1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 68 static void transport_handle_queue_full(struct se_cmd *cmd, 69 struct se_device *dev, int err, bool write_pending); 70 static int transport_put_cmd(struct se_cmd *cmd); 71 static void target_complete_ok_work(struct work_struct *work); 72 73 int init_se_kmem_caches(void) 74 { 75 se_sess_cache = kmem_cache_create("se_sess_cache", 76 sizeof(struct se_session), __alignof__(struct se_session), 77 0, NULL); 78 if (!se_sess_cache) { 79 pr_err("kmem_cache_create() for struct se_session" 80 " failed\n"); 81 goto out; 82 } 83 se_ua_cache = kmem_cache_create("se_ua_cache", 84 sizeof(struct se_ua), __alignof__(struct se_ua), 85 0, NULL); 86 if (!se_ua_cache) { 87 pr_err("kmem_cache_create() for struct se_ua failed\n"); 88 goto out_free_sess_cache; 89 } 90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 91 sizeof(struct t10_pr_registration), 92 __alignof__(struct t10_pr_registration), 0, NULL); 93 if (!t10_pr_reg_cache) { 94 pr_err("kmem_cache_create() for struct t10_pr_registration" 95 " failed\n"); 96 goto out_free_ua_cache; 97 } 98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 100 0, NULL); 101 if (!t10_alua_lu_gp_cache) { 102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 103 " failed\n"); 104 goto out_free_pr_reg_cache; 105 } 106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 107 sizeof(struct t10_alua_lu_gp_member), 108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 109 if (!t10_alua_lu_gp_mem_cache) { 110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 111 "cache failed\n"); 112 goto out_free_lu_gp_cache; 113 } 114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 115 sizeof(struct t10_alua_tg_pt_gp), 116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 117 if (!t10_alua_tg_pt_gp_cache) { 118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 119 "cache failed\n"); 120 goto out_free_lu_gp_mem_cache; 121 } 122 t10_alua_lba_map_cache = kmem_cache_create( 123 "t10_alua_lba_map_cache", 124 sizeof(struct t10_alua_lba_map), 125 __alignof__(struct t10_alua_lba_map), 0, NULL); 126 if (!t10_alua_lba_map_cache) { 127 pr_err("kmem_cache_create() for t10_alua_lba_map_" 128 "cache failed\n"); 129 goto out_free_tg_pt_gp_cache; 130 } 131 t10_alua_lba_map_mem_cache = kmem_cache_create( 132 "t10_alua_lba_map_mem_cache", 133 sizeof(struct t10_alua_lba_map_member), 134 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 135 if (!t10_alua_lba_map_mem_cache) { 136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 137 "cache failed\n"); 138 goto out_free_lba_map_cache; 139 } 140 141 target_completion_wq = alloc_workqueue("target_completion", 142 WQ_MEM_RECLAIM, 0); 143 if (!target_completion_wq) 144 goto out_free_lba_map_mem_cache; 145 146 return 0; 147 148 out_free_lba_map_mem_cache: 149 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 150 out_free_lba_map_cache: 151 kmem_cache_destroy(t10_alua_lba_map_cache); 152 out_free_tg_pt_gp_cache: 153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 154 out_free_lu_gp_mem_cache: 155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 156 out_free_lu_gp_cache: 157 kmem_cache_destroy(t10_alua_lu_gp_cache); 158 out_free_pr_reg_cache: 159 kmem_cache_destroy(t10_pr_reg_cache); 160 out_free_ua_cache: 161 kmem_cache_destroy(se_ua_cache); 162 out_free_sess_cache: 163 kmem_cache_destroy(se_sess_cache); 164 out: 165 return -ENOMEM; 166 } 167 168 void release_se_kmem_caches(void) 169 { 170 destroy_workqueue(target_completion_wq); 171 kmem_cache_destroy(se_sess_cache); 172 kmem_cache_destroy(se_ua_cache); 173 kmem_cache_destroy(t10_pr_reg_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_cache); 175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 177 kmem_cache_destroy(t10_alua_lba_map_cache); 178 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 179 } 180 181 /* This code ensures unique mib indexes are handed out. */ 182 static DEFINE_SPINLOCK(scsi_mib_index_lock); 183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 184 185 /* 186 * Allocate a new row index for the entry type specified 187 */ 188 u32 scsi_get_new_index(scsi_index_t type) 189 { 190 u32 new_index; 191 192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 193 194 spin_lock(&scsi_mib_index_lock); 195 new_index = ++scsi_mib_index[type]; 196 spin_unlock(&scsi_mib_index_lock); 197 198 return new_index; 199 } 200 201 void transport_subsystem_check_init(void) 202 { 203 int ret; 204 static int sub_api_initialized; 205 206 if (sub_api_initialized) 207 return; 208 209 ret = request_module("target_core_iblock"); 210 if (ret != 0) 211 pr_err("Unable to load target_core_iblock\n"); 212 213 ret = request_module("target_core_file"); 214 if (ret != 0) 215 pr_err("Unable to load target_core_file\n"); 216 217 ret = request_module("target_core_pscsi"); 218 if (ret != 0) 219 pr_err("Unable to load target_core_pscsi\n"); 220 221 ret = request_module("target_core_user"); 222 if (ret != 0) 223 pr_err("Unable to load target_core_user\n"); 224 225 sub_api_initialized = 1; 226 } 227 228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 229 { 230 struct se_session *se_sess; 231 232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 233 if (!se_sess) { 234 pr_err("Unable to allocate struct se_session from" 235 " se_sess_cache\n"); 236 return ERR_PTR(-ENOMEM); 237 } 238 INIT_LIST_HEAD(&se_sess->sess_list); 239 INIT_LIST_HEAD(&se_sess->sess_acl_list); 240 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 241 INIT_LIST_HEAD(&se_sess->sess_wait_list); 242 spin_lock_init(&se_sess->sess_cmd_lock); 243 se_sess->sup_prot_ops = sup_prot_ops; 244 245 return se_sess; 246 } 247 EXPORT_SYMBOL(transport_init_session); 248 249 int transport_alloc_session_tags(struct se_session *se_sess, 250 unsigned int tag_num, unsigned int tag_size) 251 { 252 int rc; 253 254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 256 if (!se_sess->sess_cmd_map) { 257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 258 if (!se_sess->sess_cmd_map) { 259 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 260 return -ENOMEM; 261 } 262 } 263 264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 265 if (rc < 0) { 266 pr_err("Unable to init se_sess->sess_tag_pool," 267 " tag_num: %u\n", tag_num); 268 kvfree(se_sess->sess_cmd_map); 269 se_sess->sess_cmd_map = NULL; 270 return -ENOMEM; 271 } 272 273 return 0; 274 } 275 EXPORT_SYMBOL(transport_alloc_session_tags); 276 277 struct se_session *transport_init_session_tags(unsigned int tag_num, 278 unsigned int tag_size, 279 enum target_prot_op sup_prot_ops) 280 { 281 struct se_session *se_sess; 282 int rc; 283 284 if (tag_num != 0 && !tag_size) { 285 pr_err("init_session_tags called with percpu-ida tag_num:" 286 " %u, but zero tag_size\n", tag_num); 287 return ERR_PTR(-EINVAL); 288 } 289 if (!tag_num && tag_size) { 290 pr_err("init_session_tags called with percpu-ida tag_size:" 291 " %u, but zero tag_num\n", tag_size); 292 return ERR_PTR(-EINVAL); 293 } 294 295 se_sess = transport_init_session(sup_prot_ops); 296 if (IS_ERR(se_sess)) 297 return se_sess; 298 299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 300 if (rc < 0) { 301 transport_free_session(se_sess); 302 return ERR_PTR(-ENOMEM); 303 } 304 305 return se_sess; 306 } 307 EXPORT_SYMBOL(transport_init_session_tags); 308 309 /* 310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 311 */ 312 void __transport_register_session( 313 struct se_portal_group *se_tpg, 314 struct se_node_acl *se_nacl, 315 struct se_session *se_sess, 316 void *fabric_sess_ptr) 317 { 318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 319 unsigned char buf[PR_REG_ISID_LEN]; 320 321 se_sess->se_tpg = se_tpg; 322 se_sess->fabric_sess_ptr = fabric_sess_ptr; 323 /* 324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 325 * 326 * Only set for struct se_session's that will actually be moving I/O. 327 * eg: *NOT* discovery sessions. 