1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, Linaro Limited 4 */ 5 #include <linux/arm-smccc.h> 6 #include <linux/device.h> 7 #include <linux/err.h> 8 #include <linux/errno.h> 9 #include <linux/mm.h> 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/tee_drv.h> 13 #include <linux/types.h> 14 #include <linux/uaccess.h> 15 #include "optee_private.h" 16 #include "optee_smc.h" 17 #define CREATE_TRACE_POINTS 18 #include "optee_trace.h" 19 20 struct optee_call_waiter { 21 struct list_head list_node; 22 struct completion c; 23 }; 24 25 static void optee_cq_wait_init(struct optee_call_queue *cq, 26 struct optee_call_waiter *w) 27 { 28 /* 29 * We're preparing to make a call to secure world. In case we can't 30 * allocate a thread in secure world we'll end up waiting in 31 * optee_cq_wait_for_completion(). 32 * 33 * Normally if there's no contention in secure world the call will 34 * complete and we can cleanup directly with optee_cq_wait_final(). 35 */ 36 mutex_lock(&cq->mutex); 37 38 /* 39 * We add ourselves to the queue, but we don't wait. This 40 * guarantees that we don't lose a completion if secure world 41 * returns busy and another thread just exited and try to complete 42 * someone. 43 */ 44 init_completion(&w->c); 45 list_add_tail(&w->list_node, &cq->waiters); 46 47 mutex_unlock(&cq->mutex); 48 } 49 50 static void optee_cq_wait_for_completion(struct optee_call_queue *cq, 51 struct optee_call_waiter *w) 52 { 53 wait_for_completion(&w->c); 54 55 mutex_lock(&cq->mutex); 56 57 /* Move to end of list to get out of the way for other waiters */ 58 list_del(&w->list_node); 59 reinit_completion(&w->c); 60 list_add_tail(&w->list_node, &cq->waiters); 61 62 mutex_unlock(&cq->mutex); 63 } 64 65 static void optee_cq_complete_one(struct optee_call_queue *cq) 66 { 67 struct optee_call_waiter *w; 68 69 list_for_each_entry(w, &cq->waiters, list_node) { 70 if (!completion_done(&w->c)) { 71 complete(&w->c); 72 break; 73 } 74 } 75 } 76 77 static void optee_cq_wait_final(struct optee_call_queue *cq, 78 struct optee_call_waiter *w) 79 { 80 /* 81 * We're done with the call to secure world. The thread in secure 82 * world that was used for this call is now available for some 83 * other task to use. 84 */ 85 mutex_lock(&cq->mutex); 86 87 /* Get out of the list */ 88 list_del(&w->list_node); 89 90 /* Wake up one eventual waiting task */ 91 optee_cq_complete_one(cq); 92 93 /* 94 * If we're completed we've got a completion from another task that 95 * was just done with its call to secure world. Since yet another 96 * thread now is available in secure world wake up another eventual 97 * waiting task. 98 */ 99 if (completion_done(&w->c)) 100 optee_cq_complete_one(cq); 101 102 mutex_unlock(&cq->mutex); 103 } 104 105 /* Requires the filpstate mutex to be held */ 106 static struct optee_session *find_session(struct optee_context_data *ctxdata, 107 u32 session_id) 108 { 109 struct optee_session *sess; 110 111 list_for_each_entry(sess, &ctxdata->sess_list, list_node) 112 if (sess->session_id == session_id) 113 return sess; 114 115 return NULL; 116 } 117 118 /** 119 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world 120 * @ctx: calling context 121 * @parg: physical address of message to pass to secure world 122 * 123 * Does and SMC to OP-TEE in secure world and handles eventual resulting 124 * Remote Procedure Calls (RPC) from OP-TEE. 125 * 126 * Returns return code from secure world, 0 is OK 127 */ 128 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg) 129 { 130 struct optee *optee = tee_get_drvdata(ctx->teedev); 131 struct optee_call_waiter w; 132 struct optee_rpc_param param = { }; 133 struct optee_call_ctx call_ctx = { }; 134 u32 ret; 135 136 param.a0 = OPTEE_SMC_CALL_WITH_ARG; 137 reg_pair_from_64(¶m.a1, ¶m.a2, parg); 138 /* Initialize waiter */ 139 optee_cq_wait_init(&optee->call_queue, &w); 140 while (true) { 141 struct arm_smccc_res res; 142 143 trace_optee_invoke_fn_begin(¶m); 144 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3, 145 param.a4, param.a5, param.a6, param.a7, 146 &res); 147 trace_optee_invoke_fn_end(¶m, &res); 148 149 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { 150 /* 151 * Out of threads in secure world, wait for a thread 152 * become available. 