xref: /openbmc/linux/drivers/tee/optee/call.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/slab.h>
11 #include <linux/tee_drv.h>
12 #include <linux/types.h>
13 #include <linux/uaccess.h>
14 #include "optee_private.h"
15 #include "optee_smc.h"
16 
17 struct optee_call_waiter {
18 	struct list_head list_node;
19 	struct completion c;
20 };
21 
22 static void optee_cq_wait_init(struct optee_call_queue *cq,
23 			       struct optee_call_waiter *w)
24 {
25 	/*
26 	 * We're preparing to make a call to secure world. In case we can't
27 	 * allocate a thread in secure world we'll end up waiting in
28 	 * optee_cq_wait_for_completion().
29 	 *
30 	 * Normally if there's no contention in secure world the call will
31 	 * complete and we can cleanup directly with optee_cq_wait_final().
32 	 */
33 	mutex_lock(&cq->mutex);
34 
35 	/*
36 	 * We add ourselves to the queue, but we don't wait. This
37 	 * guarantees that we don't lose a completion if secure world
38 	 * returns busy and another thread just exited and try to complete
39 	 * someone.
40 	 */
41 	init_completion(&w->c);
42 	list_add_tail(&w->list_node, &cq->waiters);
43 
44 	mutex_unlock(&cq->mutex);
45 }
46 
47 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
48 					 struct optee_call_waiter *w)
49 {
50 	wait_for_completion(&w->c);
51 
52 	mutex_lock(&cq->mutex);
53 
54 	/* Move to end of list to get out of the way for other waiters */
55 	list_del(&w->list_node);
56 	reinit_completion(&w->c);
57 	list_add_tail(&w->list_node, &cq->waiters);
58 
59 	mutex_unlock(&cq->mutex);
60 }
61 
62 static void optee_cq_complete_one(struct optee_call_queue *cq)
63 {
64 	struct optee_call_waiter *w;
65 
66 	list_for_each_entry(w, &cq->waiters, list_node) {
67 		if (!completion_done(&w->c)) {
68 			complete(&w->c);
69 			break;
70 		}
71 	}
72 }
73 
74 static void optee_cq_wait_final(struct optee_call_queue *cq,
75 				struct optee_call_waiter *w)
76 {
77 	/*
78 	 * We're done with the call to secure world. The thread in secure
79 	 * world that was used for this call is now available for some
80 	 * other task to use.
81 	 */
82 	mutex_lock(&cq->mutex);
83 
84 	/* Get out of the list */
85 	list_del(&w->list_node);
86 
87 	/* Wake up one eventual waiting task */
88 	optee_cq_complete_one(cq);
89 
90 	/*
91 	 * If we're completed we've got a completion from another task that
92 	 * was just done with its call to secure world. Since yet another
93 	 * thread now is available in secure world wake up another eventual
94 	 * waiting task.
95 	 */
96 	if (completion_done(&w->c))
97 		optee_cq_complete_one(cq);
98 
99 	mutex_unlock(&cq->mutex);
100 }
101 
102 /* Requires the filpstate mutex to be held */
103 static struct optee_session *find_session(struct optee_context_data *ctxdata,
104 					  u32 session_id)
105 {
106 	struct optee_session *sess;
107 
108 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
109 		if (sess->session_id == session_id)
110 			return sess;
111 
112 	return NULL;
113 }
114 
115 /**
116  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117  * @ctx:	calling context
118  * @parg:	physical address of message to pass to secure world
119  *
120  * Does and SMC to OP-TEE in secure world and handles eventual resulting
121  * Remote Procedure Calls (RPC) from OP-TEE.
122  *
123  * Returns return code from secure world, 0 is OK
124  */
125 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
126 {
127 	struct optee *optee = tee_get_drvdata(ctx->teedev);
128 	struct optee_call_waiter w;
129 	struct optee_rpc_param param = { };
130 	struct optee_call_ctx call_ctx = { };
131 	u32 ret;
132 
133 	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
134 	reg_pair_from_64(&param.a1, &param.a2, parg);
135 	/* Initialize waiter */
136 	optee_cq_wait_init(&optee->call_queue, &w);
137 	while (true) {
138 		struct arm_smccc_res res;
139 
140 		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
141 				 param.a4, param.a5, param.a6, param.a7,
142 				 &res);
143 
144 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
145 			/*
146 			 * Out of threads in secure world, wait for a thread
147 			 * become available.
148 			 */
149 			optee_cq_wait_for_completion(&optee->call_queue, &w);
150 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
151 			param.a0 = res.a0;
152 			param.a1 = res.a1;
153 			param.a2 = res.a2;
154 			param.a3 = res.a3;
155 			optee_handle_rpc(ctx, &param, &call_ctx);
156 		} else {
157 			ret = res.a0;
158 			break;
159 		}
160 	}
161 
162 	optee_rpc_finalize_call(&call_ctx);
163 	/*
164 	 * We're done with our thread in secure world, if there's any
165 	 * thread waiters wake up one.
