1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Linaro Limited 4 */ 5 #include <linux/arm-smccc.h> 6 #include <linux/device.h> 7 #include <linux/err.h> 8 #include <linux/errno.h> 9 #include <linux/mm.h> 10 #include <linux/slab.h> 11 #include <linux/tee_drv.h> 12 #include <linux/types.h> 13 #include <linux/uaccess.h> 14 #include "optee_private.h" 15 #include "optee_smc.h" 16 17 struct optee_call_waiter { 18 struct list_head list_node; 19 struct completion c; 20 }; 21 22 static void optee_cq_wait_init(struct optee_call_queue *cq, 23 struct optee_call_waiter *w) 24 { 25 /* 26 * We're preparing to make a call to secure world. In case we can't 27 * allocate a thread in secure world we'll end up waiting in 28 * optee_cq_wait_for_completion(). 29 * 30 * Normally if there's no contention in secure world the call will 31 * complete and we can cleanup directly with optee_cq_wait_final(). 32 */ 33 mutex_lock(&cq->mutex); 34 35 /* 36 * We add ourselves to the queue, but we don't wait. This 37 * guarantees that we don't lose a completion if secure world 38 * returns busy and another thread just exited and try to complete 39 * someone. 40 */ 41 init_completion(&w->c); 42 list_add_tail(&w->list_node, &cq->waiters); 43 44 mutex_unlock(&cq->mutex); 45 } 46 47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq, 48 struct optee_call_waiter *w) 49 { 50 wait_for_completion(&w->c); 51 52 mutex_lock(&cq->mutex); 53 54 /* Move to end of list to get out of the way for other waiters */ 55 list_del(&w->list_node); 56 reinit_completion(&w->c); 57 list_add_tail(&w->list_node, &cq->waiters); 58 59 mutex_unlock(&cq->mutex); 60 } 61 62 static void optee_cq_complete_one(struct optee_call_queue *cq) 63 { 64 struct optee_call_waiter *w; 65 66 list_for_each_entry(w, &cq->waiters, list_node) { 67 if (!completion_done(&w->c)) { 68 complete(&w->c); 69 break; 70 } 71 } 72 } 73 74 static void optee_cq_wait_final(struct optee_call_queue *cq, 75 struct optee_call_waiter *w) 76 { 77 /* 78 * We're done with the call to secure world. The thread in secure 79 * world that was used for this call is now available for some 80 * other task to use. 81 */ 82 mutex_lock(&cq->mutex); 83 84 /* Get out of the list */ 85 list_del(&w->list_node); 86 87 /* Wake up one eventual waiting task */ 88 optee_cq_complete_one(cq); 89 90 /* 91 * If we're completed we've got a completion from another task that 92 * was just done with its call to secure world. Since yet another 93 * thread now is available in secure world wake up another eventual 94 * waiting task. 95 */ 96 if (completion_done(&w->c)) 97 optee_cq_complete_one(cq); 98 99 mutex_unlock(&cq->mutex); 100 } 101 102 /* Requires the filpstate mutex to be held */ 103 static struct optee_session *find_session(struct optee_context_data *ctxdata, 104 u32 session_id) 105 { 106 struct optee_session *sess; 107 108 list_for_each_entry(sess, &ctxdata->sess_list, list_node) 109 if (sess->session_id == session_id) 110 return sess; 111 112 return NULL; 113 } 114 115 /** 116 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world 117 * @ctx: calling context 118 * @parg: physical address of message to pass to secure world 119 * 120 * Does and SMC to OP-TEE in secure world and handles eventual resulting 121 * Remote Procedure Calls (RPC) from OP-TEE. 122 * 123 * Returns return code from secure world, 0 is OK 124 */ 125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg) 126 { 127 struct optee *optee = tee_get_drvdata(ctx->teedev); 128 struct optee_call_waiter w; 129 struct optee_rpc_param param = { }; 130 struct optee_call_ctx call_ctx = { }; 131 u32 ret; 132 133 param.a0 = OPTEE_SMC_CALL_WITH_ARG; 134 reg_pair_from_64(¶m.a1, ¶m.a2, parg); 135 /* Initialize waiter */ 136 optee_cq_wait_init(&optee->call_queue, &w); 137 while (true) { 138 struct arm_smccc_res res; 139 140 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3, 141 param.a4, param.a5, param.a6, param.a7, 142 &res); 143 144 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { 145 /* 146 * Out of threads in secure world, wait for a thread 147 * become available. 