xref: /openbmc/linux/drivers/tee/optee/call.c (revision f8bcb061)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/tee_drv.h>
13 #include <linux/types.h>
14 #include <linux/uaccess.h>
15 #include "optee_private.h"
16 #include "optee_smc.h"
17 #define CREATE_TRACE_POINTS
18 #include "optee_trace.h"
19 
20 struct optee_call_waiter {
21 	struct list_head list_node;
22 	struct completion c;
23 };
24 
25 static void optee_cq_wait_init(struct optee_call_queue *cq,
26 			       struct optee_call_waiter *w)
27 {
28 	/*
29 	 * We're preparing to make a call to secure world. In case we can't
30 	 * allocate a thread in secure world we'll end up waiting in
31 	 * optee_cq_wait_for_completion().
32 	 *
33 	 * Normally if there's no contention in secure world the call will
34 	 * complete and we can cleanup directly with optee_cq_wait_final().
35 	 */
36 	mutex_lock(&cq->mutex);
37 
38 	/*
39 	 * We add ourselves to the queue, but we don't wait. This
40 	 * guarantees that we don't lose a completion if secure world
41 	 * returns busy and another thread just exited and try to complete
42 	 * someone.
43 	 */
44 	init_completion(&w->c);
45 	list_add_tail(&w->list_node, &cq->waiters);
46 
47 	mutex_unlock(&cq->mutex);
48 }
49 
50 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
51 					 struct optee_call_waiter *w)
52 {
53 	wait_for_completion(&w->c);
54 
55 	mutex_lock(&cq->mutex);
56 
57 	/* Move to end of list to get out of the way for other waiters */
58 	list_del(&w->list_node);
59 	reinit_completion(&w->c);
60 	list_add_tail(&w->list_node, &cq->waiters);
61 
62 	mutex_unlock(&cq->mutex);
63 }
64 
65 static void optee_cq_complete_one(struct optee_call_queue *cq)
66 {
67 	struct optee_call_waiter *w;
68 
69 	list_for_each_entry(w, &cq->waiters, list_node) {
70 		if (!completion_done(&w->c)) {
71 			complete(&w->c);
72 			break;
73 		}
74 	}
75 }
76 
77 static void optee_cq_wait_final(struct optee_call_queue *cq,
78 				struct optee_call_waiter *w)
79 {
80 	/*
81 	 * We're done with the call to secure world. The thread in secure
82 	 * world that was used for this call is now available for some
83 	 * other task to use.
84 	 */
85 	mutex_lock(&cq->mutex);
86 
87 	/* Get out of the list */
88 	list_del(&w->list_node);
89 
90 	/* Wake up one eventual waiting task */
91 	optee_cq_complete_one(cq);
92 
93 	/*
94 	 * If we're completed we've got a completion from another task that
95 	 * was just done with its call to secure world. Since yet another
96 	 * thread now is available in secure world wake up another eventual
97 	 * waiting task.
98 	 */
99 	if (completion_done(&w->c))
100 		optee_cq_complete_one(cq);
101 
102 	mutex_unlock(&cq->mutex);
103 }
104 
105 /* Requires the filpstate mutex to be held */
106 static struct optee_session *find_session(struct optee_context_data *ctxdata,
107 					  u32 session_id)
108 {
109 	struct optee_session *sess;
110 
111 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
112 		if (sess->session_id == session_id)
113 			return sess;
114 
115 	return NULL;
116 }
117 
118 /**
119  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
120  * @ctx:	calling context
121  * @parg:	physical address of message to pass to secure world
122  *
123  * Does and SMC to OP-TEE in secure world and handles eventual resulting
124  * Remote Procedure Calls (RPC) from OP-TEE.
