1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55 
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65 
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 		struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71 
72 int init_se_kmem_caches(void)
73 {
74 	se_sess_cache = kmem_cache_create("se_sess_cache",
75 			sizeof(struct se_session), __alignof__(struct se_session),
76 			0, NULL);
77 	if (!se_sess_cache) {
78 		pr_err("kmem_cache_create() for struct se_session"
79 				" failed\n");
80 		goto out;
81 	}
82 	se_ua_cache = kmem_cache_create("se_ua_cache",
83 			sizeof(struct se_ua), __alignof__(struct se_ua),
84 			0, NULL);
85 	if (!se_ua_cache) {
86 		pr_err("kmem_cache_create() for struct se_ua failed\n");
87 		goto out_free_sess_cache;
88 	}
89 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 			sizeof(struct t10_pr_registration),
91 			__alignof__(struct t10_pr_registration), 0, NULL);
92 	if (!t10_pr_reg_cache) {
93 		pr_err("kmem_cache_create() for struct t10_pr_registration"
94 				" failed\n");
95 		goto out_free_ua_cache;
96 	}
97 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 			0, NULL);
100 	if (!t10_alua_lu_gp_cache) {
101 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 				" failed\n");
103 		goto out_free_pr_reg_cache;
104 	}
105 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 			sizeof(struct t10_alua_lu_gp_member),
107 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 	if (!t10_alua_lu_gp_mem_cache) {
109 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 				"cache failed\n");
111 		goto out_free_lu_gp_cache;
112 	}
113 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 			sizeof(struct t10_alua_tg_pt_gp),
115 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 	if (!t10_alua_tg_pt_gp_cache) {
117 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 				"cache failed\n");
119 		goto out_free_lu_gp_mem_cache;
120 	}
121 	t10_alua_lba_map_cache = kmem_cache_create(
122 			"t10_alua_lba_map_cache",
123 			sizeof(struct t10_alua_lba_map),
124 			__alignof__(struct t10_alua_lba_map), 0, NULL);
125 	if (!t10_alua_lba_map_cache) {
126 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 				"cache failed\n");
128 		goto out_free_tg_pt_gp_cache;
129 	}
130 	t10_alua_lba_map_mem_cache = kmem_cache_create(
131 			"t10_alua_lba_map_mem_cache",
132 			sizeof(struct t10_alua_lba_map_member),
133 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 	if (!t10_alua_lba_map_mem_cache) {
135 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 				"cache failed\n");
137 		goto out_free_lba_map_cache;
138 	}
139 
140 	target_completion_wq = alloc_workqueue("target_completion",
141 					       WQ_MEM_RECLAIM, 0);
142 	if (!target_completion_wq)
143 		goto out_free_lba_map_mem_cache;
144 
145 	return 0;
146 
147 out_free_lba_map_mem_cache:
148 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 	kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 	kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 	kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 	kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 	kmem_cache_destroy(se_sess_cache);
163 out:
164 	return -ENOMEM;
165 }
166 
167 void release_se_kmem_caches(void)
168 {
169 	destroy_workqueue(target_completion_wq);
170 	kmem_cache_destroy(se_sess_cache);
171 	kmem_cache_destroy(se_ua_cache);
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 	kmem_cache_destroy(t10_alua_lu_gp_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 	kmem_cache_destroy(t10_alua_lba_map_cache);
177 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179 
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 
184 /*
185  * Allocate a new row index for the entry type specified
186  */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 	u32 new_index;
190 
191 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192 
193 	spin_lock(&scsi_mib_index_lock);
194 	new_index = ++scsi_mib_index[type];
195 	spin_unlock(&scsi_mib_index_lock);
196 
197 	return new_index;
198 }
199 
200 void transport_subsystem_check_init(void)
201 {
202 	int ret;
203 	static int sub_api_initialized;
204 
205 	if (sub_api_initialized)
206 		return;
207 
208 	ret = request_module("target_core_iblock");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_iblock\n");
211 
212 	ret = request_module("target_core_file");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_file\n");
215 
216 	ret = request_module("target_core_pscsi");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_pscsi\n");
219 
220 	ret = request_module("target_core_user");
221 	if (ret != 0)
222 		pr_err("Unable to load target_core_user\n");
223 
224 	sub_api_initialized = 1;
225 }
226 
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 	struct se_session *se_sess;
230 
231 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 	if (!se_sess) {
233 		pr_err("Unable to allocate struct se_session from"
234 				" se_sess_cache\n");
235 		return ERR_PTR(-ENOMEM);
236 	}
237 	INIT_LIST_HEAD(&se_sess->sess_list);
238 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 	spin_lock_init(&se_sess->sess_cmd_lock);
242 	kref_init(&se_sess->sess_kref);
243 	se_sess->sup_prot_ops = sup_prot_ops;
244 
245 	return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248 
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 			         unsigned int tag_num, unsigned int tag_size)
251 {
252 	int rc;
253 
254 	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 					GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 	if (!se_sess->sess_cmd_map) {
257 		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 		if (!se_sess->sess_cmd_map) {
259 			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 			return -ENOMEM;
261 		}
262 	}
263 
264 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 	if (rc < 0) {
266 		pr_err("Unable to init se_sess->sess_tag_pool,"
267 			" tag_num: %u\n", tag_num);
268 		kvfree(se_sess->sess_cmd_map);
269 		se_sess->sess_cmd_map = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276 
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 					       unsigned int tag_size,
279 					       enum target_prot_op sup_prot_ops)
280 {
281 	struct se_session *se_sess;
282 	int rc;
283 
284 	if (tag_num != 0 && !tag_size) {
285 		pr_err("init_session_tags called with percpu-ida tag_num:"
286 		       " %u, but zero tag_size\n", tag_num);
287 		return ERR_PTR(-EINVAL);
288 	}
289 	if (!tag_num && tag_size) {
290 		pr_err("init_session_tags called with percpu-ida tag_size:"
291 		       " %u, but zero tag_num\n", tag_size);
292 		return ERR_PTR(-EINVAL);
293 	}
294 
295 	se_sess = transport_init_session(sup_prot_ops);
296 	if (IS_ERR(se_sess))
297 		return se_sess;
298 
299 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300 	if (rc < 0) {
301 		transport_free_session(se_sess);
302 		return ERR_PTR(-ENOMEM);
303 	}
304 
305 	return se_sess;
306 }
307 EXPORT_SYMBOL(transport_init_session_tags);
308 
309 /*
310  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311  */
312 void __transport_register_session(
313 	struct se_portal_group *se_tpg,
314 	struct se_node_acl *se_nacl,
315 	struct se_session *se_sess,
316 	void *fabric_sess_ptr)
317 {
318 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 	unsigned char buf[PR_REG_ISID_LEN];
320 
321 	se_sess->se_tpg = se_tpg;
322 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
323 	/*
324 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 	 *
326 	 * Only set for struct se_session's that will actually be moving I/O.
327 	 * eg: *NOT* discovery sessions.
328 	 */
329 	if (se_nacl) {
330 		/*
331 		 *
332 		 * Determine if fabric allows for T10-PI feature bits exposed to
333 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 		 *
335 		 * If so, then always save prot_type on a per se_node_acl node
336 		 * basis and re-instate the previous sess_prot_type to avoid
337 		 * disabling PI from below any previously initiator side
338 		 * registered LUNs.
339 		 */
340 		if (se_nacl->saved_prot_type)
341 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
342 		else if (tfo->tpg_check_prot_fabric_only)
343 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
344 					tfo->tpg_check_prot_fabric_only(se_tpg);
345 		/*
346 		 * If the fabric module supports an ISID based TransportID,
347 		 * save this value in binary from the fabric I_T Nexus now.
348 		 */
349 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350 			memset(&buf[0], 0, PR_REG_ISID_LEN);
351 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 					&buf[0], PR_REG_ISID_LEN);
353 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
354 		}
355 
356 		spin_lock_irq(&se_nacl->nacl_sess_lock);
357 		/*
358 		 * The se_nacl->nacl_sess pointer will be set to the
359 		 * last active I_T Nexus for each struct se_node_acl.
360 		 */
361 		se_nacl->nacl_sess = se_sess;
362 
363 		list_add_tail(&se_sess->sess_acl_list,
364 			      &se_nacl->acl_sess_list);
365 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
366 	}
367 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
368 
369 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 }
372 EXPORT_SYMBOL(__transport_register_session);
373 
374 void transport_register_session(
375 	struct se_portal_group *se_tpg,
376 	struct se_node_acl *se_nacl,
377 	struct se_session *se_sess,
378 	void *fabric_sess_ptr)
379 {
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&se_tpg->session_lock, flags);
383 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 }
386 EXPORT_SYMBOL(transport_register_session);
387 
388 struct se_session *
389 target_alloc_session(struct se_portal_group *tpg,
390 		     unsigned int tag_num, unsigned int tag_size,
391 		     enum target_prot_op prot_op,
392 		     const char *initiatorname, void *private,
393 		     int (*callback)(struct se_portal_group *,
394 				     struct se_session *, void *))
395 {
396 	struct se_session *sess;
397 
398 	/*
399 	 * If the fabric driver is using percpu-ida based pre allocation
400 	 * of I/O descriptor tags, go ahead and perform that setup now..
401 	 */
402 	if (tag_num != 0)
403 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
404 	else
405 		sess = transport_init_session(prot_op);
406 
407 	if (IS_ERR(sess))
408 		return sess;
409 
410 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
411 					(unsigned char *)initiatorname);
412 	if (!sess->se_node_acl) {
413 		transport_free_session(sess);
414 		return ERR_PTR(-EACCES);
415 	}
416 	/*
417 	 * Go ahead and perform any remaining fabric setup that is
418 	 * required before transport_register_session().
419 	 */
420 	if (callback != NULL) {
421 		int rc = callback(tpg, sess, private);
422 		if (rc) {
423 			transport_free_session(sess);
424 			return ERR_PTR(rc);
425 		}
426 	}
427 
428 	transport_register_session(tpg, sess->se_node_acl, sess, private);
429 	return sess;
430 }
431 EXPORT_SYMBOL(target_alloc_session);
432 
433 static void target_release_session(struct kref *kref)
434 {
435 	struct se_session *se_sess = container_of(kref,
436 			struct se_session, sess_kref);
437 	struct se_portal_group *se_tpg = se_sess->se_tpg;
438 
439 	se_tpg->se_tpg_tfo->close_session(se_sess);
440 }
441 
442 int target_get_session(struct se_session *se_sess)
443 {
444 	return kref_get_unless_zero(&se_sess->sess_kref);
445 }
446 EXPORT_SYMBOL(target_get_session);
447 
448 void target_put_session(struct se_session *se_sess)
449 {
450 	kref_put(&se_sess->sess_kref, target_release_session);
451 }
452 EXPORT_SYMBOL(target_put_session);
453 
454 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
455 {
456 	struct se_session *se_sess;
457 	ssize_t len = 0;
458 
459 	spin_lock_bh(&se_tpg->session_lock);
460 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
461 		if (!se_sess->se_node_acl)
462 			continue;
463 		if (!se_sess->se_node_acl->dynamic_node_acl)
464 			continue;
465 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
466 			break;
467 
468 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
469 				se_sess->se_node_acl->initiatorname);
470 		len += 1; /* Include NULL terminator */
471 	}
472 	spin_unlock_bh(&se_tpg->session_lock);
473 
474 	return len;
475 }
476 EXPORT_SYMBOL(target_show_dynamic_sessions);
477 
478 static void target_complete_nacl(struct kref *kref)
479 {
480 	struct se_node_acl *nacl = container_of(kref,
481 				struct se_node_acl, acl_kref);
482 
483 	complete(&nacl->acl_free_comp);
484 }
485 
486 void target_put_nacl(struct se_node_acl *nacl)
487 {
488 	kref_put(&nacl->acl_kref, target_complete_nacl);
489 }
490 EXPORT_SYMBOL(target_put_nacl);
491 
492 void transport_deregister_session_configfs(struct se_session *se_sess)
493 {
494 	struct se_node_acl *se_nacl;
495 	unsigned long flags;
496 	/*
497 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
498 	 */
499 	se_nacl = se_sess->se_node_acl;
500 	if (se_nacl) {
501 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
502 		if (!list_empty(&se_sess->sess_acl_list))
503 			list_del_init(&se_sess->sess_acl_list);
504 		/*
505 		 * If the session list is empty, then clear the pointer.
