xref: /openbmc/linux/drivers/tee/optee/call.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/tee_drv.h>
12 #include <linux/types.h>
13 #include <linux/uaccess.h>
14 #include "optee_private.h"
15 #include "optee_smc.h"
16 
17 struct optee_call_waiter {
18 	struct list_head list_node;
19 	struct completion c;
20 };
21 
22 static void optee_cq_wait_init(struct optee_call_queue *cq,
23 			       struct optee_call_waiter *w)
24 {
25 	/*
26 	 * We're preparing to make a call to secure world. In case we can't
27 	 * allocate a thread in secure world we'll end up waiting in
28 	 * optee_cq_wait_for_completion().
29 	 *
30 	 * Normally if there's no contention in secure world the call will
31 	 * complete and we can cleanup directly with optee_cq_wait_final().
32 	 */
33 	mutex_lock(&cq->mutex);
34 
35 	/*
36 	 * We add ourselves to the queue, but we don't wait. This
37 	 * guarantees that we don't lose a completion if secure world
38 	 * returns busy and another thread just exited and try to complete
39 	 * someone.
40 	 */
41 	init_completion(&w->c);
42 	list_add_tail(&w->list_node, &cq->waiters);
43 
44 	mutex_unlock(&cq->mutex);
45 }
46 
47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
48 					 struct optee_call_waiter *w)
49 {
50 	wait_for_completion(&w->c);
51 
52 	mutex_lock(&cq->mutex);
53 
54 	/* Move to end of list to get out of the way for other waiters */
55 	list_del(&w->list_node);
56 	reinit_completion(&w->c);
57 	list_add_tail(&w->list_node, &cq->waiters);
58 
59 	mutex_unlock(&cq->mutex);
60 }
61 
62 static void optee_cq_complete_one(struct optee_call_queue *cq)
63 {
64 	struct optee_call_waiter *w;
65 
66 	list_for_each_entry(w, &cq->waiters, list_node) {
67 		if (!completion_done(&w->c)) {
68 			complete(&w->c);
69 			break;
70 		}
71 	}
72 }
73 
74 static void optee_cq_wait_final(struct optee_call_queue *cq,
75 				struct optee_call_waiter *w)
76 {
77 	/*
78 	 * We're done with the call to secure world. The thread in secure
79 	 * world that was used for this call is now available for some
80 	 * other task to use.
81 	 */
82 	mutex_lock(&cq->mutex);
83 
84 	/* Get out of the list */
85 	list_del(&w->list_node);
86 
87 	/* Wake up one eventual waiting task */
88 	optee_cq_complete_one(cq);
89 
90 	/*
91 	 * If we're completed we've got a completion from another task that
92 	 * was just done with its call to secure world. Since yet another
93 	 * thread now is available in secure world wake up another eventual
94 	 * waiting task.
95 	 */
96 	if (completion_done(&w->c))
97 		optee_cq_complete_one(cq);
98 
99 	mutex_unlock(&cq->mutex);
100 }
101 
102 /* Requires the filpstate mutex to be held */
103 static struct optee_session *find_session(struct optee_context_data *ctxdata,
104 					  u32 session_id)
105 {
106 	struct optee_session *sess;
107 
108 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
109 		if (sess->session_id == session_id)
110 			return sess;
111 
112 	return NULL;
113 }
114 
115 /**
116  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117  * @ctx:	calling context
118  * @parg:	physical address of message to pass to secure world
119  *
120  * Does and SMC to OP-TEE in secure world and handles eventual resulting
121  * Remote Procedure Calls (RPC) from OP-TEE.
122  *
123  * Returns return code from secure world, 0 is OK
124  */
125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
126 {
127 	struct optee *optee = tee_get_drvdata(ctx->teedev);
128 	struct optee_call_waiter w;
129 	struct optee_rpc_param param = { };
130 	struct optee_call_ctx call_ctx = { };
131 	u32 ret;
132 
133 	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
134 	reg_pair_from_64(&param.a1, &param.a2, parg);
135 	/* Initialize waiter */
136 	optee_cq_wait_init(&optee->call_queue, &w);
137 	while (true) {
138 		struct arm_smccc_res res;
139 
140 		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
141 				 param.a4, param.a5, param.a6, param.a7,
142 				 &res);
143 
144 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
145 			/*
146 			 * Out of threads in secure world, wait for a thread
147 			 * become available.
148 			 */
149 			optee_cq_wait_for_completion(&optee->call_queue, &w);
150 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
151 			might_sleep();
152 			param.a0 = res.a0;
153 			param.a1 = res.a1;
154 			param.a2 = res.a2;
155 			param.a3 = res.a3;
156 			optee_handle_rpc(ctx, &param, &call_ctx);
157 		} else {
158 			ret = res.a0;
159 			break;
160 		}
161 	}
162 
163 	optee_rpc_finalize_call(&call_ctx);
164 	/*
165 	 * We're done with our thread in secure world, if there's any
166 	 * thread waiters wake up one.