328 */ 329 if (se_nacl) { 330 /* 331 * 332 * Determine if fabric allows for T10-PI feature bits exposed to 333 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 334 * 335 * If so, then always save prot_type on a per se_node_acl node 336 * basis and re-instate the previous sess_prot_type to avoid 337 * disabling PI from below any previously initiator side 338 * registered LUNs. 339 */ 340 if (se_nacl->saved_prot_type) 341 se_sess->sess_prot_type = se_nacl->saved_prot_type; 342 else if (tfo->tpg_check_prot_fabric_only) 343 se_sess->sess_prot_type = se_nacl->saved_prot_type = 344 tfo->tpg_check_prot_fabric_only(se_tpg); 345 /* 346 * If the fabric module supports an ISID based TransportID, 347 * save this value in binary from the fabric I_T Nexus now. 348 */ 349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 350 memset(&buf[0], 0, PR_REG_ISID_LEN); 351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 352 &buf[0], PR_REG_ISID_LEN); 353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 354 } 355 356 spin_lock_irq(&se_nacl->nacl_sess_lock); 357 /* 358 * The se_nacl->nacl_sess pointer will be set to the 359 * last active I_T Nexus for each struct se_node_acl. 360 */ 361 se_nacl->nacl_sess = se_sess; 362 363 list_add_tail(&se_sess->sess_acl_list, 364 &se_nacl->acl_sess_list); 365 spin_unlock_irq(&se_nacl->nacl_sess_lock); 366 } 367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 368 369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 371 } 372 EXPORT_SYMBOL(__transport_register_session); 373 374 void transport_register_session( 375 struct se_portal_group *se_tpg, 376 struct se_node_acl *se_nacl, 377 struct se_session *se_sess, 378 void *fabric_sess_ptr) 379 { 380 unsigned long flags; 381 382 spin_lock_irqsave(&se_tpg->session_lock, flags); 383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 384 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 385 } 386 EXPORT_SYMBOL(transport_register_session); 387 388 struct se_session * 389 target_alloc_session(struct se_portal_group *tpg, 390 unsigned int tag_num, unsigned int tag_size, 391 enum target_prot_op prot_op, 392 const char *initiatorname, void *private, 393 int (*callback)(struct se_portal_group *, 394 struct se_session *, void *)) 395 { 396 struct se_session *sess; 397 398 /* 399 * If the fabric driver is using percpu-ida based pre allocation 400 * of I/O descriptor tags, go ahead and perform that setup now.. 401 */ 402 if (tag_num != 0) 403 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 404 else 405 sess = transport_init_session(prot_op); 406 407 if (IS_ERR(sess)) 408 return sess; 409 410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 411 (unsigned char *)initiatorname); 412 if (!sess->se_node_acl) { 413 transport_free_session(sess); 414 return ERR_PTR(-EACCES); 415 } 416 /* 417 * Go ahead and perform any remaining fabric setup that is 418 * required before transport_register_session(). 419 */ 420 if (callback != NULL) { 421 int rc = callback(tpg, sess, private); 422 if (rc) { 423 transport_free_session(sess); 424 return ERR_PTR(rc); 425 } 426 } 427 428 transport_register_session(tpg, sess->se_node_acl, sess, private); 429 return sess; 430 } 431 EXPORT_SYMBOL(target_alloc_session); 432 433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 434 { 435 struct se_session *se_sess; 436 ssize_t len = 0; 437 438 spin_lock_bh(&se_tpg->session_lock); 439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 440 if (!se_sess->se_node_acl) 441 continue; 442 if (!se_sess->se_node_acl->dynamic_node_acl) 443 continue; 444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 445 break; 446 447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 448 se_sess->se_node_acl->initiatorname); 449 len += 1; /* Include NULL terminator */ 450 } 451 spin_unlock_bh(&se_tpg->session_lock); 452 453 return len; 454 } 455 EXPORT_SYMBOL(target_show_dynamic_sessions); 456 457 static void target_complete_nacl(struct kref *kref) 458 { 459 struct se_node_acl *nacl = container_of(kref, 460 struct se_node_acl, acl_kref); 461 struct se_portal_group *se_tpg = nacl->se_tpg; 462 463 if (!nacl->dynamic_stop) { 464 complete(&nacl->acl_free_comp); 465 return; 466 } 467 468 mutex_lock(&se_tpg->acl_node_mutex); 469 list_del(&nacl->acl_list); 470 mutex_unlock(&se_tpg->acl_node_mutex); 471 472 core_tpg_wait_for_nacl_pr_ref(nacl); 473 core_free_device_list_for_node(nacl, se_tpg); 474 kfree(nacl); 475 } 476 477 void target_put_nacl(struct se_node_acl *nacl) 478 { 479 kref_put(&nacl->acl_kref, target_complete_nacl); 480 } 481 EXPORT_SYMBOL(target_put_nacl); 482 483 void transport_deregister_session_configfs(struct se_session *se_sess) 484 { 485 struct se_node_acl *se_nacl; 486 unsigned long flags; 487 /* 488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 489 */ 490 se_nacl = se_sess->se_node_acl; 491 if (se_nacl) { 492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 493 if (!list_empty(&se_sess->sess_acl_list)) 494 list_del_init(&se_sess->sess_acl_list); 495 /* 496 * If the session list is empty, then clear the pointer. 497 * Otherwise, set the struct se_session pointer from the tail 498 * element of the per struct se_node_acl active session list. 499 */ 500 if (list_empty(&se_nacl->acl_sess_list)) 501 se_nacl->nacl_sess = NULL; 502 else { 503 se_nacl->nacl_sess = container_of( 504 se_nacl->acl_sess_list.prev, 505 struct se_session, sess_acl_list); 506 } 507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 508 } 509 } 510 EXPORT_SYMBOL(transport_deregister_session_configfs); 511 512 void transport_free_session(struct se_session *se_sess) 513 { 514 struct se_node_acl *se_nacl = se_sess->se_node_acl; 515 516 /* 517 * Drop the se_node_acl->nacl_kref obtained from within 518 * core_tpg_get_initiator_node_acl(). 519 */ 520 if (se_nacl) { 521 struct se_portal_group *se_tpg = se_nacl->se_tpg; 522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 523 unsigned long flags; 524 525 se_sess->se_node_acl = NULL; 526 527 /* 528 * Also determine if we need to drop the extra ->cmd_kref if 529 * it had been previously dynamically generated, and 530 * the endpoint is not caching dynamic ACLs. 531 */ 532 mutex_lock(&se_tpg->acl_node_mutex); 533 if (se_nacl->dynamic_node_acl && 534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 536 if (list_empty(&se_nacl->acl_sess_list)) 537 se_nacl->dynamic_stop = true; 538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 539 540 if (se_nacl->dynamic_stop) 541 list_del(&se_nacl->acl_list); 542 } 543 mutex_unlock(&se_tpg->acl_node_mutex); 544 545 if (se_nacl->dynamic_stop) 546 target_put_nacl(se_nacl); 547 548 target_put_nacl(se_nacl); 549 } 550 if (se_sess->sess_cmd_map) { 551 percpu_ida_destroy(&se_sess->sess_tag_pool); 552 kvfree(se_sess->sess_cmd_map); 553 } 554 kmem_cache_free(se_sess_cache, se_sess); 555 } 556 EXPORT_SYMBOL(transport_free_session); 557 558 void transport_deregister_session(struct se_session *se_sess) 559 { 560 struct se_portal_group *se_tpg = se_sess->se_tpg; 561 unsigned long flags; 562 563 if (!se_tpg) { 564 transport_free_session(se_sess); 565 return; 566 } 567 568 spin_lock_irqsave(&se_tpg->session_lock, flags); 569 list_del(&se_sess->sess_list); 570 se_sess->se_tpg = NULL; 571 se_sess->fabric_sess_ptr = NULL; 572 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 573 574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 575 se_tpg->se_tpg_tfo->get_fabric_name()); 576 /* 577 * If last kref is dropping now for an explicit NodeACL, awake sleeping 578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 579 * removal context from within transport_free_session() code. 580 * 581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 582 * to release all remaining generate_node_acl=1 created ACL resources. 583 */ 584 585 transport_free_session(se_sess); 586 } 587 EXPORT_SYMBOL(transport_deregister_session); 588 589 static void target_remove_from_state_list(struct se_cmd *cmd) 590 { 591 struct se_device *dev = cmd->se_dev; 592 unsigned long flags; 593 594 if (!dev) 595 return; 596 597 spin_lock_irqsave(&dev->execute_task_lock, flags); 598 if (cmd->state_active) { 599 list_del(&cmd->state_list); 600 cmd->state_active = false; 601 } 602 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 603 } 604 605 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 606 { 607 unsigned long flags; 608 609 target_remove_from_state_list(cmd); 610 611 /* 612 * Clear struct se_cmd->se_lun before the handoff to FE. 613 */ 614 cmd->se_lun = NULL; 615 616 spin_lock_irqsave(&cmd->t_state_lock, flags); 617 /* 618 * Determine if frontend context caller is requesting the stopping of 619 * this command for frontend exceptions. 620 */ 621 if (cmd->transport_state & CMD_T_STOP) { 622 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 623 __func__, __LINE__, cmd->tag); 624 625 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 626 627 complete_all(&cmd->t_transport_stop_comp); 628 return 1; 629 } 630 cmd->transport_state &= ~CMD_T_ACTIVE; 631 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 632 633 /* 634 * Some fabric modules like tcm_loop can release their internally 635 * allocated I/O reference and struct se_cmd now. 636 * 637 * Fabric modules are expected to return '1' here if the se_cmd being 638 * passed is released at this point, or zero if not being released. 