125  *
126  * Returns return code from secure world, 0 is OK
127  */
128 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
129 {
130 	struct optee *optee = tee_get_drvdata(ctx->teedev);
131 	struct optee_call_waiter w;
132 	struct optee_rpc_param param = { };
133 	struct optee_call_ctx call_ctx = { };
134 	u32 ret;
135 
136 	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
137 	reg_pair_from_64(&param.a1, &param.a2, parg);
138 	/* Initialize waiter */
139 	optee_cq_wait_init(&optee->call_queue, &w);
140 	while (true) {
141 		struct arm_smccc_res res;
142 
143 		trace_optee_invoke_fn_begin(&param);
144 		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
145 				 param.a4, param.a5, param.a6, param.a7,
146 				 &res);
147 		trace_optee_invoke_fn_end(&param, &res);
148 
149 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
150 			/*
151 			 * Out of threads in secure world, wait for a thread
152 			 * become available.
153 			 */
154 			optee_cq_wait_for_completion(&optee->call_queue, &w);
155 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
156 			cond_resched();
157 			param.a0 = res.a0;
158 			param.a1 = res.a1;
159 			param.a2 = res.a2;
160 			param.a3 = res.a3;
161 			optee_handle_rpc(ctx, &param, &call_ctx);
162 		} else {
163 			ret = res.a0;
164 			break;
165 		}
166 	}
167 
168 	optee_rpc_finalize_call(&call_ctx);
169 	/*
170 	 * We're done with our thread in secure world, if there's any
171 	 * thread waiters wake up one.
172 	 */
173 	optee_cq_wait_final(&optee->call_queue, &w);
174 
175 	return ret;
176 }
177 
178 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
179 				   struct optee_msg_arg **msg_arg,
180 				   phys_addr_t *msg_parg)
181 {
182 	int rc;
183 	struct tee_shm *shm;
184 	struct optee_msg_arg *ma;
185 
186 	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
187 			    TEE_SHM_MAPPED);
188 	if (IS_ERR(shm))
189 		return shm;
190 
191 	ma = tee_shm_get_va(shm, 0);
192 	if (IS_ERR(ma)) {
193 		rc = PTR_ERR(ma);
194 		goto out;
195 	}
196 
197 	rc = tee_shm_get_pa(shm, 0, msg_parg);
198 	if (rc)
199 		goto out;
200 
201 	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
202 	ma->num_params = num_params;
203 	*msg_arg = ma;
204 out:
205 	if (rc) {
206 		tee_shm_free(shm);
207 		return ERR_PTR(rc);
208 	}
209 
210 	return shm;
211 }
212 
213 int optee_open_session(struct tee_context *ctx,
214 		       struct tee_ioctl_open_session_arg *arg,
215 		       struct tee_param *param)
216 {
217 	struct optee_context_data *ctxdata = ctx->data;
218 	int rc;
219 	struct tee_shm *shm;
220 	struct optee_msg_arg *msg_arg;
221 	phys_addr_t msg_parg;
222 	struct optee_session *sess = NULL;
223 
224 	/* +2 for the meta parameters added below */
225 	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
226 	if (IS_ERR(shm))
227 		return PTR_ERR(shm);
228 
229 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
230 	msg_arg->cancel_id = arg->cancel_id;
231 
232 	/*
233 	 * Initialize and add the meta parameters needed when opening a
234 	 * session.