148 */ 149 optee_cq_wait_for_completion(&optee->call_queue, &w); 150 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { 151 might_sleep(); 152 param.a0 = res.a0; 153 param.a1 = res.a1; 154 param.a2 = res.a2; 155 param.a3 = res.a3; 156 optee_handle_rpc(ctx, ¶m, &call_ctx); 157 } else { 158 ret = res.a0; 159 break; 160 } 161 } 162 163 optee_rpc_finalize_call(&call_ctx); 164 /* 165 * We're done with our thread in secure world, if there's any 166 * thread waiters wake up one. 167 */ 168 optee_cq_wait_final(&optee->call_queue, &w); 169 170 return ret; 171 } 172 173 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params, 174 struct optee_msg_arg **msg_arg, 175 phys_addr_t *msg_parg) 176 { 177 int rc; 178 struct tee_shm *shm; 179 struct optee_msg_arg *ma; 180 181 shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params), 182 TEE_SHM_MAPPED); 183 if (IS_ERR(shm)) 184 return shm; 185 186 ma = tee_shm_get_va(shm, 0); 187 if (IS_ERR(ma)) { 188 rc = PTR_ERR(ma); 189 goto out; 190 } 191 192 rc = tee_shm_get_pa(shm, 0, msg_parg); 193 if (rc) 194 goto out; 195 196 memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 197 ma->num_params = num_params; 198 *msg_arg = ma; 199 out: 200 if (rc) { 201 tee_shm_free(shm); 202 return ERR_PTR(rc); 203 } 204 205 return shm; 206 } 207 208 int optee_open_session(struct tee_context *ctx, 209 struct tee_ioctl_open_session_arg *arg, 210 struct tee_param *param) 211 { 212 struct optee_context_data *ctxdata = ctx->data; 213 int rc; 214 struct tee_shm *shm; 215 struct optee_msg_arg *msg_arg; 216 phys_addr_t msg_parg; 217 struct optee_session *sess = NULL; 218 219 /* +2 for the meta parameters added below */ 220 shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg); 221 if (IS_ERR(shm)) 222 return PTR_ERR(shm); 223 224 msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION; 225 msg_arg->cancel_id = arg->cancel_id; 226 227 /* 228 * Initialize and add the meta parameters needed when opening a 229 * session. 230 */ 231 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | 232 OPTEE_MSG_ATTR_META; 233 msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | 234 OPTEE_MSG_ATTR_META; 235 memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid)); 236 memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid)); 237 msg_arg->params[1].u.value.c = arg->clnt_login; 238 239 rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param); 240 if (rc) 241 goto out; 242 243 sess = kzalloc(sizeof(*sess), GFP_KERNEL); 244 if (!sess) { 245 rc = -ENOMEM; 246 goto out; 247 } 248 249 if (optee_do_call_with_arg(ctx, msg_parg)) { 250 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 251 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 252 } 253 254 if (msg_arg->ret == TEEC_SUCCESS) { 255 /* A new session has been created, add it to the list. */ 256 sess->session_id = msg_arg->session; 257 mutex_lock(&ctxdata->mutex); 258 list_add(&sess->list_node, &ctxdata->sess_list); 259 mutex_unlock(&ctxdata->mutex); 260 } else { 261 kfree(sess); 262 } 263 264 if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) { 265 arg->ret = TEEC_ERROR_COMMUNICATION; 266 arg->ret_origin = TEEC_ORIGIN_COMMS; 267 /* Close session again to avoid leakage */ 268 optee_close_session(ctx, msg_arg->session); 269 } else { 270 arg->session = msg_arg->session; 271 arg->ret = msg_arg->ret; 272 arg->ret_origin = msg_arg->ret_origin; 273 } 274 out: 275 tee_shm_free(shm); 276 277 return rc; 278 } 279 280 int optee_close_session(struct tee_context *ctx, u32 session) 281 { 282 struct optee_context_data *ctxdata = ctx->data; 283 struct tee_shm *shm; 284 struct optee_msg_arg *msg_arg; 285 phys_addr_t msg_parg; 286 struct optee_session *sess; 287 288 /* Check that the session is valid and remove it from the list */ 289 mutex_lock(&ctxdata->mutex); 290 sess = find_session(ctxdata, session); 291 if (sess) 292 list_del(&sess->list_node); 293 mutex_unlock(&ctxdata->mutex); 294 if (!sess) 295 return -EINVAL; 296 kfree(sess); 297 298 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); 299 if (IS_ERR(shm)) 300 return PTR_ERR(shm); 301 302 msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION; 303 msg_arg->session = session; 304 optee_do_call_with_arg(ctx, msg_parg); 305 306 tee_shm_free(shm); 307 return 0; 308 } 309 310 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg, 311 struct tee_param *param) 312 { 313 struct optee_context_data *ctxdata = ctx->data; 314 struct tee_shm *shm; 315 struct optee_msg_arg *msg_arg; 316 phys_addr_t msg_parg; 317 struct optee_session *sess; 318 int rc; 319 320 /* Check that the session is valid */ 321 mutex_lock(&ctxdata->mutex); 322 sess = find_session(ctxdata, arg->session); 323 mutex_unlock(&ctxdata->mutex); 324 if (!sess) 325 return -EINVAL; 326 327 shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg); 328 if (IS_ERR(shm)) 329 return PTR_ERR(shm); 330 msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND; 331 msg_arg->func = arg->func; 332 msg_arg->session = arg->session; 333 msg_arg->cancel_id = arg->cancel_id; 334 