xref: /openbmc/linux/drivers/tee/optee/call.c (revision 27ab1c1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/tee_drv.h>
13 #include <linux/types.h>
14 #include <linux/uaccess.h>
15 #include "optee_private.h"
16 #include "optee_smc.h"
17 
18 struct optee_call_waiter {
19 	struct list_head list_node;
20 	struct completion c;
21 };
22 
23 static void optee_cq_wait_init(struct optee_call_queue *cq,
24 			       struct optee_call_waiter *w)
25 {
26 	/*
27 	 * We're preparing to make a call to secure world. In case we can't
28 	 * allocate a thread in secure world we'll end up waiting in
29 	 * optee_cq_wait_for_completion().
30 	 *
31 	 * Normally if there's no contention in secure world the call will
32 	 * complete and we can cleanup directly with optee_cq_wait_final().
33 	 */
34 	mutex_lock(&cq->mutex);
35 
36 	/*
37 	 * We add ourselves to the queue, but we don't wait. This
38 	 * guarantees that we don't lose a completion if secure world
39 	 * returns busy and another thread just exited and try to complete
40 	 * someone.
41 	 */
42 	init_completion(&w->c);
43 	list_add_tail(&w->list_node, &cq->waiters);
44 
45 	mutex_unlock(&cq->mutex);
46 }
47 
48 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
49 					 struct optee_call_waiter *w)
50 {
51 	wait_for_completion(&w->c);
52 
53 	mutex_lock(&cq->mutex);
54 
55 	/* Move to end of list to get out of the way for other waiters */
56 	list_del(&w->list_node);
57 	reinit_completion(&w->c);
58 	list_add_tail(&w->list_node, &cq->waiters);
59 
60 	mutex_unlock(&cq->mutex);
61 }
62 
63 static void optee_cq_complete_one(struct optee_call_queue *cq)
64 {
65 	struct optee_call_waiter *w;
66 
67 	list_for_each_entry(w, &cq->waiters, list_node) {
68 		if (!completion_done(&w->c)) {
69 			complete(&w->c);
70 			break;
71 		}
72 	}
73 }
74 
75 static void optee_cq_wait_final(struct optee_call_queue *cq,
76 				struct optee_call_waiter *w)
77 {
78 	/*
79 	 * We're done with the call to secure world. The thread in secure
80 	 * world that was used for this call is now available for some
81 	 * other task to use.
82 	 */
83 	mutex_lock(&cq->mutex);
84 
85 	/* Get out of the list */
86 	list_del(&w->list_node);
87 
88 	/* Wake up one eventual waiting task */
89 	optee_cq_complete_one(cq);
90 
91 	/*
92 	 * If we're completed we've got a completion from another task that
93 	 * was just done with its call to secure world. Since yet another
94 	 * thread now is available in secure world wake up another eventual
95 	 * waiting task.
96 	 */
97 	if (completion_done(&w->c))
98 		optee_cq_complete_one(cq);
99 
100 	mutex_unlock(&cq->mutex);
101 }
102 
103 /* Requires the filpstate mutex to be held */
104 static struct optee_session *find_session(struct optee_context_data *ctxdata,
105 					  u32 session_id)
106 {
107 	struct optee_session *sess;
108 
109 	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
110 		if (sess->session_id == session_id)
111 			return sess;
112 
113 	return NULL;
114 }
115 
116 /**
117  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
118  * @ctx:	calling context
119  * @parg:	physical address of message to pass to secure world
120  *
121  * Does and SMC to OP-TEE in secure world and handles eventual resulting
122  * Remote Procedure Calls (RPC) from OP-TEE.