235 	 */
236 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
237 				  OPTEE_MSG_ATTR_META;
238 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
239 				  OPTEE_MSG_ATTR_META;
240 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
241 	msg_arg->params[1].u.value.c = arg->clnt_login;
242 
243 	rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value,
244 					  arg->clnt_login, arg->clnt_uuid);
245 	if (rc)
246 		goto out;
247 
248 	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
249 	if (rc)
250 		goto out;
251 
252 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
253 	if (!sess) {
254 		rc = -ENOMEM;
255 		goto out;
256 	}
257 
258 	if (optee_do_call_with_arg(ctx, msg_parg)) {
259 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
260 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
261 	}
262 
263 	if (msg_arg->ret == TEEC_SUCCESS) {
264 		/* A new session has been created, add it to the list. */
265 		sess->session_id = msg_arg->session;
266 		mutex_lock(&ctxdata->mutex);
267 		list_add(&sess->list_node, &ctxdata->sess_list);
268 		mutex_unlock(&ctxdata->mutex);
269 	} else {
270 		kfree(sess);
271 	}
272 
273 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
274 		arg->ret = TEEC_ERROR_COMMUNICATION;
275 		arg->ret_origin = TEEC_ORIGIN_COMMS;
276 		/* Close session again to avoid leakage */
277 		optee_close_session(ctx, msg_arg->session);
278 	} else {
279 		arg->session = msg_arg->session;
280 		arg->ret = msg_arg->ret;
281 		arg->ret_origin = msg_arg->ret_origin;
282 	}
283 out:
284 	tee_shm_free(shm);
285 
286 	return rc;
287 }
288 
289 int optee_close_session(struct tee_context *ctx, u32 session)
290 {
291 	struct optee_context_data *ctxdata = ctx->data;
292 	struct tee_shm *shm;
293 	struct optee_msg_arg *msg_arg;
294 	phys_addr_t msg_parg;
295 	struct optee_session *sess;
296 
297 	/* Check that the session is valid and remove it from the list */
298 	mutex_lock(&ctxdata->mutex);
299 	sess = find_session(ctxdata, session);
300 	if (sess)
301 		list_del(&sess->list_node);
302 	mutex_unlock(&ctxdata->mutex);
303 	if (!sess)
304 		return -EINVAL;
305 	kfree(sess);
306 
307 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
308 	if (IS_ERR(shm))
309 		return PTR_ERR(shm);
310 
311 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
312 	msg_arg->session = session;
313 	optee_do_call_with_arg(ctx, msg_parg);
314 
315 	tee_shm_free(shm);
316 	return 0;
317 }
318 
319 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
320 		      struct tee_param *param)
321 {
322 	struct optee_context_data *ctxdata = ctx->data;
323 	struct tee_shm *shm;
324 	struct optee_msg_arg *msg_arg;
325 	phys_addr_t msg_parg;
326 	struct optee_session *sess;
327 	int rc;
328 
329 	/* Check that the session is valid */
330 	mutex_lock(&ctxdata->mutex);
331 	sess = find_session(ctxdata, arg->session);
332 	mutex_unlock(&ctxdata->mutex);
333 	if (!sess)
334 		return -EINVAL;
335 
336 	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
337 	if (IS_ERR(shm))
338 		return PTR_ERR(shm);
339 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
340 	msg_arg->func = arg->func;
341 	msg_arg->session = arg->session;
342 	msg_arg->cancel_id = arg->cancel_id;
343 
344 	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
345 	if (rc)
346 		goto out;
347 
348 	if (optee_do_call_with_arg(ctx, msg_parg)) {
349 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
350 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
351 	}
352 
353 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
354 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
355 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
356 	}
357 
358 	arg->ret = msg_arg->ret;
359 	arg->ret_origin = msg_arg->ret_origin;
360 out:
361 	tee_shm_free(shm);
362 	return rc;
363 }
364 
365 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
366 {
367 	struct optee_context_data *ctxdata = ctx->data;
368 	struct tee_shm *shm;
369 	struct optee_msg_arg *msg_arg;
370 	phys_addr_t msg_parg;
371 	struct optee_session *sess;
372 
373 	/* Check that the session is valid */
374 	mutex_lock(&ctxdata->mutex);
375 	sess = find_session(ctxdata, session);
376 	mutex_unlock(&ctxdata->mutex);
377 	if (!sess)
378 		return -EINVAL;
379 
