xref: /openbmc/linux/drivers/tee/optee/call.c (revision 85d616dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015-2021, Linaro Limited
4  */
5 #include <linux/device.h>
6 #include <linux/err.h>
7 #include <linux/errno.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/tee_drv.h>
11 #include <linux/types.h>
12 #include "optee_private.h"
13 
14 #define MAX_ARG_PARAM_COUNT	6
15 
16 /*
17  * How much memory we allocate for each entry. This doesn't have to be a
18  * single page, but it makes sense to keep at least keep it as multiples of
19  * the page size.
20  */
21 #define SHM_ENTRY_SIZE		PAGE_SIZE
22 
23 /*
24  * We need to have a compile time constant to be able to determine the
25  * maximum needed size of the bit field.
26  */
27 #define MIN_ARG_SIZE		OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT)
28 #define MAX_ARG_COUNT_PER_ENTRY	(SHM_ENTRY_SIZE / MIN_ARG_SIZE)
29 
30 /*
31  * Shared memory for argument structs are cached here. The number of
32  * arguments structs that can fit is determined at runtime depending on the
33  * needed RPC parameter count reported by secure world
34  * (optee->rpc_param_count).
35  */
36 struct optee_shm_arg_entry {
37 	struct list_head list_node;
38 	struct tee_shm *shm;
39 	DECLARE_BITMAP(map, MAX_ARG_COUNT_PER_ENTRY);
40 };
41 
42 void optee_cq_wait_init(struct optee_call_queue *cq,
43 			struct optee_call_waiter *w)
44 {
45 	/*
46 	 * We're preparing to make a call to secure world. In case we can't
47 	 * allocate a thread in secure world we'll end up waiting in
48 	 * optee_cq_wait_for_completion().
49 	 *
50 	 * Normally if there's no contention in secure world the call will
51 	 * complete and we can cleanup directly with optee_cq_wait_final().
52 	 */
53 	mutex_lock(&cq->mutex);
54 
55 	/*
56 	 * We add ourselves to the queue, but we don't wait. This
57 	 * guarantees that we don't lose a completion if secure world
58 	 * returns busy and another thread just exited and try to complete
59 	 * someone.
60 	 */
61 	init_completion(&w->c);
62 	list_add_tail(&w->list_node, &cq->waiters);
63 
64 	mutex_unlock(&cq->mutex);
65 }
66 
67 void optee_cq_wait_for_completion(struct optee_call_queue *cq,
68 				  struct optee_call_waiter *w)
69 {
70 	wait_for_completion(&w->c);
71 
72 	mutex_lock(&cq->mutex);
73 
74 	/* Move to end of list to get out of the way for other waiters */
75 	list_del(&w->list_node);
76 	reinit_completion(&w->c);
77 	list_add_tail(&w->list_node, &cq->waiters);
78 
79 	mutex_unlock(&cq->mutex);
80 }
81 
82 static void optee_cq_complete_one(struct optee_call_queue *cq)
83 {
84 	struct optee_call_waiter *w;
85 
86 	list_for_each_entry(w, &cq->waiters, list_node) {
87 		if (!completion_done(&w->c)) {
88 			complete(&w->c);
89 			break;
90 		}
91 	}
92 }
93 
94 void optee_cq_wait_final(struct optee_call_queue *cq,
95 			 struct optee_call_waiter *w)
96 {
97 	/*
98 	 * We're done with the call to secure world. The thread in secure
99 	 * world that was used for this call is now available for some
100 	 * other task to use.
101 	 */
102 	mutex_lock(&cq->mutex);
103 
104 	/* Get out of the list */
105 	list_del(&w->list_node);
106 
107 	/* Wake up one eventual waiting task */
108 	optee_cq_complete_one(cq);
109 
110 	/*
111 	 * If we're completed we've got a completion from another task that
112 	 * was just done with its call to secure world. Since yet another
113 	 * thread now is available in secure world wake up another eventual
114 	 * waiting task.
