1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static void transport_handle_queue_full(struct se_cmd *cmd, 68 struct se_device *dev); 69 static int transport_put_cmd(struct se_cmd *cmd); 70 static void target_complete_ok_work(struct work_struct *work); 71 72 int init_se_kmem_caches(void) 73 { 74 se_sess_cache = kmem_cache_create("se_sess_cache", 75 sizeof(struct se_session), __alignof__(struct se_session), 76 0, NULL); 77 if (!se_sess_cache) { 78 pr_err("kmem_cache_create() for struct se_session" 79 " failed\n"); 80 goto out; 81 } 82 se_ua_cache = kmem_cache_create("se_ua_cache", 83 sizeof(struct se_ua), __alignof__(struct se_ua), 84 0, NULL); 85 if (!se_ua_cache) { 86 pr_err("kmem_cache_create() for struct se_ua failed\n"); 87 goto out_free_sess_cache; 88 } 89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 90 sizeof(struct t10_pr_registration), 91 __alignof__(struct t10_pr_registration), 0, NULL); 92 if (!t10_pr_reg_cache) { 93 pr_err("kmem_cache_create() for struct t10_pr_registration" 94 " failed\n"); 95 goto out_free_ua_cache; 96 } 97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 99 0, NULL); 100 if (!t10_alua_lu_gp_cache) { 101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 102 " failed\n"); 103 goto out_free_pr_reg_cache; 104 } 105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 106 sizeof(struct t10_alua_lu_gp_member), 107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 108 if (!t10_alua_lu_gp_mem_cache) { 109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 110 "cache failed\n"); 111 goto out_free_lu_gp_cache; 112 } 113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 114 sizeof(struct t10_alua_tg_pt_gp), 115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 116 if (!t10_alua_tg_pt_gp_cache) { 117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 118 "cache failed\n"); 119 goto out_free_lu_gp_mem_cache; 120 } 121 t10_alua_lba_map_cache = kmem_cache_create( 122 "t10_alua_lba_map_cache", 123 sizeof(struct t10_alua_lba_map), 124 __alignof__(struct t10_alua_lba_map), 0, NULL); 125 if (!t10_alua_lba_map_cache) { 126 pr_err("kmem_cache_create() for t10_alua_lba_map_" 127 "cache failed\n"); 128 goto out_free_tg_pt_gp_cache; 129 } 130 t10_alua_lba_map_mem_cache = kmem_cache_create( 131 "t10_alua_lba_map_mem_cache", 132 sizeof(struct t10_alua_lba_map_member), 133 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 134 if (!t10_alua_lba_map_mem_cache) { 135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 136 "cache failed\n"); 137 goto out_free_lba_map_cache; 138 } 139 140 target_completion_wq = alloc_workqueue("target_completion", 141 WQ_MEM_RECLAIM, 0); 142 if (!target_completion_wq) 143 goto out_free_lba_map_mem_cache; 144 145 return 0; 146 147 out_free_lba_map_mem_cache: 148 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 149 out_free_lba_map_cache: 150 kmem_cache_destroy(t10_alua_lba_map_cache); 151 out_free_tg_pt_gp_cache: 152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 153 out_free_lu_gp_mem_cache: 154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 155 out_free_lu_gp_cache: 156 kmem_cache_destroy(t10_alua_lu_gp_cache); 157 out_free_pr_reg_cache: 158 kmem_cache_destroy(t10_pr_reg_cache); 159 out_free_ua_cache: 160 kmem_cache_destroy(se_ua_cache); 161 out_free_sess_cache: 162 kmem_cache_destroy(se_sess_cache); 163 out: 164 return -ENOMEM; 165 } 166 167 void release_se_kmem_caches(void) 168 { 169 destroy_workqueue(target_completion_wq); 170 kmem_cache_destroy(se_sess_cache); 171 kmem_cache_destroy(se_ua_cache); 172 kmem_cache_destroy(t10_pr_reg_cache); 173 kmem_cache_destroy(t10_alua_lu_gp_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 176 kmem_cache_destroy(t10_alua_lba_map_cache); 177 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 178 } 179 180 /* This code ensures unique mib indexes are handed out. */ 181 static DEFINE_SPINLOCK(scsi_mib_index_lock); 182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 183 184 /* 185 * Allocate a new row index for the entry type specified 186 */ 187 u32 scsi_get_new_index(scsi_index_t type) 188 { 189 u32 new_index; 190 191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 192 193 spin_lock(&scsi_mib_index_lock); 194 new_index = ++scsi_mib_index[type]; 195 spin_unlock(&scsi_mib_index_lock); 196 197 return new_index; 198 } 199 200 void transport_subsystem_check_init(void) 201 { 202 int ret; 203 static int sub_api_initialized; 204 205 if (sub_api_initialized) 206 return; 207 208 ret = request_module("target_core_iblock"); 209 if (ret != 0) 210 pr_err("Unable to load target_core_iblock\n"); 211 212 ret = request_module("target_core_file"); 213 if (ret != 0) 214 pr_err("Unable to load target_core_file\n"); 215 216 ret = request_module("target_core_pscsi"); 217 if (ret != 0) 218 pr_err("Unable to load target_core_pscsi\n"); 219 220 ret = request_module("target_core_user"); 221 if (ret != 0) 222 pr_err("Unable to load target_core_user\n"); 223 224 sub_api_initialized = 1; 225 } 226 227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 228 { 229 struct se_session *se_sess; 230 231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 232 if (!se_sess) { 233 pr_err("Unable to allocate struct se_session from" 234 " se_sess_cache\n"); 235 return ERR_PTR(-ENOMEM); 236 } 237 INIT_LIST_HEAD(&se_sess->sess_list); 238 INIT_LIST_HEAD(&se_sess->sess_acl_list); 239 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 240 INIT_LIST_HEAD(&se_sess->sess_wait_list); 241 spin_lock_init(&se_sess->sess_cmd_lock); 242 se_sess->sup_prot_ops = sup_prot_ops; 243 244 return se_sess; 245 } 246 EXPORT_SYMBOL(transport_init_session); 247 248 int transport_alloc_session_tags(struct se_session *se_sess, 249 unsigned int tag_num, unsigned int tag_size) 250 { 251 int rc; 252 253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 255 if (!se_sess->sess_cmd_map) { 256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 257 if (!se_sess->sess_cmd_map) { 258 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 259 return -ENOMEM; 260 } 261 } 262 263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 264 if (rc < 0) { 265 pr_err("Unable to init se_sess->sess_tag_pool," 266 " tag_num: %u\n", tag_num); 267 kvfree(se_sess->sess_cmd_map); 268 se_sess->sess_cmd_map = NULL; 269 return -ENOMEM; 270 } 271 272 return 0; 273 } 274 EXPORT_SYMBOL(transport_alloc_session_tags); 275 276 struct se_session *transport_init_session_tags(unsigned int tag_num, 277 unsigned int tag_size, 278 enum target_prot_op sup_prot_ops) 279 { 280 struct se_session *se_sess; 281 int rc; 282 283 if (tag_num != 0 && !tag_size) { 284 pr_err("init_session_tags called with percpu-ida tag_num:" 285 " %u, but zero tag_size\n", tag_num); 286 return ERR_PTR(-EINVAL); 287 } 288 if (!tag_num && tag_size) { 289 pr_err("init_session_tags called with percpu-ida tag_size:" 290 " %u, but zero tag_num\n", tag_size); 291 return ERR_PTR(-EINVAL); 292 } 293 294 se_sess = transport_init_session(sup_prot_ops); 295 if (IS_ERR(se_sess)) 296 return se_sess; 297 298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 299 if (rc < 0) { 300 transport_free_session(se_sess); 301 return ERR_PTR(-ENOMEM); 302 } 303 304 return se_sess; 305 } 306 EXPORT_SYMBOL(transport_init_session_tags); 307 308 /* 309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 310 */ 311 void __transport_register_session( 312 struct se_portal_group *se_tpg, 313 struct se_node_acl *se_nacl, 314 struct se_session *se_sess, 315 void *fabric_sess_ptr) 316 { 317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 318 unsigned char buf[PR_REG_ISID_LEN]; 319 320 se_sess->se_tpg = se_tpg; 321 se_sess->fabric_sess_ptr = fabric_sess_ptr; 322 /* 323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 324 * 325 * Only set for struct se_session's that will actually be moving I/O. 326 * eg: *NOT* discovery sessions. 327 */ 328 if (se_nacl) { 329 /* 330 * 331 * Determine if fabric allows for T10-PI feature bits exposed to 332 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 333 * 334 * If so, then always save prot_type on a per se_node_acl node 335 * basis and re-instate the previous sess_prot_type to avoid 336 * disabling PI from below any previously initiator side 337 * registered LUNs. 338 */ 339 if (se_nacl->saved_prot_type) 340 se_sess->sess_prot_type = se_nacl->saved_prot_type; 341 else if (tfo->tpg_check_prot_fabric_only) 342 se_sess->sess_prot_type = se_nacl->saved_prot_type = 343 tfo->tpg_check_prot_fabric_only(se_tpg); 344 /* 345 * If the fabric module supports an ISID based TransportID, 346 * save this value in binary from the fabric I_T Nexus now. 347 */ 348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 349 memset(&buf[0], 0, PR_REG_ISID_LEN); 350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 351 &buf[0], PR_REG_ISID_LEN); 352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 353 } 354 355 spin_lock_irq(&se_nacl->nacl_sess_lock); 356 /* 357 * The se_nacl->nacl_sess pointer will be set to the 358 * last active I_T Nexus for each struct se_node_acl. 359 */ 360 se_nacl->nacl_sess = se_sess; 361 362 list_add_tail(&se_sess->sess_acl_list, 363 &se_nacl->acl_sess_list); 364 spin_unlock_irq(&se_nacl->nacl_sess_lock); 365 } 366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 367 368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 370 } 371 EXPORT_SYMBOL(__transport_register_session); 372 373 void transport_register_session( 374 struct se_portal_group *se_tpg, 375 struct se_node_acl *se_nacl, 376 struct se_session *se_sess, 377 void *fabric_sess_ptr) 378 { 379 unsigned long flags; 380 381 spin_lock_irqsave(&se_tpg->session_lock, flags); 382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 383 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 384 } 385 EXPORT_SYMBOL(transport_register_session); 386 387 struct se_session * 388 target_alloc_session(struct se_portal_group *tpg, 389 unsigned int tag_num, unsigned int tag_size, 390 enum target_prot_op prot_op, 391 const char *initiatorname, void *private, 392 int (*callback)(struct se_portal_group *, 393 struct se_session *, void *)) 394 { 395 struct se_session *sess; 396 397 /* 398 * If the fabric driver is using percpu-ida based pre allocation 399 * of I/O descriptor tags, go ahead and perform that setup now.. 400 */ 401 if (tag_num != 0) 402 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 403 else 404 sess = transport_init_session(prot_op); 405 406 if (IS_ERR(sess)) 407 return sess; 408 409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 410 (unsigned char *)initiatorname); 411 if (!sess->se_node_acl) { 412 transport_free_session(sess); 413 return ERR_PTR(-EACCES); 414 } 415 /* 416 * Go ahead and perform any remaining fabric setup that is 417 * required before transport_register_session(). 