380 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
381 	if (IS_ERR(shm))
382 		return PTR_ERR(shm);
383 
384 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
385 	msg_arg->session = session;
386 	msg_arg->cancel_id = cancel_id;
387 	optee_do_call_with_arg(ctx, msg_parg);
388 
389 	tee_shm_free(shm);
390 	return 0;
391 }
392 
393 /**
394  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
395  *			      in OP-TEE
396  * @optee:	main service struct
397  */
398 void optee_enable_shm_cache(struct optee *optee)
399 {
400 	struct optee_call_waiter w;
401 
402 	/* We need to retry until secure world isn't busy. */
403 	optee_cq_wait_init(&optee->call_queue, &w);
404 	while (true) {
405 		struct arm_smccc_res res;
406 
407 		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
408 				 0, &res);
409 		if (res.a0 == OPTEE_SMC_RETURN_OK)
410 			break;
411 		optee_cq_wait_for_completion(&optee->call_queue, &w);
412 	}
413 	optee_cq_wait_final(&optee->call_queue, &w);
414 }
415 
416 /**
417  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
418  *			      in OP-TEE
419  * @optee:	main service struct
420  */
421 void optee_disable_shm_cache(struct optee *optee)
422 {
423 	struct optee_call_waiter w;
424 
425 	/* We need to retry until secure world isn't busy. */
426 	optee_cq_wait_init(&optee->call_queue, &w);
427 	while (true) {
428 		union {
429 			struct arm_smccc_res smccc;
430 			struct optee_smc_disable_shm_cache_result result;
431 		} res;
432 
433 		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
434 				 0, &res.smccc);
435 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
436 			break; /* All shm's freed */
437 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
438 			struct tee_shm *shm;
439 
440 			shm = reg_pair_to_ptr(res.result.shm_upper32,
441 					      res.result.shm_lower32);
442 			tee_shm_free(shm);
443 		} else {
444 			optee_cq_wait_for_completion(&optee->call_queue, &w);
445 		}
446 	}
447 	optee_cq_wait_final(&optee->call_queue, &w);
448 }
449 
450 #define PAGELIST_ENTRIES_PER_PAGE				\
451 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
452 
453 /**
454  * optee_fill_pages_list() - write list of user pages to given shared
455  * buffer.
456  *
457  * @dst: page-aligned buffer where list of pages will be stored
458  * @pages: array of pages that represents shared buffer
459  * @num_pages: number of entries in @pages
460  * @page_offset: offset of user buffer from page start
461  *
462  * @dst should be big enough to hold list of user page addresses and
463  *	links to the next pages of buffer
464  */
465 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
466 			   size_t page_offset)
467 {
468 	int n = 0;
469 	phys_addr_t optee_page;
470 	/*
471 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
472 	 * for details.
473 	 */
474 	struct {
475 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
476 		u64 next_page_data;
477 	} *pages_data;
478 
479 	/*
480 	 * Currently OP-TEE uses 4k page size and it does not looks
481 	 * like this will change in the future.  On other hand, there are
482 	 * no know ARM architectures with page size < 4k.
483 	 * Thus the next built assert looks redundant. But the following
484 	 * code heavily relies on this assumption, so it is better be
485 	 * safe than sorry.
486 	 */
487 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
488 
489 	pages_data = (void *)dst;
490 	/*
491 	 * If linux page is bigger than 4k, and user buffer offset is
492 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
493 	 * because they bear no value data for OP-TEE.
494 	 */
495 	optee_page = page_to_phys(*pages) +
496 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
497 
498 	while (true) {
499 		pages_data->pages_list[n++] = optee_page;
500 
501 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
502 			pages_data->next_page_data =
503 				virt_to_phys(pages_data + 1);
504 			pages_data++;
505 			n = 0;
506 		}
507 
508 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
509 		if (!(optee_page & ~PAGE_MASK)) {
510 			if (!--num_pages)
511 				break;
512 			pages++;
513 			optee_page = page_to_phys(*pages);
514 		}
515 	}
516 }
517 
518 /*
519  * The final entry in each pagelist page is a pointer to the next
520  * pagelist page.