167 	 */
168 	optee_cq_wait_final(&optee->call_queue, &w);
169 
170 	return ret;
171 }
172 
173 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
174 				   struct optee_msg_arg **msg_arg,
175 				   phys_addr_t *msg_parg)
176 {
177 	int rc;
178 	struct tee_shm *shm;
179 	struct optee_msg_arg *ma;
180 
181 	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
182 			    TEE_SHM_MAPPED);
183 	if (IS_ERR(shm))
184 		return shm;
185 
186 	ma = tee_shm_get_va(shm, 0);
187 	if (IS_ERR(ma)) {
188 		rc = PTR_ERR(ma);
189 		goto out;
190 	}
191 
192 	rc = tee_shm_get_pa(shm, 0, msg_parg);
193 	if (rc)
194 		goto out;
195 
196 	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
197 	ma->num_params = num_params;
198 	*msg_arg = ma;
199 out:
200 	if (rc) {
201 		tee_shm_free(shm);
202 		return ERR_PTR(rc);
203 	}
204 
205 	return shm;
206 }
207 
208 int optee_open_session(struct tee_context *ctx,
209 		       struct tee_ioctl_open_session_arg *arg,
210 		       struct tee_param *param)
211 {
212 	struct optee_context_data *ctxdata = ctx->data;
213 	int rc;
214 	struct tee_shm *shm;
215 	struct optee_msg_arg *msg_arg;
216 	phys_addr_t msg_parg;
217 	struct optee_session *sess = NULL;
218 
219 	/* +2 for the meta parameters added below */
220 	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
221 	if (IS_ERR(shm))
222 		return PTR_ERR(shm);
223 
224 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
225 	msg_arg->cancel_id = arg->cancel_id;
226 
227 	/*
228 	 * Initialize and add the meta parameters needed when opening a
229 	 * session.
230 	 */
231 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
232 				  OPTEE_MSG_ATTR_META;
233 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
234 				  OPTEE_MSG_ATTR_META;
235 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
236 	memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
237 	msg_arg->params[1].u.value.c = arg->clnt_login;
238 
239 	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
240 	if (rc)
241 		goto out;
242 
243 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
244 	if (!sess) {
245 		rc = -ENOMEM;
246 		goto out;
247 	}
248 
249 	if (optee_do_call_with_arg(ctx, msg_parg)) {
250 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
251 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
252 	}
253 
254 	if (msg_arg->ret == TEEC_SUCCESS) {
255 		/* A new session has been created, add it to the list. */
256 		sess->session_id = msg_arg->session;
257 		mutex_lock(&ctxdata->mutex);
258 		list_add(&sess->list_node, &ctxdata->sess_list);
259 		mutex_unlock(&ctxdata->mutex);
260 	} else {
261 		kfree(sess);
262 	}
263 
264 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
265 		arg->ret = TEEC_ERROR_COMMUNICATION;
266 		arg->ret_origin = TEEC_ORIGIN_COMMS;
267 		/* Close session again to avoid leakage */
268 		optee_close_session(ctx, msg_arg->session);
269 	} else {
270 		arg->session = msg_arg->session;
271 		arg->ret = msg_arg->ret;
272 		arg->ret_origin = msg_arg->ret_origin;
273 	}
274 out:
275 	tee_shm_free(shm);
276 
277 	return rc;
278 }
279 
280 int optee_close_session(struct tee_context *ctx, u32 session)
281 {
282 	struct optee_context_data *ctxdata = ctx->data;
283 	struct tee_shm *shm;
284 	struct optee_msg_arg *msg_arg;
285 	phys_addr_t msg_parg;
286 	struct optee_session *sess;
287 
288 	/* Check that the session is valid and remove it from the list */
289 	mutex_lock(&ctxdata->mutex);
290 	sess = find_session(ctxdata, session);
291 	if (sess)
292 		list_del(&sess->list_node);
293 	mutex_unlock(&ctxdata->mutex);
294 	if (!sess)
295 		return -EINVAL;
296 	kfree(sess);
297 
298 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
299 	if (IS_ERR(shm))
300 		return PTR_ERR(shm);
301 
302 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
303 	msg_arg->session = session;
304 	optee_do_call_with_arg(ctx, msg_parg);
305 
306 	tee_shm_free(shm);
307 	return 0;
308 }
309 
310 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
311 		      struct tee_param *param)
312 {
313 	struct optee_context_data *ctxdata = ctx->data;
314 	struct tee_shm *shm;
315 	struct optee_msg_arg *msg_arg;
316 	phys_addr_t msg_parg;
317 	struct optee_session *sess;
318 	int rc;
319 
320 	/* Check that the session is valid */
321 	mutex_lock(&ctxdata->mutex);
322 	sess = find_session(ctxdata, arg->session);
323 	mutex_unlock(&ctxdata->mutex);
324 	if (!sess)
325 		return -EINVAL;
326 
327 	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
328 	if (IS_ERR(shm))
329 		return PTR_ERR(shm);