639 */ 640 return cmd->se_tfo->check_stop_free(cmd); 641 } 642 643 static void transport_lun_remove_cmd(struct se_cmd *cmd) 644 { 645 struct se_lun *lun = cmd->se_lun; 646 647 if (!lun) 648 return; 649 650 if (cmpxchg(&cmd->lun_ref_active, true, false)) 651 percpu_ref_put(&lun->lun_ref); 652 } 653 654 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 655 { 656 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); 657 658 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 659 transport_lun_remove_cmd(cmd); 660 /* 661 * Allow the fabric driver to unmap any resources before 662 * releasing the descriptor via TFO->release_cmd() 663 */ 664 if (remove) 665 cmd->se_tfo->aborted_task(cmd); 666 667 if (transport_cmd_check_stop_to_fabric(cmd)) 668 return; 669 if (remove && ack_kref) 670 transport_put_cmd(cmd); 671 } 672 673 static void target_complete_failure_work(struct work_struct *work) 674 { 675 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 676 677 transport_generic_request_failure(cmd, 678 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 679 } 680 681 /* 682 * Used when asking transport to copy Sense Data from the underlying 683 * Linux/SCSI struct scsi_cmnd 684 */ 685 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 686 { 687 struct se_device *dev = cmd->se_dev; 688 689 WARN_ON(!cmd->se_lun); 690 691 if (!dev) 692 return NULL; 693 694 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 695 return NULL; 696 697 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 698 699 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 700 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 701 return cmd->sense_buffer; 702 } 703 704 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 705 { 706 struct se_device *dev = cmd->se_dev; 707 int success = scsi_status == GOOD; 708 unsigned long flags; 709 710 cmd->scsi_status = scsi_status; 711 712 713 spin_lock_irqsave(&cmd->t_state_lock, flags); 714 715 if (dev && dev->transport->transport_complete) { 716 dev->transport->transport_complete(cmd, 717 cmd->t_data_sg, 718 transport_get_sense_buffer(cmd)); 719 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 720 success = 1; 721 } 722 723 /* 724 * Check for case where an explicit ABORT_TASK has been received 725 * and transport_wait_for_tasks() will be waiting for completion.. 726 */ 727 if (cmd->transport_state & CMD_T_ABORTED || 728 cmd->transport_state & CMD_T_STOP) { 729 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 730 complete_all(&cmd->t_transport_stop_comp); 731 return; 732 } else if (!success) { 733 INIT_WORK(&cmd->work, target_complete_failure_work); 734 } else { 735 INIT_WORK(&cmd->work, target_complete_ok_work); 736 } 737 738 cmd->t_state = TRANSPORT_COMPLETE; 739 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 740 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 741 742 if (cmd->se_cmd_flags & SCF_USE_CPUID) 743 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 744 else 745 queue_work(target_completion_wq, &cmd->work); 746 } 747 EXPORT_SYMBOL(target_complete_cmd); 748 749 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 750 { 751 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 752 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 753 cmd->residual_count += cmd->data_length - length; 754 } else { 755 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 756 cmd->residual_count = cmd->data_length - length; 757 } 758 759 cmd->data_length = length; 760 } 761 762 target_complete_cmd(cmd, scsi_status); 763 } 764 EXPORT_SYMBOL(target_complete_cmd_with_length); 765 766 static void target_add_to_state_list(struct se_cmd *cmd) 767 { 768 struct se_device *dev = cmd->se_dev; 769 unsigned long flags; 770 771 spin_lock_irqsave(&dev->execute_task_lock, flags); 772 if (!cmd->state_active) { 773 list_add_tail(&cmd->state_list, &dev->state_list); 774 cmd->state_active = true; 775 } 776 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 777 } 778 779 /* 780 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 781 */ 782 static void transport_write_pending_qf(struct se_cmd *cmd); 783 static void transport_complete_qf(struct se_cmd *cmd); 784 785 void target_qf_do_work(struct work_struct *work) 786 { 787 struct se_device *dev = container_of(work, struct se_device, 788 qf_work_queue); 789 LIST_HEAD(qf_cmd_list); 790 struct se_cmd *cmd, *cmd_tmp; 791 792 spin_lock_irq(&dev->qf_cmd_lock); 793 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 794 spin_unlock_irq(&dev->qf_cmd_lock); 795 796 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 797 list_del(&cmd->se_qf_node); 798 atomic_dec_mb(&dev->dev_qf_count); 799 800 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 801 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 802 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 803 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 804 : "UNKNOWN"); 805 806 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 807 transport_write_pending_qf(cmd); 808 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 809 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 810 transport_complete_qf(cmd); 811 } 812 } 813 814 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 815 { 816 switch (cmd->data_direction) { 817 case DMA_NONE: 818 return "NONE"; 819 case DMA_FROM_DEVICE: 820 return "READ"; 821 case DMA_TO_DEVICE: 822 return "WRITE"; 823 case DMA_BIDIRECTIONAL: 824 return "BIDI"; 825 default: 826 break; 827 } 828 829 return "UNKNOWN"; 830 } 831 832 void transport_dump_dev_state( 833 struct se_device *dev, 834 char *b, 835 int *bl) 836 { 837 *bl += sprintf(b + *bl, "Status: "); 838 if (dev->export_count) 839 *bl += sprintf(b + *bl, "ACTIVATED"); 840 else 841 *bl += sprintf(b + *bl, "DEACTIVATED"); 842 843 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 844 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 845 dev->dev_attrib.block_size, 846 dev->dev_attrib.hw_max_sectors); 847 *bl += sprintf(b + *bl, " "); 848 } 849 850 void transport_dump_vpd_proto_id( 851 struct t10_vpd *vpd, 852 unsigned char *p_buf, 853 int p_buf_len) 854 { 855 unsigned char buf[VPD_TMP_BUF_SIZE]; 856 int len; 857 858 memset(buf, 0, VPD_TMP_BUF_SIZE); 859 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 860 861 switch (vpd->protocol_identifier) { 862 case 0x00: 863 sprintf(buf+len, "Fibre Channel\n"); 864 break; 865 case 0x10: 866 sprintf(buf+len, "Parallel SCSI\n"); 867 break; 868 case 0x20: 869 sprintf(buf+len, "SSA\n"); 870 break; 871 case 0x30: 872 sprintf(buf+len, "IEEE 1394\n"); 873 break; 874 case 0x40: 875 sprintf(buf+len, "SCSI Remote Direct Memory Access" 876 " Protocol\n"); 877 break; 878 case 0x50: 879 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 880 break; 881 case 0x60: 882 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 883 break; 884 case 0x70: 885 sprintf(buf+len, "Automation/Drive Interface Transport" 886 " Protocol\n"); 887 break; 888 case 0x80: 889 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 890 break; 891 default: 892 sprintf(buf+len, "Unknown 0x%02x\n", 893 vpd->protocol_identifier); 894 break; 895 } 896 897 if (p_buf) 898 strncpy(p_buf, buf, p_buf_len); 899 else 900 pr_debug("%s", buf); 901 } 902 903 void 904 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 905 { 906 /* 907 * Check if the Protocol Identifier Valid (PIV) bit is set.. 908 * 909 * from spc3r23.pdf section 7.5.1 910 */ 911 if (page_83[1] & 0x80) { 912 vpd->protocol_identifier = (page_83[0] & 0xf0); 913 vpd->protocol_identifier_set = 1; 914 transport_dump_vpd_proto_id(vpd, NULL, 0); 915 } 916 } 917 EXPORT_SYMBOL(transport_set_vpd_proto_id); 918 919 int transport_dump_vpd_assoc( 920 struct t10_vpd *vpd, 921 unsigned char *p_buf, 922 int p_buf_len) 923 { 924 unsigned char buf[VPD_TMP_BUF_SIZE]; 925 int ret = 0; 926 int len; 927 928 memset(buf, 0, VPD_TMP_BUF_SIZE); 929 len = sprintf(buf, "T10 VPD Identifier Association: "); 930 931 switch (vpd->association) { 932 case 0x00: 933 sprintf(buf+len, "addressed logical unit\n"); 934 break; 935 case 0x10: 936 sprintf(buf+len, "target port\n"); 937 break; 938 case 0x20: 939 sprintf(buf+len, "SCSI target device\n"); 940 break; 941 default: 942 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 943 ret = -EINVAL; 944 break; 945 } 946 947 if (p_buf) 948 strncpy(p_buf, buf, p_buf_len); 949 else 950 pr_debug("%s", buf); 951 952 return ret; 953 } 954 955 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 956 { 957 /* 958 * The VPD identification association.. 