521  */
522 static size_t get_pages_list_size(size_t num_entries)
523 {
524 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
525 
526 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
527 }
528 
529 u64 *optee_allocate_pages_list(size_t num_entries)
530 {
531 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
532 }
533 
534 void optee_free_pages_list(void *list, size_t num_entries)
535 {
536 	free_pages_exact(list, get_pages_list_size(num_entries));
537 }
538 
539 static bool is_normal_memory(pgprot_t p)
540 {
541 #if defined(CONFIG_ARM)
542 	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
543 		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
544 #elif defined(CONFIG_ARM64)
545 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
546 #else
547 #error "Unuspported architecture"
548 #endif
549 }
550 
551 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
552 {
553 	while (vma && is_normal_memory(vma->vm_page_prot)) {
554 		if (vma->vm_end >= end)
555 			return 0;
556 		vma = vma->vm_next;
557 	}
558 
559 	return -EINVAL;
560 }
561 
562 static int check_mem_type(unsigned long start, size_t num_pages)
563 {
564 	struct mm_struct *mm = current->mm;
565 	int rc;
566 
567 	/*
568 	 * Allow kernel address to register with OP-TEE as kernel
569 	 * pages are configured as normal memory only.
570 	 */
571 	if (virt_addr_valid(start))
572 		return 0;
573 
574 	mmap_read_lock(mm);
575 	rc = __check_mem_type(find_vma(mm, start),
576 			      start + num_pages * PAGE_SIZE);
577 	mmap_read_unlock(mm);
578 
579 	return rc;
580 }
581 
582 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
583 		       struct page **pages, size_t num_pages,
584 		       unsigned long start)
585 {
586 	struct tee_shm *shm_arg = NULL;
587 	struct optee_msg_arg *msg_arg;
588 	u64 *pages_list;
589 	phys_addr_t msg_parg;
590 	int rc;
591 
592 	if (!num_pages)
593 		return -EINVAL;
594 
595 	rc = check_mem_type(start, num_pages);
596 	if (rc)
597 		return rc;
598 
599 	pages_list = optee_allocate_pages_list(num_pages);
600 	if (!pages_list)
601 		return -ENOMEM;
602 
603 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
604 	if (IS_ERR(shm_arg)) {
605 		rc = PTR_ERR(shm_arg);
606 		goto out;
607 	}
608 
609 	optee_fill_pages_list(pages_list, pages, num_pages,
610 			      tee_shm_get_page_offset(shm));
611 
612 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
613 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
614 				OPTEE_MSG_ATTR_NONCONTIG;
615 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
616 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
617 	/*
618 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
619 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
620 	 */
621 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
622 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
623 
624 	if (optee_do_call_with_arg(ctx, msg_parg) ||
625 	    msg_arg->ret != TEEC_SUCCESS)
626 		rc = -EINVAL;
627 
628 	tee_shm_free(shm_arg);
629 out:
630 	optee_free_pages_list(pages_list, num_pages);
631 	return rc;
632 }
633 
634 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
635 {
636 	struct tee_shm *shm_arg;
637 	struct optee_msg_arg *msg_arg;
638 	phys_addr_t msg_parg;
639 	int rc = 0;
640 
641 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
642 	if (IS_ERR(shm_arg))
643 		return PTR_ERR(shm_arg);
644 
645 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
646 
647 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
648 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
649 
650 	if (optee_do_call_with_arg(ctx, msg_parg) ||
651 	    msg_arg->ret != TEEC_SUCCESS)
652 		rc = -EINVAL;
653 	tee_shm_free(shm_arg);
654 	return rc;
655 }
656 
657 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
658 			    struct page **pages, size_t num_pages,
659 			    unsigned long start)
660 {
661 	/*
662 	 * We don't want to register supplicant memory in OP-TEE.
663 	 * Instead information about it will be passed in RPC code.
664 	 */
665 	return check_mem_type(start, num_pages);
666 }
667 
668 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
669 {
670 	return 0;
671 }
672