115 	 */
116 	if (completion_done(&w->c))
117 		optee_cq_complete_one(cq);
118 
119 	mutex_unlock(&cq->mutex);
120 }
121 
122 /* Requires the filpstate mutex to be held */
123 static struct optee_session *find_session(struct optee_context_data *ctxdata,
124 					  u32 session_id)
125 {
126 	struct optee_session *sess;
127 
128 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
129 		if (sess->session_id == session_id)
130 			return sess;
131 
132 	return NULL;
133 }
134 
135 void optee_shm_arg_cache_init(struct optee *optee, u32 flags)
136 {
137 	INIT_LIST_HEAD(&optee->shm_arg_cache.shm_args);
138 	mutex_init(&optee->shm_arg_cache.mutex);
139 	optee->shm_arg_cache.flags = flags;
140 }
141 
142 void optee_shm_arg_cache_uninit(struct optee *optee)
143 {
144 	struct list_head *head = &optee->shm_arg_cache.shm_args;
145 	struct optee_shm_arg_entry *entry;
146 
147 	mutex_destroy(&optee->shm_arg_cache.mutex);
148 	while (!list_empty(head)) {
149 		entry = list_first_entry(head, struct optee_shm_arg_entry,
150 					 list_node);
151 		list_del(&entry->list_node);
152 		if (find_first_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY) !=
153 		     MAX_ARG_COUNT_PER_ENTRY) {
154 			pr_err("Freeing non-free entry\n");
155 		}
156 		tee_shm_free(entry->shm);
157 		kfree(entry);
158 	}
159 }
160 
161 size_t optee_msg_arg_size(size_t rpc_param_count)
162 {
163 	size_t sz = OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT);
164 
165 	if (rpc_param_count)
166 		sz += OPTEE_MSG_GET_ARG_SIZE(rpc_param_count);
167 
168 	return sz;
169 }
170 
171 /**
172  * optee_get_msg_arg() - Provide shared memory for argument struct
173  * @ctx:	Caller TEE context
174  * @num_params:	Number of parameter to store
175  * @entry_ret:	Entry pointer, needed when freeing the buffer
176  * @shm_ret:	Shared memory buffer
177  * @offs_ret:	Offset of argument strut in shared memory buffer
178  *
179  * @returns a pointer to the argument struct in memory, else an ERR_PTR
180  */
181 struct optee_msg_arg *optee_get_msg_arg(struct tee_context *ctx,
182 					size_t num_params,
183 					struct optee_shm_arg_entry **entry_ret,
184 					struct tee_shm **shm_ret,
185 					u_int *offs_ret)
186 {
187 	struct optee *optee = tee_get_drvdata(ctx->teedev);
188 	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
189 	struct optee_shm_arg_entry *entry;
190 	struct optee_msg_arg *ma;
191 	size_t args_per_entry;
192 	u_long bit;
193 	u_int offs;
194 	void *res;
195 
196 	if (num_params > MAX_ARG_PARAM_COUNT)
197 		return ERR_PTR(-EINVAL);
198 
199 	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_SHARED)
200 		args_per_entry = SHM_ENTRY_SIZE / sz;
201 	else
202 		args_per_entry = 1;
203 
204 	mutex_lock(&optee->shm_arg_cache.mutex);
205 	list_for_each_entry(entry, &optee->shm_arg_cache.shm_args, list_node) {
206 		bit = find_first_zero_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY);
207 		if (bit < args_per_entry)
208 			goto have_entry;
209 	}
210 
211 	/*
212 	 * No entry was found, let's allocate a new.
213 	 */
214 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
215 	if (!entry) {
216 		res = ERR_PTR(-ENOMEM);
217 		goto out;
218 	}
219 
220 	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_ALLOC_PRIV)
221 		res = tee_shm_alloc_priv_buf(ctx, SHM_ENTRY_SIZE);
222 	else
223 		res = tee_shm_alloc_kernel_buf(ctx, SHM_ENTRY_SIZE);
224 
225 	if (IS_ERR(res)) {
226 		kfree(entry);
227 		goto out;
228 	}
229 	entry->shm = res;
230 	list_add(&entry->list_node, &optee->shm_arg_cache.shm_args);
231 	bit = 0;
232 
233 have_entry:
234 	offs = bit * sz;
235 	res = tee_shm_get_va(entry->shm, offs);
236 	if (IS_ERR(res))
237 		goto out;
238 	ma = res;
239 	set_bit(bit, entry->map);
240 	memset(ma, 0, sz);
241 	ma->num_params = num_params;
242 	*entry_ret = entry;
243 	*shm_ret = entry->shm;
244 	*offs_ret = offs;
245 out:
246 	mutex_unlock(&optee->shm_arg_cache.mutex);
247 	return res;
248 }
249 
250 /**
251  * optee_free_msg_arg() - Free previsouly obtained shared memory
252  * @ctx:	Caller TEE context
253  * @entry:	Pointer returned when the shared memory was obtained
254  * @offs:	Offset of shared memory buffer to free
255  *
256  * This function frees the shared memory obtained with optee_get_msg_arg().