123  *
124  * Returns return code from secure world, 0 is OK
125  */
126 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
127 {
128 	struct optee *optee = tee_get_drvdata(ctx->teedev);
129 	struct optee_call_waiter w;
130 	struct optee_rpc_param param = { };
131 	struct optee_call_ctx call_ctx = { };
132 	u32 ret;
133 
134 	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
135 	reg_pair_from_64(&param.a1, &param.a2, parg);
136 	/* Initialize waiter */
137 	optee_cq_wait_init(&optee->call_queue, &w);
138 	while (true) {
139 		struct arm_smccc_res res;
140 
141 		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
142 				 param.a4, param.a5, param.a6, param.a7,
143 				 &res);
144 
145 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
146 			/*
147 			 * Out of threads in secure world, wait for a thread
148 			 * become available.
149 			 */
150 			optee_cq_wait_for_completion(&optee->call_queue, &w);
151 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
152 			if (need_resched())
153 				cond_resched();
154 			param.a0 = res.a0;
155 			param.a1 = res.a1;
156 			param.a2 = res.a2;
157 			param.a3 = res.a3;
158 			optee_handle_rpc(ctx, &param, &call_ctx);
159 		} else {
160 			ret = res.a0;
161 			break;
162 		}
163 	}
164 
165 	optee_rpc_finalize_call(&call_ctx);
166 	/*
167 	 * We're done with our thread in secure world, if there's any
168 	 * thread waiters wake up one.
169 	 */
170 	optee_cq_wait_final(&optee->call_queue, &w);
171 
172 	return ret;
173 }
174 
175 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
176 				   struct optee_msg_arg **msg_arg,
177 				   phys_addr_t *msg_parg)
178 {
179 	int rc;
180 	struct tee_shm *shm;
181 	struct optee_msg_arg *ma;
182 
183 	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
184 			    TEE_SHM_MAPPED);
185 	if (IS_ERR(shm))
186 		return shm;
187 
188 	ma = tee_shm_get_va(shm, 0);
189 	if (IS_ERR(ma)) {
190 		rc = PTR_ERR(ma);
191 		goto out;
192 	}
193 
194 	rc = tee_shm_get_pa(shm, 0, msg_parg);
195 	if (rc)
196 		goto out;
197 
198 	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
199 	ma->num_params = num_params;
200 	*msg_arg = ma;
201 out:
202 	if (rc) {
203 		tee_shm_free(shm);
204 		return ERR_PTR(rc);
205 	}
206 
207 	return shm;
208 }
209 
210 int optee_open_session(struct tee_context *ctx,
211 		       struct tee_ioctl_open_session_arg *arg,
212 		       struct tee_param *param)
213 {
214 	struct optee_context_data *ctxdata = ctx->data;
215 	int rc;
216 	struct tee_shm *shm;
217 	struct optee_msg_arg *msg_arg;
218 	phys_addr_t msg_parg;
219 	struct optee_session *sess = NULL;
220 
221 	/* +2 for the meta parameters added below */
222 	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
223 	if (IS_ERR(shm))
224 		return PTR_ERR(shm);
225 
226 	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
227 	msg_arg->cancel_id = arg->cancel_id;
228 
229 	/*
230 	 * Initialize and add the meta parameters needed when opening a
231 	 * session.