506 		 * Otherwise, set the struct se_session pointer from the tail
507 		 * element of the per struct se_node_acl active session list.
508 		 */
509 		if (list_empty(&se_nacl->acl_sess_list))
510 			se_nacl->nacl_sess = NULL;
511 		else {
512 			se_nacl->nacl_sess = container_of(
513 					se_nacl->acl_sess_list.prev,
514 					struct se_session, sess_acl_list);
515 		}
516 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
517 	}
518 }
519 EXPORT_SYMBOL(transport_deregister_session_configfs);
520 
521 void transport_free_session(struct se_session *se_sess)
522 {
523 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
524 	/*
525 	 * Drop the se_node_acl->nacl_kref obtained from within
526 	 * core_tpg_get_initiator_node_acl().
527 	 */
528 	if (se_nacl) {
529 		se_sess->se_node_acl = NULL;
530 		target_put_nacl(se_nacl);
531 	}
532 	if (se_sess->sess_cmd_map) {
533 		percpu_ida_destroy(&se_sess->sess_tag_pool);
534 		kvfree(se_sess->sess_cmd_map);
535 	}
536 	kmem_cache_free(se_sess_cache, se_sess);
537 }
538 EXPORT_SYMBOL(transport_free_session);
539 
540 void transport_deregister_session(struct se_session *se_sess)
541 {
542 	struct se_portal_group *se_tpg = se_sess->se_tpg;
543 	const struct target_core_fabric_ops *se_tfo;
544 	struct se_node_acl *se_nacl;
545 	unsigned long flags;
546 	bool drop_nacl = false;
547 
548 	if (!se_tpg) {
549 		transport_free_session(se_sess);
550 		return;
551 	}
552 	se_tfo = se_tpg->se_tpg_tfo;
553 
554 	spin_lock_irqsave(&se_tpg->session_lock, flags);
555 	list_del(&se_sess->sess_list);
556 	se_sess->se_tpg = NULL;
557 	se_sess->fabric_sess_ptr = NULL;
558 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
559 
560 	/*
561 	 * Determine if we need to do extra work for this initiator node's
562 	 * struct se_node_acl if it had been previously dynamically generated.
563 	 */
564 	se_nacl = se_sess->se_node_acl;
565 
566 	mutex_lock(&se_tpg->acl_node_mutex);
567 	if (se_nacl && se_nacl->dynamic_node_acl) {
568 		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
569 			list_del(&se_nacl->acl_list);
570 			drop_nacl = true;
571 		}
572 	}
573 	mutex_unlock(&se_tpg->acl_node_mutex);
574 
575 	if (drop_nacl) {
576 		core_tpg_wait_for_nacl_pr_ref(se_nacl);
577 		core_free_device_list_for_node(se_nacl, se_tpg);
578 		se_sess->se_node_acl = NULL;
579 		kfree(se_nacl);
580 	}
581 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
582 		se_tpg->se_tpg_tfo->get_fabric_name());
583 	/*
584 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
585 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
586 	 * removal context from within transport_free_session() code.
587 	 */
588 
589 	transport_free_session(se_sess);
590 }
591 EXPORT_SYMBOL(transport_deregister_session);
592 
593 static void target_remove_from_state_list(struct se_cmd *cmd)
594 {
595 	struct se_device *dev = cmd->se_dev;
596 	unsigned long flags;
597 
598 	if (!dev)
599 		return;
600 
601 	if (cmd->transport_state & CMD_T_BUSY)
602 		return;
603 
604 	spin_lock_irqsave(&dev->execute_task_lock, flags);
605 	if (cmd->state_active) {
606 		list_del(&cmd->state_list);
607 		cmd->state_active = false;
608 	}
609 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
610 }
611 
612 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
613 				    bool write_pending)
614 {
615 	unsigned long flags;
616 
617 	if (remove_from_lists) {
618 		target_remove_from_state_list(cmd);
619 
620 		/*
621 		 * Clear struct se_cmd->se_lun before the handoff to FE.
622 		 */
623 		cmd->se_lun = NULL;
624 	}
625 
626 	spin_lock_irqsave(&cmd->t_state_lock, flags);
627 	if (write_pending)
628 		cmd->t_state = TRANSPORT_WRITE_PENDING;
629 
630 	/*
631 	 * Determine if frontend context caller is requesting the stopping of
632 	 * this command for frontend exceptions.
633 	 */
634 	if (cmd->transport_state & CMD_T_STOP) {
635 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
636 			__func__, __LINE__, cmd->tag);
637 
638 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
639 
640 		complete_all(&cmd->t_transport_stop_comp);
641 		return 1;
642 	}
643 
644 	cmd->transport_state &= ~CMD_T_ACTIVE;
645 	if (remove_from_lists) {
646 		/*
647 		 * Some fabric modules like tcm_loop can release
648 		 * their internally allocated I/O reference now and
649 		 * struct se_cmd now.
650 		 *
651 		 * Fabric modules are expected to return '1' here if the
652 		 * se_cmd being passed is released at this point,
653 		 * or zero if not being released.
654 		 */
655 		if (cmd->se_tfo->check_stop_free != NULL) {
656 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
657 			return cmd->se_tfo->check_stop_free(cmd);
658 		}
659 	}
660 
661 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
662 	return 0;
663 }
664 
665 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
666 {
667 	return transport_cmd_check_stop(cmd, true, false);
668 }
669 
670 static void transport_lun_remove_cmd(struct se_cmd *cmd)
671 {
672 	struct se_lun *lun = cmd->se_lun;
673 
674 	if (!lun)
675 		return;
676 
677 	if (cmpxchg(&cmd->lun_ref_active, true, false))
678 		percpu_ref_put(&lun->lun_ref);
679 }
680 
681 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
682 {
683 	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
684 
685 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
686 		transport_lun_remove_cmd(cmd);
687 	/*
688 	 * Allow the fabric driver to unmap any resources before
689 	 * releasing the descriptor via TFO->release_cmd()
690 	 */
691 	if (remove)
692 		cmd->se_tfo->aborted_task(cmd);
693 
694 	if (transport_cmd_check_stop_to_fabric(cmd))
695 		return;
696 	if (remove && ack_kref)
697 		transport_put_cmd(cmd);
698 }
699 
700 static void target_complete_failure_work(struct work_struct *work)
701 {
702 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
703 
704 	transport_generic_request_failure(cmd,
705 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
706 }
707 
708 /*
709  * Used when asking transport to copy Sense Data from the underlying
710  * Linux/SCSI struct scsi_cmnd
711  */
712 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
713 {
714 	struct se_device *dev = cmd->se_dev;
715 
716 	WARN_ON(!cmd->se_lun);
717 
718 	if (!dev)
719 		return NULL;
720 
721 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
722 		return NULL;
723 
724 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
725 
726 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
727 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
728 	return cmd->sense_buffer;
729 }
730 
731 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
732 {
733 	struct se_device *dev = cmd->se_dev;
734 	int success = scsi_status == GOOD;
735 	unsigned long flags;
736 
737 	cmd->scsi_status = scsi_status;
738 
739 
740 	spin_lock_irqsave(&cmd->t_state_lock, flags);
741 	cmd->transport_state &= ~CMD_T_BUSY;
742 
743 	if (dev && dev->transport->transport_complete) {
744 		dev->transport->transport_complete(cmd,
745 				cmd->t_data_sg,
746 				transport_get_sense_buffer(cmd));
747 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
748 			success = 1;
749 	}
750 
751 	/*
752 	 * Check for case where an explicit ABORT_TASK has been received
753 	 * and transport_wait_for_tasks() will be waiting for completion..