335 rc = optee_to_msg_param(msg_arg->params, arg->num_params, param); 336 if (rc) 337 goto out; 338 339 if (optee_do_call_with_arg(ctx, msg_parg)) { 340 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 341 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 342 } 343 344 if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) { 345 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 346 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 347 } 348 349 arg->ret = msg_arg->ret; 350 arg->ret_origin = msg_arg->ret_origin; 351 out: 352 tee_shm_free(shm); 353 return rc; 354 } 355 356 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session) 357 { 358 struct optee_context_data *ctxdata = ctx->data; 359 struct tee_shm *shm; 360 struct optee_msg_arg *msg_arg; 361 phys_addr_t msg_parg; 362 struct optee_session *sess; 363 364 /* Check that the session is valid */ 365 mutex_lock(&ctxdata->mutex); 366 sess = find_session(ctxdata, session); 367 mutex_unlock(&ctxdata->mutex); 368 if (!sess) 369 return -EINVAL; 370 371 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); 372 if (IS_ERR(shm)) 373 return PTR_ERR(shm); 374 375 msg_arg->cmd = OPTEE_MSG_CMD_CANCEL; 376 msg_arg->session = session; 377 msg_arg->cancel_id = cancel_id; 378 optee_do_call_with_arg(ctx, msg_parg); 379 380 tee_shm_free(shm); 381 return 0; 382 } 383 384 /** 385 * optee_enable_shm_cache() - Enables caching of some shared memory allocation 386 * in OP-TEE 387 * @optee: main service struct 388 */ 389 void optee_enable_shm_cache(struct optee *optee) 390 { 391 struct optee_call_waiter w; 392 393 /* We need to retry until secure world isn't busy. */ 394 optee_cq_wait_init(&optee->call_queue, &w); 395 while (true) { 396 struct arm_smccc_res res; 397 398 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 399 0, &res); 400 if (res.a0 == OPTEE_SMC_RETURN_OK) 401 break; 402 optee_cq_wait_for_completion(&optee->call_queue, &w); 403 } 404 optee_cq_wait_final(&optee->call_queue, &w); 405 } 406 407 /** 408 * optee_disable_shm_cache() - Disables caching of some shared memory allocation 409 * in OP-TEE 410 * @optee: main service struct 411 */ 412 void optee_disable_shm_cache(struct optee *optee) 413 { 414 struct optee_call_waiter w; 415 416 /* We need to retry until secure world isn't busy. */ 417 optee_cq_wait_init(&optee->call_queue, &w); 418 while (true) { 419 union { 420 struct arm_smccc_res smccc; 421 struct optee_smc_disable_shm_cache_result result; 422 } res; 423 424 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 425 0, &res.smccc); 426 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) 427 break; /* All shm's freed */ 428 if (res.result.status == OPTEE_SMC_RETURN_OK) { 429 struct tee_shm *shm; 430 431 shm = reg_pair_to_ptr(res.result.shm_upper32, 432 res.result.shm_lower32); 433 tee_shm_free(shm); 434 } else { 435 optee_cq_wait_for_completion(&optee->call_queue, &w); 436 } 437 } 438 optee_cq_wait_final(&optee->call_queue, &w); 439 } 440 441 #define PAGELIST_ENTRIES_PER_PAGE \ 442 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) 443 444 /** 445 * optee_fill_pages_list() - write list of user pages to given shared 446 * buffer. 447 * 448 * @dst: page-aligned buffer where list of pages will be stored 449 * @pages: array of pages that represents shared buffer 450 * @num_pages: number of entries in @pages 451 * @page_offset: offset of user buffer from page start 452 * 453 * @dst should be big enough to hold list of user page addresses and 454 * links to the next pages of buffer 455 */ 456 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, 457 size_t page_offset) 458 { 459 int n = 0; 460 phys_addr_t optee_page; 461 /* 462 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h 463 * for details. 464 */ 465 struct { 466 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; 467 u64 next_page_data; 468 } *pages_data; 469 470 /* 471 * Currently OP-TEE uses 4k page size and it does not looks 472 * like this will change in the future. On other hand, there are 473 * no know ARM architectures with page size < 4k. 474 * Thus the next built assert looks redundant. But the following 475 * code heavily relies on this assumption, so it is better be 476 * safe than sorry. 477 */ 478 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); 479 480 pages_data = (void *)dst; 481 /* 482 * If linux page is bigger than 4k, and user buffer offset is 483 * larger than 4k/8k/12k/etc this will skip first 4k pages, 484 * because they bear no value data for OP-TEE. 485 */ 486 optee_page = page_to_phys(*pages) + 487 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); 488 489 while (true) { 490 pages_data->pages_list[n++] = optee_page; 491 492 if (n == PAGELIST_ENTRIES_PER_PAGE) { 493 pages_data->next_page_data = 494 virt_to_phys(pages_data + 1); 495 pages_data++; 496 n = 0; 497 } 498 499 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; 500 if (!