959 * 960 * from spc3r23.pdf Section 7.6.3.1 Table 297 961 */ 962 vpd->association = (page_83[1] & 0x30); 963 return transport_dump_vpd_assoc(vpd, NULL, 0); 964 } 965 EXPORT_SYMBOL(transport_set_vpd_assoc); 966 967 int transport_dump_vpd_ident_type( 968 struct t10_vpd *vpd, 969 unsigned char *p_buf, 970 int p_buf_len) 971 { 972 unsigned char buf[VPD_TMP_BUF_SIZE]; 973 int ret = 0; 974 int len; 975 976 memset(buf, 0, VPD_TMP_BUF_SIZE); 977 len = sprintf(buf, "T10 VPD Identifier Type: "); 978 979 switch (vpd->device_identifier_type) { 980 case 0x00: 981 sprintf(buf+len, "Vendor specific\n"); 982 break; 983 case 0x01: 984 sprintf(buf+len, "T10 Vendor ID based\n"); 985 break; 986 case 0x02: 987 sprintf(buf+len, "EUI-64 based\n"); 988 break; 989 case 0x03: 990 sprintf(buf+len, "NAA\n"); 991 break; 992 case 0x04: 993 sprintf(buf+len, "Relative target port identifier\n"); 994 break; 995 case 0x08: 996 sprintf(buf+len, "SCSI name string\n"); 997 break; 998 default: 999 sprintf(buf+len, "Unsupported: 0x%02x\n", 1000 vpd->device_identifier_type); 1001 ret = -EINVAL; 1002 break; 1003 } 1004 1005 if (p_buf) { 1006 if (p_buf_len < strlen(buf)+1) 1007 return -EINVAL; 1008 strncpy(p_buf, buf, p_buf_len); 1009 } else { 1010 pr_debug("%s", buf); 1011 } 1012 1013 return ret; 1014 } 1015 1016 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1017 { 1018 /* 1019 * The VPD identifier type.. 1020 * 1021 * from spc3r23.pdf Section 7.6.3.1 Table 298 1022 */ 1023 vpd->device_identifier_type = (page_83[1] & 0x0f); 1024 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1025 } 1026 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1027 1028 int transport_dump_vpd_ident( 1029 struct t10_vpd *vpd, 1030 unsigned char *p_buf, 1031 int p_buf_len) 1032 { 1033 unsigned char buf[VPD_TMP_BUF_SIZE]; 1034 int ret = 0; 1035 1036 memset(buf, 0, VPD_TMP_BUF_SIZE); 1037 1038 switch (vpd->device_identifier_code_set) { 1039 case 0x01: /* Binary */ 1040 snprintf(buf, sizeof(buf), 1041 "T10 VPD Binary Device Identifier: %s\n", 1042 &vpd->device_identifier[0]); 1043 break; 1044 case 0x02: /* ASCII */ 1045 snprintf(buf, sizeof(buf), 1046 "T10 VPD ASCII Device Identifier: %s\n", 1047 &vpd->device_identifier[0]); 1048 break; 1049 case 0x03: /* UTF-8 */ 1050 snprintf(buf, sizeof(buf), 1051 "T10 VPD UTF-8 Device Identifier: %s\n", 1052 &vpd->device_identifier[0]); 1053 break; 1054 default: 1055 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1056 " 0x%02x", vpd->device_identifier_code_set); 1057 ret = -EINVAL; 1058 break; 1059 } 1060 1061 if (p_buf) 1062 strncpy(p_buf, buf, p_buf_len); 1063 else 1064 pr_debug("%s", buf); 1065 1066 return ret; 1067 } 1068 1069 int 1070 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1071 { 1072 static const char hex_str[] = "0123456789abcdef"; 1073 int j = 0, i = 4; /* offset to start of the identifier */ 1074 1075 /* 1076 * The VPD Code Set (encoding) 1077 * 1078 * from spc3r23.pdf Section 7.6.3.1 Table 296 1079 */ 1080 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1081 switch (vpd->device_identifier_code_set) { 1082 case 0x01: /* Binary */ 1083 vpd->device_identifier[j++] = 1084 hex_str[vpd->device_identifier_type]; 1085 while (i < (4 + page_83[3])) { 1086 vpd->device_identifier[j++] = 1087 hex_str[(page_83[i] & 0xf0) >> 4]; 1088 vpd->device_identifier[j++] = 1089 hex_str[page_83[i] & 0x0f]; 1090 i++; 1091 } 1092 break; 1093 case 0x02: /* ASCII */ 1094 case 0x03: /* UTF-8 */ 1095 while (i < (4 + page_83[3])) 1096 vpd->device_identifier[j++] = page_83[i++]; 1097 break; 1098 default: 1099 break; 1100 } 1101 1102 return transport_dump_vpd_ident(vpd, NULL, 0); 1103 } 1104 EXPORT_SYMBOL(transport_set_vpd_ident); 1105 1106 static sense_reason_t 1107 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1108 unsigned int size) 1109 { 1110 u32 mtl; 1111 1112 if (!cmd->se_tfo->max_data_sg_nents) 1113 return TCM_NO_SENSE; 1114 /* 1115 * Check if fabric enforced maximum SGL entries per I/O descriptor 1116 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1117 * residual_count and reduce original cmd->data_length to maximum 1118 * length based on single PAGE_SIZE entry scatter-lists. 1119 */ 1120 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1121 if (cmd->data_length > mtl) { 1122 /* 1123 * If an existing CDB overflow is present, calculate new residual 1124 * based on CDB size minus fabric maximum transfer length. 1125 * 1126 * If an existing CDB underflow is present, calculate new residual 1127 * based on original cmd->data_length minus fabric maximum transfer 1128 * length. 1129 * 1130 * Otherwise, set the underflow residual based on cmd->data_length 1131 * minus fabric maximum transfer length. 1132 */ 1133 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1134 cmd->residual_count = (size - mtl); 1135 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1136 u32 orig_dl = size + cmd->residual_count; 1137 cmd->residual_count = (orig_dl - mtl); 1138 } else { 1139 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1140 cmd->residual_count = (cmd->data_length - mtl); 1141 } 1142 cmd->data_length = mtl; 1143 /* 1144 * Reset sbc_check_prot() calculated protection payload 1145 * length based upon the new smaller MTL. 1146 */ 1147 if (cmd->prot_length) { 1148 u32 sectors = (mtl / dev->dev_attrib.block_size); 1149 cmd->prot_length = dev->prot_length * sectors; 1150 } 1151 } 1152 return TCM_NO_SENSE; 1153 } 1154 1155 sense_reason_t 1156 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1157 { 1158 struct se_device *dev = cmd->se_dev; 1159 1160 if (cmd->unknown_data_length) { 1161 cmd->data_length = size; 1162 } else if (size != cmd->data_length) { 1163 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" 1164 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1165 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1166 cmd->data_length, size, cmd->t_task_cdb[0]); 1167 1168 if (cmd->data_direction == DMA_TO_DEVICE) { 1169 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1170 pr_err_ratelimited("Rejecting underflow/overflow" 1171 " for WRITE data CDB\n"); 1172 return TCM_INVALID_CDB_FIELD; 1173 } 1174 /* 1175 * Some fabric drivers like iscsi-target still expect to 1176 * always reject overflow writes. Reject this case until 1177 * full fabric driver level support for overflow writes 1178 * is introduced tree-wide. 1179 */ 1180 if (size > cmd->data_length) { 1181 pr_err_ratelimited("Rejecting overflow for" 1182 " WRITE control CDB\n"); 1183 return TCM_INVALID_CDB_FIELD; 1184 } 1185 } 1186 /* 1187 * Reject READ_* or WRITE_* with overflow/underflow for 1188 * type SCF_SCSI_DATA_CDB. 1189 */ 1190 if (dev->dev_attrib.block_size != 512) { 1191 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1192 " CDB on non 512-byte sector setup subsystem" 1193 " plugin: %s\n", dev->transport->name); 1194 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1195 return TCM_INVALID_CDB_FIELD; 1196 } 1197 /* 1198 * For the overflow case keep the existing fabric provided 1199 * ->data_length. Otherwise for the underflow case, reset 1200 * ->data_length to the smaller SCSI expected data transfer 1201 * length. 1202 */ 1203 if (size > cmd->data_length) { 1204 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1205 cmd->residual_count = (size - cmd->data_length); 1206 } else { 1207 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1208 cmd->residual_count = (cmd->data_length - size); 1209 cmd->data_length = size; 1210 } 1211 } 1212 1213 return target_check_max_data_sg_nents(cmd, dev, size); 1214 1215 } 1216 1217 /* 1218 * Used by fabric modules containing a local struct se_cmd within their 1219 * fabric dependent per I/O descriptor. 1220 * 1221 * Preserves the value of @cmd->tag. 1222 */ 1223 void transport_init_se_cmd( 1224 struct se_cmd *cmd, 1225 const struct target_core_fabric_ops *tfo, 1226 struct se_session *se_sess, 1227 u32 data_length, 1228 int data_direction, 1229 int task_attr, 1230 unsigned char *sense_buffer) 1231 { 1232 INIT_LIST_HEAD(&cmd->se_delayed_node); 1233 INIT_LIST_HEAD(&cmd->se_qf_node); 1234 INIT_LIST_HEAD(&cmd->se_cmd_list); 1235 INIT_LIST_HEAD(&cmd->state_list); 1236 init_completion(&cmd->t_transport_stop_comp); 1237 init_completion(&cmd->cmd_wait_comp); 1238 spin_lock_init(&cmd->t_state_lock); 1239 kref_init(&cmd->cmd_kref); 1240 1241 cmd->se_tfo = tfo; 1242 cmd->se_sess = se_sess; 1243 cmd->data_length = data_length; 1244 cmd->data_direction = data_direction; 1245 cmd->sam_task_attr = task_attr; 1246 cmd->sense_buffer = sense_buffer; 1247 1248 cmd->state_active = false; 1249 } 1250 EXPORT_SYMBOL(transport_init_se_cmd); 1251 1252 static sense_reason_t 1253 transport_check_alloc_task_attr(struct se_cmd *cmd) 1254 { 1255 struct se_device *dev = cmd->se_dev; 1256 1257 /* 1258 * Check if SAM Task Attribute emulation is enabled for this 1259 * struct se_device storage object 1260 */ 1261 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1262 return 0; 1263 1264 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1265 pr_debug("SAM Task Attribute ACA" 1266 " emulation is not supported\n"); 1267 return TCM_INVALID_CDB_FIELD; 1268 } 1269 1270 return 0; 1271 } 1272 1273 sense_reason_t 1274 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1275 { 1276 struct se_device *dev = cmd->se_dev; 1277 sense_reason_t ret; 1278 1279 /* 1280 * Ensure that the received CDB is less than the max (252 + 8) bytes 1281 * for VARIABLE_LENGTH_CMD 1282 */ 1283 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1284 pr_err("Received SCSI CDB with command_size: %d that" 