754 	 */
755 	if (cmd->transport_state & CMD_T_ABORTED ||
756 	    cmd->transport_state & CMD_T_STOP) {
757 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758 		complete_all(&cmd->t_transport_stop_comp);
759 		return;
760 	} else if (!success) {
761 		INIT_WORK(&cmd->work, target_complete_failure_work);
762 	} else {
763 		INIT_WORK(&cmd->work, target_complete_ok_work);
764 	}
765 
766 	cmd->t_state = TRANSPORT_COMPLETE;
767 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
768 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
769 
770 	if (cmd->se_cmd_flags & SCF_USE_CPUID)
771 		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
772 	else
773 		queue_work(target_completion_wq, &cmd->work);
774 }
775 EXPORT_SYMBOL(target_complete_cmd);
776 
777 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
778 {
779 	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
780 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
781 			cmd->residual_count += cmd->data_length - length;
782 		} else {
783 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
784 			cmd->residual_count = cmd->data_length - length;
785 		}
786 
787 		cmd->data_length = length;
788 	}
789 
790 	target_complete_cmd(cmd, scsi_status);
791 }
792 EXPORT_SYMBOL(target_complete_cmd_with_length);
793 
794 static void target_add_to_state_list(struct se_cmd *cmd)
795 {
796 	struct se_device *dev = cmd->se_dev;
797 	unsigned long flags;
798 
799 	spin_lock_irqsave(&dev->execute_task_lock, flags);
800 	if (!cmd->state_active) {
801 		list_add_tail(&cmd->state_list, &dev->state_list);
802 		cmd->state_active = true;
803 	}
804 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
805 }
806 
807 /*
808  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
809  */
810 static void transport_write_pending_qf(struct se_cmd *cmd);
811 static void transport_complete_qf(struct se_cmd *cmd);
812 
813 void target_qf_do_work(struct work_struct *work)
814 {
815 	struct se_device *dev = container_of(work, struct se_device,
816 					qf_work_queue);
817 	LIST_HEAD(qf_cmd_list);
818 	struct se_cmd *cmd, *cmd_tmp;
819 
820 	spin_lock_irq(&dev->qf_cmd_lock);
821 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
822 	spin_unlock_irq(&dev->qf_cmd_lock);
823 
824 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
825 		list_del(&cmd->se_qf_node);
826 		atomic_dec_mb(&dev->dev_qf_count);
827 
828 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
829 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
830 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
831 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
832 			: "UNKNOWN");
833 
834 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
835 			transport_write_pending_qf(cmd);
836 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
837 			transport_complete_qf(cmd);
838 	}
839 }
840 
841 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
842 {
843 	switch (cmd->data_direction) {
844 	case DMA_NONE:
845 		return "NONE";
846 	case DMA_FROM_DEVICE:
847 		return "READ";
848 	case DMA_TO_DEVICE:
849 		return "WRITE";
850 	case DMA_BIDIRECTIONAL:
851 		return "BIDI";
852 	default:
853 		break;
854 	}
855 
856 	return "UNKNOWN";
857 }
858 
859 void transport_dump_dev_state(
860 	struct se_device *dev,
861 	char *b,
862 	int *bl)
863 {
864 	*bl += sprintf(b + *bl, "Status: ");
865 	if (dev->export_count)
866 		*bl += sprintf(b + *bl, "ACTIVATED");
867 	else
868 		*bl += sprintf(b + *bl, "DEACTIVATED");
869 
870 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
871 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
872 		dev->dev_attrib.block_size,
873 		dev->dev_attrib.hw_max_sectors);
874 	*bl += sprintf(b + *bl, "        ");
875 }
876 
877 void transport_dump_vpd_proto_id(
878 	struct t10_vpd *vpd,
879 	unsigned char *p_buf,
880 	int p_buf_len)
881 {
882 	unsigned char buf[VPD_TMP_BUF_SIZE];
883 	int len;
884 
885 	memset(buf, 0, VPD_TMP_BUF_SIZE);
886 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
887 
888 	switch (vpd->protocol_identifier) {
889 	case 0x00:
890 		sprintf(buf+len, "Fibre Channel\n");
891 		break;
892 	case 0x10:
893 		sprintf(buf+len, "Parallel SCSI\n");
894 		break;
895 	case 0x20:
896 		sprintf(buf+len, "SSA\n");
897 		break;
898 	case 0x30:
899 		sprintf(buf+len, "IEEE 1394\n");
900 		break;
901 	case 0x40:
902 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
903 				" Protocol\n");
904 		break;
905 	case 0x50:
906 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
907 		break;
908 	case 0x60:
909 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
910 		break;
911 	case 0x70:
912 		sprintf(buf+len, "Automation/Drive Interface Transport"
913 				" Protocol\n");
914 		break;
915 	case 0x80:
916 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
917 		break;
918 	default:
919 		sprintf(buf+len, "Unknown 0x%02x\n",
920 				vpd->protocol_identifier);
921 		break;
922 	}
923 
924 	if (p_buf)
925 		strncpy(p_buf, buf, p_buf_len);
926 	else
927 		pr_debug("%s", buf);
928 }
929 
930 void
931 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
932 {
933 	/*
934 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
935 	 *
936 	 * from spc3r23.pdf section 7.5.1
937 	 */
938 	 if (page_83[1] & 0x80) {
939 		vpd->protocol_identifier = (page_83[0] & 0xf0);
940 		vpd->protocol_identifier_set = 1;
941 		transport_dump_vpd_proto_id(vpd, NULL, 0);
942 	}
943 }
944 EXPORT_SYMBOL(transport_set_vpd_proto_id);
945 
946 int transport_dump_vpd_assoc(
947 	struct t10_vpd *vpd,
948 	unsigned char *p_buf,
949 	int p_buf_len)
950 {
951 	unsigned char buf[VPD_TMP_BUF_SIZE];
952 	int ret = 0;
953 	int len;
954 
955 	memset(buf, 0, VPD_TMP_BUF_SIZE);
956 	len = sprintf(buf, "T10 VPD Identifier Association: ");
957 
958 	switch (vpd->association) {
959 	case 0x00:
960 		sprintf(buf+len, "addressed logical unit\n");
961 		break;
962 	case 0x10:
963 		sprintf(buf+len, "target port\n");
964 		break;
965 	case 0x20:
966 		sprintf(buf+len, "SCSI target device\n");
967 		break;
968 	default:
969 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
970 		ret = -EINVAL;
971 		break;
972 	}
973 
974 	if (p_buf)
975 		strncpy(p_buf, buf, p_buf_len);
976 	else
977 		pr_debug("%s", buf);
978 
979 	return ret;
980 }
981 
982 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
983 {
984 	/*
985 	 * The VPD identification association..
986 	 *
987 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
988 	 */
989 	vpd->association = (page_83[1] & 0x30);
990 	return transport_dump_vpd_assoc(vpd, NULL, 0);
991 }
992 EXPORT_SYMBOL(transport_set_vpd_assoc);
993 
994 int transport_dump_vpd_ident_type(
995 	struct t10_vpd *vpd,
996 	unsigned char *p_buf,
997 	int p_buf_len)
998 {
999 	unsigned char buf[VPD_TMP_BUF_SIZE];
1000 	int ret = 0;
1001 	int len;
1002 
1003 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1004 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1005 
1006 	switch (vpd->device_identifier_type) {
1007 	case 0x00:
1008 		sprintf(buf+len, "Vendor specific\n");
1009 		break;
1010 	case 0x01:
1011 		sprintf(buf+len, "T10 Vendor ID based\n");
1012 		break;
1013 	case 0x02:
1014 		sprintf(buf+len, "EUI-64 based\n");
1015 		break;
1016 	case 0x03:
1017 		sprintf(buf+len, "NAA\n");
1018 		break;
1019 	case 0x04:
1020 		sprintf(buf+len, "Relative target port identifier\n");
1021 		break;
1022 	case 0x08:
1023 		sprintf(buf+len, "SCSI name string\n");
1024 		break;
1025 	default:
1026 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1027 				vpd->device_identifier_type);
1028 		ret = -EINVAL;
1029 		break;
1030 	}
1031 
1032 	if (p_buf) {
1033 		if (p_buf_len < strlen(buf)+1)
1034 			return -EINVAL;
1035 		strncpy(p_buf, buf, p_buf_len);
1036 	} else {
1037 		pr_debug("%s", buf);
1038 	}
1039 
1040 	return ret;
1041 }
1042 
1043 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1044 {
1045 	/*
1046 	 * The VPD identifier type..
1047 	 *
1048 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1049 	 */
1050 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1051 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1052 }
1053 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1054 
1055 int transport_dump_vpd_ident(
1056 	struct t10_vpd *vpd,
1057 	unsigned char *p_buf,
1058 	int p_buf_len)
1059 {
1060 	unsigned char buf[VPD_TMP_BUF_SIZE];
1061 	int ret = 0;
1062 
1063 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1064 
1065 	switch (vpd->device_identifier_code_set) {
1066 	case 0x01: /* Binary */
1067 		snprintf(buf, sizeof(buf),
1068 			"T10 VPD Binary Device Identifier: %s\n",
1069 			&vpd->device_identifier[0]);
1070 		break;
1071 	case 0x02: /* ASCII */
1072 		snprintf(buf, sizeof(buf),
1073 			"T10 VPD ASCII Device Identifier: %s\n",
1074 			&vpd->device_identifier[0]);
1075 		break;
1076 	case 0x03: /* UTF-8 */
1077 		snprintf(buf, sizeof(buf),
1078 			"T10 VPD UTF-8 Device Identifier: %s\n",
1079 			&vpd->device_identifier[0]);
1080 		break;
1081 	default:
1082 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1083 			" 0x%02x", vpd->device_identifier_code_set);
1084 		ret = -EINVAL;
1085 		break;
1086 	}
1087 
1088 	if (p_buf)
1089 		strncpy(p_buf, buf, p_buf_len);
1090 	else
1091 		pr_debug("%s", buf);
1092 
1093 	return ret;
1094 }
1095 
1096 int
1097 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1098 {
1099 	static const char hex_str[] = "0123456789abcdef";
1100 	int j = 0, i = 4; /* offset to start of the identifier */
1101 
1102 	/*
1103 	 * The VPD Code Set (encoding)
1104 	 *
1105 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1106 	 */
1107 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1108 	switch (vpd->device_identifier_code_set) {
1109 	case 0x01: /* Binary */
1110 		vpd->device_identifier[j++] =
1111 				hex_str[vpd->device_identifier_type];
1112 		while (i < (4 + page_83[3])) {
1113 			vpd->device_identifier[j++] =
1114 				hex_str[(page_83[i] & 0xf0) >> 4];
1115 			vpd->device_identifier[j++] =
1116 				hex_str[page_83[i] & 0x0f];
1117 			i++;
1118 		}
1119 		break;
1120 	case 0x02: /* ASCII */
1121 	case 0x03: /* UTF-8 */
1122 		while (i < (4 + page_83[3]))
1123 			vpd->device_identifier[j++] = page_83[i++];
1124 		break;
1125 	default:
1126 		break;
1127 	}
1128 
1129 	return transport_dump_vpd_ident(vpd, NULL, 0);
1130 }
1131 EXPORT_SYMBOL(transport_set_vpd_ident);
1132 
1133 static sense_reason_t
1134 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1135 			       unsigned int size)
1136 {
1137 	u32 mtl;
1138 
1139 	if (!cmd->se_tfo->max_data_sg_nents)
1140 		return TCM_NO_SENSE;
1141 	/*
1142 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1143 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1144 	 * residual_count and reduce original cmd->data_length to maximum
1145 	 * length based on single PAGE_SIZE entry scatter-lists.
1146 	 */
1147 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1148 	if (cmd->data_length > mtl) {
1149 		/*
1150 		 * If an existing CDB overflow is present, calculate new residual
1151 		 * based on CDB size minus fabric maximum transfer length.
1152 		 *
1153 		 * If an existing CDB underflow is present, calculate new residual
1154 		 * based on original cmd->data_length minus fabric maximum transfer
1155 		 * length.
1156 		 *
1157 		 * Otherwise, set the underflow residual based on cmd->data_length
1158 		 * minus fabric maximum transfer length.
1159 		 */
1160 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1161 			cmd->residual_count = (size - mtl);
1162 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1163 			u32 orig_dl = size + cmd->residual_count;
1164 			cmd->residual_count = (orig_dl - mtl);
1165 		} else {
1166 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1167 			cmd->residual_count = (cmd->data_length - mtl);
1168 		}
1169 		cmd->data_length = mtl;
1170 		/*
1171 		 * Reset sbc_check_prot() calculated protection payload
1172 		 * length based upon the new smaller MTL.
1173 		 */
1174 		if (cmd->prot_length) {
1175 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1176 			cmd->prot_length = dev->prot_length * sectors;
1177 		}
1178 	}
1179 	return TCM_NO_SENSE;
1180 }
1181 
1182 sense_reason_t
1183 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1184 {
1185 	struct se_device *dev = cmd->se_dev;
1186 
1187 	if (cmd->unknown_data_length) {
1188 		cmd->data_length = size;
1189 	} else if (size != cmd->data_length) {
1190 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1191 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1192 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1193 				cmd->data_length, size, cmd->t_task_cdb[0]);
1194 
1195 		if (cmd->data_direction == DMA_TO_DEVICE &&
1196 		    cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1197 			pr_err("Rejecting underflow/overflow WRITE data\n");
1198 			return TCM_INVALID_CDB_FIELD;
1199 		}
1200 		/*
1201 		 * Reject READ_* or WRITE_* with overflow/underflow for
1202 		 * type SCF_SCSI_DATA_CDB.
1203 		 */
1204 		if (dev->dev_attrib.block_size != 512)  {
1205 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1206 				" CDB on non 512-byte sector setup subsystem"
1207 				" plugin: %s\n", dev->transport->name);
1208 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1209 			return TCM_INVALID_CDB_FIELD;
1210 		}
1211 		/*
1212 		 * For the overflow case keep the existing fabric provided
1213 		 * ->data_length.  Otherwise for the underflow case, reset
1214 		 * ->data_length to the smaller SCSI expected data transfer
1215 		 * length.
1216 		 */
1217 		if (size > cmd->data_length) {
1218 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1219 			cmd->residual_count = (size - cmd->data_length);
1220 		} else {
1221 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1222 			cmd->residual_count = (cmd->data_length - size);
1223 			cmd->data_length = size;
1224 		}
1225 	}
1226 
1227 	return target_check_max_data_sg_nents(cmd, dev, size);
1228 
1229 }
1230 
1231 /*
1232  * Used by fabric modules containing a local struct se_cmd within their
1233  * fabric dependent per I/O descriptor.
1234  *
1235  * Preserves the value of @cmd->tag.