(optee_page & ~PAGE_MASK)) { 501 if (!--num_pages) 502 break; 503 pages++; 504 optee_page = page_to_phys(*pages); 505 } 506 } 507 } 508 509 /* 510 * The final entry in each pagelist page is a pointer to the next 511 * pagelist page. 512 */ 513 static size_t get_pages_list_size(size_t num_entries) 514 { 515 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); 516 517 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; 518 } 519 520 u64 *optee_allocate_pages_list(size_t num_entries) 521 { 522 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); 523 } 524 525 void optee_free_pages_list(void *list, size_t num_entries) 526 { 527 free_pages_exact(list, get_pages_list_size(num_entries)); 528 } 529 530 static bool is_normal_memory(pgprot_t p) 531 { 532 #if defined(CONFIG_ARM) 533 return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC; 534 #elif defined(CONFIG_ARM64) 535 return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL); 536 #else 537 #error "Unuspported architecture" 538 #endif 539 } 540 541 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end) 542 { 543 while (vma && is_normal_memory(vma->vm_page_prot)) { 544 if (vma->vm_end >= end) 545 return 0; 546 vma = vma->vm_next; 547 } 548 549 return -EINVAL; 550 } 551 552 static int check_mem_type(unsigned long start, size_t num_pages) 553 { 554 struct mm_struct *mm = current->mm; 555 int rc; 556 557 /* 558 * Allow kernel address to register with OP-TEE as kernel 559 * pages are configured as normal memory only. 560 */ 561 if (virt_addr_valid(start)) 562 return 0; 563 564 down_read(&mm->mmap_sem); 565 rc = __check_mem_type(find_vma(mm, start), 566 start + num_pages * PAGE_SIZE); 567 up_read(&mm->mmap_sem); 568 569 return rc; 570 } 571 572 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, 573 struct page **pages, size_t num_pages, 574 unsigned long start) 575 { 576 struct tee_shm *shm_arg = NULL; 577 struct optee_msg_arg *msg_arg; 578 u64 *pages_list; 579 phys_addr_t msg_parg; 580 int rc; 581 582 if (!num_pages) 583 return -EINVAL; 584 585 rc = check_mem_type(start, num_pages); 586 if (rc) 587 return rc; 588 589 pages_list = optee_allocate_pages_list(num_pages); 590 if (!pages_list) 591 return -ENOMEM; 592 593 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); 594 if (IS_ERR(shm_arg)) { 595 rc = PTR_ERR(shm_arg); 596 goto out; 597 } 598 599 optee_fill_pages_list(pages_list, pages, num_pages, 600 tee_shm_get_page_offset(shm)); 601 602 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; 603 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 604 OPTEE_MSG_ATTR_NONCONTIG; 605 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; 606 msg_arg->params->u.tmem.size = tee_shm_get_size(shm); 607 /* 608 * In the least bits of msg_arg->params->u.tmem.buf_ptr we 609 * store buffer offset from 4k page, as described in OP-TEE ABI. 610 */ 611 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | 612 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 613 614 if (optee_do_call_with_arg(ctx, msg_parg) || 615 msg_arg->ret != TEEC_SUCCESS) 616 rc = -EINVAL; 617 618 tee_shm_free(shm_arg); 619 out: 620 optee_free_pages_list(pages_list, num_pages); 621 return rc; 622 } 623 624 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) 625 { 626 struct tee_shm *shm_arg; 627 struct optee_msg_arg *msg_arg; 628 phys_addr_t msg_parg; 629 int rc = 0; 630 631 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); 632 if (IS_ERR(shm_arg)) 633 return PTR_ERR(shm_arg); 634 635 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; 636 637 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 638 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; 639 640 if (optee_do_call_with_arg(ctx, msg_parg) || 641 msg_arg->ret != TEEC_SUCCESS) 642 rc = -EINVAL; 643 tee_shm_free(shm_arg); 644 return rc; 645 } 646 647 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, 648 struct page **pages, size_t num_pages, 649 unsigned long start) 650 { 651 /* 652 * We don't want to register supplicant memory in OP-TEE. 653 * Instead information about it will be passed in RPC code. 654 */ 655 return check_mem_type(start, num_pages); 656 } 657 658 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm) 659 { 660 return 0; 661 } 662