1285 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1286 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1287 return TCM_INVALID_CDB_FIELD; 1288 } 1289 /* 1290 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1291 * allocate the additional extended CDB buffer now.. Otherwise 1292 * setup the pointer from __t_task_cdb to t_task_cdb. 1293 */ 1294 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1295 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1296 GFP_KERNEL); 1297 if (!cmd->t_task_cdb) { 1298 pr_err("Unable to allocate cmd->t_task_cdb" 1299 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1300 scsi_command_size(cdb), 1301 (unsigned long)sizeof(cmd->__t_task_cdb)); 1302 return TCM_OUT_OF_RESOURCES; 1303 } 1304 } else 1305 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1306 /* 1307 * Copy the original CDB into cmd-> 1308 */ 1309 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1310 1311 trace_target_sequencer_start(cmd); 1312 1313 ret = dev->transport->parse_cdb(cmd); 1314 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1315 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1316 cmd->se_tfo->get_fabric_name(), 1317 cmd->se_sess->se_node_acl->initiatorname, 1318 cmd->t_task_cdb[0]); 1319 if (ret) 1320 return ret; 1321 1322 ret = transport_check_alloc_task_attr(cmd); 1323 if (ret) 1324 return ret; 1325 1326 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1327 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1328 return 0; 1329 } 1330 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1331 1332 /* 1333 * Used by fabric module frontends to queue tasks directly. 1334 * May only be used from process context. 1335 */ 1336 int transport_handle_cdb_direct( 1337 struct se_cmd *cmd) 1338 { 1339 sense_reason_t ret; 1340 1341 if (!cmd->se_lun) { 1342 dump_stack(); 1343 pr_err("cmd->se_lun is NULL\n"); 1344 return -EINVAL; 1345 } 1346 if (in_interrupt()) { 1347 dump_stack(); 1348 pr_err("transport_generic_handle_cdb cannot be called" 1349 " from interrupt context\n"); 1350 return -EINVAL; 1351 } 1352 /* 1353 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1354 * outstanding descriptors are handled correctly during shutdown via 1355 * transport_wait_for_tasks() 1356 * 1357 * Also, we don't take cmd->t_state_lock here as we only expect 1358 * this to be called for initial descriptor submission. 1359 */ 1360 cmd->t_state = TRANSPORT_NEW_CMD; 1361 cmd->transport_state |= CMD_T_ACTIVE; 1362 1363 /* 1364 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1365 * so follow TRANSPORT_NEW_CMD processing thread context usage 1366 * and call transport_generic_request_failure() if necessary.. 1367 */ 1368 ret = transport_generic_new_cmd(cmd); 1369 if (ret) 1370 transport_generic_request_failure(cmd, ret); 1371 return 0; 1372 } 1373 EXPORT_SYMBOL(transport_handle_cdb_direct); 1374 1375 sense_reason_t 1376 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1377 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1378 { 1379 if (!sgl || !sgl_count) 1380 return 0; 1381 1382 /* 1383 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1384 * scatterlists already have been set to follow what the fabric 1385 * passes for the original expected data transfer length. 1386 */ 1387 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1388 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1389 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1390 return TCM_INVALID_CDB_FIELD; 1391 } 1392 1393 cmd->t_data_sg = sgl; 1394 cmd->t_data_nents = sgl_count; 1395 cmd->t_bidi_data_sg = sgl_bidi; 1396 cmd->t_bidi_data_nents = sgl_bidi_count; 1397 1398 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1399 return 0; 1400 } 1401 1402 /* 1403 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1404 * se_cmd + use pre-allocated SGL memory. 1405 * 1406 * @se_cmd: command descriptor to submit 1407 * @se_sess: associated se_sess for endpoint 1408 * @cdb: pointer to SCSI CDB 1409 * @sense: pointer to SCSI sense buffer 1410 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1411 * @data_length: fabric expected data transfer length 1412 * @task_addr: SAM task attribute 1413 * @data_dir: DMA data direction 1414 * @flags: flags for command submission from target_sc_flags_tables 1415 * @sgl: struct scatterlist memory for unidirectional mapping 1416 * @sgl_count: scatterlist count for unidirectional mapping 1417 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1418 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1419 * @sgl_prot: struct scatterlist memory protection information 1420 * @sgl_prot_count: scatterlist count for protection information 1421 * 1422 * Task tags are supported if the caller has set @se_cmd->tag. 1423 * 1424 * Returns non zero to signal active I/O shutdown failure. All other 1425 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1426 * but still return zero here. 1427 * 1428 * This may only be called from process context, and also currently 1429 * assumes internal allocation of fabric payload buffer by target-core. 1430 */ 1431 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1432 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1433 u32 data_length, int task_attr, int data_dir, int flags, 1434 struct scatterlist *sgl, u32 sgl_count, 1435 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1436 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1437 { 1438 struct se_portal_group *se_tpg; 1439 sense_reason_t rc; 1440 int ret; 1441 1442 se_tpg = se_sess->se_tpg; 1443 BUG_ON(!se_tpg); 1444 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1445 BUG_ON(in_interrupt()); 1446 /* 1447 * Initialize se_cmd for target operation. From this point 1448 * exceptions are handled by sending exception status via 1449 * target_core_fabric_ops->queue_status() callback 1450 */ 1451 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1452 data_length, data_dir, task_attr, sense); 1453 1454 if (flags & TARGET_SCF_USE_CPUID) 1455 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1456 else 1457 se_cmd->cpuid = WORK_CPU_UNBOUND; 1458 1459 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1460 se_cmd->unknown_data_length = 1; 1461 /* 1462 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1463 * se_sess->sess_cmd_list. A second kref_get here is necessary 1464 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1465 * kref_put() to happen during fabric packet acknowledgement. 1466 */ 1467 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1468 if (ret) 1469 return ret; 1470 /* 1471 * Signal bidirectional data payloads to target-core 1472 */ 1473 if (flags & TARGET_SCF_BIDI_OP) 1474 se_cmd->se_cmd_flags |= SCF_BIDI; 1475 /* 1476 * Locate se_lun pointer and attach it to struct se_cmd 1477 */ 1478 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1479 if (rc) { 1480 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1481 target_put_sess_cmd(se_cmd); 1482 return 0; 1483 } 1484 1485 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1486 if (rc != 0) { 1487 transport_generic_request_failure(se_cmd, rc); 1488 return 0; 1489 } 1490 1491 /* 1492 * Save pointers for SGLs containing protection information, 1493 * if present. 1494 */ 1495 if (sgl_prot_count) { 1496 se_cmd->t_prot_sg = sgl_prot; 1497 se_cmd->t_prot_nents = sgl_prot_count; 1498 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1499 } 1500 1501 /* 1502 * When a non zero sgl_count has been passed perform SGL passthrough 1503 * mapping for pre-allocated fabric memory instead of having target 1504 * core perform an internal SGL allocation.. 1505 */ 1506 if (sgl_count != 0) { 1507 BUG_ON(!sgl); 1508 1509 /* 1510 * A work-around for tcm_loop as some userspace code via 1511 * scsi-generic do not memset their associated read buffers, 1512 * so go ahead and do that here for type non-data CDBs. Also 1513 * note that this is currently guaranteed to be a single SGL 1514 * for this case by target core in target_setup_cmd_from_cdb() 1515 * -> transport_generic_cmd_sequencer(). 1516 */ 1517 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1518 se_cmd->data_direction == DMA_FROM_DEVICE) { 1519 unsigned char *buf = NULL; 1520 1521 if (sgl) 1522 buf = kmap(sg_page(sgl)) + sgl->offset; 1523 1524 if (buf) { 1525 memset(buf, 0, sgl->length); 1526 kunmap(sg_page(sgl)); 1527 } 1528 } 1529 1530 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1531 sgl_bidi, sgl_bidi_count); 1532 if (rc != 0) { 1533 transport_generic_request_failure(se_cmd, rc); 1534 return 0; 1535 } 1536 } 1537 1538 /* 1539 * Check if we need to delay processing because of ALUA 1540 * Active/NonOptimized primary access state.. 