166 	 */
167 	optee_cq_wait_final(&optee->call_queue, &w);
168 
169 	return ret;
170 }
171 
172 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
173 				   struct optee_msg_arg **msg_arg,
174 				   phys_addr_t *msg_parg)
175 {
176 	int rc;
177 	struct tee_shm *shm;
178 	struct optee_msg_arg *ma;
179 
180 	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
181 			    TEE_SHM_MAPPED);
182 	if (IS_ERR(shm))
183 		return shm;
184 
185 	ma = tee_shm_get_va(shm, 0);
186 	if (IS_ERR(ma)) {
187 		rc = PTR_ERR(ma);
188 		goto out;
189 	}
190 
191 	rc = tee_shm_get_pa(shm, 0, msg_parg);
192 	if (rc)
193 		goto out;
194 
195 	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
196 	ma->num_params = num_params;
197 	*msg_arg = ma;
198 out:
199 	if (rc) {
200 		tee_shm_free(shm);
201 		return ERR_PTR(rc);
202 	}
203 
204 	return shm;
205 }
206 
207 int optee_open_session(struct tee_context *ctx,
208 		       struct tee_ioctl_open_session_arg *arg,
209 		       struct tee_param *param)
210 {
211 	struct optee_context_data *ctxdata = ctx->data;
212 	int rc;
213 	struct tee_shm *shm;
214 	struct optee_msg_arg *msg_arg;
215 	phys_addr_t msg_parg;
216 	struct optee_session *sess = NULL;
217 
218 	/* +2 for the meta parameters added below */
219 	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
220 	if (IS_ERR(shm))
221 		return PTR_ERR(shm);
222 
223 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
224 	msg_arg->cancel_id = arg->cancel_id;
225 
226 	/*
227 	 * Initialize and add the meta parameters needed when opening a
228 	 * session.
229 	 */
230 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
231 				  OPTEE_MSG_ATTR_META;
232 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
233 				  OPTEE_MSG_ATTR_META;
234 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
235 	memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
236 	msg_arg->params[1].u.value.c = arg->clnt_login;
237 
238 	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
239 	if (rc)
240 		goto out;
241 
242 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
243 	if (!sess) {
244 		rc = -ENOMEM;
245 		goto out;
246 	}
247 
248 	if (optee_do_call_with_arg(ctx, msg_parg)) {
249 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
250 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
251 	}
252 
253 	if (msg_arg->ret == TEEC_SUCCESS) {
254 		/* A new session has been created, add it to the list. */
255 		sess->session_id = msg_arg->session;
256 		mutex_lock(&ctxdata->mutex);
257 		list_add(&sess->list_node, &ctxdata->sess_list);
258 		mutex_unlock(&ctxdata->mutex);
259 	} else {
260 		kfree(sess);
261 	}
262 
263 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
264 		arg->ret = TEEC_ERROR_COMMUNICATION;
265 		arg->ret_origin = TEEC_ORIGIN_COMMS;
266 		/* Close session again to avoid leakage */
267 		optee_close_session(ctx, msg_arg->session);
268 	} else {
269 		arg->session = msg_arg->session;
270 		arg->ret = msg_arg->ret;
271 		arg->ret_origin = msg_arg->ret_origin;
272 	}
273 out:
274 	tee_shm_free(shm);
275 
276 	return rc;
277 }
278 
279 int optee_close_session(struct tee_context *ctx, u32 session)
280 {
281 	struct optee_context_data *ctxdata = ctx->data;
282 	struct tee_shm *shm;
283 	struct optee_msg_arg *msg_arg;
284 	phys_addr_t msg_parg;
285 	struct optee_session *sess;
286 
287 	/* Check that the session is valid and remove it from the list */
288 	mutex_lock(&ctxdata->mutex);
289 	sess = find_session(ctxdata, session);
290 	if (sess)
291 		list_del(&sess->list_node);
292 	mutex_unlock(&ctxdata->mutex);
293 	if (!sess)
294 		return -EINVAL;
295 	kfree(sess);
296 
297 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
298 	if (IS_ERR(shm))
299 		return PTR_ERR(shm);
300 
301 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
302 	msg_arg->session = session;
303 	optee_do_call_with_arg(ctx, msg_parg);
304 
305 	tee_shm_free(shm);
306 	return 0;
307 }
308 
309 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
310 		      struct tee_param *param)
311 {
312 	struct optee_context_data *ctxdata = ctx->data;
313 	struct tee_shm *shm;
314 	struct optee_msg_arg *msg_arg;
315 	phys_addr_t msg_parg;
316 	struct optee_session *sess;
317 	int rc;
318 
319 	/* Check that the session is valid */
320 	mutex_lock(&ctxdata->mutex);
321 	sess = find_session(ctxdata, arg->session);
322 	mutex_unlock(&ctxdata->mutex);
323 	if (!sess)
324 		return -EINVAL;
325 