1236  */
1237 void transport_init_se_cmd(
1238 	struct se_cmd *cmd,
1239 	const struct target_core_fabric_ops *tfo,
1240 	struct se_session *se_sess,
1241 	u32 data_length,
1242 	int data_direction,
1243 	int task_attr,
1244 	unsigned char *sense_buffer)
1245 {
1246 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1247 	INIT_LIST_HEAD(&cmd->se_qf_node);
1248 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1249 	INIT_LIST_HEAD(&cmd->state_list);
1250 	init_completion(&cmd->t_transport_stop_comp);
1251 	init_completion(&cmd->cmd_wait_comp);
1252 	spin_lock_init(&cmd->t_state_lock);
1253 	kref_init(&cmd->cmd_kref);
1254 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1255 
1256 	cmd->se_tfo = tfo;
1257 	cmd->se_sess = se_sess;
1258 	cmd->data_length = data_length;
1259 	cmd->data_direction = data_direction;
1260 	cmd->sam_task_attr = task_attr;
1261 	cmd->sense_buffer = sense_buffer;
1262 
1263 	cmd->state_active = false;
1264 }
1265 EXPORT_SYMBOL(transport_init_se_cmd);
1266 
1267 static sense_reason_t
1268 transport_check_alloc_task_attr(struct se_cmd *cmd)
1269 {
1270 	struct se_device *dev = cmd->se_dev;
1271 
1272 	/*
1273 	 * Check if SAM Task Attribute emulation is enabled for this
1274 	 * struct se_device storage object
1275 	 */
1276 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1277 		return 0;
1278 
1279 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1280 		pr_debug("SAM Task Attribute ACA"
1281 			" emulation is not supported\n");
1282 		return TCM_INVALID_CDB_FIELD;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 sense_reason_t
1289 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1290 {
1291 	struct se_device *dev = cmd->se_dev;
1292 	sense_reason_t ret;
1293 
1294 	/*
1295 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1296 	 * for VARIABLE_LENGTH_CMD
1297 	 */
1298 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1299 		pr_err("Received SCSI CDB with command_size: %d that"
1300 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1301 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1302 		return TCM_INVALID_CDB_FIELD;
1303 	}
1304 	/*
1305 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1306 	 * allocate the additional extended CDB buffer now..  Otherwise
1307 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1308 	 */
1309 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1310 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1311 						GFP_KERNEL);
1312 		if (!cmd->t_task_cdb) {
1313 			pr_err("Unable to allocate cmd->t_task_cdb"
1314 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1315 				scsi_command_size(cdb),
1316 				(unsigned long)sizeof(cmd->__t_task_cdb));
1317 			return TCM_OUT_OF_RESOURCES;
1318 		}
1319 	} else
1320 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1321 	/*
1322 	 * Copy the original CDB into cmd->
1323 	 */
1324 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1325 
1326 	trace_target_sequencer_start(cmd);
1327 
1328 	/*
1329 	 * Check for an existing UNIT ATTENTION condition
1330 	 */
1331 	ret = target_scsi3_ua_check(cmd);
1332 	if (ret)
1333 		return ret;
1334 
1335 	ret = target_alua_state_check(cmd);
1336 	if (ret)
1337 		return ret;
1338 
1339 	ret = target_check_reservation(cmd);
1340 	if (ret) {
1341 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1342 		return ret;
1343 	}
1344 
1345 	ret = dev->transport->parse_cdb(cmd);
1346 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1347 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1348 				    cmd->se_tfo->get_fabric_name(),
1349 				    cmd->se_sess->se_node_acl->initiatorname,
1350 				    cmd->t_task_cdb[0]);
1351 	if (ret)
1352 		return ret;
1353 
1354 	ret = transport_check_alloc_task_attr(cmd);
1355 	if (ret)
1356 		return ret;
1357 
1358 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1359 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1360 	return 0;
1361 }
1362 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1363 
1364 /*
1365  * Used by fabric module frontends to queue tasks directly.
1366  * May only be used from process context.
1367  */
1368 int transport_handle_cdb_direct(
1369 	struct se_cmd *cmd)
1370 {
1371 	sense_reason_t ret;
1372 
1373 	if (!cmd->se_lun) {
1374 		dump_stack();
1375 		pr_err("cmd->se_lun is NULL\n");
1376 		return -EINVAL;
1377 	}
1378 	if (in_interrupt()) {
1379 		dump_stack();
1380 		pr_err("transport_generic_handle_cdb cannot be called"
1381 				" from interrupt context\n");
1382 		return -EINVAL;
1383 	}
1384 	/*
1385 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1386 	 * outstanding descriptors are handled correctly during shutdown via
1387 	 * transport_wait_for_tasks()
1388 	 *
1389 	 * Also, we don't take cmd->t_state_lock here as we only expect
1390 	 * this to be called for initial descriptor submission.
1391 	 */
1392 	cmd->t_state = TRANSPORT_NEW_CMD;
1393 	cmd->transport_state |= CMD_T_ACTIVE;
1394 
1395 	/*
1396 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1397 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1398 	 * and call transport_generic_request_failure() if necessary..
1399 	 */
1400 	ret = transport_generic_new_cmd(cmd);
1401 	if (ret)
1402 		transport_generic_request_failure(cmd, ret);
1403 	return 0;
1404 }
1405 EXPORT_SYMBOL(transport_handle_cdb_direct);
1406 
1407 sense_reason_t
1408 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1409 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1410 {
1411 	if (!sgl || !sgl_count)
1412 		return 0;
1413 
1414 	/*
1415 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1416 	 * scatterlists already have been set to follow what the fabric
1417 	 * passes for the original expected data transfer length.
1418 	 */
1419 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1420 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1421 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1422 		return TCM_INVALID_CDB_FIELD;
1423 	}
1424 
1425 	cmd->t_data_sg = sgl;
1426 	cmd->t_data_nents = sgl_count;
1427 	cmd->t_bidi_data_sg = sgl_bidi;
1428 	cmd->t_bidi_data_nents = sgl_bidi_count;
1429 
1430 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1431 	return 0;
1432 }
1433 
1434 /*
1435  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1436  * 			 se_cmd + use pre-allocated SGL memory.
1437  *
1438  * @se_cmd: command descriptor to submit
1439  * @se_sess: associated se_sess for endpoint
1440  * @cdb: pointer to SCSI CDB
1441  * @sense: pointer to SCSI sense buffer
1442  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1443  * @data_length: fabric expected data transfer length
1444  * @task_addr: SAM task attribute
1445  * @data_dir: DMA data direction
1446  * @flags: flags for command submission from target_sc_flags_tables
1447  * @sgl: struct scatterlist memory for unidirectional mapping
1448  * @sgl_count: scatterlist count for unidirectional mapping
1449  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1450  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1451  * @sgl_prot: struct scatterlist memory protection information
1452  * @sgl_prot_count: scatterlist count for protection information
1453  *
1454  * Task tags are supported if the caller has set @se_cmd->tag.
1455  *
1456  * Returns non zero to signal active I/O shutdown failure.  All other
1457  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1458  * but still return zero here.
1459  *
1460  * This may only be called from process context, and also currently
1461  * assumes internal allocation of fabric payload buffer by target-core.
1462  */
1463 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1464 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1465 		u32 data_length, int task_attr, int data_dir, int flags,
1466 		struct scatterlist *sgl, u32 sgl_count,
1467 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1468 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1469 {
1470 	struct se_portal_group *se_tpg;
1471 	sense_reason_t rc;
1472 	int ret;
1473 
1474 	se_tpg = se_sess->se_tpg;
1475 	BUG_ON(!se_tpg);
1476 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1477 	BUG_ON(in_interrupt());
1478 	/*
1479 	 * Initialize se_cmd for target operation.  From this point
1480 	 * exceptions are handled by sending exception status via
1481 	 * target_core_fabric_ops->queue_status() callback
1482 	 */
1483 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1484 				data_length, data_dir, task_attr, sense);
1485 
1486 	if (flags & TARGET_SCF_USE_CPUID)
1487 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1488 	else
1489 		se_cmd->cpuid = WORK_CPU_UNBOUND;
1490 
1491 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1492 		se_cmd->unknown_data_length = 1;
1493 	/*
1494 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1495 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1496 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1497 	 * kref_put() to happen during fabric packet acknowledgement.
1498 	 */
1499 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1500 	if (ret)
1501 		return ret;
1502 	/*
1503 	 * Signal bidirectional data payloads to target-core
1504 	 */
1505 	if (flags & TARGET_SCF_BIDI_OP)
1506 		se_cmd->se_cmd_flags |= SCF_BIDI;
1507 	/*
1508 	 * Locate se_lun pointer and attach it to struct se_cmd
1509 	 */
1510 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1511 	if (rc) {
1512 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1513 		target_put_sess_cmd(se_cmd);
1514 		return 0;
1515 	}
1516 
1517 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1518 	if (rc != 0) {
1519 		transport_generic_request_failure(se_cmd, rc);
1520 		return 0;
1521 	}
1522 
1523 	/*
1524 	 * Save pointers for SGLs containing protection information,
1525 	 * if present.
1526 	 */
1527 	if (sgl_prot_count) {
1528 		se_cmd->t_prot_sg = sgl_prot;
1529 		se_cmd->t_prot_nents = sgl_prot_count;
1530 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1531 	}
1532 
1533 	/*
1534 	 * When a non zero sgl_count has been passed perform SGL passthrough
1535 	 * mapping for pre-allocated fabric memory instead of having target
1536 	 * core perform an internal SGL allocation..
1537 	 */
1538 	if (sgl_count != 0) {
1539 		BUG_ON(!sgl);
1540 
1541 		/*
1542 		 * A work-around for tcm_loop as some userspace code via
1543 		 * scsi-generic do not memset their associated read buffers,
1544 		 * so go ahead and do that here for type non-data CDBs.  Also
1545 		 * note that this is currently guaranteed to be a single SGL
1546 		 * for this case by target core in target_setup_cmd_from_cdb()
1547 		 * -> transport_generic_cmd_sequencer().
1548 		 */
1549 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1550 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1551 			unsigned char *buf = NULL;
1552 
1553 			if (sgl)
1554 				buf = kmap(sg_page(sgl)) + sgl->offset;
1555 
1556 			if (buf) {
1557 				memset(buf, 0, sgl->length);
1558 				kunmap(sg_page(sgl));
1559 			}
1560 		}
1561 
1562 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1563 				sgl_bidi, sgl_bidi_count);
1564 		if (rc != 0) {
1565 			transport_generic_request_failure(se_cmd, rc);
1566 			return 0;
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * Check if we need to delay processing because of ALUA
1572 	 * Active/NonOptimized primary access state..
1573 	 */
1574 	core_alua_check_nonop_delay(se_cmd);
1575 
1576 	transport_handle_cdb_direct(se_cmd);
1577 	return 0;
1578 }
1579 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1580 
1581 /*
1582  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1583  *
1584  * @se_cmd: command descriptor to submit
1585  * @se_sess: associated se_sess for endpoint
1586  * @cdb: pointer to SCSI CDB
1587  * @sense: pointer to SCSI sense buffer
1588  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1589  * @data_length: fabric expected data transfer length
1590  * @task_addr: SAM task attribute
1591  * @data_dir: DMA data direction
1592  * @flags: flags for command submission from target_sc_flags_tables
1593  *
1594  * Task tags are supported if the caller has set @se_cmd->tag.
1595  *
1596  * Returns non zero to signal active I/O shutdown failure.  All other
1597  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1598  * but still return zero here.
1599  *
1600  * This may only be called from process context, and also currently
1601  * assumes internal allocation of fabric payload buffer by target-core.
1602  *
1603  * It also assumes interal target core SGL memory allocation.