232 	 */
233 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
234 				  OPTEE_MSG_ATTR_META;
235 	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
236 				  OPTEE_MSG_ATTR_META;
237 	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
238 	msg_arg->params[1].u.value.c = arg->clnt_login;
239 
240 	rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value,
241 					  arg->clnt_login, arg->clnt_uuid);
242 	if (rc)
243 		goto out;
244 
245 	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
246 	if (rc)
247 		goto out;
248 
249 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
250 	if (!sess) {
251 		rc = -ENOMEM;
252 		goto out;
253 	}
254 
255 	if (optee_do_call_with_arg(ctx, msg_parg)) {
256 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
257 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
258 	}
259 
260 	if (msg_arg->ret == TEEC_SUCCESS) {
261 		/* A new session has been created, add it to the list. */
262 		sess->session_id = msg_arg->session;
263 		mutex_lock(&ctxdata->mutex);
264 		list_add(&sess->list_node, &ctxdata->sess_list);
265 		mutex_unlock(&ctxdata->mutex);
266 	} else {
267 		kfree(sess);
268 	}
269 
270 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
271 		arg->ret = TEEC_ERROR_COMMUNICATION;
272 		arg->ret_origin = TEEC_ORIGIN_COMMS;
273 		/* Close session again to avoid leakage */
274 		optee_close_session(ctx, msg_arg->session);
275 	} else {
276 		arg->session = msg_arg->session;
277 		arg->ret = msg_arg->ret;
278 		arg->ret_origin = msg_arg->ret_origin;
279 	}
280 out:
281 	tee_shm_free(shm);
282 
283 	return rc;
284 }
285 
286 int optee_close_session(struct tee_context *ctx, u32 session)
287 {
288 	struct optee_context_data *ctxdata = ctx->data;
289 	struct tee_shm *shm;
290 	struct optee_msg_arg *msg_arg;
291 	phys_addr_t msg_parg;
292 	struct optee_session *sess;
293 
294 	/* Check that the session is valid and remove it from the list */
295 	mutex_lock(&ctxdata->mutex);
296 	sess = find_session(ctxdata, session);
297 	if (sess)
298 		list_del(&sess->list_node);
299 	mutex_unlock(&ctxdata->mutex);
300 	if (!sess)
301 		return -EINVAL;
302 	kfree(sess);
303 
304 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
305 	if (IS_ERR(shm))
306 		return PTR_ERR(shm);
307 
308 	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
309 	msg_arg->session = session;
310 	optee_do_call_with_arg(ctx, msg_parg);
311 
312 	tee_shm_free(shm);
313 	return 0;
314 }
315 
316 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
317 		      struct tee_param *param)
318 {
319 	struct optee_context_data *ctxdata = ctx->data;
320 	struct tee_shm *shm;
321 	struct optee_msg_arg *msg_arg;
322 	phys_addr_t msg_parg;
323 	struct optee_session *sess;
324 	int rc;
325 
326 	/* Check that the session is valid */
327 	mutex_lock(&ctxdata->mutex);
328 	sess = find_session(ctxdata, arg->session);
329 	mutex_unlock(&ctxdata->mutex);
330 	if (!sess)
331 		return -EINVAL;
332 
333 	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
334 	if (IS_ERR(shm))
335 		return PTR_ERR(shm);
336 	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
337 	msg_arg->func = arg->func;
338 	msg_arg->session = arg->session;
339 	msg_arg->cancel_id = arg->cancel_id;
340 
341 	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
342 	if (rc)
343 		goto out;
344 
345 	if (optee_do_call_with_arg(ctx, msg_parg)) {
346 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
347 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
348 	}
349 
350 	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
351 		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
352 		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
353 	}
354 
355 	arg->ret = msg_arg->ret;
356 	arg->ret_origin = msg_arg->ret_origin;
357 out:
358 	tee_shm_free(shm);
359 	return rc;
360 }
361 
362 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
363 {
364 	struct optee_context_data *ctxdata = ctx->data;
365 	struct tee_shm *shm;
366 	struct optee_msg_arg *msg_arg;
367 	phys_addr_t msg_parg;
368 	struct optee_session *sess;
369 
370 	/* Check that the session is valid */
371 	mutex_lock(&ctxdata->mutex);
372 	sess = find_session(ctxdata, session);
373 	mutex_unlock(&ctxdata->mutex);
374 	if (!sess)
375 		return -EINVAL;
376 