326 	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
327 	if (IS_ERR(shm))
328 		return PTR_ERR(shm);
329 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
330 	msg_arg->func = arg->func;
331 	msg_arg->session = arg->session;
332 	msg_arg->cancel_id = arg->cancel_id;
333 
334 	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
335 	if (rc)
336 		goto out;
337 
338 	if (optee_do_call_with_arg(ctx, msg_parg)) {
339 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
340 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
341 	}
342 
343 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
344 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
345 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
346 	}
347 
348 	arg->ret = msg_arg->ret;
349 	arg->ret_origin = msg_arg->ret_origin;
350 out:
351 	tee_shm_free(shm);
352 	return rc;
353 }
354 
355 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
356 {
357 	struct optee_context_data *ctxdata = ctx->data;
358 	struct tee_shm *shm;
359 	struct optee_msg_arg *msg_arg;
360 	phys_addr_t msg_parg;
361 	struct optee_session *sess;
362 
363 	/* Check that the session is valid */
364 	mutex_lock(&ctxdata->mutex);
365 	sess = find_session(ctxdata, session);
366 	mutex_unlock(&ctxdata->mutex);
367 	if (!sess)
368 		return -EINVAL;
369 
370 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
371 	if (IS_ERR(shm))
372 		return PTR_ERR(shm);
373 
374 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
375 	msg_arg->session = session;
376 	msg_arg->cancel_id = cancel_id;
377 	optee_do_call_with_arg(ctx, msg_parg);
378 
379 	tee_shm_free(shm);
380 	return 0;
381 }
382 
383 /**
384  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
385  *			      in OP-TEE
386  * @optee:	main service struct
387  */
388 void optee_enable_shm_cache(struct optee *optee)
389 {
390 	struct optee_call_waiter w;
391 
392 	/* We need to retry until secure world isn't busy. */
393 	optee_cq_wait_init(&optee->call_queue, &w);
394 	while (true) {
395 		struct arm_smccc_res res;
396 
397 		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
398 				 0, &res);
399 		if (res.a0 == OPTEE_SMC_RETURN_OK)
400 			break;
401 		optee_cq_wait_for_completion(&optee->call_queue, &w);
402 	}
403 	optee_cq_wait_final(&optee->call_queue, &w);
404 }
405 
406 /**
407  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
408  *			      in OP-TEE
409  * @optee:	main service struct
410  */
411 void optee_disable_shm_cache(struct optee *optee)
412 {
413 	struct optee_call_waiter w;
414 
415 	/* We need to retry until secure world isn't busy. */
416 	optee_cq_wait_init(&optee->call_queue, &w);
417 	while (true) {
418 		union {
419 			struct arm_smccc_res smccc;
420 			struct optee_smc_disable_shm_cache_result result;
421 		} res;
422 
423 		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
424 				 0, &res.smccc);
425 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
426 			break; /* All shm's freed */
427 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
428 			struct tee_shm *shm;
429 
430 			shm = reg_pair_to_ptr(res.result.shm_upper32,
431 					      res.result.shm_lower32);
432 			tee_shm_free(shm);
433 		} else {
434 			optee_cq_wait_for_completion(&optee->call_queue, &w);
435 		}
436 	}
437 	optee_cq_wait_final(&optee->call_queue, &w);
438 }
439 
440 #define PAGELIST_ENTRIES_PER_PAGE				\
441 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
442 
443 /**
444  * optee_fill_pages_list() - write list of user pages to given shared
445  * buffer.
446  *
447  * @dst: page-aligned buffer where list of pages will be stored
448  * @pages: array of pages that represents shared buffer
449  * @num_pages: number of entries in @pages
450  * @page_offset: offset of user buffer from page start
451  *
452  * @dst should be big enough to hold list of user page addresses and
453  *	links to the next pages of buffer
454  */
455 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
456 			   size_t page_offset)
457 {
458 	int n = 0;
459 	phys_addr_t optee_page;
460 	/*
461 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
462 	 * for details.
463 	 */
464 	struct {
465 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
466 		u64 next_page_data;
467 	} *pages_data;
468 
469 	/*
470 	 * Currently OP-TEE uses 4k page size and it does not looks
471 	 * like this will change in the future.  On other hand, there are
472 	 * no know ARM architectures with page size < 4k.