1604  */
1605 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1606 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1607 		u32 data_length, int task_attr, int data_dir, int flags)
1608 {
1609 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1610 			unpacked_lun, data_length, task_attr, data_dir,
1611 			flags, NULL, 0, NULL, 0, NULL, 0);
1612 }
1613 EXPORT_SYMBOL(target_submit_cmd);
1614 
1615 static void target_complete_tmr_failure(struct work_struct *work)
1616 {
1617 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1618 
1619 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1620 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1621 
1622 	transport_cmd_check_stop_to_fabric(se_cmd);
1623 }
1624 
1625 /**
1626  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1627  *                     for TMR CDBs
1628  *
1629  * @se_cmd: command descriptor to submit
1630  * @se_sess: associated se_sess for endpoint
1631  * @sense: pointer to SCSI sense buffer
1632  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1633  * @fabric_context: fabric context for TMR req
1634  * @tm_type: Type of TM request
1635  * @gfp: gfp type for caller
1636  * @tag: referenced task tag for TMR_ABORT_TASK
1637  * @flags: submit cmd flags
1638  *
1639  * Callable from all contexts.
1640  **/
1641 
1642 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1643 		unsigned char *sense, u64 unpacked_lun,
1644 		void *fabric_tmr_ptr, unsigned char tm_type,
1645 		gfp_t gfp, u64 tag, int flags)
1646 {
1647 	struct se_portal_group *se_tpg;
1648 	int ret;
1649 
1650 	se_tpg = se_sess->se_tpg;
1651 	BUG_ON(!se_tpg);
1652 
1653 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1654 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1655 	/*
1656 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1657 	 * allocation failure.
1658 	 */
1659 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1660 	if (ret < 0)
1661 		return -ENOMEM;
1662 
1663 	if (tm_type == TMR_ABORT_TASK)
1664 		se_cmd->se_tmr_req->ref_task_tag = tag;
1665 
1666 	/* See target_submit_cmd for commentary */
1667 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1668 	if (ret) {
1669 		core_tmr_release_req(se_cmd->se_tmr_req);
1670 		return ret;
1671 	}
1672 
1673 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1674 	if (ret) {
1675 		/*
1676 		 * For callback during failure handling, push this work off
1677 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1678 		 */
1679 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1680 		schedule_work(&se_cmd->work);
1681 		return 0;
1682 	}
1683 	transport_generic_handle_tmr(se_cmd);
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL(target_submit_tmr);
1687 
1688 /*
1689  * Handle SAM-esque emulation for generic transport request failures.
1690  */
1691 void transport_generic_request_failure(struct se_cmd *cmd,
1692 		sense_reason_t sense_reason)
1693 {
1694 	int ret = 0, post_ret = 0;
1695 
1696 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1697 		" CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1698 	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1699 		cmd->se_tfo->get_cmd_state(cmd),
1700 		cmd->t_state, sense_reason);
1701 	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1702 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1703 		(cmd->transport_state & CMD_T_STOP) != 0,
1704 		(cmd->transport_state & CMD_T_SENT) != 0);
1705 
1706 	/*
1707 	 * For SAM Task Attribute emulation for failed struct se_cmd
1708 	 */
1709 	transport_complete_task_attr(cmd);
1710 	/*
1711 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1712 	 * callback is expected to drop the per device ->caw_sem.
1713 	 */
1714 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1715 	     cmd->transport_complete_callback)
1716 		cmd->transport_complete_callback(cmd, false, &post_ret);
1717 
1718 	switch (sense_reason) {
1719 	case TCM_NON_EXISTENT_LUN:
1720 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1721 	case TCM_INVALID_CDB_FIELD:
1722 	case TCM_INVALID_PARAMETER_LIST:
1723 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1724 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1725 	case TCM_UNKNOWN_MODE_PAGE:
1726 	case TCM_WRITE_PROTECTED:
1727 	case TCM_ADDRESS_OUT_OF_RANGE:
1728 	case TCM_CHECK_CONDITION_ABORT_CMD:
1729 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1730 	case TCM_CHECK_CONDITION_NOT_READY:
1731 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1732 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1733 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1734 		break;
1735 	case TCM_OUT_OF_RESOURCES:
1736 		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1737 		break;
1738 	case TCM_RESERVATION_CONFLICT:
1739 		/*
1740 		 * No SENSE Data payload for this case, set SCSI Status
1741 		 * and queue the response to $FABRIC_MOD.
1742 		 *
1743 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1744 		 */
1745 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1746 		/*
1747 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1748 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1749 		 * CONFLICT STATUS.
1750 		 *
1751 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1752 		 */
1753 		if (cmd->se_sess &&
1754 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1755 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1756 					       cmd->orig_fe_lun, 0x2C,
1757 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1758 		}
1759 		trace_target_cmd_complete(cmd);
1760 		ret = cmd->se_tfo->queue_status(cmd);
1761 		if (ret == -EAGAIN || ret == -ENOMEM)
1762 			goto queue_full;
1763 		goto check_stop;
1764 	default:
1765 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1766 			cmd->t_task_cdb[0], sense_reason);
1767 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1768 		break;
1769 	}
1770 
1771 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1772 	if (ret == -EAGAIN || ret == -ENOMEM)
1773 		goto queue_full;
1774 
1775 check_stop:
1776 	transport_lun_remove_cmd(cmd);
1777 	transport_cmd_check_stop_to_fabric(cmd);
1778 	return;
1779 
1780 queue_full:
1781 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1782 	transport_handle_queue_full(cmd, cmd->se_dev);
1783 }
1784 EXPORT_SYMBOL(transport_generic_request_failure);
1785 
1786 void __target_execute_cmd(struct se_cmd *cmd)
1787 {
1788 	sense_reason_t ret;
1789 
1790 	if (cmd->execute_cmd) {
1791 		ret = cmd->execute_cmd(cmd);
1792 		if (ret) {
1793 			spin_lock_irq(&cmd->t_state_lock);
1794 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1795 			spin_unlock_irq(&cmd->t_state_lock);
1796 
1797 			transport_generic_request_failure(cmd, ret);
1798 		}
1799 	}
1800 }
1801 
1802 static int target_write_prot_action(struct se_cmd *cmd)
1803 {
1804 	u32 sectors;
1805 	/*
1806 	 * Perform WRITE_INSERT of PI using software emulation when backend
1807 	 * device has PI enabled, if the transport has not already generated
1808 	 * PI using hardware WRITE_INSERT offload.
1809 	 */
1810 	switch (cmd->prot_op) {
1811 	case TARGET_PROT_DOUT_INSERT:
1812 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1813 			sbc_dif_generate(cmd);
1814 		break;
1815 	case TARGET_PROT_DOUT_STRIP:
1816 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1817 			break;
1818 
1819 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1820 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1821 					     sectors, 0, cmd->t_prot_sg, 0);
1822 		if (unlikely(cmd->pi_err)) {
1823 			spin_lock_irq(&cmd->t_state_lock);
1824 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1825 			spin_unlock_irq(&cmd->t_state_lock);
1826 			transport_generic_request_failure(cmd, cmd->pi_err);
1827 			return -1;
1828 		}
1829 		break;
1830 	default:
1831 		break;
1832 	}
1833 
1834 	return 0;
1835 }
1836 
1837 static bool target_handle_task_attr(struct se_cmd *cmd)
1838 {
1839 	struct se_device *dev = cmd->se_dev;
1840 
1841 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1842 		return false;
1843 
1844 	/*
1845 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1846 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1847 	 */
1848 	switch (cmd->sam_task_attr) {
1849 	case TCM_HEAD_TAG:
1850 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1851 			 cmd->t_task_cdb[0]);
1852 		return false;
1853 	case TCM_ORDERED_TAG:
1854 		atomic_inc_mb(&dev->dev_ordered_sync);
1855 
1856 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1857 			 cmd->t_task_cdb[0]);
1858 
1859 		/*
1860 		 * Execute an ORDERED command if no other older commands
1861 		 * exist that need to be completed first.
1862 		 */
1863 		if (!atomic_read(&dev->simple_cmds))
1864 			return false;
1865 		break;
1866 	default:
1867 		/*
1868 		 * For SIMPLE and UNTAGGED Task Attribute commands
1869 		 */
1870 		atomic_inc_mb(&dev->simple_cmds);
1871 		break;
1872 	}
1873 
1874 	if (atomic_read(&dev->dev_ordered_sync) == 0)
1875 		return false;
1876 
1877 	spin_lock(&dev->delayed_cmd_lock);
1878 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1879 	spin_unlock(&dev->delayed_cmd_lock);
1880 
1881 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1882 		cmd->t_task_cdb[0], cmd->sam_task_attr);
1883 	return true;
1884 }
1885 
1886 static int __transport_check_aborted_status(struct se_cmd *, int);
1887 
1888 void target_execute_cmd(struct se_cmd *cmd)
1889 {
1890 	/*
1891 	 * Determine if frontend context caller is requesting the stopping of
1892 	 * this command for frontend exceptions.
1893 	 *
1894 	 * If the received CDB has aleady been aborted stop processing it here.
1895 	 */
1896 	spin_lock_irq(&cmd->t_state_lock);
1897 	if (__transport_check_aborted_status(cmd, 1)) {
1898 		spin_unlock_irq(&cmd->t_state_lock);
1899 		return;
1900 	}
1901 	if (cmd->transport_state & CMD_T_STOP) {
1902 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1903 			__func__, __LINE__, cmd->tag);
1904 
1905 		spin_unlock_irq(&cmd->t_state_lock);
1906 		complete_all(&cmd->t_transport_stop_comp);
1907 		return;
1908 	}
1909 
1910 	cmd->t_state = TRANSPORT_PROCESSING;
1911 	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1912 	spin_unlock_irq(&cmd->t_state_lock);
1913 
1914 	if (target_write_prot_action(cmd))
1915 		return;
1916 
1917 	if (target_handle_task_attr(cmd)) {
1918 		spin_lock_irq(&cmd->t_state_lock);
1919 		cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1920 		spin_unlock_irq(&cmd->t_state_lock);
1921 		return;
1922 	}
1923 
1924 	__target_execute_cmd(cmd);
1925 }
1926 EXPORT_SYMBOL(target_execute_cmd);
1927 
1928 /*
1929  * Process all commands up to the last received ORDERED task attribute which
1930  * requires another blocking boundary
1931  */
1932 static void target_restart_delayed_cmds(struct se_device *dev)
1933 {
1934 	for (;;) {
1935 		struct se_cmd *cmd;
1936 
1937 		spin_lock(&dev->delayed_cmd_lock);
1938 		if (list_empty(&dev->delayed_cmd_list)) {
1939 			spin_unlock(&dev->delayed_cmd_lock);
1940 			break;
1941 		}
1942 
1943 		cmd = list_entry(dev->delayed_cmd_list.next,
1944 				 struct se_cmd, se_delayed_node);
1945 		list_del(&cmd->se_delayed_node);
1946 		spin_unlock(&dev->delayed_cmd_lock);
1947 
1948 		__target_execute_cmd(cmd);
1949 
1950 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1951 			break;
1952 	}
1953 }
1954 
1955 /*
1956  * Called from I/O completion to determine which dormant/delayed
1957  * and ordered cmds need to have their tasks added to the execution queue.