1541 */ 1542 core_alua_check_nonop_delay(se_cmd); 1543 1544 transport_handle_cdb_direct(se_cmd); 1545 return 0; 1546 } 1547 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1548 1549 /* 1550 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1551 * 1552 * @se_cmd: command descriptor to submit 1553 * @se_sess: associated se_sess for endpoint 1554 * @cdb: pointer to SCSI CDB 1555 * @sense: pointer to SCSI sense buffer 1556 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1557 * @data_length: fabric expected data transfer length 1558 * @task_addr: SAM task attribute 1559 * @data_dir: DMA data direction 1560 * @flags: flags for command submission from target_sc_flags_tables 1561 * 1562 * Task tags are supported if the caller has set @se_cmd->tag. 1563 * 1564 * Returns non zero to signal active I/O shutdown failure. All other 1565 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1566 * but still return zero here. 1567 * 1568 * This may only be called from process context, and also currently 1569 * assumes internal allocation of fabric payload buffer by target-core. 1570 * 1571 * It also assumes interal target core SGL memory allocation. 1572 */ 1573 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1574 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1575 u32 data_length, int task_attr, int data_dir, int flags) 1576 { 1577 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1578 unpacked_lun, data_length, task_attr, data_dir, 1579 flags, NULL, 0, NULL, 0, NULL, 0); 1580 } 1581 EXPORT_SYMBOL(target_submit_cmd); 1582 1583 static void target_complete_tmr_failure(struct work_struct *work) 1584 { 1585 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1586 1587 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1588 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1589 1590 transport_cmd_check_stop_to_fabric(se_cmd); 1591 } 1592 1593 /** 1594 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1595 * for TMR CDBs 1596 * 1597 * @se_cmd: command descriptor to submit 1598 * @se_sess: associated se_sess for endpoint 1599 * @sense: pointer to SCSI sense buffer 1600 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1601 * @fabric_context: fabric context for TMR req 1602 * @tm_type: Type of TM request 1603 * @gfp: gfp type for caller 1604 * @tag: referenced task tag for TMR_ABORT_TASK 1605 * @flags: submit cmd flags 1606 * 1607 * Callable from all contexts. 1608 **/ 1609 1610 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1611 unsigned char *sense, u64 unpacked_lun, 1612 void *fabric_tmr_ptr, unsigned char tm_type, 1613 gfp_t gfp, u64 tag, int flags) 1614 { 1615 struct se_portal_group *se_tpg; 1616 int ret; 1617 1618 se_tpg = se_sess->se_tpg; 1619 BUG_ON(!se_tpg); 1620 1621 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1622 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1623 /* 1624 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1625 * allocation failure. 1626 */ 1627 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1628 if (ret < 0) 1629 return -ENOMEM; 1630 1631 if (tm_type == TMR_ABORT_TASK) 1632 se_cmd->se_tmr_req->ref_task_tag = tag; 1633 1634 /* See target_submit_cmd for commentary */ 1635 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1636 if (ret) { 1637 core_tmr_release_req(se_cmd->se_tmr_req); 1638 return ret; 1639 } 1640 1641 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1642 if (ret) { 1643 /* 1644 * For callback during failure handling, push this work off 1645 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1646 */ 1647 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1648 schedule_work(&se_cmd->work); 1649 return 0; 1650 } 1651 transport_generic_handle_tmr(se_cmd); 1652 return 0; 1653 } 1654 EXPORT_SYMBOL(target_submit_tmr); 1655 1656 /* 1657 * Handle SAM-esque emulation for generic transport request failures. 1658 */ 1659 void transport_generic_request_failure(struct se_cmd *cmd, 1660 sense_reason_t sense_reason) 1661 { 1662 int ret = 0, post_ret = 0; 1663 1664 if (transport_check_aborted_status(cmd, 1)) 1665 return; 1666 1667 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" 1668 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); 1669 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1670 cmd->se_tfo->get_cmd_state(cmd), 1671 cmd->t_state, sense_reason); 1672 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1673 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1674 (cmd->transport_state & CMD_T_STOP) != 0, 1675 (cmd->transport_state & CMD_T_SENT) != 0); 1676 1677 /* 1678 * For SAM Task Attribute emulation for failed struct se_cmd 1679 */ 1680 transport_complete_task_attr(cmd); 1681 /* 1682 * Handle special case for COMPARE_AND_WRITE failure, where the 1683 * callback is expected to drop the per device ->caw_sem. 1684 */ 1685 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1686 cmd->transport_complete_callback) 1687 cmd->transport_complete_callback(cmd, false, &post_ret); 1688 1689 switch (sense_reason) { 1690 case TCM_NON_EXISTENT_LUN: 1691 case TCM_UNSUPPORTED_SCSI_OPCODE: 1692 case TCM_INVALID_CDB_FIELD: 1693 case TCM_INVALID_PARAMETER_LIST: 1694 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1695 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1696 case TCM_UNKNOWN_MODE_PAGE: 1697 case TCM_WRITE_PROTECTED: 1698 case TCM_ADDRESS_OUT_OF_RANGE: 1699 case TCM_CHECK_CONDITION_ABORT_CMD: 1700 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1701 case TCM_CHECK_CONDITION_NOT_READY: 1702 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1703 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1704 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1705 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1706 case TCM_TOO_MANY_TARGET_DESCS: 1707 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1708 case TCM_TOO_MANY_SEGMENT_DESCS: 1709 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1710 break; 1711 case TCM_OUT_OF_RESOURCES: 1712 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1713 break; 1714 case TCM_RESERVATION_CONFLICT: 1715 /* 1716 * No SENSE Data payload for this case, set SCSI Status 1717 * and queue the response to $FABRIC_MOD. 1718 * 1719 * Uses linux/include/scsi/scsi.h SAM status codes defs 1720 */ 1721 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1722 /* 1723 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1724 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1725 * CONFLICT STATUS. 1726 * 1727 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1728 */ 1729 if (cmd->se_sess && 1730 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1731 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1732 cmd->orig_fe_lun, 0x2C, 1733 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1734 } 1735 trace_target_cmd_complete(cmd); 1736 ret = cmd->se_tfo->queue_status(cmd); 1737 if (ret) 1738 goto queue_full; 1739 goto check_stop; 1740 default: 1741 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1742 cmd->t_task_cdb[0], sense_reason); 1743 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1744 break; 1745 } 1746 1747 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1748 if (ret) 1749 goto queue_full; 1750 1751 check_stop: 1752 transport_lun_remove_cmd(cmd); 1753 transport_cmd_check_stop_to_fabric(cmd); 1754 return; 1755 1756 queue_full: 1757 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 1758 } 1759 EXPORT_SYMBOL(transport_generic_request_failure); 1760 1761 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1762 { 1763 sense_reason_t ret; 1764 1765 if (!cmd->execute_cmd) { 1766 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1767 goto err; 1768 } 1769 if (do_checks) { 1770 /* 1771 * Check for an existing UNIT ATTENTION condition after 1772 * target_handle_task_attr() has done SAM task attr 1773 * checking, and possibly have already defered execution 1774 * out to target_restart_delayed_cmds() context. 1775 */ 1776 ret = target_scsi3_ua_check(cmd); 1777 if (ret) 1778 goto err; 1779 1780 ret = target_alua_state_check(cmd); 1781 if (ret) 1782 goto err; 1783 1784 ret = target_check_reservation(cmd); 1785 if (ret) { 1786 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1787 goto err; 1788 } 1789 } 1790 1791 ret = cmd->execute_cmd(cmd); 1792 if (!ret) 1793 return; 1794 err: 1795 spin_lock_irq(&cmd->t_state_lock); 1796 cmd->transport_state &= ~CMD_T_SENT; 1797 spin_unlock_irq(&cmd->t_state_lock); 1798 1799 transport_generic_request_failure(cmd, ret); 1800 } 1801 1802 static int target_write_prot_action(struct se_cmd *cmd) 1803 { 1804 u32 sectors; 1805 /* 1806 * Perform WRITE_INSERT of PI using software emulation when backend 1807 * device has PI enabled, if the transport has not already generated 1808 * PI using hardware WRITE_INSERT offload. 