257  */
258 void optee_free_msg_arg(struct tee_context *ctx,
259 			struct optee_shm_arg_entry *entry, u_int offs)
260 {
261 	struct optee *optee = tee_get_drvdata(ctx->teedev);
262 	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
263 	u_long bit;
264 
265 	if (offs > SHM_ENTRY_SIZE || offs % sz) {
266 		pr_err("Invalid offs %u\n", offs);
267 		return;
268 	}
269 	bit = offs / sz;
270 
271 	mutex_lock(&optee->shm_arg_cache.mutex);
272 
273 	if (!test_bit(bit, entry->map))
274 		pr_err("Bit pos %lu is already free\n", bit);
275 	clear_bit(bit, entry->map);
276 
277 	mutex_unlock(&optee->shm_arg_cache.mutex);
278 }
279 
280 int optee_open_session(struct tee_context *ctx,
281 		       struct tee_ioctl_open_session_arg *arg,
282 		       struct tee_param *param)
283 {
284 	struct optee *optee = tee_get_drvdata(ctx->teedev);
285 	struct optee_context_data *ctxdata = ctx->data;
286 	struct optee_shm_arg_entry *entry;
287 	struct tee_shm *shm;
288 	struct optee_msg_arg *msg_arg;
289 	struct optee_session *sess = NULL;
290 	uuid_t client_uuid;
291 	u_int offs;
292 	int rc;
293 
294 	/* +2 for the meta parameters added below */
295 	msg_arg = optee_get_msg_arg(ctx, arg->num_params + 2,
296 				    &entry, &shm, &offs);
297 	if (IS_ERR(msg_arg))
298 		return PTR_ERR(msg_arg);
299 
300 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
301 	msg_arg->cancel_id = arg->cancel_id;
302 
303 	/*
304 	 * Initialize and add the meta parameters needed when opening a
305 	 * session.
306 	 */
307 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
308 				  OPTEE_MSG_ATTR_META;
309 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
310 				  OPTEE_MSG_ATTR_META;
311 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
312 	msg_arg->params[1].u.value.c = arg->clnt_login;
313 
314 	rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login,
315 					  arg->clnt_uuid);
316 	if (rc)
317 		goto out;
318 	export_uuid(msg_arg->params[1].u.octets, &client_uuid);
319 
320 	rc = optee->ops->to_msg_param(optee, msg_arg->params + 2,
321 				      arg->num_params, param);
322 	if (rc)
323 		goto out;
324 
325 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
326 	if (!sess) {
327 		rc = -ENOMEM;
328 		goto out;
329 	}
330 
331 	if (optee->ops->do_call_with_arg(ctx, shm, offs)) {
332 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
333 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
334 	}
335 
336 	if (msg_arg->ret == TEEC_SUCCESS) {
337 		/* A new session has been created, add it to the list. */
338 		sess->session_id = msg_arg->session;
339 		mutex_lock(&ctxdata->mutex);
340 		list_add(&sess->list_node, &ctxdata->sess_list);
341 		mutex_unlock(&ctxdata->mutex);
342 	} else {
343 		kfree(sess);
344 	}
345 
346 	if (optee->ops->from_msg_param(optee, param, arg->num_params,
347 				       msg_arg->params + 2)) {
348 		arg->ret = TEEC_ERROR_COMMUNICATION;
349 		arg->ret_origin = TEEC_ORIGIN_COMMS;
350 		/* Close session again to avoid leakage */
351 		optee_close_session(ctx, msg_arg->session);
352 	} else {
353 		arg->session = msg_arg->session;
354 		arg->ret = msg_arg->ret;
355 		arg->ret_origin = msg_arg->ret_origin;
356 	}
357 out:
358 	optee_free_msg_arg(ctx, entry, offs);
359 
360 	return rc;
361 }
362 
363 int optee_close_session_helper(struct tee_context *ctx, u32 session)
364 {
365 	struct optee *optee = tee_get_drvdata(ctx->teedev);
366 	struct optee_shm_arg_entry *entry;
367 	struct optee_msg_arg *msg_arg;
368 	struct tee_shm *shm;
369 	u_int offs;
370 
371 	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
372 	if (IS_ERR(msg_arg))
373 		return PTR_ERR(msg_arg);
374 
375 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
376 	msg_arg->session = session;
377 	optee->ops->do_call_with_arg(ctx, shm, offs);
378 
379 	optee_free_msg_arg(ctx, entry, offs);
380 
381 	return 0;
382 }
383 
384 int optee_close_session(struct tee_context *ctx, u32 session)
385 {
386 	struct optee_context_data *ctxdata = ctx->data;
387 	struct optee_session *sess;