418 */ 419 if (callback != NULL) { 420 int rc = callback(tpg, sess, private); 421 if (rc) { 422 transport_free_session(sess); 423 return ERR_PTR(rc); 424 } 425 } 426 427 transport_register_session(tpg, sess->se_node_acl, sess, private); 428 return sess; 429 } 430 EXPORT_SYMBOL(target_alloc_session); 431 432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 433 { 434 struct se_session *se_sess; 435 ssize_t len = 0; 436 437 spin_lock_bh(&se_tpg->session_lock); 438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 439 if (!se_sess->se_node_acl) 440 continue; 441 if (!se_sess->se_node_acl->dynamic_node_acl) 442 continue; 443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 444 break; 445 446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 447 se_sess->se_node_acl->initiatorname); 448 len += 1; /* Include NULL terminator */ 449 } 450 spin_unlock_bh(&se_tpg->session_lock); 451 452 return len; 453 } 454 EXPORT_SYMBOL(target_show_dynamic_sessions); 455 456 static void target_complete_nacl(struct kref *kref) 457 { 458 struct se_node_acl *nacl = container_of(kref, 459 struct se_node_acl, acl_kref); 460 461 complete(&nacl->acl_free_comp); 462 } 463 464 void target_put_nacl(struct se_node_acl *nacl) 465 { 466 kref_put(&nacl->acl_kref, target_complete_nacl); 467 } 468 EXPORT_SYMBOL(target_put_nacl); 469 470 void transport_deregister_session_configfs(struct se_session *se_sess) 471 { 472 struct se_node_acl *se_nacl; 473 unsigned long flags; 474 /* 475 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 476 */ 477 se_nacl = se_sess->se_node_acl; 478 if (se_nacl) { 479 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 480 if (!list_empty(&se_sess->sess_acl_list)) 481 list_del_init(&se_sess->sess_acl_list); 482 /* 483 * If the session list is empty, then clear the pointer. 484 * Otherwise, set the struct se_session pointer from the tail 485 * element of the per struct se_node_acl active session list. 486 */ 487 if (list_empty(&se_nacl->acl_sess_list)) 488 se_nacl->nacl_sess = NULL; 489 else { 490 se_nacl->nacl_sess = container_of( 491 se_nacl->acl_sess_list.prev, 492 struct se_session, sess_acl_list); 493 } 494 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 495 } 496 } 497 EXPORT_SYMBOL(transport_deregister_session_configfs); 498 499 void transport_free_session(struct se_session *se_sess) 500 { 501 struct se_node_acl *se_nacl = se_sess->se_node_acl; 502 /* 503 * Drop the se_node_acl->nacl_kref obtained from within 504 * core_tpg_get_initiator_node_acl(). 505 */ 506 if (se_nacl) { 507 se_sess->se_node_acl = NULL; 508 target_put_nacl(se_nacl); 509 } 510 if (se_sess->sess_cmd_map) { 511 percpu_ida_destroy(&se_sess->sess_tag_pool); 512 kvfree(se_sess->sess_cmd_map); 513 } 514 kmem_cache_free(se_sess_cache, se_sess); 515 } 516 EXPORT_SYMBOL(transport_free_session); 517 518 void transport_deregister_session(struct se_session *se_sess) 519 { 520 struct se_portal_group *se_tpg = se_sess->se_tpg; 521 const struct target_core_fabric_ops *se_tfo; 522 struct se_node_acl *se_nacl; 523 unsigned long flags; 524 bool drop_nacl = false; 525 526 if (!se_tpg) { 527 transport_free_session(se_sess); 528 return; 529 } 530 se_tfo = se_tpg->se_tpg_tfo; 531 532 spin_lock_irqsave(&se_tpg->session_lock, flags); 533 list_del(&se_sess->sess_list); 534 se_sess->se_tpg = NULL; 535 se_sess->fabric_sess_ptr = NULL; 536 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 537 538 /* 539 * Determine if we need to do extra work for this initiator node's 540 * struct se_node_acl if it had been previously dynamically generated. 541 */ 542 se_nacl = se_sess->se_node_acl; 543 544 mutex_lock(&se_tpg->acl_node_mutex); 545 if (se_nacl && se_nacl->dynamic_node_acl) { 546 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 547 list_del(&se_nacl->acl_list); 548 drop_nacl = true; 549 } 550 } 551 mutex_unlock(&se_tpg->acl_node_mutex); 552 553 if (drop_nacl) { 554 core_tpg_wait_for_nacl_pr_ref(se_nacl); 555 core_free_device_list_for_node(se_nacl, se_tpg); 556 se_sess->se_node_acl = NULL; 557 kfree(se_nacl); 558 } 559 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 560 se_tpg->se_tpg_tfo->get_fabric_name()); 561 /* 562 * If last kref is dropping now for an explicit NodeACL, awake sleeping 563 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 564 * removal context from within transport_free_session() code. 565 */ 566 567 transport_free_session(se_sess); 568 } 569 EXPORT_SYMBOL(transport_deregister_session); 570 571 static void target_remove_from_state_list(struct se_cmd *cmd) 572 { 573 struct se_device *dev = cmd->se_dev; 574 unsigned long flags; 575 576 if (!dev) 577 return; 578 579 if (cmd->transport_state & CMD_T_BUSY) 580 return; 581 582 spin_lock_irqsave(&dev->execute_task_lock, flags); 583 if (cmd->state_active) { 584 list_del(&cmd->state_list); 585 cmd->state_active = false; 586 } 587 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 588 } 589 590 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 591 bool write_pending) 592 { 593 unsigned long flags; 594 595 if (remove_from_lists) { 596 target_remove_from_state_list(cmd); 597 598 /* 599 * Clear struct se_cmd->se_lun before the handoff to FE. 600 */ 601 cmd->se_lun = NULL; 602 } 603 604 spin_lock_irqsave(&cmd->t_state_lock, flags); 605 if (write_pending) 606 cmd->t_state = TRANSPORT_WRITE_PENDING; 607 608 /* 609 * Determine if frontend context caller is requesting the stopping of 610 * this command for frontend exceptions. 611 */ 612 if (cmd->transport_state & CMD_T_STOP) { 613 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 614 __func__, __LINE__, cmd->tag); 615 616 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 617 618 complete_all(&cmd->t_transport_stop_comp); 619 return 1; 620 } 621 622 cmd->transport_state &= ~CMD_T_ACTIVE; 623 if (remove_from_lists) { 624 /* 625 * Some fabric modules like tcm_loop can release 626 * their internally allocated I/O reference now and 627 * struct se_cmd now. 628 * 629 * Fabric modules are expected to return '1' here if the 630 * se_cmd being passed is released at this point, 631 * or zero if not being released. 632 */ 633 if (cmd->se_tfo->check_stop_free != NULL) { 634 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 635 return cmd->se_tfo->check_stop_free(cmd); 636 } 637 } 638 639 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 640 return 0; 641 } 642 643 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 644 { 645 return transport_cmd_check_stop(cmd, true, false); 646 } 647 648 static void transport_lun_remove_cmd(struct se_cmd *cmd) 649 { 650 struct se_lun *lun = cmd->se_lun; 651 652 if (!lun) 653 return; 654 655 if (cmpxchg(&cmd->lun_ref_active, true, false)) 656 percpu_ref_put(&lun->lun_ref); 657 } 658 659 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 660 { 661 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); 662 663 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 664 transport_lun_remove_cmd(cmd); 665 /* 666 * Allow the fabric driver to unmap any resources before 667 * releasing the descriptor via TFO->release_cmd() 668 */ 669 if (remove) 670 cmd->se_tfo->aborted_task(cmd); 671 672 if (transport_cmd_check_stop_to_fabric(cmd)) 673 return; 674 if (remove && ack_kref) 675 transport_put_cmd(cmd); 676 } 677 678 static void target_complete_failure_work(struct work_struct *work) 679 { 680 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 681 682 transport_generic_request_failure(cmd, 683 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 684 } 685 686 /* 687 * Used when asking transport to copy Sense Data from the underlying 688 * Linux/SCSI struct scsi_cmnd 689 */ 690 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 691 { 692 struct se_device *dev = cmd->se_dev; 693 694 WARN_ON(!cmd->se_lun); 695 696 if (!dev) 697 return NULL; 698 699 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 700 return NULL; 701 702 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 703 704 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 705 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 706 return cmd->sense_buffer; 707 } 708 709 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 710 { 711 struct se_device *dev = cmd->se_dev; 712 int success = scsi_status == GOOD; 713 unsigned long flags; 714 715 cmd->scsi_status = scsi_status; 716 717 718 spin_lock_irqsave(&cmd->t_state_lock, flags); 719 cmd->transport_state &= ~CMD_T_BUSY; 720 721 if (dev && dev->transport->transport_complete) { 722 dev->transport->transport_complete(cmd, 723 cmd->t_data_sg, 724 transport_get_sense_buffer(cmd)); 725 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 726 success = 1; 727 } 728 729 /* 730 * Check for case where an explicit ABORT_TASK has been received 731 * and transport_wait_for_tasks() will be waiting for completion.. 732 */ 733 if (cmd->transport_state & CMD_T_ABORTED || 734 cmd->transport_state & CMD_T_STOP) { 735 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 736 complete_all(&cmd->t_transport_stop_comp); 737 return; 738 } else if (!success) { 739 INIT_WORK(&cmd->work, target_complete_failure_work); 740 } else { 741 INIT_WORK(&cmd->work, target_complete_ok_work); 742 } 743 744 cmd->t_state = TRANSPORT_COMPLETE; 745 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 746 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 747 748 if (cmd->se_cmd_flags & SCF_USE_CPUID) 749 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 750 else 751 queue_work(target_completion_wq, &cmd->work); 752 } 753 EXPORT_SYMBOL(target_complete_cmd); 754 755 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 756 { 757 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 758 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 759 cmd->residual_count += cmd->data_length - length; 760 } else { 761 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 762 cmd->residual_count = cmd->data_length - length; 763 } 764 765 cmd->data_length = length; 766 } 767 768 target_complete_cmd(cmd, scsi_status); 769 } 770 EXPORT_SYMBOL(target_complete_cmd_with_length); 771 772 static void target_add_to_state_list(struct se_cmd *cmd) 773 { 774 struct se_device *dev = cmd->se_dev; 775 unsigned long flags; 776 777 spin_lock_irqsave(&dev->execute_task_lock, flags); 778 if (!cmd->state_active) { 779 list_add_tail(&cmd->state_list, &dev->state_list); 780 cmd->state_active = true; 781 } 782 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 783 } 784 785 /* 786 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 787 */ 788 static void transport_write_pending_qf(struct se_cmd *cmd); 789 static void transport_complete_qf(struct se_cmd *cmd); 790 791 void target_qf_do_work(struct work_struct *work) 792 { 793 struct se_device *dev = container_of(work, struct se_device, 794 qf_work_queue); 795 LIST_HEAD(qf_cmd_list); 796 struct se_cmd *cmd, *cmd_tmp; 797 798 spin_lock_irq(&dev->qf_cmd_lock); 799 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 800 spin_unlock_irq(&dev->qf_cmd_lock); 801 802 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 803 list_del(&cmd->se_qf_node); 804 atomic_dec_mb(&dev->dev_qf_count); 805 806 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 807 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 808 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 809 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 810 : "UNKNOWN"); 811 812 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 813 transport_write_pending_qf(cmd); 814 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 815 transport_complete_qf(cmd); 816 } 817 } 818 819 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 820 { 821 switch (cmd->data_direction) { 822 case DMA_NONE: 823 return "NONE"; 824 case DMA_FROM_DEVICE: 825 return "READ"; 826 case DMA_TO_DEVICE: 827 return "WRITE"; 828 case DMA_BIDIRECTIONAL: 829 return "BIDI"; 830 default: 831 break; 832 } 833 834 return "UNKNOWN"; 835 } 836 837 void transport_dump_dev_state( 838 struct se_device *dev, 839 char *b, 840 int *bl) 841 { 842 *bl += sprintf(b + *bl, "Status: "); 843 if (dev->export_count) 844 *bl += sprintf(b + *bl, "ACTIVATED"); 845 else 846 *bl += sprintf(b + *bl, "DEACTIVATED"); 847 848 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 849 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 850 dev->dev_attrib.block_size, 851 dev->dev_attrib.hw_max_sectors); 852 *bl += sprintf(b + *bl, " "); 853 } 854 855 void transport_dump_vpd_proto_id( 856 struct t10_vpd *vpd, 857 unsigned char *p_buf, 858 int p_buf_len) 859 { 860 unsigned char buf[VPD_TMP_BUF_SIZE]; 861 int len; 862 863 memset(buf, 0, VPD_TMP_BUF_SIZE); 864 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 865 866 switch (vpd->protocol_identifier) { 867 case 0x00: 868 sprintf(buf+len, "Fibre Channel\n"); 869 break; 870 case 0x10: 871 sprintf(buf+len, "Parallel SCSI\n"); 872 break; 873 case 0x20: 874 sprintf(buf+len, "SSA\n"); 875 break; 876 case 0x30: 877 sprintf(buf+len, "IEEE 1394\n"); 878 break; 879 case 0x40: 880 sprintf(buf+len, "SCSI Remote Direct Memory Access" 881 " Protocol\n"); 882 break; 883 case 0x50: 884 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 885 break; 886 case 0x60: 887 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 888 break; 889 case 0x70: 890 sprintf(buf+len, "Automation/Drive Interface Transport" 891 " Protocol\n"); 892 break; 893 case 0x80: 894 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 895 break; 896 default: 897 sprintf(buf+len, "Unknown 0x%02x\n", 898 vpd->protocol_identifier); 899 break; 900 } 901 902 if (p_buf) 903 strncpy(p_buf, buf, p_buf_len); 904 else 905 pr_debug("%s", buf); 906 } 907 908 void 909 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 910 { 911 /* 912 * Check if the Protocol Identifier Valid (PIV) bit is set.. 913 * 914 * from spc3r23.pdf section 7.5.1 915 */ 916 if (page_83[1] & 0x80) { 917 vpd->protocol_identifier = (page_83[0] & 0xf0); 918 vpd->protocol_identifier_set = 1; 919 transport_dump_vpd_proto_id(vpd, NULL, 0); 920 } 921 } 922 EXPORT_SYMBOL(transport_set_vpd_proto_id); 923 924 int transport_dump_vpd_assoc( 925 struct t10_vpd *vpd, 926 unsigned char *p_buf, 927 int p_buf_len) 928 { 929 unsigned char buf[VPD_TMP_BUF_SIZE]; 930 int ret = 0; 931 int len; 932 933 memset(buf, 0, VPD_TMP_BUF_SIZE); 934 len = sprintf(buf, "T10 VPD Identifier Association: "); 935 936 switch (vpd->association) { 937 case 0x00: 938 sprintf(buf+len, "addressed logical unit\n"); 939 break; 940 case 0x10: 941 sprintf(buf+len, "target port\n"); 942 break; 943 case 0x20: 944 sprintf(buf+len, "SCSI target device\n"); 945 break; 946 default: 947 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 948 ret = -EINVAL; 949 break; 950 } 951 952 if (p_buf) 953 strncpy(p_buf, buf, p_buf_len); 954 else 955 pr_debug("%s", buf); 956 957 return ret; 958 } 959 960 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 961 { 962 /* 963 * The VPD identification association.. 964 * 965 * from spc3r23.pdf Section 7.6.3.1 Table 297 966 */ 967 vpd->association = (page_83[1] & 0x30); 968 return transport_dump_vpd_assoc(vpd, NULL, 0); 969 } 970 EXPORT_SYMBOL(transport_set_vpd_assoc); 971 972 int transport_dump_vpd_ident_type( 973 struct t10_vpd *vpd, 974 unsigned char *p_buf, 975 int p_buf_len) 976 { 977 unsigned char buf[VPD_TMP_BUF_SIZE]; 978 int ret = 0; 979 int len; 980 981 memset(buf, 0, VPD_TMP_BUF_SIZE); 982 len = sprintf(buf, "T10 VPD Identifier Type: "); 983 984 switch (vpd->device_identifier_type) { 985 case 0x00: 986 sprintf(buf+len, "Vendor specific\n"); 987 break; 988 case 0x01: 989 sprintf(buf+len, "T10 Vendor ID based\n"); 990 break; 991 case 0x02: 992 sprintf(buf+len, "EUI-64 based\n"); 993 break; 994 case 0x03: 995 sprintf(buf+len, "NAA\n"); 996 break; 997 case 0x04: 998 sprintf(buf+len, "Relative target port identifier\n"); 999 break; 1000 case 0x08: 1001 sprintf(buf+len, "SCSI name string\n"); 1002 break; 1003 default: 1004 sprintf(buf+len, "Unsupported: 0x%02x\n", 1005 vpd->device_identifier_type); 1006 ret = -EINVAL; 1007 break; 1008 } 1009 1010 if (p_buf) { 1011 if (p_buf_len < strlen(buf)+1) 1012 return -EINVAL; 1013 strncpy(p_buf, buf, p_buf_len); 1014 } else { 1015 pr_debug("%s", buf); 1016 } 1017 1018 return ret; 1019 } 1020 1021 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1022 { 1023 /* 1024 * The VPD identifier type.. 1025 * 1026 * from spc3r23.pdf Section 7.6.3.1 Table 298 1027 */ 1028 vpd->device_identifier_type = (page_83[1] & 0x0f); 1029 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1030 } 1031 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1032 1033 int transport_dump_vpd_ident( 1034 struct t10_vpd *vpd, 1035 unsigned char *p_buf, 1036 int p_buf_len) 1037 { 1038 unsigned char buf[VPD_TMP_BUF_SIZE]; 1039 int ret = 0; 1040 1041 memset(buf, 0, VPD_TMP_BUF_SIZE); 1042 1043 switch (vpd->device_identifier_code_set) { 1044 case 0x01: /* Binary */ 1045 snprintf(buf, sizeof(buf), 1046 "T10 VPD Binary Device Identifier: %s\n", 1047 &vpd->device_identifier[0]); 1048 break; 1049 case 0x02: /* ASCII */ 1050 snprintf(buf, sizeof(buf), 1051 "T10 VPD ASCII Device Identifier: %s\n", 1052 &vpd->device_identifier[0]); 1053 break; 1054 case 0x03: /* UTF-8 */ 1055 snprintf(buf, sizeof(buf), 1056 "T10 VPD UTF-8 Device Identifier: %s\n", 1057 &vpd->device_identifier[0]); 1058 break; 1059 default: 1060 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1061 " 0x%02x", vpd->device_identifier_code_set); 1062 ret = -EINVAL; 1063 break; 1064 } 1065 1066 if (p_buf) 1067 strncpy(p_buf, buf, p_buf_len); 1068 else 1069 pr_debug("%s", buf); 1070 1071 return ret; 1072 } 1073 1074 int 1075 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1076 { 1077 static const char hex_str[] = "0123456789abcdef"; 1078 int j = 0, i = 4; /* offset to start of the identifier */ 1079 1080 /* 1081 * The VPD Code Set (encoding) 1082 * 1083 * from spc3r23.pdf Section 7.6.3.1 Table 296 1084 */ 1085 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1086 switch (vpd->device_identifier_code_set) { 1087 case 0x01: /* Binary */ 1088 vpd->device_identifier[j++] = 1089 hex_str[vpd->device_identifier_type]; 1090 while (i < (4 + page_83[3])) { 1091 vpd->device_identifier[j++] = 1092 hex_str[(page_83[i] & 0xf0) >> 4]; 1093 vpd->device_identifier[j++] = 1094 hex_str[page_83[i] & 0x0f]; 1095 i++; 1096 } 1097 break; 1098 case 0x02: /* ASCII */ 1099 case 0x03: /* UTF-8 */ 1100 while (i < (4 + page_83[3])) 1101 vpd->device_identifier[j++] = page_83[i++]; 1102 break; 1103 default: 1104 break; 1105 } 1106 1107 return transport_dump_vpd_ident(vpd, NULL, 0); 1108 } 1109 EXPORT_SYMBOL(transport_set_vpd_ident); 1110 1111 static sense_reason_t 1112 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1113 unsigned int size) 1114 { 1115 u32 mtl; 1116 1117 if (!cmd->se_tfo->max_data_sg_nents) 1118 return TCM_NO_SENSE; 1119 /* 1120 * Check if fabric enforced maximum SGL entries per I/O descriptor 1121 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1122 * residual_count and reduce original cmd->data_length to maximum 1123 * length based on single PAGE_SIZE entry scatter-lists. 1124 */ 1125 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1126 if (cmd->data_length > mtl) { 1127 /* 1128 * If an existing CDB overflow is present, calculate new residual 1129 * based on CDB size minus fabric maximum transfer length. 1130 * 1131 * If an existing CDB underflow is present, calculate new residual 1132 * based on original cmd->data_length minus fabric maximum transfer 1133 * length. 1134 * 1135 * Otherwise, set the underflow residual based on cmd->data_length 1136 * minus fabric maximum transfer length. 1137 */ 1138 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1139 cmd->residual_count = (size - mtl); 1140 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1141 u32 orig_dl = size + cmd->residual_count; 1142 cmd->residual_count = (orig_dl - mtl); 1143 } else { 1144 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1145 cmd->residual_count = (cmd->data_length - mtl); 1146 } 1147 cmd->data_length = mtl; 1148 /* 1149 * Reset sbc_check_prot() calculated protection payload 1150 * length based upon the new smaller MTL. 1151 */ 1152 if (cmd->prot_length) { 1153 u32 sectors = (mtl / dev->dev_attrib.block_size); 1154 cmd->prot_length = dev->prot_length * sectors; 1155 } 1156 } 1157 return TCM_NO_SENSE; 1158 } 1159 1160 sense_reason_t 1161 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1162 { 1163 struct se_device *dev = cmd->se_dev; 1164 1165 if (cmd->unknown_data_length) { 1166 cmd->data_length = size; 1167 } else if (size != cmd->data_length) { 1168 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1169 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1170 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1171 cmd->data_length, size, cmd->t_task_cdb[0]); 1172 1173 if (cmd->data_direction == DMA_TO_DEVICE && 1174 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1175 pr_err("Rejecting underflow/overflow WRITE data\n"); 1176 return TCM_INVALID_CDB_FIELD; 1177 } 1178 /* 1179 * Reject READ_* or WRITE_* with overflow/underflow for 1180 * type SCF_SCSI_DATA_CDB. 1181 */ 1182 if (dev->dev_attrib.block_size != 512) { 1183 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1184 " CDB on non 512-byte sector setup subsystem" 1185 " plugin: %s\n", dev->transport->name); 1186 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1187 return TCM_INVALID_CDB_FIELD; 1188 } 1189 /* 1190 * For the overflow case keep the existing fabric provided 1191 * ->data_length. Otherwise for the underflow case, reset 1192 * ->data_length to the smaller SCSI expected data transfer 1193 * length. 1194 */ 1195 if (size > cmd->data_length) { 1196 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1197 cmd->residual_count = (size - cmd->data_length); 1198 } else { 1199 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1200 cmd->residual_count = (cmd->data_length - size); 1201 cmd->data_length = size; 1202 } 1203 } 1204 1205 return target_check_max_data_sg_nents(cmd, dev, size); 1206 1207 } 1208 1209 /* 1210 * Used by fabric modules containing a local struct se_cmd within their 1211 * fabric dependent per I/O descriptor. 1212 * 1213 * Preserves the value of @cmd->tag. 1214 */ 1215 void transport_init_se_cmd( 1216 struct se_cmd *cmd, 1217 const struct target_core_fabric_ops *tfo, 1218 struct se_session *se_sess, 1219 u32 data_length, 1220 int data_direction, 1221 int task_attr, 1222 unsigned char *sense_buffer) 1223 { 1224 INIT_LIST_HEAD(&cmd->se_delayed_node); 1225 INIT_LIST_HEAD(&cmd->se_qf_node); 1226 INIT_LIST_HEAD(&cmd->se_cmd_list); 1227 INIT_LIST_HEAD(&cmd->state_list); 1228 init_completion(&cmd->t_transport_stop_comp); 1229 init_completion(&cmd->cmd_wait_comp); 1230 spin_lock_init(&cmd->t_state_lock); 1231 kref_init(&cmd->cmd_kref); 1232 cmd->transport_state = CMD_T_DEV_ACTIVE; 1233 1234 cmd->se_tfo = tfo; 1235 cmd->se_sess = se_sess; 1236 cmd->data_length = data_length; 1237 cmd->data_direction = data_direction; 1238 cmd->sam_task_attr = task_attr; 1239 cmd->sense_buffer = sense_buffer; 1240 1241 cmd->state_active = false; 1242 } 1243 EXPORT_SYMBOL(transport_init_se_cmd); 1244 1245 static sense_reason_t 1246 transport_check_alloc_task_attr(struct se_cmd *cmd) 1247 { 1248 struct se_device *dev = cmd->se_dev; 1249 1250 /* 1251 * Check if SAM Task Attribute emulation is enabled for this 1252 * struct se_device storage object 1253 */ 1254 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1255 return 0; 1256 1257 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1258 pr_debug("SAM Task Attribute ACA" 1259 " emulation is not supported\n"); 1260 return TCM_INVALID_CDB_FIELD; 1261 } 1262 1263 return 0; 1264 } 1265 1266 sense_reason_t 1267 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1268 { 1269 struct se_device *dev = cmd->se_dev; 1270 sense_reason_t ret; 1271 1272 /* 1273 * Ensure that the received CDB is less than the max (252 + 8) bytes 1274 * for VARIABLE_LENGTH_CMD 