1809 */ 1810 switch (cmd->prot_op) { 1811 case TARGET_PROT_DOUT_INSERT: 1812 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1813 sbc_dif_generate(cmd); 1814 break; 1815 case TARGET_PROT_DOUT_STRIP: 1816 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1817 break; 1818 1819 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1820 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1821 sectors, 0, cmd->t_prot_sg, 0); 1822 if (unlikely(cmd->pi_err)) { 1823 spin_lock_irq(&cmd->t_state_lock); 1824 cmd->transport_state &= ~CMD_T_SENT; 1825 spin_unlock_irq(&cmd->t_state_lock); 1826 transport_generic_request_failure(cmd, cmd->pi_err); 1827 return -1; 1828 } 1829 break; 1830 default: 1831 break; 1832 } 1833 1834 return 0; 1835 } 1836 1837 static bool target_handle_task_attr(struct se_cmd *cmd) 1838 { 1839 struct se_device *dev = cmd->se_dev; 1840 1841 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1842 return false; 1843 1844 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 1845 1846 /* 1847 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1848 * to allow the passed struct se_cmd list of tasks to the front of the list. 1849 */ 1850 switch (cmd->sam_task_attr) { 1851 case TCM_HEAD_TAG: 1852 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1853 cmd->t_task_cdb[0]); 1854 return false; 1855 case TCM_ORDERED_TAG: 1856 atomic_inc_mb(&dev->dev_ordered_sync); 1857 1858 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1859 cmd->t_task_cdb[0]); 1860 1861 /* 1862 * Execute an ORDERED command if no other older commands 1863 * exist that need to be completed first. 1864 */ 1865 if (!atomic_read(&dev->simple_cmds)) 1866 return false; 1867 break; 1868 default: 1869 /* 1870 * For SIMPLE and UNTAGGED Task Attribute commands 1871 */ 1872 atomic_inc_mb(&dev->simple_cmds); 1873 break; 1874 } 1875 1876 if (atomic_read(&dev->dev_ordered_sync) == 0) 1877 return false; 1878 1879 spin_lock(&dev->delayed_cmd_lock); 1880 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1881 spin_unlock(&dev->delayed_cmd_lock); 1882 1883 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1884 cmd->t_task_cdb[0], cmd->sam_task_attr); 1885 return true; 1886 } 1887 1888 static int __transport_check_aborted_status(struct se_cmd *, int); 1889 1890 void target_execute_cmd(struct se_cmd *cmd) 1891 { 1892 /* 1893 * Determine if frontend context caller is requesting the stopping of 1894 * this command for frontend exceptions. 1895 * 1896 * If the received CDB has aleady been aborted stop processing it here. 1897 */ 1898 spin_lock_irq(&cmd->t_state_lock); 1899 if (__transport_check_aborted_status(cmd, 1)) { 1900 spin_unlock_irq(&cmd->t_state_lock); 1901 return; 1902 } 1903 if (cmd->transport_state & CMD_T_STOP) { 1904 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1905 __func__, __LINE__, cmd->tag); 1906 1907 spin_unlock_irq(&cmd->t_state_lock); 1908 complete_all(&cmd->t_transport_stop_comp); 1909 return; 1910 } 1911 1912 cmd->t_state = TRANSPORT_PROCESSING; 1913 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 1914 spin_unlock_irq(&cmd->t_state_lock); 1915 1916 if (target_write_prot_action(cmd)) 1917 return; 1918 1919 if (target_handle_task_attr(cmd)) { 1920 spin_lock_irq(&cmd->t_state_lock); 1921 cmd->transport_state &= ~CMD_T_SENT; 1922 spin_unlock_irq(&cmd->t_state_lock); 1923 return; 1924 } 1925 1926 __target_execute_cmd(cmd, true); 1927 } 1928 EXPORT_SYMBOL(target_execute_cmd); 1929 1930 /* 1931 * Process all commands up to the last received ORDERED task attribute which 1932 * requires another blocking boundary 1933 */ 1934 static void target_restart_delayed_cmds(struct se_device *dev) 1935 { 1936 for (;;) { 1937 struct se_cmd *cmd; 1938 1939 spin_lock(&dev->delayed_cmd_lock); 1940 if (list_empty(&dev->delayed_cmd_list)) { 1941 spin_unlock(&dev->delayed_cmd_lock); 1942 break; 1943 } 1944 1945 cmd = list_entry(dev->delayed_cmd_list.next, 1946 struct se_cmd, se_delayed_node); 1947 list_del(&cmd->se_delayed_node); 1948 spin_unlock(&dev->delayed_cmd_lock); 1949 1950 __target_execute_cmd(cmd, true); 1951 1952 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1953 break; 1954 } 1955 } 1956 1957 /* 1958 * Called from I/O completion to determine which dormant/delayed 1959 * and ordered cmds need to have their tasks added to the execution queue. 1960 */ 1961 static void transport_complete_task_attr(struct se_cmd *cmd) 1962 { 1963 struct se_device *dev = cmd->se_dev; 1964 1965 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1966 return; 1967 1968 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 1969 goto restart; 1970 1971 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1972 atomic_dec_mb(&dev->simple_cmds); 1973 dev->dev_cur_ordered_id++; 1974 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1975 dev->dev_cur_ordered_id++; 1976 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 1977 dev->dev_cur_ordered_id); 1978 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1979 atomic_dec_mb(&dev->dev_ordered_sync); 1980 1981 dev->dev_cur_ordered_id++; 1982 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 1983 dev->dev_cur_ordered_id); 1984 } 1985 restart: 1986 target_restart_delayed_cmds(dev); 1987 } 1988 1989 static void transport_complete_qf(struct se_cmd *cmd) 1990 { 1991 int ret = 0; 1992 1993 transport_complete_task_attr(cmd); 1994 /* 1995 * If a fabric driver ->write_pending() or ->queue_data_in() callback 1996 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 1997 * the same callbacks should not be retried. Return CHECK_CONDITION 1998 * if a scsi_status is not already set. 1999 * 2000 * If a fabric driver ->queue_status() has returned non zero, always 2001 * keep retrying no matter what.. 2002 */ 2003 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 2004 if (cmd->scsi_status) 2005 goto queue_status; 2006 2007 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2008 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2009 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2010 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 2011 goto queue_status; 2012 } 2013 2014 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2015 goto queue_status; 2016 2017 switch (cmd->data_direction) { 2018 case DMA_FROM_DEVICE: 2019 if (cmd->scsi_status) 2020 goto queue_status; 2021 2022 trace_target_cmd_complete(cmd); 2023 ret = cmd->se_tfo->queue_data_in(cmd); 2024 break; 2025 case DMA_TO_DEVICE: 2026 if (cmd->se_cmd_flags & SCF_BIDI) { 2027 ret = cmd->se_tfo->queue_data_in(cmd); 2028 break; 2029 } 2030 /* Fall through for DMA_TO_DEVICE */ 2031 case DMA_NONE: 2032 queue_status: 2033 trace_target_cmd_complete(cmd); 2034 ret = cmd->se_tfo->queue_status(cmd); 2035 break; 2036 default: 2037 break; 2038 } 2039 2040 if (ret < 0) { 2041 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2042 return; 2043 } 2044 transport_lun_remove_cmd(cmd); 2045 transport_cmd_check_stop_to_fabric(cmd); 2046 } 2047 2048 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2049 int err, bool write_pending) 2050 { 2051 /* 2052 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2053 * ->queue_data_in() callbacks from new process context. 2054 * 2055 * Otherwise for other errors, transport_complete_qf() will send 2056 * CHECK_CONDITION via ->queue_status() instead of attempting to 2057 * retry associated fabric driver data-transfer callbacks. 2058 */ 2059 if (err == -EAGAIN || err == -ENOMEM) { 2060 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2061 TRANSPORT_COMPLETE_QF_OK; 2062 } else { 2063 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2064 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2065 } 2066 2067 spin_lock_irq(&dev->qf_cmd_lock); 2068 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2069 atomic_inc_mb(&dev->dev_qf_count); 2070 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2071 2072 schedule_work(&cmd->se_dev->qf_work_queue); 2073 } 2074 2075 static bool target_read_prot_action(struct se_cmd *cmd) 2076 { 2077 switch (cmd->prot_op) { 2078 case TARGET_PROT_DIN_STRIP: 2079 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2080 u32 sectors = cmd->data_length >> 2081 ilog2(cmd->se_dev->dev_attrib.block_size); 2082 2083 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2084 sectors, 0, cmd->t_prot_sg, 2085 0); 2086 if (cmd->pi_err) 2087 return true; 2088 } 2089 break; 2090 case TARGET_PROT_DIN_INSERT: 2091 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2092 break; 2093 2094 sbc_dif_generate(cmd); 2095 break; 2096 default: 2097 break; 2098 } 2099 2100 return false; 2101 } 2102 2103 static void target_complete_ok_work(struct work_struct *work) 2104 { 2105 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2106 int ret; 2107 2108 /* 2109 * Check if we need to move delayed/dormant tasks from cmds on the 2110 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2111 * Attribute. 