1958  */
1959 static void transport_complete_task_attr(struct se_cmd *cmd)
1960 {
1961 	struct se_device *dev = cmd->se_dev;
1962 
1963 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1964 		return;
1965 
1966 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1967 		atomic_dec_mb(&dev->simple_cmds);
1968 		dev->dev_cur_ordered_id++;
1969 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1970 			 dev->dev_cur_ordered_id);
1971 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1972 		dev->dev_cur_ordered_id++;
1973 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1974 			 dev->dev_cur_ordered_id);
1975 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1976 		atomic_dec_mb(&dev->dev_ordered_sync);
1977 
1978 		dev->dev_cur_ordered_id++;
1979 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1980 			 dev->dev_cur_ordered_id);
1981 	}
1982 
1983 	target_restart_delayed_cmds(dev);
1984 }
1985 
1986 static void transport_complete_qf(struct se_cmd *cmd)
1987 {
1988 	int ret = 0;
1989 
1990 	transport_complete_task_attr(cmd);
1991 
1992 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1993 		trace_target_cmd_complete(cmd);
1994 		ret = cmd->se_tfo->queue_status(cmd);
1995 		goto out;
1996 	}
1997 
1998 	switch (cmd->data_direction) {
1999 	case DMA_FROM_DEVICE:
2000 		if (cmd->scsi_status)
2001 			goto queue_status;
2002 
2003 		trace_target_cmd_complete(cmd);
2004 		ret = cmd->se_tfo->queue_data_in(cmd);
2005 		break;
2006 	case DMA_TO_DEVICE:
2007 		if (cmd->se_cmd_flags & SCF_BIDI) {
2008 			ret = cmd->se_tfo->queue_data_in(cmd);
2009 			break;
2010 		}
2011 		/* Fall through for DMA_TO_DEVICE */
2012 	case DMA_NONE:
2013 queue_status:
2014 		trace_target_cmd_complete(cmd);
2015 		ret = cmd->se_tfo->queue_status(cmd);
2016 		break;
2017 	default:
2018 		break;
2019 	}
2020 
2021 out:
2022 	if (ret < 0) {
2023 		transport_handle_queue_full(cmd, cmd->se_dev);
2024 		return;
2025 	}
2026 	transport_lun_remove_cmd(cmd);
2027 	transport_cmd_check_stop_to_fabric(cmd);
2028 }
2029 
2030 static void transport_handle_queue_full(
2031 	struct se_cmd *cmd,
2032 	struct se_device *dev)
2033 {
2034 	spin_lock_irq(&dev->qf_cmd_lock);
2035 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2036 	atomic_inc_mb(&dev->dev_qf_count);
2037 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2038 
2039 	schedule_work(&cmd->se_dev->qf_work_queue);
2040 }
2041 
2042 static bool target_read_prot_action(struct se_cmd *cmd)
2043 {
2044 	switch (cmd->prot_op) {
2045 	case TARGET_PROT_DIN_STRIP:
2046 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2047 			u32 sectors = cmd->data_length >>
2048 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2049 
2050 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2051 						     sectors, 0, cmd->t_prot_sg,
2052 						     0);
2053 			if (cmd->pi_err)
2054 				return true;
2055 		}
2056 		break;
2057 	case TARGET_PROT_DIN_INSERT:
2058 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2059 			break;
2060 
2061 		sbc_dif_generate(cmd);
2062 		break;
2063 	default:
2064 		break;
2065 	}
2066 
2067 	return false;
2068 }
2069 
2070 static void target_complete_ok_work(struct work_struct *work)
2071 {
2072 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2073 	int ret;
2074 
2075 	/*
2076 	 * Check if we need to move delayed/dormant tasks from cmds on the
2077 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2078 	 * Attribute.
2079 	 */
2080 	transport_complete_task_attr(cmd);
2081 
2082 	/*
2083 	 * Check to schedule QUEUE_FULL work, or execute an existing
2084 	 * cmd->transport_qf_callback()
2085 	 */
2086 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2087 		schedule_work(&cmd->se_dev->qf_work_queue);
2088 
2089 	/*
2090 	 * Check if we need to send a sense buffer from
2091 	 * the struct se_cmd in question.
2092 	 */
2093 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2094 		WARN_ON(!cmd->scsi_status);
2095 		ret = transport_send_check_condition_and_sense(
2096 					cmd, 0, 1);
2097 		if (ret == -EAGAIN || ret == -ENOMEM)
2098 			goto queue_full;
2099 
2100 		transport_lun_remove_cmd(cmd);
2101 		transport_cmd_check_stop_to_fabric(cmd);
2102 		return;
2103 	}
2104 	/*
2105 	 * Check for a callback, used by amongst other things
2106 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2107 	 */
2108 	if (cmd->transport_complete_callback) {
2109 		sense_reason_t rc;
2110 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2111 		bool zero_dl = !(cmd->data_length);
2112 		int post_ret = 0;
2113 
2114 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2115 		if (!rc && !post_ret) {
2116 			if (caw && zero_dl)
2117 				goto queue_rsp;
2118 
2119 			return;
2120 		} else if (rc) {
2121 			ret = transport_send_check_condition_and_sense(cmd,
2122 						rc, 0);
2123 			if (ret == -EAGAIN || ret == -ENOMEM)
2124 				goto queue_full;
2125 
2126 			transport_lun_remove_cmd(cmd);
2127 			transport_cmd_check_stop_to_fabric(cmd);
2128 			return;
2129 		}
2130 	}
2131 
2132 queue_rsp:
2133 	switch (cmd->data_direction) {
2134 	case DMA_FROM_DEVICE:
2135 		if (cmd->scsi_status)
2136 			goto queue_status;
2137 
2138 		atomic_long_add(cmd->data_length,
2139 				&cmd->se_lun->lun_stats.tx_data_octets);
2140 		/*
2141 		 * Perform READ_STRIP of PI using software emulation when
2142 		 * backend had PI enabled, if the transport will not be
2143 		 * performing hardware READ_STRIP offload.
2144 		 */
2145 		if (target_read_prot_action(cmd)) {
2146 			ret = transport_send_check_condition_and_sense(cmd,
2147 						cmd->pi_err, 0);
2148 			if (ret == -EAGAIN || ret == -ENOMEM)
2149 				goto queue_full;
2150 
2151 			transport_lun_remove_cmd(cmd);
2152 			transport_cmd_check_stop_to_fabric(cmd);
2153 			return;
2154 		}
2155 
2156 		trace_target_cmd_complete(cmd);
2157 		ret = cmd->se_tfo->queue_data_in(cmd);
2158 		if (ret == -EAGAIN || ret == -ENOMEM)
2159 			goto queue_full;
2160 		break;
2161 	case DMA_TO_DEVICE:
2162 		atomic_long_add(cmd->data_length,
2163 				&cmd->se_lun->lun_stats.rx_data_octets);
2164 		/*
2165 		 * Check if we need to send READ payload for BIDI-COMMAND
2166 		 */
2167 		if (cmd->se_cmd_flags & SCF_BIDI) {
2168 			atomic_long_add(cmd->data_length,
2169 					&cmd->se_lun->lun_stats.tx_data_octets);
2170 			ret = cmd->se_tfo->queue_data_in(cmd);
2171 			if (ret == -EAGAIN || ret == -ENOMEM)
2172 				goto queue_full;
2173 			break;
2174 		}
2175 		/* Fall through for DMA_TO_DEVICE */
2176 	case DMA_NONE:
2177 queue_status:
2178 		trace_target_cmd_complete(cmd);
2179 		ret = cmd->se_tfo->queue_status(cmd);
2180 		if (ret == -EAGAIN || ret == -ENOMEM)
2181 			goto queue_full;
2182 		break;
2183 	default:
2184 		break;
2185 	}
2186 
2187 	transport_lun_remove_cmd(cmd);
2188 	transport_cmd_check_stop_to_fabric(cmd);
2189 	return;
2190 
2191 queue_full:
2192 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2193 		" data_direction: %d\n", cmd, cmd->data_direction);
2194 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2195 	transport_handle_queue_full(cmd, cmd->se_dev);
2196 }
2197 
2198 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2199 {
2200 	struct scatterlist *sg;
2201 	int count;
2202 
2203 	for_each_sg(sgl, sg, nents, count)
2204 		__free_page(sg_page(sg));
2205 
2206 	kfree(sgl);
2207 }
2208 
2209 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2210 {
2211 	/*
2212 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2213 	 * emulation, and free + reset pointers if necessary..
2214 	 */
2215 	if (!cmd->t_data_sg_orig)
2216 		return;
2217 
2218 	kfree(cmd->t_data_sg);
2219 	cmd->t_data_sg = cmd->t_data_sg_orig;
2220 	cmd->t_data_sg_orig = NULL;
2221 	cmd->t_data_nents = cmd->t_data_nents_orig;
2222 	cmd->t_data_nents_orig = 0;
2223 }
2224 
2225 static inline void transport_free_pages(struct se_cmd *cmd)
2226 {
2227 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2228 		transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2229 		cmd->t_prot_sg = NULL;
2230 		cmd->t_prot_nents = 0;
2231 	}
2232 
2233 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2234 		/*
2235 		 * Release special case READ buffer payload required for
2236 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2237 		 */
2238 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2239 			transport_free_sgl(cmd->t_bidi_data_sg,
2240 					   cmd->t_bidi_data_nents);
2241 			cmd->t_bidi_data_sg = NULL;
2242 			cmd->t_bidi_data_nents = 0;
2243 		}
2244 		transport_reset_sgl_orig(cmd);
2245 		return;
2246 	}
2247 	transport_reset_sgl_orig(cmd);
2248 
2249 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2250 	cmd->t_data_sg = NULL;
2251 	cmd->t_data_nents = 0;
2252 
2253 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2254 	cmd->t_bidi_data_sg = NULL;
2255 	cmd->t_bidi_data_nents = 0;
2256 }
2257 
2258 /**
2259  * transport_put_cmd - release a reference to a command
2260  * @cmd:       command to release
2261  *
2262  * This routine releases our reference to the command and frees it if possible.
2263  */
2264 static int transport_put_cmd(struct se_cmd *cmd)
2265 {
2266 	BUG_ON(!cmd->se_tfo);
2267 	/*
2268 	 * If this cmd has been setup with target_get_sess_cmd(), drop
2269 	 * the kref and call ->release_cmd() in kref callback.
2270 	 */
2271 	return target_put_sess_cmd(cmd);
2272 }
2273 
2274 void *transport_kmap_data_sg(struct se_cmd *cmd)
2275 {
2276 	struct scatterlist *sg = cmd->t_data_sg;
2277 	struct page **pages;
2278 	int i;
2279 
2280 	/*
2281 	 * We need to take into account a possible offset here for fabrics like
2282 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2283 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2284 	 */
2285 	if (!cmd->t_data_nents)
2286 		return NULL;
2287 
2288 	BUG_ON(!sg);
2289 	if (cmd->t_data_nents == 1)
2290 		return kmap(sg_page(sg)) + sg->offset;
2291 
2292 	/* >1 page. use vmap */
2293 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2294 	if (!pages)
2295 		return NULL;
2296 
2297 	/* convert sg[] to pages[] */
2298 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2299 		pages[i] = sg_page(sg);
2300 	}
2301 
2302 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2303 	kfree(pages);
2304 	if (!cmd->t_data_vmap)
2305 		return NULL;
2306 
2307 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2308 }
2309 EXPORT_SYMBOL(transport_kmap_data_sg);
2310 
2311 void transport_kunmap_data_sg(struct se_cmd *cmd)
2312 {
2313 	if (!cmd->t_data_nents) {
2314 		return;
2315 	} else if (cmd->t_data_nents == 1) {
2316 		kunmap(sg_page(cmd->t_data_sg));
2317 		return;
2318 	}
2319 
2320 	vunmap(cmd->t_data_vmap);
2321 	cmd->t_data_vmap = NULL;
2322 }
2323 EXPORT_SYMBOL(transport_kunmap_data_sg);
2324 
2325 int
2326 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2327 		 bool zero_page)
2328 {
2329 	struct scatterlist *sg;
2330 	struct page *page;
2331 	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2332 	unsigned int nent;
2333 	int i = 0;
2334 
2335 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
2336 	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2337 	if (!sg)
2338 		return -ENOMEM;
2339 
2340 	sg_init_table(sg, nent);
2341 
2342 	while (length) {
2343 		u32 page_len = min_t(u32, length, PAGE_SIZE);
2344 		page = alloc_page(GFP_KERNEL | zero_flag);
2345 		if (!page)
2346 			goto out;
2347 
2348 		sg_set_page(&sg[i], page, page_len, 0);
2349 		length -= page_len;
2350 		i++;
2351 	}
2352 	*sgl = sg;
2353 	*nents = nent;
2354 	return 0;
2355 
2356 out:
2357 	while (i > 0) {
2358 		i--;
2359 		__free_page(sg_page(&sg[i]));
2360 	}
2361 	kfree(sg);
2362 	return -ENOMEM;
2363 }
2364 
2365 /*
2366  * Allocate any required resources to execute the command.  For writes we
2367  * might not have the payload yet, so notify the fabric via a call to
2368  * ->write_pending instead. Otherwise place it on the execution queue.