1275 */ 1276 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1277 pr_err("Received SCSI CDB with command_size: %d that" 1278 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1279 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1280 return TCM_INVALID_CDB_FIELD; 1281 } 1282 /* 1283 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1284 * allocate the additional extended CDB buffer now.. Otherwise 1285 * setup the pointer from __t_task_cdb to t_task_cdb. 1286 */ 1287 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1288 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1289 GFP_KERNEL); 1290 if (!cmd->t_task_cdb) { 1291 pr_err("Unable to allocate cmd->t_task_cdb" 1292 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1293 scsi_command_size(cdb), 1294 (unsigned long)sizeof(cmd->__t_task_cdb)); 1295 return TCM_OUT_OF_RESOURCES; 1296 } 1297 } else 1298 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1299 /* 1300 * Copy the original CDB into cmd-> 1301 */ 1302 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1303 1304 trace_target_sequencer_start(cmd); 1305 1306 ret = dev->transport->parse_cdb(cmd); 1307 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1308 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1309 cmd->se_tfo->get_fabric_name(), 1310 cmd->se_sess->se_node_acl->initiatorname, 1311 cmd->t_task_cdb[0]); 1312 if (ret) 1313 return ret; 1314 1315 ret = transport_check_alloc_task_attr(cmd); 1316 if (ret) 1317 return ret; 1318 1319 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1320 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1321 return 0; 1322 } 1323 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1324 1325 /* 1326 * Used by fabric module frontends to queue tasks directly. 1327 * May only be used from process context. 1328 */ 1329 int transport_handle_cdb_direct( 1330 struct se_cmd *cmd) 1331 { 1332 sense_reason_t ret; 1333 1334 if (!cmd->se_lun) { 1335 dump_stack(); 1336 pr_err("cmd->se_lun is NULL\n"); 1337 return -EINVAL; 1338 } 1339 if (in_interrupt()) { 1340 dump_stack(); 1341 pr_err("transport_generic_handle_cdb cannot be called" 1342 " from interrupt context\n"); 1343 return -EINVAL; 1344 } 1345 /* 1346 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1347 * outstanding descriptors are handled correctly during shutdown via 1348 * transport_wait_for_tasks() 1349 * 1350 * Also, we don't take cmd->t_state_lock here as we only expect 1351 * this to be called for initial descriptor submission. 1352 */ 1353 cmd->t_state = TRANSPORT_NEW_CMD; 1354 cmd->transport_state |= CMD_T_ACTIVE; 1355 1356 /* 1357 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1358 * so follow TRANSPORT_NEW_CMD processing thread context usage 1359 * and call transport_generic_request_failure() if necessary.. 1360 */ 1361 ret = transport_generic_new_cmd(cmd); 1362 if (ret) 1363 transport_generic_request_failure(cmd, ret); 1364 return 0; 1365 } 1366 EXPORT_SYMBOL(transport_handle_cdb_direct); 1367 1368 sense_reason_t 1369 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1370 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1371 { 1372 if (!sgl || !sgl_count) 1373 return 0; 1374 1375 /* 1376 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1377 * scatterlists already have been set to follow what the fabric 1378 * passes for the original expected data transfer length. 1379 */ 1380 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1381 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1382 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1383 return TCM_INVALID_CDB_FIELD; 1384 } 1385 1386 cmd->t_data_sg = sgl; 1387 cmd->t_data_nents = sgl_count; 1388 cmd->t_bidi_data_sg = sgl_bidi; 1389 cmd->t_bidi_data_nents = sgl_bidi_count; 1390 1391 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1392 return 0; 1393 } 1394 1395 /* 1396 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1397 * se_cmd + use pre-allocated SGL memory. 1398 * 1399 * @se_cmd: command descriptor to submit 1400 * @se_sess: associated se_sess for endpoint 1401 * @cdb: pointer to SCSI CDB 1402 * @sense: pointer to SCSI sense buffer 1403 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1404 * @data_length: fabric expected data transfer length 1405 * @task_addr: SAM task attribute 1406 * @data_dir: DMA data direction 1407 * @flags: flags for command submission from target_sc_flags_tables 1408 * @sgl: struct scatterlist memory for unidirectional mapping 1409 * @sgl_count: scatterlist count for unidirectional mapping 1410 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1411 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1412 * @sgl_prot: struct scatterlist memory protection information 1413 * @sgl_prot_count: scatterlist count for protection information 1414 * 1415 * Task tags are supported if the caller has set @se_cmd->tag. 1416 * 1417 * Returns non zero to signal active I/O shutdown failure. All other 1418 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1419 * but still return zero here. 1420 * 1421 * This may only be called from process context, and also currently 1422 * assumes internal allocation of fabric payload buffer by target-core. 1423 */ 1424 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1425 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1426 u32 data_length, int task_attr, int data_dir, int flags, 1427 struct scatterlist *sgl, u32 sgl_count, 1428 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1429 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1430 { 1431 struct se_portal_group *se_tpg; 1432 sense_reason_t rc; 1433 int ret; 1434 1435 se_tpg = se_sess->se_tpg; 1436 BUG_ON(!se_tpg); 1437 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1438 BUG_ON(in_interrupt()); 1439 /* 1440 * Initialize se_cmd for target operation. From this point 1441 * exceptions are handled by sending exception status via 1442 * target_core_fabric_ops->queue_status() callback 1443 */ 1444 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1445 data_length, data_dir, task_attr, sense); 1446 1447 if (flags & TARGET_SCF_USE_CPUID) 1448 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1449 else 1450 se_cmd->cpuid = WORK_CPU_UNBOUND; 1451 1452 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1453 se_cmd->unknown_data_length = 1; 1454 /* 1455 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1456 * se_sess->sess_cmd_list. A second kref_get here is necessary 1457 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1458 * kref_put() to happen during fabric packet acknowledgement. 1459 */ 1460 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1461 if (ret) 1462 return ret; 1463 /* 1464 * Signal bidirectional data payloads to target-core 1465 */ 1466 if (flags & TARGET_SCF_BIDI_OP) 1467 se_cmd->se_cmd_flags |= SCF_BIDI; 1468 /* 1469 * Locate se_lun pointer and attach it to struct se_cmd 1470 */ 1471 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1472 if (rc) { 1473 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1474 target_put_sess_cmd(se_cmd); 1475 return 0; 1476 } 1477 1478 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1479 if (rc != 0) { 1480 transport_generic_request_failure(se_cmd, rc); 1481 return 0; 1482 } 1483 1484 /* 1485 * Save pointers for SGLs containing protection information, 1486 * if present. 1487 */ 1488 if (sgl_prot_count) { 1489 se_cmd->t_prot_sg = sgl_prot; 1490 se_cmd->t_prot_nents = sgl_prot_count; 1491 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1492 } 1493 1494 /* 1495 * When a non zero sgl_count has been passed perform SGL passthrough 1496 * mapping for pre-allocated fabric memory instead of having target 1497 * core perform an internal SGL allocation.. 1498 */ 1499 if (sgl_count != 0) { 1500 BUG_ON(!sgl); 1501 1502 /* 1503 * A work-around for tcm_loop as some userspace code via 1504 * scsi-generic do not memset their associated read buffers, 1505 * so go ahead and do that here for type non-data CDBs. Also 1506 * note that this is currently guaranteed to be a single SGL 1507 * for this case by target core in target_setup_cmd_from_cdb() 1508 * -> transport_generic_cmd_sequencer(). 1509 */ 1510 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1511 se_cmd->data_direction == DMA_FROM_DEVICE) { 1512 unsigned char *buf = NULL; 1513 1514 if (sgl) 1515 buf = kmap(sg_page(sgl)) + sgl->offset; 1516 1517 if (buf) { 1518 memset(buf, 0, sgl->length); 1519 kunmap(sg_page(sgl)); 1520 } 1521 } 1522 1523 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1524 sgl_bidi, sgl_bidi_count); 1525 if (rc != 0) { 1526 transport_generic_request_failure(se_cmd, rc); 1527 return 0; 1528 } 1529 } 1530 1531 /* 1532 * Check if we need to delay processing because of ALUA 1533 * Active/NonOptimized primary access state.. 1534 */ 1535 core_alua_check_nonop_delay(se_cmd); 1536 1537 transport_handle_cdb_direct(se_cmd); 1538 return 0; 1539 } 1540 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1541 1542 /* 1543 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1544 * 1545 * @se_cmd: command descriptor to submit 1546 * @se_sess: associated se_sess for endpoint 1547 * @cdb: pointer to SCSI CDB 1548 * @sense: pointer to SCSI sense buffer 1549 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1550 * @data_length: fabric expected data transfer length 1551 * @task_addr: SAM task attribute 1552 * @data_dir: DMA data direction 1553 * @flags: flags for command submission from target_sc_flags_tables 1554 * 1555 * Task tags are supported if the caller has set @se_cmd->tag. 1556 * 1557 * Returns non zero to signal active I/O shutdown failure. All other 1558 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1559 * but still return zero here. 1560 * 1561 * This may only be called from process context, and also currently 1562 * assumes internal allocation of fabric payload buffer by target-core. 1563 * 1564 * It also assumes interal target core SGL memory allocation. 1565 */ 1566 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1567 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1568 u32 data_length, int task_attr, int data_dir, int flags) 1569 { 1570 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1571 unpacked_lun, data_length, task_attr, data_dir, 1572 flags, NULL, 0, NULL, 0, NULL, 0); 1573 } 1574 EXPORT_SYMBOL(target_submit_cmd); 1575 1576 static void target_complete_tmr_failure(struct work_struct *work) 1577 { 1578 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1579 1580 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1581 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1582 1583 transport_cmd_check_stop_to_fabric(se_cmd); 1584 } 1585 1586 /** 1587 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1588 * for TMR CDBs 1589 * 1590 * @se_cmd: command descriptor to submit 1591 * @se_sess: associated se_sess for endpoint 1592 * @sense: pointer to SCSI sense buffer 1593 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1594 * @fabric_context: fabric context for TMR req 1595 * @tm_type: Type of TM request 1596 * @gfp: gfp type for caller 1597 * @tag: referenced task tag for TMR_ABORT_TASK 1598 * @flags: submit cmd flags 1599 * 1600 * Callable from all contexts. 1601 **/ 1602 1603 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1604 unsigned char *sense, u64 unpacked_lun, 1605 void *fabric_tmr_ptr, unsigned char tm_type, 1606 gfp_t gfp, u64 tag, int flags) 1607 { 1608 struct se_portal_group *se_tpg; 1609 int ret; 1610 1611 se_tpg = se_sess->se_tpg; 1612 BUG_ON(!se_tpg); 1613 1614 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1615 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1616 /* 1617 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1618 * allocation failure. 