473 	 * Thus the next built assert looks redundant. But the following
474 	 * code heavily relies on this assumption, so it is better be
475 	 * safe than sorry.
476 	 */
477 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
478 
479 	pages_data = (void *)dst;
480 	/*
481 	 * If linux page is bigger than 4k, and user buffer offset is
482 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
483 	 * because they bear no value data for OP-TEE.
484 	 */
485 	optee_page = page_to_phys(*pages) +
486 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
487 
488 	while (true) {
489 		pages_data->pages_list[n++] = optee_page;
490 
491 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
492 			pages_data->next_page_data =
493 				virt_to_phys(pages_data + 1);
494 			pages_data++;
495 			n = 0;
496 		}
497 
498 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
499 		if (!(optee_page & ~PAGE_MASK)) {
500 			if (!--num_pages)
501 				break;
502 			pages++;
503 			optee_page = page_to_phys(*pages);
504 		}
505 	}
506 }
507 
508 /*
509  * The final entry in each pagelist page is a pointer to the next
510  * pagelist page.
511  */
512 static size_t get_pages_list_size(size_t num_entries)
513 {
514 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
515 
516 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
517 }
518 
519 u64 *optee_allocate_pages_list(size_t num_entries)
520 {
521 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
522 }
523 
524 void optee_free_pages_list(void *list, size_t num_entries)
525 {
526 	free_pages_exact(list, get_pages_list_size(num_entries));
527 }
528 
529 static bool is_normal_memory(pgprot_t p)
530 {
531 #if defined(CONFIG_ARM)
532 	return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
533 #elif defined(CONFIG_ARM64)
534 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
535 #else
536 #error "Unuspported architecture"
537 #endif
538 }
539 
540 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
541 {
542 	while (vma && is_normal_memory(vma->vm_page_prot)) {
543 		if (vma->vm_end >= end)
544 			return 0;
545 		vma = vma->vm_next;
546 	}
547 
548 	return -EINVAL;
549 }
550 
551 static int check_mem_type(unsigned long start, size_t num_pages)
552 {
553 	struct mm_struct *mm = current->mm;
554 	int rc;
555 
556 	down_read(&mm->mmap_sem);
557 	rc = __check_mem_type(find_vma(mm, start),
558 			      start + num_pages * PAGE_SIZE);
559 	up_read(&mm->mmap_sem);
560 
561 	return rc;
562 }
563 
564 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
565 		       struct page **pages, size_t num_pages,
566 		       unsigned long start)
567 {
568 	struct tee_shm *shm_arg = NULL;
569 	struct optee_msg_arg *msg_arg;
570 	u64 *pages_list;
571 	phys_addr_t msg_parg;
572 	int rc;
573 
574 	if (!num_pages)
575 		return -EINVAL;
576 
577 	rc = check_mem_type(start, num_pages);
578 	if (rc)
579 		return rc;
580 
581 	pages_list = optee_allocate_pages_list(num_pages);
582 	if (!pages_list)
583 		return -ENOMEM;
584 
585 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
586 	if (IS_ERR(shm_arg)) {
587 		rc = PTR_ERR(shm_arg);
588 		goto out;
589 	}
590 
591 	optee_fill_pages_list(pages_list, pages, num_pages,
592 			      tee_shm_get_page_offset(shm));
593 
594 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
595 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
596 				OPTEE_MSG_ATTR_NONCONTIG;
597 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
598 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
599 	/*
600 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
601 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
602 	 */
603 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
604 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
605 
606 	if (optee_do_call_with_arg(ctx, msg_parg) ||
607 	    msg_arg->ret != TEEC_SUCCESS)
608 		rc = -EINVAL;
609 
610 	tee_shm_free(shm_arg);
611 out:
612 	optee_free_pages_list(pages_list, num_pages);
613 	return rc;
614 }
615 
616 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
617 {
618 	struct tee_shm *shm_arg;
619 	struct optee_msg_arg *msg_arg;
620 	phys_addr_t msg_parg;
621 	int rc = 0;
622 
623 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
624 	if (IS_ERR(shm_arg))
625 		return PTR_ERR(shm_arg);
626 
627 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
628 
629 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
630 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
631 
632 	if (optee_do_call_with_arg(ctx, msg_parg) ||
633 	    msg_arg->ret != TEEC_SUCCESS)
634 		rc = -EINVAL;
635 	tee_shm_free(shm_arg);
636 	return rc;
637 }
638 
639 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
640 			    struct page **pages, size_t num_pages,
641 			    unsigned long start)
642 {
643 	/*
644 	 * We don't want to register supplicant memory in OP-TEE.
645 	 * Instead information about it will be passed in RPC code.
646 	 */
647 	return check_mem_type(start, num_pages);
648 }
649 
650 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
651 {
652 	return 0;
653 }
654