2369  */
2370 sense_reason_t
2371 transport_generic_new_cmd(struct se_cmd *cmd)
2372 {
2373 	int ret = 0;
2374 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2375 
2376 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2377 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2378 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2379 				       cmd->prot_length, true);
2380 		if (ret < 0)
2381 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2382 	}
2383 
2384 	/*
2385 	 * Determine is the TCM fabric module has already allocated physical
2386 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2387 	 * beforehand.
2388 	 */
2389 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2390 	    cmd->data_length) {
2391 
2392 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2393 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2394 			u32 bidi_length;
2395 
2396 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2397 				bidi_length = cmd->t_task_nolb *
2398 					      cmd->se_dev->dev_attrib.block_size;
2399 			else
2400 				bidi_length = cmd->data_length;
2401 
2402 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2403 					       &cmd->t_bidi_data_nents,
2404 					       bidi_length, zero_flag);
2405 			if (ret < 0)
2406 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2407 		}
2408 
2409 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2410 				       cmd->data_length, zero_flag);
2411 		if (ret < 0)
2412 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2413 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2414 		    cmd->data_length) {
2415 		/*
2416 		 * Special case for COMPARE_AND_WRITE with fabrics
2417 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2418 		 */
2419 		u32 caw_length = cmd->t_task_nolb *
2420 				 cmd->se_dev->dev_attrib.block_size;
2421 
2422 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2423 				       &cmd->t_bidi_data_nents,
2424 				       caw_length, zero_flag);
2425 		if (ret < 0)
2426 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2427 	}
2428 	/*
2429 	 * If this command is not a write we can execute it right here,
2430 	 * for write buffers we need to notify the fabric driver first
2431 	 * and let it call back once the write buffers are ready.
2432 	 */
2433 	target_add_to_state_list(cmd);
2434 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2435 		target_execute_cmd(cmd);
2436 		return 0;
2437 	}
2438 	transport_cmd_check_stop(cmd, false, true);
2439 
2440 	ret = cmd->se_tfo->write_pending(cmd);
2441 	if (ret == -EAGAIN || ret == -ENOMEM)
2442 		goto queue_full;
2443 
2444 	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2445 	WARN_ON(ret);
2446 
2447 	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2448 
2449 queue_full:
2450 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2451 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2452 	transport_handle_queue_full(cmd, cmd->se_dev);
2453 	return 0;
2454 }
2455 EXPORT_SYMBOL(transport_generic_new_cmd);
2456 
2457 static void transport_write_pending_qf(struct se_cmd *cmd)
2458 {
2459 	int ret;
2460 
2461 	ret = cmd->se_tfo->write_pending(cmd);
2462 	if (ret == -EAGAIN || ret == -ENOMEM) {
2463 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2464 			 cmd);
2465 		transport_handle_queue_full(cmd, cmd->se_dev);
2466 	}
2467 }
2468 
2469 static bool
2470 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2471 			   unsigned long *flags);
2472 
2473 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2474 {
2475 	unsigned long flags;
2476 
2477 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2478 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2479 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2480 }
2481 
2482 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2483 {
2484 	int ret = 0;
2485 	bool aborted = false, tas = false;
2486 
2487 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2488 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2489 			target_wait_free_cmd(cmd, &aborted, &tas);
2490 
2491 		if (!aborted || tas)
2492 			ret = transport_put_cmd(cmd);
2493 	} else {
2494 		if (wait_for_tasks)
2495 			target_wait_free_cmd(cmd, &aborted, &tas);
2496 		/*
2497 		 * Handle WRITE failure case where transport_generic_new_cmd()
2498 		 * has already added se_cmd to state_list, but fabric has
2499 		 * failed command before I/O submission.
2500 		 */
2501 		if (cmd->state_active)
2502 			target_remove_from_state_list(cmd);
2503 
2504 		if (cmd->se_lun)
2505 			transport_lun_remove_cmd(cmd);
2506 
2507 		if (!aborted || tas)
2508 			ret = transport_put_cmd(cmd);
2509 	}
2510 	/*
2511 	 * If the task has been internally aborted due to TMR ABORT_TASK
2512 	 * or LUN_RESET, target_core_tmr.c is responsible for performing
2513 	 * the remaining calls to target_put_sess_cmd(), and not the
2514 	 * callers of this function.
2515 	 */
2516 	if (aborted) {
2517 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2518 		wait_for_completion(&cmd->cmd_wait_comp);
2519 		cmd->se_tfo->release_cmd(cmd);
2520 		ret = 1;
2521 	}
2522 	return ret;
2523 }
2524 EXPORT_SYMBOL(transport_generic_free_cmd);
2525 
2526 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2527  * @se_cmd:	command descriptor to add
2528  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2529  */
2530 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2531 {
2532 	struct se_session *se_sess = se_cmd->se_sess;
2533 	unsigned long flags;
2534 	int ret = 0;
2535 
2536 	/*
2537 	 * Add a second kref if the fabric caller is expecting to handle
2538 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2539 	 * invocations before se_cmd descriptor release.
2540 	 */
2541 	if (ack_kref)
2542 		kref_get(&se_cmd->cmd_kref);
2543 
2544 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2545 	if (se_sess->sess_tearing_down) {
2546 		ret = -ESHUTDOWN;
2547 		goto out;
2548 	}
2549 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2550 out:
2551 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2552 
2553 	if (ret && ack_kref)
2554 		target_put_sess_cmd(se_cmd);
2555 
2556 	return ret;
2557 }
2558 EXPORT_SYMBOL(target_get_sess_cmd);
2559 
2560 static void target_free_cmd_mem(struct se_cmd *cmd)
2561 {
2562 	transport_free_pages(cmd);
2563 
2564 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2565 		core_tmr_release_req(cmd->se_tmr_req);
2566 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2567 		kfree(cmd->t_task_cdb);
2568 }
2569 
2570 static void target_release_cmd_kref(struct kref *kref)
2571 {
2572 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2573 	struct se_session *se_sess = se_cmd->se_sess;
2574 	unsigned long flags;
2575 	bool fabric_stop;
2576 
2577 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2578 	if (list_empty(&se_cmd->se_cmd_list)) {
2579 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2580 		target_free_cmd_mem(se_cmd);
2581 		se_cmd->se_tfo->release_cmd(se_cmd);
2582 		return;
2583 	}
2584 
2585 	spin_lock(&se_cmd->t_state_lock);
2586 	fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP);
2587 	spin_unlock(&se_cmd->t_state_lock);
2588 
2589 	if (se_cmd->cmd_wait_set || fabric_stop) {
2590 		list_del_init(&se_cmd->se_cmd_list);
2591 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2592 		target_free_cmd_mem(se_cmd);
2593 		complete(&se_cmd->cmd_wait_comp);
2594 		return;
2595 	}
2596 	list_del_init(&se_cmd->se_cmd_list);
2597 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2598 
2599 	target_free_cmd_mem(se_cmd);
2600 	se_cmd->se_tfo->release_cmd(se_cmd);
2601 }
2602 
2603 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2604  * @se_cmd:	command descriptor to drop
2605  */
2606 int target_put_sess_cmd(struct se_cmd *se_cmd)
2607 {
2608 	struct se_session *se_sess = se_cmd->se_sess;
2609 
2610 	if (!se_sess) {
2611 		target_free_cmd_mem(se_cmd);
2612 		se_cmd->se_tfo->release_cmd(se_cmd);
2613 		return 1;
2614 	}
2615 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2616 }
2617 EXPORT_SYMBOL(target_put_sess_cmd);
2618 
2619 /* target_sess_cmd_list_set_waiting - Flag all commands in
2620  *         sess_cmd_list to complete cmd_wait_comp.  Set
2621  *         sess_tearing_down so no more commands are queued.
2622  * @se_sess:	session to flag
2623  */
2624 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2625 {
2626 	struct se_cmd *se_cmd;
2627 	unsigned long flags;
2628 	int rc;
2629 
2630 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2631 	if (se_sess->sess_tearing_down) {
2632 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2633 		return;
2634 	}
2635 	se_sess->sess_tearing_down = 1;
2636 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2637 
2638 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2639 		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2640 		if (rc) {
2641 			se_cmd->cmd_wait_set = 1;
2642 			spin_lock(&se_cmd->t_state_lock);
2643 			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2644 			spin_unlock(&se_cmd->t_state_lock);
2645 		}
2646 	}
2647 
2648 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2649 }
2650 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2651 
2652 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2653  * @se_sess:    session to wait for active I/O
2654  */
2655 void target_wait_for_sess_cmds(struct se_session *se_sess)
2656 {
2657 	struct se_cmd *se_cmd, *tmp_cmd;
2658 	unsigned long flags;
2659 	bool tas;
2660 
2661 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2662 				&se_sess->sess_wait_list, se_cmd_list) {
2663 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2664 			" %d\n", se_cmd, se_cmd->t_state,
2665 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2666 
2667 		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2668 		tas = (se_cmd->transport_state & CMD_T_TAS);
2669 		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2670 
2671 		if (!target_put_sess_cmd(se_cmd)) {
2672 			if (tas)
2673 				target_put_sess_cmd(se_cmd);
2674 		}
2675 
2676 		wait_for_completion(&se_cmd->cmd_wait_comp);
2677 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2678 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2679 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2680 
2681 		se_cmd->se_tfo->release_cmd(se_cmd);
2682 	}
2683 
2684 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2685 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2686 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2687 
2688 }
2689 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2690 
2691 void transport_clear_lun_ref(struct se_lun *lun)
2692 {
2693 	percpu_ref_kill(&lun->lun_ref);
2694 	wait_for_completion(&lun->lun_ref_comp);
2695 }
2696 
2697 static bool
2698 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2699 			   bool *aborted, bool *tas, unsigned long *flags)
2700 	__releases(&cmd->t_state_lock)
2701 	__acquires(&cmd->t_state_lock)
2702 {
2703 
2704 	assert_spin_locked(&cmd->t_state_lock);
2705 	WARN_ON_ONCE(!irqs_disabled());
2706 
2707 	if (fabric_stop)
2708 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2709 
2710 	if (cmd->transport_state & CMD_T_ABORTED)
2711 		*aborted = true;
2712 
2713 	if (cmd->transport_state & CMD_T_TAS)
2714 		*tas = true;
2715 
2716 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2717 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2718 		return false;
2719 
2720 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2721 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2722 		return false;
2723 
2724 	if (!(cmd->transport_state & CMD_T_ACTIVE))
2725 		return false;
2726 
2727 	if (fabric_stop && *aborted)
2728 		return false;
2729 
2730 	cmd->transport_state |= CMD_T_STOP;
2731 
2732 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2733 		 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2734 		 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2735 
2736 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2737 
2738 	wait_for_completion(&cmd->t_transport_stop_comp);
2739 
2740 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2741 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2742 
2743 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2744 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2745 
2746 	return true;
2747 }
2748 
2749 /**
2750  * transport_wait_for_tasks - wait for completion to occur
2751  * @cmd:	command to wait
2752  *
2753  * Called from frontend fabric context to wait for storage engine
2754  * to pause and/or release frontend generated struct se_cmd.