1619 */ 1620 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1621 if (ret < 0) 1622 return -ENOMEM; 1623 1624 if (tm_type == TMR_ABORT_TASK) 1625 se_cmd->se_tmr_req->ref_task_tag = tag; 1626 1627 /* See target_submit_cmd for commentary */ 1628 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1629 if (ret) { 1630 core_tmr_release_req(se_cmd->se_tmr_req); 1631 return ret; 1632 } 1633 1634 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1635 if (ret) { 1636 /* 1637 * For callback during failure handling, push this work off 1638 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1639 */ 1640 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1641 schedule_work(&se_cmd->work); 1642 return 0; 1643 } 1644 transport_generic_handle_tmr(se_cmd); 1645 return 0; 1646 } 1647 EXPORT_SYMBOL(target_submit_tmr); 1648 1649 /* 1650 * Handle SAM-esque emulation for generic transport request failures. 1651 */ 1652 void transport_generic_request_failure(struct se_cmd *cmd, 1653 sense_reason_t sense_reason) 1654 { 1655 int ret = 0, post_ret = 0; 1656 1657 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" 1658 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); 1659 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1660 cmd->se_tfo->get_cmd_state(cmd), 1661 cmd->t_state, sense_reason); 1662 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1663 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1664 (cmd->transport_state & CMD_T_STOP) != 0, 1665 (cmd->transport_state & CMD_T_SENT) != 0); 1666 1667 /* 1668 * For SAM Task Attribute emulation for failed struct se_cmd 1669 */ 1670 transport_complete_task_attr(cmd); 1671 /* 1672 * Handle special case for COMPARE_AND_WRITE failure, where the 1673 * callback is expected to drop the per device ->caw_sem. 1674 */ 1675 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1676 cmd->transport_complete_callback) 1677 cmd->transport_complete_callback(cmd, false, &post_ret); 1678 1679 switch (sense_reason) { 1680 case TCM_NON_EXISTENT_LUN: 1681 case TCM_UNSUPPORTED_SCSI_OPCODE: 1682 case TCM_INVALID_CDB_FIELD: 1683 case TCM_INVALID_PARAMETER_LIST: 1684 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1685 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1686 case TCM_UNKNOWN_MODE_PAGE: 1687 case TCM_WRITE_PROTECTED: 1688 case TCM_ADDRESS_OUT_OF_RANGE: 1689 case TCM_CHECK_CONDITION_ABORT_CMD: 1690 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1691 case TCM_CHECK_CONDITION_NOT_READY: 1692 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1693 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1694 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1695 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1696 case TCM_TOO_MANY_TARGET_DESCS: 1697 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1698 case TCM_TOO_MANY_SEGMENT_DESCS: 1699 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1700 break; 1701 case TCM_OUT_OF_RESOURCES: 1702 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1703 break; 1704 case TCM_RESERVATION_CONFLICT: 1705 /* 1706 * No SENSE Data payload for this case, set SCSI Status 1707 * and queue the response to $FABRIC_MOD. 1708 * 1709 * Uses linux/include/scsi/scsi.h SAM status codes defs 1710 */ 1711 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1712 /* 1713 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1714 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1715 * CONFLICT STATUS. 1716 * 1717 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1718 */ 1719 if (cmd->se_sess && 1720 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1721 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1722 cmd->orig_fe_lun, 0x2C, 1723 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1724 } 1725 trace_target_cmd_complete(cmd); 1726 ret = cmd->se_tfo->queue_status(cmd); 1727 if (ret == -EAGAIN || ret == -ENOMEM) 1728 goto queue_full; 1729 goto check_stop; 1730 default: 1731 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1732 cmd->t_task_cdb[0], sense_reason); 1733 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1734 break; 1735 } 1736 1737 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1738 if (ret == -EAGAIN || ret == -ENOMEM) 1739 goto queue_full; 1740 1741 check_stop: 1742 transport_lun_remove_cmd(cmd); 1743 transport_cmd_check_stop_to_fabric(cmd); 1744 return; 1745 1746 queue_full: 1747 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1748 transport_handle_queue_full(cmd, cmd->se_dev); 1749 } 1750 EXPORT_SYMBOL(transport_generic_request_failure); 1751 1752 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1753 { 1754 sense_reason_t ret; 1755 1756 if (!cmd->execute_cmd) { 1757 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1758 goto err; 1759 } 1760 if (do_checks) { 1761 /* 1762 * Check for an existing UNIT ATTENTION condition after 1763 * target_handle_task_attr() has done SAM task attr 1764 * checking, and possibly have already defered execution 1765 * out to target_restart_delayed_cmds() context. 1766 */ 1767 ret = target_scsi3_ua_check(cmd); 1768 if (ret) 1769 goto err; 1770 1771 ret = target_alua_state_check(cmd); 1772 if (ret) 1773 goto err; 1774 1775 ret = target_check_reservation(cmd); 1776 if (ret) { 1777 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1778 goto err; 1779 } 1780 } 1781 1782 ret = cmd->execute_cmd(cmd); 1783 if (!ret) 1784 return; 1785 err: 1786 spin_lock_irq(&cmd->t_state_lock); 1787 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1788 spin_unlock_irq(&cmd->t_state_lock); 1789 1790 transport_generic_request_failure(cmd, ret); 1791 } 1792 1793 static int target_write_prot_action(struct se_cmd *cmd) 1794 { 1795 u32 sectors; 1796 /* 1797 * Perform WRITE_INSERT of PI using software emulation when backend 1798 * device has PI enabled, if the transport has not already generated 1799 * PI using hardware WRITE_INSERT offload. 1800 */ 1801 switch (cmd->prot_op) { 1802 case TARGET_PROT_DOUT_INSERT: 1803 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1804 sbc_dif_generate(cmd); 1805 break; 1806 case TARGET_PROT_DOUT_STRIP: 1807 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1808 break; 1809 1810 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1811 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1812 sectors, 0, cmd->t_prot_sg, 0); 1813 if (unlikely(cmd->pi_err)) { 1814 spin_lock_irq(&cmd->t_state_lock); 1815 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1816 spin_unlock_irq(&cmd->t_state_lock); 1817 transport_generic_request_failure(cmd, cmd->pi_err); 1818 return -1; 1819 } 1820 break; 1821 default: 1822 break; 1823 } 1824 1825 return 0; 1826 } 1827 1828 static bool target_handle_task_attr(struct se_cmd *cmd) 1829 { 1830 struct se_device *dev = cmd->se_dev; 1831 1832 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1833 return false; 1834 1835 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 1836 1837 /* 1838 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1839 * to allow the passed struct se_cmd list of tasks to the front of the list. 1840 */ 1841 switch (cmd->sam_task_attr) { 1842 case TCM_HEAD_TAG: 1843 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1844 cmd->t_task_cdb[0]); 1845 return false; 1846 case TCM_ORDERED_TAG: 1847 atomic_inc_mb(&dev->dev_ordered_sync); 1848 1849 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1850 cmd->t_task_cdb[0]); 1851 1852 /* 1853 * Execute an ORDERED command if no other older commands 1854 * exist that need to be completed first. 1855 */ 1856 if (!atomic_read(&dev->simple_cmds)) 1857 return false; 1858 break; 1859 default: 1860 /* 1861 * For SIMPLE and UNTAGGED Task Attribute commands 1862 */ 1863 atomic_inc_mb(&dev->simple_cmds); 1864 break; 1865 } 1866 1867 if (atomic_read(&dev->dev_ordered_sync) == 0) 1868 return false; 1869 1870 spin_lock(&dev->delayed_cmd_lock); 1871 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1872 spin_unlock(&dev->delayed_cmd_lock); 1873 1874 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1875 cmd->t_task_cdb[0], cmd->sam_task_attr); 1876 return true; 1877 } 1878 1879 static int __transport_check_aborted_status(struct se_cmd *, int); 1880 1881 void target_execute_cmd(struct se_cmd *cmd) 1882 { 1883 /* 1884 * Determine if frontend context caller is requesting the stopping of 1885 * this command for frontend exceptions. 1886 * 1887 * If the received CDB has aleady been aborted stop processing it here. 1888 */ 1889 spin_lock_irq(&cmd->t_state_lock); 1890 if (__transport_check_aborted_status(cmd, 1)) { 1891 spin_unlock_irq(&cmd->t_state_lock); 1892 return; 1893 } 1894 if (cmd->transport_state & CMD_T_STOP) { 1895 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1896 __func__, __LINE__, cmd->tag); 1897 1898 spin_unlock_irq(&cmd->t_state_lock); 1899 complete_all(&cmd->t_transport_stop_comp); 1900 return; 1901 } 1902 1903 cmd->t_state = TRANSPORT_PROCESSING; 1904 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1905 spin_unlock_irq(&cmd->t_state_lock); 1906 1907 if (target_write_prot_action(cmd)) 1908 return; 1909 1910 if (target_handle_task_attr(cmd)) { 1911 spin_lock_irq(&cmd->t_state_lock); 1912 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT); 1913 spin_unlock_irq(&cmd->t_state_lock); 1914 return; 1915 } 1916 1917 __target_execute_cmd(cmd, true); 1918 } 1919 EXPORT_SYMBOL(target_execute_cmd); 1920 1921 /* 1922 * Process all commands up to the last received ORDERED task attribute which 1923 * requires another blocking boundary 1924 */ 1925 static void target_restart_delayed_cmds(struct se_device *dev) 1926 { 1927 for (;;) { 1928 struct se_cmd *cmd; 1929 1930 spin_lock(&dev->delayed_cmd_lock); 1931 if (list_empty(&dev->delayed_cmd_list)) { 1932 spin_unlock(&dev->delayed_cmd_lock); 1933 break; 1934 } 1935 1936 cmd = list_entry(dev->delayed_cmd_list.next, 1937 struct se_cmd, se_delayed_node); 1938 list_del(&cmd->se_delayed_node); 1939 spin_unlock(&dev->delayed_cmd_lock); 1940 1941 __target_execute_cmd(cmd, true); 1942 1943 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1944 break; 1945 } 1946 } 1947 1948 /* 1949 * Called from I/O completion to determine which dormant/delayed 1950 * and ordered cmds need to have their tasks added to the execution queue. 