330 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
331 	msg_arg->func = arg->func;
332 	msg_arg->session = arg->session;
333 	msg_arg->cancel_id = arg->cancel_id;
334 
335 	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
336 	if (rc)
337 		goto out;
338 
339 	if (optee_do_call_with_arg(ctx, msg_parg)) {
340 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
341 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
342 	}
343 
344 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
345 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
346 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
347 	}
348 
349 	arg->ret = msg_arg->ret;
350 	arg->ret_origin = msg_arg->ret_origin;
351 out:
352 	tee_shm_free(shm);
353 	return rc;
354 }
355 
356 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
357 {
358 	struct optee_context_data *ctxdata = ctx->data;
359 	struct tee_shm *shm;
360 	struct optee_msg_arg *msg_arg;
361 	phys_addr_t msg_parg;
362 	struct optee_session *sess;
363 
364 	/* Check that the session is valid */
365 	mutex_lock(&ctxdata->mutex);
366 	sess = find_session(ctxdata, session);
367 	mutex_unlock(&ctxdata->mutex);
368 	if (!sess)
369 		return -EINVAL;
370 
371 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
372 	if (IS_ERR(shm))
373 		return PTR_ERR(shm);
374 
375 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
376 	msg_arg->session = session;
377 	msg_arg->cancel_id = cancel_id;
378 	optee_do_call_with_arg(ctx, msg_parg);
379 
380 	tee_shm_free(shm);
381 	return 0;
382 }
383 
384 /**
385  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
386  *			      in OP-TEE
387  * @optee:	main service struct
388  */
389 void optee_enable_shm_cache(struct optee *optee)
390 {
391 	struct optee_call_waiter w;
392 
393 	/* We need to retry until secure world isn't busy. */
394 	optee_cq_wait_init(&optee->call_queue, &w);
395 	while (true) {
396 		struct arm_smccc_res res;
397 
398 		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
399 				 0, &res);
400 		if (res.a0 == OPTEE_SMC_RETURN_OK)
401 			break;
402 		optee_cq_wait_for_completion(&optee->call_queue, &w);
403 	}
404 	optee_cq_wait_final(&optee->call_queue, &w);
405 }
406 
407 /**
408  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
409  *			      in OP-TEE
410  * @optee:	main service struct
411  */
412 void optee_disable_shm_cache(struct optee *optee)
413 {
414 	struct optee_call_waiter w;
415 
416 	/* We need to retry until secure world isn't busy. */
417 	optee_cq_wait_init(&optee->call_queue, &w);
418 	while (true) {
419 		union {
420 			struct arm_smccc_res smccc;
421 			struct optee_smc_disable_shm_cache_result result;
422 		} res;
423 
424 		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
425 				 0, &res.smccc);
426 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
427 			break; /* All shm's freed */
428 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
429 			struct tee_shm *shm;
430 
431 			shm = reg_pair_to_ptr(res.result.shm_upper32,
432 					      res.result.shm_lower32);
433 			tee_shm_free(shm);
434 		} else {
435 			optee_cq_wait_for_completion(&optee->call_queue, &w);
436 		}
437 	}
438 	optee_cq_wait_final(&optee->call_queue, &w);
439 }
440 
441 #define PAGELIST_ENTRIES_PER_PAGE				\
442 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
443 
444 /**
445  * optee_fill_pages_list() - write list of user pages to given shared
446  * buffer.
447  *
448  * @dst: page-aligned buffer where list of pages will be stored
449  * @pages: array of pages that represents shared buffer
450  * @num_pages: number of entries in @pages
451  * @page_offset: offset of user buffer from page start
452  *
453  * @dst should be big enough to hold list of user page addresses and
454  *	links to the next pages of buffer
455  */
456 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
457 			   size_t page_offset)
458 {
459 	int n = 0;
460 	phys_addr_t optee_page;
461 	/*
462 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
463 	 * for details.
464 	 */
465 	struct {
466 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
467 		u64 next_page_data;
468 	} *pages_data;
469 
470 	/*
471 	 * Currently OP-TEE uses 4k page size and it does not looks
472 	 * like this will change in the future.  On other hand, there are
473 	 * no know ARM architectures with page size < 4k.
474 	 * Thus the next built assert looks redundant. But the following
475 	 * code heavily relies on this assumption, so it is better be
476 	 * safe than sorry.