153 */ 154 optee_cq_wait_for_completion(&optee->call_queue, &w); 155 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { 156 cond_resched(); 157 param.a0 = res.a0; 158 param.a1 = res.a1; 159 param.a2 = res.a2; 160 param.a3 = res.a3; 161 optee_handle_rpc(ctx, ¶m, &call_ctx); 162 } else { 163 ret = res.a0; 164 break; 165 } 166 } 167 168 optee_rpc_finalize_call(&call_ctx); 169 /* 170 * We're done with our thread in secure world, if there's any 171 * thread waiters wake up one. 172 */ 173 optee_cq_wait_final(&optee->call_queue, &w); 174 175 return ret; 176 } 177 178 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params, 179 struct optee_msg_arg **msg_arg, 180 phys_addr_t *msg_parg) 181 { 182 int rc; 183 struct tee_shm *shm; 184 struct optee_msg_arg *ma; 185 186 shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params), 187 TEE_SHM_MAPPED); 188 if (IS_ERR(shm)) 189 return shm; 190 191 ma = tee_shm_get_va(shm, 0); 192 if (IS_ERR(ma)) { 193 rc = PTR_ERR(ma); 194 goto out; 195 } 196 197 rc = tee_shm_get_pa(shm, 0, msg_parg); 198 if (rc) 199 goto out; 200 201 memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); 202 ma->num_params = num_params; 203 *msg_arg = ma; 204 out: 205 if (rc) { 206 tee_shm_free(shm); 207 return ERR_PTR(rc); 208 } 209 210 return shm; 211 } 212 213 int optee_open_session(struct tee_context *ctx, 214 struct tee_ioctl_open_session_arg *arg, 215 struct tee_param *param) 216 { 217 struct optee_context_data *ctxdata = ctx->data; 218 int rc; 219 struct tee_shm *shm; 220 struct optee_msg_arg *msg_arg; 221 phys_addr_t msg_parg; 222 struct optee_session *sess = NULL; 223 uuid_t client_uuid; 224 225 /* +2 for the meta parameters added below */ 226 shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg); 227 if (IS_ERR(shm)) 228 return PTR_ERR(shm); 229 230 msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION; 231 msg_arg->cancel_id = arg->cancel_id; 232 233 /* 234 * Initialize and add the meta parameters needed when opening a 235 * session. 236 */ 237 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | 238 OPTEE_MSG_ATTR_META; 239 msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | 240 OPTEE_MSG_ATTR_META; 241 memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid)); 242 msg_arg->params[1].u.value.c = arg->clnt_login; 243 244 rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login, 245 arg->clnt_uuid); 246 if (rc) 247 goto out; 248 export_uuid(msg_arg->params[1].u.octets, &client_uuid); 249 250 rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param); 251 if (rc) 252 goto out; 253 254 sess = kzalloc(sizeof(*sess), GFP_KERNEL); 255 if (!sess) { 256 rc = -ENOMEM; 257 goto out; 258 } 259 260 if (optee_do_call_with_arg(ctx, msg_parg)) { 261 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 262 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 263 } 264 265 if (msg_arg->ret == TEEC_SUCCESS) { 266 /* A new session has been created, add it to the list. */ 267 sess->session_id = msg_arg->session; 268 mutex_lock(&ctxdata->mutex); 269 list_add(&sess->list_node, &ctxdata->sess_list); 270 mutex_unlock(&ctxdata->mutex); 271 } else { 272 kfree(sess); 273 } 274 275 