1951 */ 1952 static void transport_complete_task_attr(struct se_cmd *cmd) 1953 { 1954 struct se_device *dev = cmd->se_dev; 1955 1956 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1957 return; 1958 1959 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 1960 goto restart; 1961 1962 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1963 atomic_dec_mb(&dev->simple_cmds); 1964 dev->dev_cur_ordered_id++; 1965 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n", 1966 dev->dev_cur_ordered_id); 1967 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1968 dev->dev_cur_ordered_id++; 1969 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 1970 dev->dev_cur_ordered_id); 1971 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1972 atomic_dec_mb(&dev->dev_ordered_sync); 1973 1974 dev->dev_cur_ordered_id++; 1975 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 1976 dev->dev_cur_ordered_id); 1977 } 1978 restart: 1979 target_restart_delayed_cmds(dev); 1980 } 1981 1982 static void transport_complete_qf(struct se_cmd *cmd) 1983 { 1984 int ret = 0; 1985 1986 transport_complete_task_attr(cmd); 1987 1988 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1989 trace_target_cmd_complete(cmd); 1990 ret = cmd->se_tfo->queue_status(cmd); 1991 goto out; 1992 } 1993 1994 switch (cmd->data_direction) { 1995 case DMA_FROM_DEVICE: 1996 if (cmd->scsi_status) 1997 goto queue_status; 1998 1999 trace_target_cmd_complete(cmd); 2000 ret = cmd->se_tfo->queue_data_in(cmd); 2001 break; 2002 case DMA_TO_DEVICE: 2003 if (cmd->se_cmd_flags & SCF_BIDI) { 2004 ret = cmd->se_tfo->queue_data_in(cmd); 2005 break; 2006 } 2007 /* Fall through for DMA_TO_DEVICE */ 2008 case DMA_NONE: 2009 queue_status: 2010 trace_target_cmd_complete(cmd); 2011 ret = cmd->se_tfo->queue_status(cmd); 2012 break; 2013 default: 2014 break; 2015 } 2016 2017 out: 2018 if (ret < 0) { 2019 transport_handle_queue_full(cmd, cmd->se_dev); 2020 return; 2021 } 2022 transport_lun_remove_cmd(cmd); 2023 transport_cmd_check_stop_to_fabric(cmd); 2024 } 2025 2026 static void transport_handle_queue_full( 2027 struct se_cmd *cmd, 2028 struct se_device *dev) 2029 { 2030 spin_lock_irq(&dev->qf_cmd_lock); 2031 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2032 atomic_inc_mb(&dev->dev_qf_count); 2033 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2034 2035 schedule_work(&cmd->se_dev->qf_work_queue); 2036 } 2037 2038 static bool target_read_prot_action(struct se_cmd *cmd) 2039 { 2040 switch (cmd->prot_op) { 2041 case TARGET_PROT_DIN_STRIP: 2042 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2043 u32 sectors = cmd->data_length >> 2044 ilog2(cmd->se_dev->dev_attrib.block_size); 2045 2046 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2047 sectors, 0, cmd->t_prot_sg, 2048 0); 2049 if (cmd->pi_err) 2050 return true; 2051 } 2052 break; 2053 case TARGET_PROT_DIN_INSERT: 2054 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2055 break; 2056 2057 sbc_dif_generate(cmd); 2058 break; 2059 default: 2060 break; 2061 } 2062 2063 return false; 2064 } 2065 2066 static void target_complete_ok_work(struct work_struct *work) 2067 { 2068 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2069 int ret; 2070 2071 /* 2072 * Check if we need to move delayed/dormant tasks from cmds on the 2073 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2074 * Attribute. 2075 */ 2076 transport_complete_task_attr(cmd); 2077 2078 /* 2079 * Check to schedule QUEUE_FULL work, or execute an existing 2080 * cmd->transport_qf_callback() 2081 */ 2082 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2083 schedule_work(&cmd->se_dev->qf_work_queue); 2084 2085 /* 2086 * Check if we need to send a sense buffer from 2087 * the struct se_cmd in question. 2088 */ 2089 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2090 WARN_ON(!cmd->scsi_status); 2091 ret = transport_send_check_condition_and_sense( 2092 cmd, 0, 1); 2093 if (ret == -EAGAIN || ret == -ENOMEM) 2094 goto queue_full; 2095 2096 transport_lun_remove_cmd(cmd); 2097 transport_cmd_check_stop_to_fabric(cmd); 2098 return; 2099 } 2100 /* 2101 * Check for a callback, used by amongst other things 2102 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2103 */ 2104 if (cmd->transport_complete_callback) { 2105 sense_reason_t rc; 2106 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2107 bool zero_dl = !(cmd->data_length); 2108 int post_ret = 0; 2109 2110 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2111 if (!rc && !post_ret) { 2112 if (caw && zero_dl) 2113 goto queue_rsp; 2114 2115 return; 2116 } else if (rc) { 2117 ret = transport_send_check_condition_and_sense(cmd, 2118 rc, 0); 2119 if (ret == -EAGAIN || ret == -ENOMEM) 2120 goto queue_full; 2121 2122 transport_lun_remove_cmd(cmd); 2123 transport_cmd_check_stop_to_fabric(cmd); 2124 return; 2125 } 2126 } 2127 2128 queue_rsp: 2129 switch (cmd->data_direction) { 2130 case DMA_FROM_DEVICE: 2131 if (cmd->scsi_status) 2132 goto queue_status; 2133 2134 atomic_long_add(cmd->data_length, 2135 &cmd->se_lun->lun_stats.tx_data_octets); 2136 /* 2137 * Perform READ_STRIP of PI using software emulation when 2138 * backend had PI enabled, if the transport will not be 2139 * performing hardware READ_STRIP offload. 2140 */ 2141 if (target_read_prot_action(cmd)) { 2142 ret = transport_send_check_condition_and_sense(cmd, 2143 cmd->pi_err, 0); 2144 if (ret == -EAGAIN || ret == -ENOMEM) 2145 goto queue_full; 2146 2147 transport_lun_remove_cmd(cmd); 2148 transport_cmd_check_stop_to_fabric(cmd); 2149 return; 2150 } 2151 2152 trace_target_cmd_complete(cmd); 2153 ret = cmd->se_tfo->queue_data_in(cmd); 2154 if (ret == -EAGAIN || ret == -ENOMEM) 2155 goto queue_full; 2156 break; 2157 case DMA_TO_DEVICE: 2158 atomic_long_add(cmd->data_length, 2159 &cmd->se_lun->lun_stats.rx_data_octets); 2160 /* 2161 * Check if we need to send READ payload for BIDI-COMMAND 2162 */ 2163 if (cmd->se_cmd_flags & SCF_BIDI) { 2164 atomic_long_add(cmd->data_length, 2165 &cmd->se_lun->lun_stats.tx_data_octets); 2166 ret = cmd->se_tfo->queue_data_in(cmd); 2167 if (ret == -EAGAIN || ret == -ENOMEM) 2168 goto queue_full; 2169 break; 2170 } 2171 /* Fall through for DMA_TO_DEVICE */ 2172 case DMA_NONE: 2173 queue_status: 2174 trace_target_cmd_complete(cmd); 2175 ret = cmd->se_tfo->queue_status(cmd); 2176 if (ret == -EAGAIN || ret == -ENOMEM) 2177 goto queue_full; 2178 break; 2179 default: 2180 break; 2181 } 2182 2183 transport_lun_remove_cmd(cmd); 2184 transport_cmd_check_stop_to_fabric(cmd); 2185 return; 2186 2187 queue_full: 2188 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2189 " data_direction: %d\n", cmd, cmd->data_direction); 2190 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2191 transport_handle_queue_full(cmd, cmd->se_dev); 2192 } 2193 2194 void target_free_sgl(struct scatterlist *sgl, int nents) 2195 { 2196 struct scatterlist *sg; 2197 int count; 2198 2199 for_each_sg(sgl, sg, nents, count) 2200 __free_page(sg_page(sg)); 2201 2202 kfree(sgl); 2203 } 2204 EXPORT_SYMBOL(target_free_sgl); 2205 2206 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2207 { 2208 /* 2209 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2210 * emulation, and free + reset pointers if necessary.. 2211 */ 2212 if (!cmd->t_data_sg_orig) 2213 return; 2214 2215 kfree(cmd->t_data_sg); 2216 cmd->t_data_sg = cmd->t_data_sg_orig; 2217 cmd->t_data_sg_orig = NULL; 2218 cmd->t_data_nents = cmd->t_data_nents_orig; 2219 cmd->t_data_nents_orig = 0; 2220 } 2221 2222 static inline void transport_free_pages(struct se_cmd *cmd) 2223 { 2224 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2225 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2226 cmd->t_prot_sg = NULL; 2227 cmd->t_prot_nents = 0; 2228 } 2229 2230 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2231 /* 2232 * Release special case READ buffer payload required for 2233 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2234 */ 2235 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2236 target_free_sgl(cmd->t_bidi_data_sg, 2237 cmd->t_bidi_data_nents); 2238 cmd->t_bidi_data_sg = NULL; 2239 cmd->t_bidi_data_nents = 0; 2240 } 2241 transport_reset_sgl_orig(cmd); 2242 return; 2243 } 2244 transport_reset_sgl_orig(cmd); 2245 2246 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2247 cmd->t_data_sg = NULL; 2248 cmd->t_data_nents = 0; 2249 2250 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2251 cmd->t_bidi_data_sg = NULL; 2252 cmd->t_bidi_data_nents = 0; 2253 } 2254 2255 /** 2256 * transport_put_cmd - release a reference to a command 2257 * @cmd: command to release 2258 * 2259 * This routine releases our reference to the command and frees it if possible. 2260 */ 2261 static int transport_put_cmd(struct se_cmd *cmd) 2262 { 2263 BUG_ON(!cmd->se_tfo); 2264 /* 2265 * If this cmd has been setup with target_get_sess_cmd(), drop 2266 * the kref and call ->release_cmd() in kref callback. 2267 */ 2268 return target_put_sess_cmd(cmd); 2269 } 2270 2271 void *transport_kmap_data_sg(struct se_cmd *cmd) 2272 { 2273 struct scatterlist *sg = cmd->t_data_sg; 2274 struct page **pages; 2275 int i; 2276 2277 /* 2278 * We need to take into account a possible offset here for fabrics like 2279 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2280 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2281 */ 2282 if (!cmd->t_data_nents) 2283 return NULL; 2284 2285 BUG_ON(!sg); 2286 if (cmd->t_data_nents == 1) 2287 return kmap(sg_page(sg)) + sg->offset; 2288 2289 /* >1 page. use vmap */ 2290 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2291 if (!pages) 2292 return NULL; 2293 2294 /* convert sg[] to pages[] */ 2295 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2296 pages[i] = sg_page(sg); 2297 } 2298 2299 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2300 kfree(pages); 2301 if (!cmd->t_data_vmap) 2302 return NULL; 2303 2304 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2305 } 2306 EXPORT_SYMBOL(transport_kmap_data_sg); 2307 2308 void transport_kunmap_data_sg(struct se_cmd *cmd) 2309 { 2310 if (!cmd->t_data_nents) { 2311 return; 2312 } else if (cmd->t_data_nents == 1) { 2313 kunmap(sg_page(cmd->t_data_sg)); 2314 return; 2315 } 2316 2317 vunmap(cmd->t_data_vmap); 2318 cmd->t_data_vmap = NULL; 2319 } 2320 EXPORT_SYMBOL(transport_kunmap_data_sg); 2321 2322 int 2323 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2324 bool zero_page, bool chainable) 2325 { 2326 struct scatterlist *sg; 2327 struct page *page; 2328 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2329 unsigned int nalloc, nent; 2330 int i = 0; 2331 2332 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE); 2333 if (chainable) 2334 nalloc++; 2335 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL); 2336 if (!sg) 2337 return -ENOMEM; 2338 2339 sg_init_table(sg, nalloc); 2340 2341 while (length) { 2342 u32 page_len = min_t(u32, length, PAGE_SIZE); 2343 page = alloc_page(GFP_KERNEL | zero_flag); 2344 if (!page) 2345 goto out; 2346 2347 sg_set_page(&sg[i], page, page_len, 0); 2348 length -= page_len; 2349 i++; 2350 } 2351 *sgl = sg; 2352 *nents = nent; 2353 return 0; 2354 2355 out: 2356 while (i > 0) { 2357 i--; 2358 __free_page(sg_page(&sg[i])); 2359 } 2360 kfree(sg); 2361 return -ENOMEM; 2362 } 2363 EXPORT_SYMBOL(target_alloc_sgl); 2364 2365 /* 2366 * Allocate any required resources to execute the command. For writes we 2367 * might not have the payload yet, so notify the fabric via a call to 2368 * ->write_pending instead. Otherwise place it on the execution queue. 2369 */ 2370 sense_reason_t 2371 transport_generic_new_cmd(struct se_cmd *cmd) 2372 { 2373 int ret = 0; 2374 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2375 2376 if (cmd->prot_op != TARGET_PROT_NORMAL && 2377 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2378 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2379 cmd->prot_length, true, false); 2380 if (ret < 0) 2381 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2382 } 2383 2384 /* 2385 * Determine is the TCM fabric module has already allocated physical 2386 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2387 * beforehand. 