477 	 */
478 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
479 
480 	pages_data = (void *)dst;
481 	/*
482 	 * If linux page is bigger than 4k, and user buffer offset is
483 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
484 	 * because they bear no value data for OP-TEE.
485 	 */
486 	optee_page = page_to_phys(*pages) +
487 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
488 
489 	while (true) {
490 		pages_data->pages_list[n++] = optee_page;
491 
492 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
493 			pages_data->next_page_data =
494 				virt_to_phys(pages_data + 1);
495 			pages_data++;
496 			n = 0;
497 		}
498 
499 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
500 		if (!(optee_page & ~PAGE_MASK)) {
501 			if (!--num_pages)
502 				break;
503 			pages++;
504 			optee_page = page_to_phys(*pages);
505 		}
506 	}
507 }
508 
509 /*
510  * The final entry in each pagelist page is a pointer to the next
511  * pagelist page.
512  */
513 static size_t get_pages_list_size(size_t num_entries)
514 {
515 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
516 
517 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
518 }
519 
520 u64 *optee_allocate_pages_list(size_t num_entries)
521 {
522 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
523 }
524 
525 void optee_free_pages_list(void *list, size_t num_entries)
526 {
527 	free_pages_exact(list, get_pages_list_size(num_entries));
528 }
529 
530 static bool is_normal_memory(pgprot_t p)
531 {
532 #if defined(CONFIG_ARM)
533 	return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
534 #elif defined(CONFIG_ARM64)
535 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
536 #else
537 #error "Unuspported architecture"
538 #endif
539 }
540 
541 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
542 {
543 	while (vma && is_normal_memory(vma->vm_page_prot)) {
544 		if (vma->vm_end >= end)
545 			return 0;
546 		vma = vma->vm_next;
547 	}
548 
549 	return -EINVAL;
550 }
551 
552 static int check_mem_type(unsigned long start, size_t num_pages)
553 {
554 	struct mm_struct *mm = current->mm;
555 	int rc;
556 
557 	/*
558 	 * Allow kernel address to register with OP-TEE as kernel
559 	 * pages are configured as normal memory only.
560 	 */
561 	if (virt_addr_valid(start))
562 		return 0;
563 
564 	down_read(&mm->mmap_sem);
565 	rc = __check_mem_type(find_vma(mm, start),
566 			      start + num_pages * PAGE_SIZE);
567 	up_read(&mm->mmap_sem);
568 
569 	return rc;
570 }
571 
572 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
573 		       struct page **pages, size_t num_pages,
574 		       unsigned long start)
575 {
576 	struct tee_shm *shm_arg = NULL;
577 	struct optee_msg_arg *msg_arg;
578 	u64 *pages_list;
579 	phys_addr_t msg_parg;
580 	int rc;
581 
582 	if (!num_pages)
583 		return -EINVAL;
584 
585 	rc = check_mem_type(start, num_pages);
586 	if (rc)
587 		return rc;
588 
589 	pages_list = optee_allocate_pages_list(num_pages);
590 	if (!pages_list)
591 		return -ENOMEM;
592 
593 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
594 	if (IS_ERR(shm_arg)) {
595 		rc = PTR_ERR(shm_arg);
596 		goto out;
597 	}
598 
599 	optee_fill_pages_list(pages_list, pages, num_pages,
600 			      tee_shm_get_page_offset(shm));
601 
602 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
603 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
604 				OPTEE_MSG_ATTR_NONCONTIG;
605 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
606 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
607 	/*
608 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
609 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
610 	 */
611 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
612 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
613 
614 	if (optee_do_call_with_arg(ctx, msg_parg) ||
615 	    msg_arg->ret != TEEC_SUCCESS)
616 		rc = -EINVAL;
617 
618 	tee_shm_free(shm_arg);
619 out:
620 	optee_free_pages_list(pages_list, num_pages);
621 	return rc;
622 }
623 
624 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
625 {
626 	struct tee_shm *shm_arg;
627 	struct optee_msg_arg *msg_arg;
628 	phys_addr_t msg_parg;
629 	int rc = 0;
630 
631 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
632 	if (IS_ERR(shm_arg))
633 		return PTR_ERR(shm_arg);
634 
635 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
636 
637 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
638 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
639 
640 	if (optee_do_call_with_arg(ctx, msg_parg) ||
641 	    msg_arg->ret != TEEC_SUCCESS)
642 		rc = -EINVAL;
643 	tee_shm_free(shm_arg);
644 	return rc;
645 }
646 
647 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
648 			    struct page **pages, size_t num_pages,
649 			    unsigned long start)
650 {
651 	/*
652 	 * We don't want to register supplicant memory in OP-TEE.
653 	 * Instead information about it will be passed in RPC code.
654 	 */
655 	return check_mem_type(start, num_pages);
656 }
657 
658 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
659 {
660 	return 0;
661 }
662