377 	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
378 	if (IS_ERR(shm))
379 		return PTR_ERR(shm);
380 
381 	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
382 	msg_arg->session = session;
383 	msg_arg->cancel_id = cancel_id;
384 	optee_do_call_with_arg(ctx, msg_parg);
385 
386 	tee_shm_free(shm);
387 	return 0;
388 }
389 
390 /**
391  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
392  *			      in OP-TEE
393  * @optee:	main service struct
394  */
395 void optee_enable_shm_cache(struct optee *optee)
396 {
397 	struct optee_call_waiter w;
398 
399 	/* We need to retry until secure world isn't busy. */
400 	optee_cq_wait_init(&optee->call_queue, &w);
401 	while (true) {
402 		struct arm_smccc_res res;
403 
404 		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
405 				 0, &res);
406 		if (res.a0 == OPTEE_SMC_RETURN_OK)
407 			break;
408 		optee_cq_wait_for_completion(&optee->call_queue, &w);
409 	}
410 	optee_cq_wait_final(&optee->call_queue, &w);
411 }
412 
413 /**
414  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
415  *			      in OP-TEE
416  * @optee:	main service struct
417  */
418 void optee_disable_shm_cache(struct optee *optee)
419 {
420 	struct optee_call_waiter w;
421 
422 	/* We need to retry until secure world isn't busy. */
423 	optee_cq_wait_init(&optee->call_queue, &w);
424 	while (true) {
425 		union {
426 			struct arm_smccc_res smccc;
427 			struct optee_smc_disable_shm_cache_result result;
428 		} res;
429 
430 		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
431 				 0, &res.smccc);
432 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
433 			break; /* All shm's freed */
434 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
435 			struct tee_shm *shm;
436 
437 			shm = reg_pair_to_ptr(res.result.shm_upper32,
438 					      res.result.shm_lower32);
439 			tee_shm_free(shm);
440 		} else {
441 			optee_cq_wait_for_completion(&optee->call_queue, &w);
442 		}
443 	}
444 	optee_cq_wait_final(&optee->call_queue, &w);
445 }
446 
447 #define PAGELIST_ENTRIES_PER_PAGE				\
448 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
449 
450 /**
451  * optee_fill_pages_list() - write list of user pages to given shared
452  * buffer.
453  *
454  * @dst: page-aligned buffer where list of pages will be stored
455  * @pages: array of pages that represents shared buffer
456  * @num_pages: number of entries in @pages
457  * @page_offset: offset of user buffer from page start
458  *
459  * @dst should be big enough to hold list of user page addresses and
460  *	links to the next pages of buffer
461  */
462 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
463 			   size_t page_offset)
464 {
465 	int n = 0;
466 	phys_addr_t optee_page;
467 	/*
468 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
469 	 * for details.
470 	 */
471 	struct {
472 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
473 		u64 next_page_data;
474 	} *pages_data;
475 
476 	/*
477 	 * Currently OP-TEE uses 4k page size and it does not looks
478 	 * like this will change in the future.  On other hand, there are
479 	 * no know ARM architectures with page size < 4k.
480 	 * Thus the next built assert looks redundant. But the following
481 	 * code heavily relies on this assumption, so it is better be
482 	 * safe than sorry.
483 	 */
484 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
485 
486 	pages_data = (void *)dst;
487 	/*
488 	 * If linux page is bigger than 4k, and user buffer offset is
489 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
490 	 * because they bear no value data for OP-TEE.
491 	 */
492 	optee_page = page_to_phys(*pages) +
493 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
494 
495 	while (true) {
496 		pages_data->pages_list[n++] = optee_page;
497 
498 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
499 			pages_data->next_page_data =
500 				virt_to_phys(pages_data + 1);
501 			pages_data++;
502 			n = 0;
503 		}
504 
505 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
506 		if (!(optee_page & ~PAGE_MASK)) {
507 			if (!--num_pages)
508 				break;
509 			pages++;
510 			optee_page = page_to_phys(*pages);
511 		}
512 	}
513 }
514 
515 /*
516  * The final entry in each pagelist page is a pointer to the next
517  * pagelist page.