if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) { 276 arg->ret = TEEC_ERROR_COMMUNICATION; 277 arg->ret_origin = TEEC_ORIGIN_COMMS; 278 /* Close session again to avoid leakage */ 279 optee_close_session(ctx, msg_arg->session); 280 } else { 281 arg->session = msg_arg->session; 282 arg->ret = msg_arg->ret; 283 arg->ret_origin = msg_arg->ret_origin; 284 } 285 out: 286 tee_shm_free(shm); 287 288 return rc; 289 } 290 291 int optee_close_session(struct tee_context *ctx, u32 session) 292 { 293 struct optee_context_data *ctxdata = ctx->data; 294 struct tee_shm *shm; 295 struct optee_msg_arg *msg_arg; 296 phys_addr_t msg_parg; 297 struct optee_session *sess; 298 299 /* Check that the session is valid and remove it from the list */ 300 mutex_lock(&ctxdata->mutex); 301 sess = find_session(ctxdata, session); 302 if (sess) 303 list_del(&sess->list_node); 304 mutex_unlock(&ctxdata->mutex); 305 if (!sess) 306 return -EINVAL; 307 kfree(sess); 308 309 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); 310 if (IS_ERR(shm)) 311 return PTR_ERR(shm); 312 313 msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION; 314 msg_arg->session = session; 315 optee_do_call_with_arg(ctx, msg_parg); 316 317 tee_shm_free(shm); 318 return 0; 319 } 320 321 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg, 322 struct tee_param *param) 323 { 324 struct optee_context_data *ctxdata = ctx->data; 325 struct tee_shm *shm; 326 struct optee_msg_arg *msg_arg; 327 phys_addr_t msg_parg; 328 struct optee_session *sess; 329 int rc; 330 331 /* Check that the session is valid */ 332 mutex_lock(&ctxdata->mutex); 333 sess = find_session(ctxdata, arg->session); 334 mutex_unlock(&ctxdata->mutex); 335 if (!sess) 336 return -EINVAL; 337 338 shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg); 339 if (IS_ERR(shm)) 340 return PTR_ERR(shm); 341 msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND; 342 msg_arg->func = arg->func; 343 msg_arg->session = arg->session; 344 msg_arg->cancel_id = arg->cancel_id; 345 346 rc = optee_to_msg_param(msg_arg->params, arg->num_params, param); 347 if (rc) 348 goto out; 349 350 if (optee_do_call_with_arg(ctx, msg_parg)) { 351 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 352 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 353 } 354 355 if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) { 356 msg_arg->ret = TEEC_ERROR_COMMUNICATION; 357 msg_arg->ret_origin = TEEC_ORIGIN_COMMS; 358 } 359 360 arg->ret = msg_arg->ret; 361 arg->ret_origin = msg_arg->ret_origin; 362 out: 363 tee_shm_free(shm); 364 return rc; 365 } 366 367 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session) 368 { 369 struct optee_context_data *ctxdata = ctx->data; 370 struct tee_shm *shm; 371 struct optee_msg_arg *msg_arg; 372 phys_addr_t msg_parg; 373 struct optee_session *sess; 374 375 /* Check that the session is valid */ 376 mutex_lock(&ctxdata->mutex); 377 sess = find_session(ctxdata, session); 378 mutex_unlock(&ctxdata->mutex); 379 if (!sess) 380 return -EINVAL; 381 382 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); 383 if (IS_ERR(shm)) 384 return PTR_ERR(shm); 385 386 msg_arg->cmd = OPTEE_MSG_CMD_CANCEL; 387 msg_arg->session = session; 388 msg_arg->cancel_id = cancel_id; 389 optee_do_call_with_arg(ctx, msg_parg); 390 391 tee_shm_free(shm); 392 return 0; 393 } 394 395 /** 396 * optee_enable_shm_cache() - Enables caching of some shared memory allocation 397 * in OP-TEE 398 * @optee: main service struct 399 */ 400 void optee_enable_shm_cache(struct optee *optee) 401 { 402 struct optee_call_waiter w; 403 404 /* We need to retry until secure world isn't busy. */ 405 optee_cq_wait_init(&optee->call_queue, &w); 406 while (true) { 407 struct arm_smccc_res res; 408 409 