2388 */ 2389 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2390 cmd->data_length) { 2391 2392 if ((cmd->se_cmd_flags & SCF_BIDI) || 2393 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2394 u32 bidi_length; 2395 2396 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2397 bidi_length = cmd->t_task_nolb * 2398 cmd->se_dev->dev_attrib.block_size; 2399 else 2400 bidi_length = cmd->data_length; 2401 2402 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2403 &cmd->t_bidi_data_nents, 2404 bidi_length, zero_flag, false); 2405 if (ret < 0) 2406 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2407 } 2408 2409 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2410 cmd->data_length, zero_flag, false); 2411 if (ret < 0) 2412 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2413 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2414 cmd->data_length) { 2415 /* 2416 * Special case for COMPARE_AND_WRITE with fabrics 2417 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2418 */ 2419 u32 caw_length = cmd->t_task_nolb * 2420 cmd->se_dev->dev_attrib.block_size; 2421 2422 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2423 &cmd->t_bidi_data_nents, 2424 caw_length, zero_flag, false); 2425 if (ret < 0) 2426 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2427 } 2428 /* 2429 * If this command is not a write we can execute it right here, 2430 * for write buffers we need to notify the fabric driver first 2431 * and let it call back once the write buffers are ready. 2432 */ 2433 target_add_to_state_list(cmd); 2434 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2435 target_execute_cmd(cmd); 2436 return 0; 2437 } 2438 transport_cmd_check_stop(cmd, false, true); 2439 2440 ret = cmd->se_tfo->write_pending(cmd); 2441 if (ret == -EAGAIN || ret == -ENOMEM) 2442 goto queue_full; 2443 2444 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2445 WARN_ON(ret); 2446 2447 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2448 2449 queue_full: 2450 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2451 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2452 transport_handle_queue_full(cmd, cmd->se_dev); 2453 return 0; 2454 } 2455 EXPORT_SYMBOL(transport_generic_new_cmd); 2456 2457 static void transport_write_pending_qf(struct se_cmd *cmd) 2458 { 2459 int ret; 2460 2461 ret = cmd->se_tfo->write_pending(cmd); 2462 if (ret == -EAGAIN || ret == -ENOMEM) { 2463 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2464 cmd); 2465 transport_handle_queue_full(cmd, cmd->se_dev); 2466 } 2467 } 2468 2469 static bool 2470 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2471 unsigned long *flags); 2472 2473 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2474 { 2475 unsigned long flags; 2476 2477 spin_lock_irqsave(&cmd->t_state_lock, flags); 2478 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2479 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2480 } 2481 2482 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2483 { 2484 int ret = 0; 2485 bool aborted = false, tas = false; 2486 2487 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2488 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2489 target_wait_free_cmd(cmd, &aborted, &tas); 2490 2491 if (!aborted || tas) 2492 ret = transport_put_cmd(cmd); 2493 } else { 2494 if (wait_for_tasks) 2495 target_wait_free_cmd(cmd, &aborted, &tas); 2496 /* 2497 * Handle WRITE failure case where transport_generic_new_cmd() 2498 * has already added se_cmd to state_list, but fabric has 2499 * failed command before I/O submission. 2500 */ 2501 if (cmd->state_active) 2502 target_remove_from_state_list(cmd); 2503 2504 if (cmd->se_lun) 2505 transport_lun_remove_cmd(cmd); 2506 2507 if (!aborted || tas) 2508 ret = transport_put_cmd(cmd); 2509 } 2510 /* 2511 * If the task has been internally aborted due to TMR ABORT_TASK 2512 * or LUN_RESET, target_core_tmr.c is responsible for performing 2513 * the remaining calls to target_put_sess_cmd(), and not the 2514 * callers of this function. 2515 */ 2516 if (aborted) { 2517 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2518 wait_for_completion(&cmd->cmd_wait_comp); 2519 cmd->se_tfo->release_cmd(cmd); 2520 ret = 1; 2521 } 2522 return ret; 2523 } 2524 EXPORT_SYMBOL(transport_generic_free_cmd); 2525 2526 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2527 * @se_cmd: command descriptor to add 2528 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2529 */ 2530 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2531 { 2532 struct se_session *se_sess = se_cmd->se_sess; 2533 unsigned long flags; 2534 int ret = 0; 2535 2536 /* 2537 * Add a second kref if the fabric caller is expecting to handle 2538 * fabric acknowledgement that requires two target_put_sess_cmd() 2539 * invocations before se_cmd descriptor release. 2540 */ 2541 if (ack_kref) { 2542 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2543 return -EINVAL; 2544 2545 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2546 } 2547 2548 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2549 if (se_sess->sess_tearing_down) { 2550 ret = -ESHUTDOWN; 2551 goto out; 2552 } 2553 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2554 out: 2555 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2556 2557 if (ret && ack_kref) 2558 target_put_sess_cmd(se_cmd); 2559 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(target_get_sess_cmd); 2563 2564 static void target_free_cmd_mem(struct se_cmd *cmd) 2565 { 2566 transport_free_pages(cmd); 2567 2568 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2569 core_tmr_release_req(cmd->se_tmr_req); 2570 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2571 kfree(cmd->t_task_cdb); 2572 } 2573 2574 static void target_release_cmd_kref(struct kref *kref) 2575 { 2576 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2577 struct se_session *se_sess = se_cmd->se_sess; 2578 unsigned long flags; 2579 bool fabric_stop; 2580 2581 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2582 2583 spin_lock(&se_cmd->t_state_lock); 2584 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) && 2585 (se_cmd->transport_state & CMD_T_ABORTED); 2586 spin_unlock(&se_cmd->t_state_lock); 2587 2588 if (se_cmd->cmd_wait_set || fabric_stop) { 2589 list_del_init(&se_cmd->se_cmd_list); 2590 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2591 target_free_cmd_mem(se_cmd); 2592 complete(&se_cmd->cmd_wait_comp); 2593 return; 2594 } 2595 list_del_init(&se_cmd->se_cmd_list); 2596 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2597 2598 target_free_cmd_mem(se_cmd); 2599 se_cmd->se_tfo->release_cmd(se_cmd); 2600 } 2601 2602 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2603 * @se_cmd: command descriptor to drop 2604 */ 2605 int target_put_sess_cmd(struct se_cmd *se_cmd) 2606 { 2607 struct se_session *se_sess = se_cmd->se_sess; 2608 2609 if (!se_sess) { 2610 target_free_cmd_mem(se_cmd); 2611 se_cmd->se_tfo->release_cmd(se_cmd); 2612 return 1; 2613 } 2614 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2615 } 2616 EXPORT_SYMBOL(target_put_sess_cmd); 2617 2618 /* target_sess_cmd_list_set_waiting - Flag all commands in 2619 * sess_cmd_list to complete cmd_wait_comp. Set 2620 * sess_tearing_down so no more commands are queued. 2621 * @se_sess: session to flag 2622 */ 2623 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2624 { 2625 struct se_cmd *se_cmd, *tmp_cmd; 2626 unsigned long flags; 2627 int rc; 2628 2629 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2630 if (se_sess->sess_tearing_down) { 2631 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2632 return; 2633 } 2634 se_sess->sess_tearing_down = 1; 2635 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2636 2637 list_for_each_entry_safe(se_cmd, tmp_cmd, 2638 &se_sess->sess_wait_list, se_cmd_list) { 2639 rc = kref_get_unless_zero(&se_cmd->cmd_kref); 2640 if (rc) { 2641 se_cmd->cmd_wait_set = 1; 2642 spin_lock(&se_cmd->t_state_lock); 2643 se_cmd->transport_state |= CMD_T_FABRIC_STOP; 2644 spin_unlock(&se_cmd->t_state_lock); 2645 } else 2646 list_del_init(&se_cmd->se_cmd_list); 2647 } 2648 2649 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2650 } 2651 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2652 2653 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2654 * @se_sess: session to wait for active I/O 2655 */ 2656 void target_wait_for_sess_cmds(struct se_session *se_sess) 2657 { 2658 struct se_cmd *se_cmd, *tmp_cmd; 2659 unsigned long flags; 2660 bool tas; 2661 2662 list_for_each_entry_safe(se_cmd, tmp_cmd, 2663 &se_sess->sess_wait_list, se_cmd_list) { 2664 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2665 " %d\n", se_cmd, se_cmd->t_state, 2666 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2667 2668 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2669 tas = (se_cmd->transport_state & CMD_T_TAS); 2670 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2671 2672 if (!target_put_sess_cmd(se_cmd)) { 2673 if (tas) 2674 target_put_sess_cmd(se_cmd); 2675 } 2676 2677 wait_for_completion(&se_cmd->cmd_wait_comp); 2678 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2679 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2680 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2681 2682 se_cmd->se_tfo->release_cmd(se_cmd); 2683 } 2684 2685 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2686 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2687 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2688 2689 } 2690 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2691 2692 void transport_clear_lun_ref(struct se_lun *lun) 2693 { 2694 percpu_ref_kill(&lun->lun_ref); 2695 wait_for_completion(&lun->lun_ref_comp); 2696 } 2697 2698 static bool 2699 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2700 bool *aborted, bool *tas, unsigned long *flags) 2701 __releases(&cmd->t_state_lock) 2702 __acquires(&cmd->t_state_lock) 2703 { 2704 2705 assert_spin_locked(&cmd->t_state_lock); 2706 WARN_ON_ONCE(!irqs_disabled()); 2707 2708 if (fabric_stop) 2709 cmd->transport_state |= CMD_T_FABRIC_STOP; 2710 2711 if (cmd->transport_state & CMD_T_ABORTED) 2712 *aborted = true; 2713 2714 if (cmd->transport_state & CMD_T_TAS) 2715 *tas = true; 2716 2717 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2718 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2719 return false; 2720 2721 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2722 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2723 return false; 2724 2725 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2726 return false; 2727 2728 if (fabric_stop && *aborted) 2729 return false; 2730 2731 cmd->transport_state |= CMD_T_STOP; 2732 2733 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d," 2734 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag, 2735 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2736 2737 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2738 2739 wait_for_completion(&cmd->t_transport_stop_comp); 2740 2741 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2742 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2743 2744 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 2745 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 2746 2747 return true; 2748 } 2749 2750 /** 2751 * transport_wait_for_tasks - wait for completion to occur 2752 * @cmd: command to wait 2753 * 2754 * Called from frontend fabric context to wait for storage engine 2755 * to pause and/or release frontend generated struct se_cmd. 2756 */ 2757 bool transport_wait_for_tasks(struct se_cmd *cmd) 2758 { 2759 unsigned long flags; 2760 bool ret, aborted = false, tas = false; 2761 2762 spin_lock_irqsave(&cmd->t_state_lock, flags); 2763 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 2764 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2765 2766 return ret; 2767 } 2768 EXPORT_SYMBOL(transport_wait_for_tasks); 2769 2770 struct sense_info { 2771 u8 key; 2772 u8 asc; 2773 u8 ascq; 2774 bool add_sector_info; 2775 }; 2776 2777 static const struct sense_info sense_info_table[] = { 2778 [TCM_NO_SENSE] = { 2779 .key = NOT_READY 2780 }, 2781 [TCM_NON_EXISTENT_LUN] = { 2782 .key = ILLEGAL_REQUEST, 2783 