518  */
519 static size_t get_pages_list_size(size_t num_entries)
520 {
521 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
522 
523 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
524 }
525 
526 u64 *optee_allocate_pages_list(size_t num_entries)
527 {
528 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
529 }
530 
531 void optee_free_pages_list(void *list, size_t num_entries)
532 {
533 	free_pages_exact(list, get_pages_list_size(num_entries));
534 }
535 
536 static bool is_normal_memory(pgprot_t p)
537 {
538 #if defined(CONFIG_ARM)
539 	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
540 		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
541 #elif defined(CONFIG_ARM64)
542 	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
543 #else
544 #error "Unuspported architecture"
545 #endif
546 }
547 
548 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
549 {
550 	while (vma && is_normal_memory(vma->vm_page_prot)) {
551 		if (vma->vm_end >= end)
552 			return 0;
553 		vma = vma->vm_next;
554 	}
555 
556 	return -EINVAL;
557 }
558 
559 static int check_mem_type(unsigned long start, size_t num_pages)
560 {
561 	struct mm_struct *mm = current->mm;
562 	int rc;
563 
564 	/*
565 	 * Allow kernel address to register with OP-TEE as kernel
566 	 * pages are configured as normal memory only.
567 	 */
568 	if (virt_addr_valid(start))
569 		return 0;
570 
571 	mmap_read_lock(mm);
572 	rc = __check_mem_type(find_vma(mm, start),
573 			      start + num_pages * PAGE_SIZE);
574 	mmap_read_unlock(mm);
575 
576 	return rc;
577 }
578 
579 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
580 		       struct page **pages, size_t num_pages,
581 		       unsigned long start)
582 {
583 	struct tee_shm *shm_arg = NULL;
584 	struct optee_msg_arg *msg_arg;
585 	u64 *pages_list;
586 	phys_addr_t msg_parg;
587 	int rc;
588 
589 	if (!num_pages)
590 		return -EINVAL;
591 
592 	rc = check_mem_type(start, num_pages);
593 	if (rc)
594 		return rc;
595 
596 	pages_list = optee_allocate_pages_list(num_pages);
597 	if (!pages_list)
598 		return -ENOMEM;
599 
600 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
601 	if (IS_ERR(shm_arg)) {
602 		rc = PTR_ERR(shm_arg);
603 		goto out;
604 	}
605 
606 	optee_fill_pages_list(pages_list, pages, num_pages,
607 			      tee_shm_get_page_offset(shm));
608 
609 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
610 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
611 				OPTEE_MSG_ATTR_NONCONTIG;
612 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
613 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
614 	/*
615 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
616 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
617 	 */
618 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
619 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
620 
621 	if (optee_do_call_with_arg(ctx, msg_parg) ||
622 	    msg_arg->ret != TEEC_SUCCESS)
623 		rc = -EINVAL;
624 
625 	tee_shm_free(shm_arg);
626 out:
627 	optee_free_pages_list(pages_list, num_pages);
628 	return rc;
629 }
630 
631 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
632 {
633 	struct tee_shm *shm_arg;
634 	struct optee_msg_arg *msg_arg;
635 	phys_addr_t msg_parg;
636 	int rc = 0;
637 
638 	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
639 	if (IS_ERR(shm_arg))
640 		return PTR_ERR(shm_arg);
641 
642 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
643 
644 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
645 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
646 
647 	if (optee_do_call_with_arg(ctx, msg_parg) ||
648 	    msg_arg->ret != TEEC_SUCCESS)
649 		rc = -EINVAL;
650 	tee_shm_free(shm_arg);
651 	return rc;
652 }
653 
654 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
655 			    struct page **pages, size_t num_pages,
656 			    unsigned long start)
657 {
658 	/*
659 	 * We don't want to register supplicant memory in OP-TEE.
660 	 * Instead information about it will be passed in RPC code.
661 	 */
662 	return check_mem_type(start, num_pages);
663 }
664 
665 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
666 {
667 	return 0;
668 }
669