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 410 0, &res); 411 if (res.a0 == OPTEE_SMC_RETURN_OK) 412 break; 413 optee_cq_wait_for_completion(&optee->call_queue, &w); 414 } 415 optee_cq_wait_final(&optee->call_queue, &w); 416 } 417 418 /** 419 * optee_disable_shm_cache() - Disables caching of some shared memory allocation 420 * in OP-TEE 421 * @optee: main service struct 422 */ 423 void optee_disable_shm_cache(struct optee *optee) 424 { 425 struct optee_call_waiter w; 426 427 /* We need to retry until secure world isn't busy. */ 428 optee_cq_wait_init(&optee->call_queue, &w); 429 while (true) { 430 union { 431 struct arm_smccc_res smccc; 432 struct optee_smc_disable_shm_cache_result result; 433 } res; 434 435 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 436 0, &res.smccc); 437 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) 438 break; /* All shm's freed */ 439 if (res.result.status == OPTEE_SMC_RETURN_OK) { 440 struct tee_shm *shm; 441 442 shm = reg_pair_to_ptr(res.result.shm_upper32, 443 res.result.shm_lower32); 444 tee_shm_free(shm); 445 } else { 446 optee_cq_wait_for_completion(&optee->call_queue, &w); 447 } 448 } 449 optee_cq_wait_final(&optee->call_queue, &w); 450 } 451 452 #define PAGELIST_ENTRIES_PER_PAGE \ 453 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) 454 455 /** 456 * optee_fill_pages_list() - write list of user pages to given shared 457 * buffer. 458 * 459 * @dst: page-aligned buffer where list of pages will be stored 460 * @pages: array of pages that represents shared buffer 461 * @num_pages: number of entries in @pages 462 * @page_offset: offset of user buffer from page start 463 * 464 * @dst should be big enough to hold list of user page addresses and 465 * links to the next pages of buffer 466 */ 467 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, 468 size_t page_offset) 469 { 470 int n = 0; 471 phys_addr_t optee_page; 472 /* 473 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h 474 * for details. 475 */ 476 struct { 477 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; 478 u64 next_page_data; 479 } *pages_data; 480 481 /* 482 * Currently OP-TEE uses 4k page size and it does not looks 483 * like this will change in the future. On other hand, there are 484 * no know ARM architectures with page size < 4k. 485 * Thus the next built assert looks redundant. But the following 486 * code heavily relies on this assumption, so it is better be 487 * safe than sorry. 488 */ 489 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); 490 491 pages_data = (void *)dst; 492 /* 493 * If linux page is bigger than 4k, and user buffer offset is 494 * larger than 4k/8k/12k/etc this will skip first 4k pages, 495 * because they bear no value data for OP-TEE. 496 */ 497 optee_page = page_to_phys(*pages) + 498 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); 499 500 while (true) { 501 pages_data->pages_list[n++] = optee_page; 502 503 if (n == PAGELIST_ENTRIES_PER_PAGE) { 504 pages_data->next_page_data = 505 virt_to_phys(pages_data + 1); 506 pages_data++; 507 n = 0; 508 } 509 510 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; 511 if (!(optee_page & ~PAGE_MASK)) { 512 if (!