shm);
315 	return 0;
316 }
317 
318 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
319 		      struct tee_param *param)
320 {
321 	struct optee_context_data *ctxdata = ctx->data;
322 	struct tee_shm *shm;
323 	struct optee_msg_arg *msg_arg;
324 	phys_addr_t msg_parg;
325 	struct optee_session *sess;
326 	int rc;
327 
328 	/* Check that the session is valid */
329 	mutex_lock(&ctxdata->mutex);
330 	sess = find_session(ctxdata, arg->session);
331 	mutex_unlock(&ctxdata->mutex);
332 	if (!sess)
333 		return -EINVAL;
334 
335 	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
336 	if (IS_ERR(shm))
337 		return PTR_ERR(shm);
338 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
339 	msg_arg->func = arg->func;
340 	msg_arg->session = arg->session;
341 	msg_arg->cancel_id = arg->cancel_id;
342 
343 	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
344 	if (rc)
345 		goto out;
346 
347 	if (optee_do_call_with_arg(ctx, msg_parg)) {
348 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
349 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
350 	}
351 
352 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
353 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
354 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
355 	}
356 
357 	arg->ret = msg_arg->ret;
358 	arg->ret_origin = msg_arg->ret_origin;
359 out:
360 	tee_shm_free(shm);
361 	return rc;
362 }
363 
364 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
365 {
366 	struct optee_context_data *ctxdata = ctx->data;
367 	struct tee_shm *shm;
368 	struct optee_msg_arg *msg_arg;
369 	phys_addr_t msg_parg;
370 	struct optee_session *sess;
371 
372 	/* Check that the session is valid */
373 	mutex_lock(&ctxdata->mutex);
374 	sess = find_session(ctxdata, session);
375 	mutex_unlock(&ctxdata->mutex);
376 	if (!sess)
377 		return -EINVAL;
378 
379 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
380 	if (IS_ERR(shm))
381 		return PTR_ERR(shm);
382 
383 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
384 	msg_arg->session = session;
385 	msg_arg->cancel_id = cancel_id;
386 	optee_do_call_with_arg(ctx, msg_parg);
387 
388 	tee_shm_free(shm);
389 	return 0;
390 }
391 
392 /**
393  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
394  *			      in OP-TEE
395  * @optee:	main service struct
396  */
397 void optee_enable_shm_cache(struct optee *optee)
398 {
399 	struct optee_call_waiter w;
400 
401 	/* We need to retry until secure world isn't busy. */
402 	optee_cq_wait_init(&optee->call_queue, &w);
403 	while (true) {
404 		struct arm_smccc_res res;
405 
406 		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
407 				 0, &res);
408 		if (res.a0 == OPTEE_SMC_RETURN_OK)
409 			break;
410 		optee_cq_wait_for_completion(&optee->call_queue, &w);
411 	}
412 	optee_cq_wait_final(&optee->call_queue, &w);
413 }
414 
415 /**
416  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
417  *			      in OP-TEE
418  * @optee:	main service struct
419  */
420 void optee_disable_shm_cache(struct optee *optee)
421 {
422 	struct optee_call_waiter w;
423 
424 	/* We need to retry until secure world isn't busy. */
425 	optee_cq_wait_init(&optee->call_queue, &w);
426 	while (true) {
427 		union {
428 			struct arm_smccc_res smccc;
429 			struct optee_smc_disable_shm_cache_result result;
430 		} res;
431 
432 		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
433 				 0, &res.smccc);
434 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
435 			break; /* All shm's freed */
436 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
437 			struct tee_shm *shm;
438 
439 			shm = reg_pair_to_ptr(res.result.shm_upper32,
440 					      res.result.shm_lower32);
441 			tee_shm_free(shm);
442 		} else {
443 			optee_cq_wait_for_completion(&optee->call_queue, &w);
444 		}
445 	}
446 	optee_cq_wait_final(&optee->call_queue, &w);
447 }
448 
449 #define PAGELIST_ENTRIES_PER_PAGE				\
450 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
451 
452 /**
453  * optee_fill_pages_list() - write list of user pages to given shared
454  * buffer.
455  *
456  * @dst: page-aligned buffer where list of pages will be stored
457  * @pages: array of pages that represents shared buffer
458  * @num_pages: number of entries in @pages
459  * @page_offset: offset of user buffer from page start
460  *
461  * @dst should be big enough to hold list of user page addresses and
462  *	links to the next pages of buffer
463  */
464 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
465 			   size_t page_offset)
466 {
467 	int n = 0;
468 	phys_addr_t optee_page;
469 	/*
470 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
471 	 * for details.
472 	 */
473 	struct {
474 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
475 		u64 next_page_data;
476 	} *pages_data;
477 
478 	/*
479 	 * Currently OP-TEE uses 4k page size and it does not looks
480 	 * like this will change in the future.  On other hand, there are
481 	 * no know ARM architectures with page size < 4k.