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 2784 }, 2785 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 2786 .key = ILLEGAL_REQUEST, 2787 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2788 }, 2789 [TCM_SECTOR_COUNT_TOO_MANY] = { 2790 .key = ILLEGAL_REQUEST, 2791 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2792 }, 2793 [TCM_UNKNOWN_MODE_PAGE] = { 2794 .key = ILLEGAL_REQUEST, 2795 .asc = 0x24, /* INVALID FIELD IN CDB */ 2796 }, 2797 [TCM_CHECK_CONDITION_ABORT_CMD] = { 2798 .key = ABORTED_COMMAND, 2799 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 2800 .ascq = 0x03, 2801 }, 2802 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 2803 .key = ABORTED_COMMAND, 2804 .asc = 0x0c, /* WRITE ERROR */ 2805 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 2806 }, 2807 [TCM_INVALID_CDB_FIELD] = { 2808 .key = ILLEGAL_REQUEST, 2809 .asc = 0x24, /* INVALID FIELD IN CDB */ 2810 }, 2811 [TCM_INVALID_PARAMETER_LIST] = { 2812 .key = ILLEGAL_REQUEST, 2813 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 2814 }, 2815 [TCM_TOO_MANY_TARGET_DESCS] = { 2816 .key = ILLEGAL_REQUEST, 2817 .asc = 0x26, 2818 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 2819 }, 2820 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 2821 .key = ILLEGAL_REQUEST, 2822 .asc = 0x26, 2823 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 2824 }, 2825 [TCM_TOO_MANY_SEGMENT_DESCS] = { 2826 .key = ILLEGAL_REQUEST, 2827 .asc = 0x26, 2828 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 2829 }, 2830 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 2831 .key = ILLEGAL_REQUEST, 2832 .asc = 0x26, 2833 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 2834 }, 2835 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 2836 .key = ILLEGAL_REQUEST, 2837 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 2838 }, 2839 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 2840 .key = ILLEGAL_REQUEST, 2841 .asc = 0x0c, /* WRITE ERROR */ 2842 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 2843 }, 2844 [TCM_SERVICE_CRC_ERROR] = { 2845 .key = ABORTED_COMMAND, 2846 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 2847 .ascq = 0x05, /* N/A */ 2848 }, 2849 [TCM_SNACK_REJECTED] = { 2850 .key = ABORTED_COMMAND, 2851 .asc = 0x11, /* READ ERROR */ 2852 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 2853 }, 2854 [TCM_WRITE_PROTECTED] = { 2855 .key = DATA_PROTECT, 2856 .asc = 0x27, /* WRITE PROTECTED */ 2857 }, 2858 [TCM_ADDRESS_OUT_OF_RANGE] = { 2859 .key = ILLEGAL_REQUEST, 2860 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2861 }, 2862 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 2863 .key = UNIT_ATTENTION, 2864 }, 2865 [TCM_CHECK_CONDITION_NOT_READY] = { 2866 .key = NOT_READY, 2867 }, 2868 [TCM_MISCOMPARE_VERIFY] = { 2869 .key = MISCOMPARE, 2870 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 2871 .ascq = 0x00, 2872 }, 2873 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 2874 .key = ABORTED_COMMAND, 2875 .asc = 0x10, 2876 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 2877 .add_sector_info = true, 2878 }, 2879 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 2880 .key = ABORTED_COMMAND, 2881 .asc = 0x10, 2882 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2883 .add_sector_info = true, 2884 }, 2885 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 2886 .key = ABORTED_COMMAND, 2887 .asc = 0x10, 2888 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2889 .add_sector_info = true, 2890 }, 2891 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 2892 .key = COPY_ABORTED, 2893 .asc = 0x0d, 2894 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 2895 2896 }, 2897 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 2898 /* 2899 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2900 * Solaris initiators. Returning NOT READY instead means the 2901 * operations will be retried a finite number of times and we 2902 * can survive intermittent errors. 2903 */ 2904 .key = NOT_READY, 2905 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 2906 }, 2907 }; 2908 2909 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 2910 { 2911 const struct sense_info *si; 2912 u8 *buffer = cmd->sense_buffer; 2913 int r = (__force int)reason; 2914 u8 asc, ascq; 2915 bool desc_format = target_sense_desc_format(cmd->se_dev); 2916 2917 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 2918 si = &sense_info_table[r]; 2919 else 2920 si = &sense_info_table[(__force int) 2921 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 2922 2923 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 2924 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2925 WARN_ON_ONCE(asc == 0); 2926 } else if (si->asc == 0) { 2927 WARN_ON_ONCE(cmd->scsi_asc == 0); 2928 asc = cmd->scsi_asc; 2929 ascq = cmd->scsi_ascq; 2930 } else { 2931 asc = si->asc; 2932 ascq = si->ascq; 2933 } 2934 2935 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 2936 if (si->add_sector_info) 2937 return scsi_set_sense_information(buffer, 2938 cmd->scsi_sense_length, 2939 cmd->bad_sector); 2940 2941 return 0; 2942 } 2943 2944 int 2945 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2946 sense_reason_t reason, int from_transport) 2947 { 2948 unsigned long flags; 2949 2950 spin_lock_irqsave(&cmd->t_state_lock, flags); 2951 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2952 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2953 return 0; 2954 } 2955 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2956 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2957 2958 if (!from_transport) { 2959 int rc; 2960 2961 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2962 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2963 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2964 rc = translate_sense_reason(cmd, reason); 2965 if (rc) 2966 return rc; 2967 } 2968 2969 trace_target_cmd_complete(cmd); 2970 return cmd->se_tfo->queue_status(cmd); 2971 } 2972 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2973 2974 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2975 __releases(&cmd->t_state_lock) 2976 __acquires(&cmd->t_state_lock) 2977 { 2978 assert_spin_locked(&cmd->t_state_lock); 2979 WARN_ON_ONCE(!irqs_disabled()); 2980 2981 if (!(cmd->transport_state & CMD_T_ABORTED)) 2982 return 0; 2983 /* 2984 * If cmd has been aborted but either no status is to be sent or it has 2985 * already been sent, just return 2986 */ 2987 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { 2988 if (send_status) 2989 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 2990 return 1; 2991 } 2992 2993 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" 2994 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); 2995 2996 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 2997 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2998 trace_target_cmd_complete(cmd); 2999 3000 spin_unlock_irq(&cmd->t_state_lock); 3001 cmd->se_tfo->queue_status(cmd); 3002 spin_lock_irq(&cmd->t_state_lock); 3003 3004 return 1; 3005 } 3006 3007 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3008 { 3009 int ret; 3010 3011 spin_lock_irq(&cmd->t_state_lock); 3012 ret = __transport_check_aborted_status(cmd, send_status); 3013 spin_unlock_irq(&cmd->t_state_lock); 3014 3015 return ret; 3016 } 3017 EXPORT_SYMBOL(transport_check_aborted_status); 3018 3019 void transport_send_task_abort(struct se_cmd *cmd) 3020 { 3021 unsigned long flags; 3022 3023 spin_lock_irqsave(&cmd->t_state_lock, flags); 3024 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 3025 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3026 return; 3027 } 3028 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3029 3030 /* 3031 * If there are still expected incoming fabric WRITEs, we wait 3032 * until until they have completed before sending a TASK_ABORTED 3033 * response. This response with TASK_ABORTED status will be 3034 * queued back to fabric module by transport_check_aborted_status(). 3035 */ 3036 if (cmd->data_direction == DMA_TO_DEVICE) { 3037 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3038 spin_lock_irqsave(&cmd->t_state_lock, flags); 3039 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { 3040 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3041 goto send_abort; 3042 } 3043 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3044 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3045 return; 3046 } 3047 } 3048 send_abort: 3049 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3050 3051 transport_lun_remove_cmd(cmd); 3052 3053 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 3054 cmd->t_task_cdb[0], cmd->tag); 3055 3056 trace_target_cmd_complete(cmd); 3057 cmd->se_tfo->queue_status(cmd); 3058 } 3059 3060 static void target_tmr_work(struct work_struct *work) 3061 { 3062 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3063 struct se_device *dev = cmd->se_dev; 3064 struct se_tmr_req *tmr = cmd->se_tmr_req; 3065 unsigned long flags; 3066 int ret; 3067 3068 spin_lock_irqsave(&cmd->t_state_lock, flags); 3069 if (cmd->transport_state & CMD_T_ABORTED) { 3070 tmr->response = TMR_FUNCTION_REJECTED; 3071 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3072 goto check_stop; 3073 } 3074 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3075 3076 switch (tmr->function) { 3077 case TMR_ABORT_TASK: 3078 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3079 break; 3080 case TMR_ABORT_TASK_SET: 3081 case TMR_CLEAR_ACA: 3082 case TMR_CLEAR_TASK_SET: 3083 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3084 break; 3085 case TMR_LUN_RESET: 3086 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3087 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3088 TMR_FUNCTION_REJECTED; 3089 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3090 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3091 cmd->orig_fe_lun, 0x29, 3092 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3093 } 3094 break; 3095 case TMR_TARGET_WARM_RESET: 3096 tmr->response = TMR_FUNCTION_REJECTED; 3097 break; 3098 case TMR_TARGET_COLD_RESET: 3099 tmr->response = TMR_FUNCTION_REJECTED; 3100 break; 3101 default: 3102 pr_err("Uknown TMR function: 0x%02x.\n", 3103 tmr->function); 3104 tmr->response = TMR_FUNCTION_REJECTED; 3105 break; 3106 } 3107 3108 spin_lock_irqsave(&cmd->t_state_lock, flags); 3109 if (cmd->transport_state & CMD_T_ABORTED) { 3110 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3111 goto check_stop; 3112 } 3113 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3114 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3115 3116 cmd->se_tfo->queue_tm_rsp(cmd); 3117 3118 check_stop: 3119 transport_cmd_check_stop_to_fabric(cmd); 3120 } 3121 3122 int transport_generic_handle_tmr( 3123 struct se_cmd *cmd) 3124 { 3125 unsigned long flags; 3126 3127 spin_lock_irqsave(&cmd->t_state_lock, flags); 3128 cmd->transport_state |= CMD_T_ACTIVE; 3129 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3130 3131 INIT_WORK(&cmd->work, target_tmr_work); 3132 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3133 return 0; 3134 } 3135 EXPORT_SYMBOL(transport_generic_handle_tmr); 3136 3137 bool 3138 target_check_wce(struct se_device *dev) 3139 { 3140 bool wce = false; 3141 3142 if (dev->transport->get_write_cache) 3143 wce = dev->transport->get_write_cache(dev); 3144 else if (dev->dev_attrib.emulate_write_cache > 0) 3145 wce = true; 3146 3147 return wce; 3148 } 3149 3150 bool 3151 target_check_fua(struct se_device *dev) 3152 { 3153 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3154 } 3155