--num_pages) 513 break; 514 pages++; 515 optee_page = page_to_phys(*pages); 516 } 517 } 518 } 519 520 /* 521 * The final entry in each pagelist page is a pointer to the next 522 * pagelist page. 523 */ 524 static size_t get_pages_list_size(size_t num_entries) 525 { 526 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); 527 528 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; 529 } 530 531 u64 *optee_allocate_pages_list(size_t num_entries) 532 { 533 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); 534 } 535 536 void optee_free_pages_list(void *list, size_t num_entries) 537 { 538 free_pages_exact(list, get_pages_list_size(num_entries)); 539 } 540 541 static bool is_normal_memory(pgprot_t p) 542 { 543 #if defined(CONFIG_ARM) 544 return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) || 545 ((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK)); 546 #elif defined(CONFIG_ARM64) 547 return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL); 548 #else 549 #error "Unuspported architecture" 550 #endif 551 } 552 553 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end) 554 { 555 while (vma && is_normal_memory(vma->vm_page_prot)) { 556 if (vma->vm_end >= end) 557 return 0; 558 vma = vma->vm_next; 559 } 560 561 return -EINVAL; 562 } 563 564 static int check_mem_type(unsigned long start, size_t num_pages) 565 { 566 struct mm_struct *mm = current->mm; 567 int rc; 568 569 /* 570 * Allow kernel address to register with OP-TEE as kernel 571 * pages are configured as normal memory only. 572 */ 573 if (virt_addr_valid(start)) 574 return 0; 575 576 mmap_read_lock(mm); 577 rc = __check_mem_type(find_vma(mm, start), 578 start + num_pages * PAGE_SIZE); 579 mmap_read_unlock(mm); 580 581 return rc; 582 } 583 584 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, 585 struct page **pages, size_t num_pages, 586 unsigned long start) 587 { 588 struct tee_shm *shm_arg = NULL; 589 struct optee_msg_arg *msg_arg; 590 u64 *pages_list; 591 phys_addr_t msg_parg; 592 int rc; 593 594 if (!num_pages) 595 return -EINVAL; 596 597 rc = check_mem_type(start, num_pages); 598 if (rc) 599 return rc; 600 601 pages_list = optee_allocate_pages_list(num_pages); 602 if (!pages_list) 603 return -ENOMEM; 604 605 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); 606 if (IS_ERR(shm_arg)) { 607 rc = PTR_ERR(shm_arg); 608 goto out; 609 } 610 611 optee_fill_pages_list(pages_list, pages, num_pages, 612 tee_shm_get_page_offset(shm)); 613 614 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; 615 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | 616 OPTEE_MSG_ATTR_NONCONTIG; 617 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; 618 msg_arg->params->u.tmem.size = tee_shm_get_size(shm); 619 /* 620 * In the least bits of msg_arg->params->u.tmem.buf_ptr we 621 * store buffer offset from 4k page, as described in OP-TEE ABI. 622 */ 623 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | 624 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); 625 626 if (optee_do_call_with_arg(ctx, msg_parg) || 627 msg_arg->ret != TEEC_SUCCESS) 628 rc = -EINVAL; 629 630 tee_shm_free(shm_arg); 631 out: 632 optee_free_pages_list(pages_list, num_pages); 633 return rc; 634 } 635 636 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) 637 { 638 struct tee_shm *shm_arg; 639 struct optee_msg_arg *msg_arg; 640 phys_addr_t msg_parg; 641 int rc = 0; 642 643 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); 644 if (IS_ERR(shm_arg)) 645 return PTR_ERR(shm_arg); 646 647 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; 648 649 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; 650 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; 651 652 if (optee_do_call_with_arg(ctx, msg_parg) || 653 msg_arg->ret != TEEC_SUCCESS) 654 rc = -EINVAL; 655 tee_shm_free(shm_arg); 656 return rc; 657 } 658 659 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, 660 struct page **pages, size_t num_pages, 661 unsigned long start) 662 { 663 /* 664 * We don't want to register supplicant memory in OP-TEE. 665 * Instead information about it will be passed in RPC code. 666 */ 667 return check_mem_type(start, num_pages); 668 } 669 670 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm) 671 { 672 return 0; 673 } 674