388 
389 	/* Check that the session is valid and remove it from the list */
390 	mutex_lock(&ctxdata->mutex);
391 	sess = find_session(ctxdata, session);
392 	if (sess)
393 		list_del(&sess->list_node);
394 	mutex_unlock(&ctxdata->mutex);
395 	if (!sess)
396 		return -EINVAL;
397 	kfree(sess);
398 
399 	return optee_close_session_helper(ctx, session);
400 }
401 
402 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
403 		      struct tee_param *param)
404 {
405 	struct optee *optee = tee_get_drvdata(ctx->teedev);
406 	struct optee_context_data *ctxdata = ctx->data;
407 	struct optee_shm_arg_entry *entry;
408 	struct optee_msg_arg *msg_arg;
409 	struct optee_session *sess;
410 	struct tee_shm *shm;
411 	u_int offs;
412 	int rc;
413 
414 	/* Check that the session is valid */
415 	mutex_lock(&ctxdata->mutex);
416 	sess = find_session(ctxdata, arg->session);
417 	mutex_unlock(&ctxdata->mutex);
418 	if (!sess)
419 		return -EINVAL;
420 
421 	msg_arg = optee_get_msg_arg(ctx, arg->num_params,
422 				    &entry, &shm, &offs);
423 	if (IS_ERR(msg_arg))
424 		return PTR_ERR(msg_arg);
425 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
426 	msg_arg->func = arg->func;
427 	msg_arg->session = arg->session;
428 	msg_arg->cancel_id = arg->cancel_id;
429 
430 	rc = optee->ops->to_msg_param(optee, msg_arg->params, arg->num_params,
431 				      param);
432 	if (rc)
433 		goto out;
434 
435 	if (optee->ops->do_call_with_arg(ctx, shm, offs)) {
436 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
437 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
438 	}
439 
440 	if (optee->ops->from_msg_param(optee, param, arg->num_params,
441 				       msg_arg->params)) {
442 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
443 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
444 	}
445 
446 	arg->ret = msg_arg->ret;
447 	arg->ret_origin = msg_arg->ret_origin;
448 out:
449 	optee_free_msg_arg(ctx, entry, offs);
450 	return rc;
451 }
452 
453 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
454 {
455 	struct optee *optee = tee_get_drvdata(ctx->teedev);
456 	struct optee_context_data *ctxdata = ctx->data;
457 	struct optee_shm_arg_entry *entry;
458 	struct optee_msg_arg *msg_arg;
459 	struct optee_session *sess;
460 	struct tee_shm *shm;
461 	u_int offs;
462 
463 	/* Check that the session is valid */
464 	mutex_lock(&ctxdata->mutex);
465 	sess = find_session(ctxdata, session);
466 	mutex_unlock(&ctxdata->mutex);
467 	if (!sess)
468 		return -EINVAL;
469 
470 	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
471 	if (IS_ERR(msg_arg))
472 		return PTR_ERR(msg_arg);
473 
474 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
475 	msg_arg->session = session;
476 	msg_arg->cancel_id = cancel_id;
477 	optee->ops->do_call_with_arg(ctx, shm, offs);
478 
479 	optee_free_msg_arg(ctx, entry, offs);
480 	return 0;
481 }
482 
483 static bool is_normal_memory(pgprot_t p)
484 {
485 #if defined(CONFIG_ARM)
486 	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
487 		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
488 #elif defined(CONFIG_ARM64)
489 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
490 #else
491 #error "Unuspported architecture"
492 #endif
493 }
494 
495 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
496 {
497 	while (vma && is_normal_memory(vma->vm_page_prot)) {
498 		if (vma->vm_end >= end)
499 			return 0;
500 		vma = vma->vm_next;
501 	}
502 
503 	return -EINVAL;
504 }
505 
506 int optee_check_mem_type(unsigned long start, size_t num_pages)
507 {
508 	struct mm_struct *mm = current->mm;
509 	int rc;
510 
511 	/*
512 	 * Allow kernel address to register with OP-TEE as kernel
513 	 * pages are configured as normal memory only.
514 	 */
515 	if (virt_addr_valid((void *)start) || is_vmalloc_addr((void *)start))
516 		return 0;
517 
518 	mmap_read_lock(mm);
519 	rc = __check_mem_type(find_vma(mm, start),
520 			      start + num_pages * PAGE_SIZE);
521 	mmap_read_unlock(mm);
522 
523 	return rc;
524 }
525