482 	 * Thus the next built assert looks redundant. But the following
483 	 * code heavily relies on this assumption, so it is better be
484 	 * safe than sorry.
485 	 */
486 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
487 
488 	pages_data = (void *)dst;
489 	/*
490 	 * If linux page is bigger than 4k, and user buffer offset is
491 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
492 	 * because they bear no value data for OP-TEE.
493 	 */
494 	optee_page = page_to_phys(*pages) +
495 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
496 
497 	while (true) {
498 		pages_data->pages_list[n++] = optee_page;
499 
500 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
501 			pages_data->next_page_data =
502 				virt_to_phys(pages_data + 1);
503 			pages_data++;
504 			n = 0;
505 		}
506 
507 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
508 		if (!(optee_page & ~PAGE_MASK)) {
509 			if (!--num_pages)
510 				break;
511 			pages++;
512 			optee_page = page_to_phys(*pages);
513 		}
514 	}
515 }
516 
517 /*
518  * The final entry in each pagelist page is a pointer to the next
519  * pagelist page.
520  */
521 static size_t get_pages_list_size(size_t num_entries)
522 {
523 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
524 
525 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
526 }
527 
528 u64 *optee_allocate_pages_list(size_t num_entries)
529 {
530 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
531 }
532 
533 void optee_free_pages_list(void *list, size_t num_entries)
534 {
535 	free_pages_exact(list, get_pages_list_size(num_entries));
536 }
537 
538 static bool is_normal_memory(pgprot_t p)
539 {
540 #if defined(CONFIG_ARM)
541 	return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
542 #elif defined(CONFIG_ARM64)
543 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
544 #else
545 #error "Unuspported architecture"
546 #endif
547 }
548 
549 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
550 {
551 	while (vma && is_normal_memory(vma->vm_page_prot)) {
552 		if (vma->vm_end >= end)
553 			return 0;
554 		vma = vma->vm_next;
555 	}
556 
557 	return -EINVAL;
558 }
559 
560 static int check_mem_type(unsigned long start, size_t num_pages)
561 {
562 	struct mm_struct *mm = current->mm;
563 	int rc;
564 
565 	down_read(&mm->mmap_sem);
566 	rc = __check_mem_type(find_vma(mm, start),
567 			      start + num_pages * PAGE_SIZE);
568 	up_read(&mm->mmap_sem);
569 
570 	return rc;
571 }
572 
573 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
574 		       struct page **pages, size_t num_pages,
575 		       unsigned long start)
576 {
577 	struct tee_shm *shm_arg = NULL;
578 	struct optee_msg_arg *msg_arg;
579 	u64 *pages_list;
580 	phys_addr_t msg_parg;
581 	int rc;
582 
583 	if (!num_pages)
584 		return -EINVAL;
585 
586 	rc = check_mem_type(start, num_pages);
587 	if (rc)
588 		return rc;
589 
590 	pages_list = optee_allocate_pages_list(num_pages);
591 	if (!pages_list)
592 		return -ENOMEM;
593 
594 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
595 	if (IS_ERR(shm_arg)) {
596 		rc = PTR_ERR(shm_arg);
597 		goto out;
598 	}
599 
600 	optee_fill_pages_list(pages_list, pages, num_pages,
601 			      tee_shm_get_page_offset(shm));
602 
603 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
604 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
605 				OPTEE_MSG_ATTR_NONCONTIG;
606 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
607 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
608 	/*
609 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
610 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
611 	 */
612 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
613 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
614 
615 	if (optee_do_call_with_arg(ctx, msg_parg) ||
616 	    msg_arg->ret != TEEC_SUCCESS)
617 		rc = -EINVAL;
618 
619 	tee_shm_free(shm_arg);
620 out:
621 	optee_free_pages_list(pages_list, num_pages);
622 	return rc;
623 }
624 
625 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
626 {
627 	struct tee_shm *shm_arg;
628 	struct optee_msg_arg *msg_arg;
629 	phys_addr_t msg_parg;
630 	int rc = 0;
631 
632 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
633 	if (IS_ERR(shm_arg))
634 		return PTR_ERR(shm_arg);
635 
636 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
637 
638 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
639 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
640 
641 	if (optee_do_call_with_arg(ctx, msg_parg) ||
642 	    msg_arg->ret != TEEC_SUCCESS)
643 		rc = -EINVAL;
644 	tee_shm_free(shm_arg);
645 	return rc;
646 }
647 
648 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
649 			    struct page **pages, size_t num_pages,
650 			    unsigned long start)
651 {
652 	/*
653 	 * We don't want to register supplicant memory in OP-TEE.
654 	 * Instead information about it will be passed in RPC code.
655 	 */
656 	return check_mem_type(start, num_pages);
657 }
658 
659 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
660 {
661 	return 0;
662 }
663