2755  */
2756 bool transport_wait_for_tasks(struct se_cmd *cmd)
2757 {
2758 	unsigned long flags;
2759 	bool ret, aborted = false, tas = false;
2760 
2761 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2762 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2763 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2764 
2765 	return ret;
2766 }
2767 EXPORT_SYMBOL(transport_wait_for_tasks);
2768 
2769 struct sense_info {
2770 	u8 key;
2771 	u8 asc;
2772 	u8 ascq;
2773 	bool add_sector_info;
2774 };
2775 
2776 static const struct sense_info sense_info_table[] = {
2777 	[TCM_NO_SENSE] = {
2778 		.key = NOT_READY
2779 	},
2780 	[TCM_NON_EXISTENT_LUN] = {
2781 		.key = ILLEGAL_REQUEST,
2782 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2783 	},
2784 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
2785 		.key = ILLEGAL_REQUEST,
2786 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2787 	},
2788 	[TCM_SECTOR_COUNT_TOO_MANY] = {
2789 		.key = ILLEGAL_REQUEST,
2790 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2791 	},
2792 	[TCM_UNKNOWN_MODE_PAGE] = {
2793 		.key = ILLEGAL_REQUEST,
2794 		.asc = 0x24, /* INVALID FIELD IN CDB */
2795 	},
2796 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
2797 		.key = ABORTED_COMMAND,
2798 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2799 		.ascq = 0x03,
2800 	},
2801 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
2802 		.key = ABORTED_COMMAND,
2803 		.asc = 0x0c, /* WRITE ERROR */
2804 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2805 	},
2806 	[TCM_INVALID_CDB_FIELD] = {
2807 		.key = ILLEGAL_REQUEST,
2808 		.asc = 0x24, /* INVALID FIELD IN CDB */
2809 	},
2810 	[TCM_INVALID_PARAMETER_LIST] = {
2811 		.key = ILLEGAL_REQUEST,
2812 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2813 	},
2814 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2815 		.key = ILLEGAL_REQUEST,
2816 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2817 	},
2818 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2819 		.key = ILLEGAL_REQUEST,
2820 		.asc = 0x0c, /* WRITE ERROR */
2821 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2822 	},
2823 	[TCM_SERVICE_CRC_ERROR] = {
2824 		.key = ABORTED_COMMAND,
2825 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2826 		.ascq = 0x05, /* N/A */
2827 	},
2828 	[TCM_SNACK_REJECTED] = {
2829 		.key = ABORTED_COMMAND,
2830 		.asc = 0x11, /* READ ERROR */
2831 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2832 	},
2833 	[TCM_WRITE_PROTECTED] = {
2834 		.key = DATA_PROTECT,
2835 		.asc = 0x27, /* WRITE PROTECTED */
2836 	},
2837 	[TCM_ADDRESS_OUT_OF_RANGE] = {
2838 		.key = ILLEGAL_REQUEST,
2839 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2840 	},
2841 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2842 		.key = UNIT_ATTENTION,
2843 	},
2844 	[TCM_CHECK_CONDITION_NOT_READY] = {
2845 		.key = NOT_READY,
2846 	},
2847 	[TCM_MISCOMPARE_VERIFY] = {
2848 		.key = MISCOMPARE,
2849 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2850 		.ascq = 0x00,
2851 	},
2852 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2853 		.key = ABORTED_COMMAND,
2854 		.asc = 0x10,
2855 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2856 		.add_sector_info = true,
2857 	},
2858 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2859 		.key = ABORTED_COMMAND,
2860 		.asc = 0x10,
2861 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2862 		.add_sector_info = true,
2863 	},
2864 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2865 		.key = ABORTED_COMMAND,
2866 		.asc = 0x10,
2867 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2868 		.add_sector_info = true,
2869 	},
2870 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2871 		/*
2872 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2873 		 * Solaris initiators.  Returning NOT READY instead means the
2874 		 * operations will be retried a finite number of times and we
2875 		 * can survive intermittent errors.
2876 		 */
2877 		.key = NOT_READY,
2878 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2879 	},
2880 };
2881 
2882 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2883 {
2884 	const struct sense_info *si;
2885 	u8 *buffer = cmd->sense_buffer;
2886 	int r = (__force int)reason;
2887 	u8 asc, ascq;
2888 	bool desc_format = target_sense_desc_format(cmd->se_dev);
2889 
2890 	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2891 		si = &sense_info_table[r];
2892 	else
2893 		si = &sense_info_table[(__force int)
2894 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2895 
2896 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2897 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2898 		WARN_ON_ONCE(asc == 0);
2899 	} else if (si->asc == 0) {
2900 		WARN_ON_ONCE(cmd->scsi_asc == 0);
2901 		asc = cmd->scsi_asc;
2902 		ascq = cmd->scsi_ascq;
2903 	} else {
2904 		asc = si->asc;
2905 		ascq = si->ascq;
2906 	}
2907 
2908 	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2909 	if (si->add_sector_info)
2910 		return scsi_set_sense_information(buffer,
2911 						  cmd->scsi_sense_length,
2912 						  cmd->bad_sector);
2913 
2914 	return 0;
2915 }
2916 
2917 int
2918 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2919 		sense_reason_t reason, int from_transport)
2920 {
2921 	unsigned long flags;
2922 
2923 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2924 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2925 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2926 		return 0;
2927 	}
2928 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2929 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2930 
2931 	if (!from_transport) {
2932 		int rc;
2933 
2934 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2935 		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2936 		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2937 		rc = translate_sense_reason(cmd, reason);
2938 		if (rc)
2939 			return rc;
2940 	}
2941 
2942 	trace_target_cmd_complete(cmd);
2943 	return cmd->se_tfo->queue_status(cmd);
2944 }
2945 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2946 
2947 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2948 	__releases(&cmd->t_state_lock)
2949 	__acquires(&cmd->t_state_lock)
2950 {
2951 	assert_spin_locked(&cmd->t_state_lock);
2952 	WARN_ON_ONCE(!irqs_disabled());
2953 
2954 	if (!(cmd->transport_state & CMD_T_ABORTED))
2955 		return 0;
2956 	/*
2957 	 * If cmd has been aborted but either no status is to be sent or it has
2958 	 * already been sent, just return
2959 	 */
2960 	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2961 		if (send_status)
2962 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2963 		return 1;
2964 	}
2965 
2966 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2967 		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2968 
2969 	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2970 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2971 	trace_target_cmd_complete(cmd);
2972 
2973 	spin_unlock_irq(&cmd->t_state_lock);
2974 	cmd->se_tfo->queue_status(cmd);
2975 	spin_lock_irq(&cmd->t_state_lock);
2976 
2977 	return 1;
2978 }
2979 
2980 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2981 {
2982 	int ret;
2983 
2984 	spin_lock_irq(&cmd->t_state_lock);
2985 	ret = __transport_check_aborted_status(cmd, send_status);
2986 	spin_unlock_irq(&cmd->t_state_lock);
2987 
2988 	return ret;
2989 }
2990 EXPORT_SYMBOL(transport_check_aborted_status);
2991 
2992 void transport_send_task_abort(struct se_cmd *cmd)
2993 {
2994 	unsigned long flags;
2995 
2996 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2997 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2998 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2999 		return;
3000 	}
3001 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3002 
3003 	/*
3004 	 * If there are still expected incoming fabric WRITEs, we wait
3005 	 * until until they have completed before sending a TASK_ABORTED
3006 	 * response.  This response with TASK_ABORTED status will be
3007 	 * queued back to fabric module by transport_check_aborted_status().
3008 	 */
3009 	if (cmd->data_direction == DMA_TO_DEVICE) {
3010 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3011 			spin_lock_irqsave(&cmd->t_state_lock, flags);
3012 			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3013 				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3014 				goto send_abort;
3015 			}
3016 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3017 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3018 			return;
3019 		}
3020 	}
3021 send_abort:
3022 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3023 
3024 	transport_lun_remove_cmd(cmd);
3025 
3026 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3027 		 cmd->t_task_cdb[0], cmd->tag);
3028 
3029 	trace_target_cmd_complete(cmd);
3030 	cmd->se_tfo->queue_status(cmd);
3031 }
3032 
3033 static void target_tmr_work(struct work_struct *work)
3034 {
3035 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3036 	struct se_device *dev = cmd->se_dev;
3037 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3038 	unsigned long flags;
3039 	int ret;
3040 
3041 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3042 	if (cmd->transport_state & CMD_T_ABORTED) {
3043 		tmr->response = TMR_FUNCTION_REJECTED;
3044 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3045 		goto check_stop;
3046 	}
3047 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3048 
3049 	switch (tmr->function) {
3050 	case TMR_ABORT_TASK:
3051 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3052 		break;
3053 	case TMR_ABORT_TASK_SET:
3054 	case TMR_CLEAR_ACA:
3055 	case TMR_CLEAR_TASK_SET:
3056 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3057 		break;
3058 	case TMR_LUN_RESET:
3059 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3060 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3061 					 TMR_FUNCTION_REJECTED;
3062 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3063 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3064 					       cmd->orig_fe_lun, 0x29,
3065 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3066 		}
3067 		break;
3068 	case TMR_TARGET_WARM_RESET:
3069 		tmr->response = TMR_FUNCTION_REJECTED;
3070 		break;
3071 	case TMR_TARGET_COLD_RESET:
3072 		tmr->response = TMR_FUNCTION_REJECTED;
3073 		break;
3074 	default:
3075 		pr_err("Uknown TMR function: 0x%02x.\n",
3076 				tmr->function);
3077 		tmr->response = TMR_FUNCTION_REJECTED;
3078 		break;
3079 	}
3080 
3081 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3082 	if (cmd->transport_state & CMD_T_ABORTED) {
3083 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3084 		goto check_stop;
3085 	}
3086 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3087 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3088 
3089 	cmd->se_tfo->queue_tm_rsp(cmd);
3090 
3091 check_stop:
3092 	transport_cmd_check_stop_to_fabric(cmd);
3093 }
3094 
3095 int transport_generic_handle_tmr(
3096 	struct se_cmd *cmd)
3097 {
3098 	unsigned long flags;
3099 
3100 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3101 	cmd->transport_state |= CMD_T_ACTIVE;
3102 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3103 
3104 	INIT_WORK(&cmd->work, target_tmr_work);
3105 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3106 	return 0;
3107 }
3108 EXPORT_SYMBOL(transport_generic_handle_tmr);
3109 
3110 bool
3111 target_check_wce(struct se_device *dev)
3112 {
3113 	bool wce = false;
3114 
3115 	if (dev->transport->get_write_cache)
3116 		wce = dev->transport->get_write_cache(dev);
3117 	else if (dev->dev_attrib.emulate_write_cache > 0)
3118 		wce = true;
3119 
3120 	return wce;
3121 }
3122 
3123 bool
3124 target_check_fua(struct se_device *dev)
3125 {
3126 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3127 }
3128