2112 */ 2113 transport_complete_task_attr(cmd); 2114 2115 /* 2116 * Check to schedule QUEUE_FULL work, or execute an existing 2117 * cmd->transport_qf_callback() 2118 */ 2119 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2120 schedule_work(&cmd->se_dev->qf_work_queue); 2121 2122 /* 2123 * Check if we need to send a sense buffer from 2124 * the struct se_cmd in question. 2125 */ 2126 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2127 WARN_ON(!cmd->scsi_status); 2128 ret = transport_send_check_condition_and_sense( 2129 cmd, 0, 1); 2130 if (ret) 2131 goto queue_full; 2132 2133 transport_lun_remove_cmd(cmd); 2134 transport_cmd_check_stop_to_fabric(cmd); 2135 return; 2136 } 2137 /* 2138 * Check for a callback, used by amongst other things 2139 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2140 */ 2141 if (cmd->transport_complete_callback) { 2142 sense_reason_t rc; 2143 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2144 bool zero_dl = !(cmd->data_length); 2145 int post_ret = 0; 2146 2147 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2148 if (!rc && !post_ret) { 2149 if (caw && zero_dl) 2150 goto queue_rsp; 2151 2152 return; 2153 } else if (rc) { 2154 ret = transport_send_check_condition_and_sense(cmd, 2155 rc, 0); 2156 if (ret) 2157 goto queue_full; 2158 2159 transport_lun_remove_cmd(cmd); 2160 transport_cmd_check_stop_to_fabric(cmd); 2161 return; 2162 } 2163 } 2164 2165 queue_rsp: 2166 switch (cmd->data_direction) { 2167 case DMA_FROM_DEVICE: 2168 if (cmd->scsi_status) 2169 goto queue_status; 2170 2171 atomic_long_add(cmd->data_length, 2172 &cmd->se_lun->lun_stats.tx_data_octets); 2173 /* 2174 * Perform READ_STRIP of PI using software emulation when 2175 * backend had PI enabled, if the transport will not be 2176 * performing hardware READ_STRIP offload. 2177 */ 2178 if (target_read_prot_action(cmd)) { 2179 ret = transport_send_check_condition_and_sense(cmd, 2180 cmd->pi_err, 0); 2181 if (ret) 2182 goto queue_full; 2183 2184 transport_lun_remove_cmd(cmd); 2185 transport_cmd_check_stop_to_fabric(cmd); 2186 return; 2187 } 2188 2189 trace_target_cmd_complete(cmd); 2190 ret = cmd->se_tfo->queue_data_in(cmd); 2191 if (ret) 2192 goto queue_full; 2193 break; 2194 case DMA_TO_DEVICE: 2195 atomic_long_add(cmd->data_length, 2196 &cmd->se_lun->lun_stats.rx_data_octets); 2197 /* 2198 * Check if we need to send READ payload for BIDI-COMMAND 2199 */ 2200 if (cmd->se_cmd_flags & SCF_BIDI) { 2201 atomic_long_add(cmd->data_length, 2202 &cmd->se_lun->lun_stats.tx_data_octets); 2203 ret = cmd->se_tfo->queue_data_in(cmd); 2204 if (ret) 2205 goto queue_full; 2206 break; 2207 } 2208 /* Fall through for DMA_TO_DEVICE */ 2209 case DMA_NONE: 2210 queue_status: 2211 trace_target_cmd_complete(cmd); 2212 ret = cmd->se_tfo->queue_status(cmd); 2213 if (ret) 2214 goto queue_full; 2215 break; 2216 default: 2217 break; 2218 } 2219 2220 transport_lun_remove_cmd(cmd); 2221 transport_cmd_check_stop_to_fabric(cmd); 2222 return; 2223 2224 queue_full: 2225 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2226 " data_direction: %d\n", cmd, cmd->data_direction); 2227 2228 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2229 } 2230 2231 void target_free_sgl(struct scatterlist *sgl, int nents) 2232 { 2233 struct scatterlist *sg; 2234 int count; 2235 2236 for_each_sg(sgl, sg, nents, count) 2237 __free_page(sg_page(sg)); 2238 2239 kfree(sgl); 2240 } 2241 EXPORT_SYMBOL(target_free_sgl); 2242 2243 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2244 { 2245 /* 2246 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2247 * emulation, and free + reset pointers if necessary.. 2248 */ 2249 if (!cmd->t_data_sg_orig) 2250 return; 2251 2252 kfree(cmd->t_data_sg); 2253 cmd->t_data_sg = cmd->t_data_sg_orig; 2254 cmd->t_data_sg_orig = NULL; 2255 cmd->t_data_nents = cmd->t_data_nents_orig; 2256 cmd->t_data_nents_orig = 0; 2257 } 2258 2259 static inline void transport_free_pages(struct se_cmd *cmd) 2260 { 2261 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2262 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2263 cmd->t_prot_sg = NULL; 2264 cmd->t_prot_nents = 0; 2265 } 2266 2267 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2268 /* 2269 * Release special case READ buffer payload required for 2270 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2271 */ 2272 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2273 target_free_sgl(cmd->t_bidi_data_sg, 2274 cmd->t_bidi_data_nents); 2275 cmd->t_bidi_data_sg = NULL; 2276 cmd->t_bidi_data_nents = 0; 2277 } 2278 transport_reset_sgl_orig(cmd); 2279 return; 2280 } 2281 transport_reset_sgl_orig(cmd); 2282 2283 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2284 cmd->t_data_sg = NULL; 2285 cmd->t_data_nents = 0; 2286 2287 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2288 cmd->t_bidi_data_sg = NULL; 2289 cmd->t_bidi_data_nents = 0; 2290 } 2291 2292 /** 2293 * transport_put_cmd - release a reference to a command 2294 * @cmd: command to release 2295 * 2296 * This routine releases our reference to the command and frees it if possible. 2297 */ 2298 static int transport_put_cmd(struct se_cmd *cmd) 2299 { 2300 BUG_ON(!cmd->se_tfo); 2301 /* 2302 * If this cmd has been setup with target_get_sess_cmd(), drop 2303 * the kref and call ->release_cmd() in kref callback. 2304 */ 2305 return target_put_sess_cmd(cmd); 2306 } 2307 2308 void *transport_kmap_data_sg(struct se_cmd *cmd) 2309 { 2310 struct scatterlist *sg = cmd->t_data_sg; 2311 struct page **pages; 2312 int i; 2313 2314 /* 2315 * We need to take into account a possible offset here for fabrics like 2316 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2317 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2318 */ 2319 if (!cmd->t_data_nents) 2320 return NULL; 2321 2322 BUG_ON(!sg); 2323 if (cmd->t_data_nents == 1) 2324 return kmap(sg_page(sg)) + sg->offset; 2325 2326 /* >1 page. use vmap */ 2327 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); 2328 if (!pages) 2329 return NULL; 2330 2331 /* convert sg[] to pages[] */ 2332 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2333 pages[i] = sg_page(sg); 2334 } 2335 2336 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2337 kfree(pages); 2338 if (!cmd->t_data_vmap) 2339 return NULL; 2340 2341 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2342 } 2343 EXPORT_SYMBOL(transport_kmap_data_sg); 2344 2345 void transport_kunmap_data_sg(struct se_cmd *cmd) 2346 { 2347 if (!cmd->t_data_nents) { 2348 return; 2349 } else if (cmd->t_data_nents == 1) { 2350 kunmap(sg_page(cmd->t_data_sg)); 2351 return; 2352 } 2353 2354 vunmap(cmd->t_data_vmap); 2355 cmd->t_data_vmap = NULL; 2356 } 2357 EXPORT_SYMBOL(transport_kunmap_data_sg); 2358 2359 int 2360 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2361 bool zero_page, bool chainable) 2362 { 2363 struct scatterlist *sg; 2364 struct page *page; 2365 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2366 unsigned int nalloc, nent; 2367 int i = 0; 2368 2369 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE); 2370 if (chainable) 2371 nalloc++; 2372 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL); 2373 if (!sg) 2374 return -ENOMEM; 2375 2376 sg_init_table(sg, nalloc); 2377 2378 while (length) { 2379 u32 page_len = min_t(u32, length, PAGE_SIZE); 2380 page = alloc_page(GFP_KERNEL | zero_flag); 2381 if (!page) 2382 goto out; 2383 2384 sg_set_page(&sg[i], page, page_len, 0); 2385 length -= page_len; 2386 i++; 2387 } 2388 *sgl = sg; 2389 *nents = nent; 2390 return 0; 2391 2392 out: 2393 while (i > 0) { 2394 i--; 2395 __free_page(sg_page(&sg[i])); 2396 } 2397 kfree(sg); 2398 return -ENOMEM; 2399 } 2400 EXPORT_SYMBOL(target_alloc_sgl); 2401 2402 /* 2403 * Allocate any required resources to execute the command. For writes we 2404 * might not have the payload yet, so notify the fabric via a call to 2405 * ->write_pending instead. Otherwise place it on the execution queue. 2406 */ 2407 sense_reason_t 2408 transport_generic_new_cmd(struct se_cmd *cmd) 2409 { 2410 unsigned long flags; 2411 int ret = 0; 2412 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2413 2414 if (cmd->prot_op != TARGET_PROT_NORMAL && 2415 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2416 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2417 cmd->prot_length, true, false); 2418 if (ret < 0) 2419 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2420 } 2421 2422 /* 2423 * Determine is the TCM fabric module has already allocated physical 2424 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2425 * beforehand. 2426 */ 2427 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2428 cmd->data_length) { 2429 2430 if ((cmd->se_cmd_flags & SCF_BIDI) || 2431 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2432 u32 bidi_length; 2433 2434 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2435 bidi_length = cmd->t_task_nolb * 2436 cmd->se_dev->dev_attrib.block_size; 2437 else 2438 bidi_length = cmd->data_length; 2439 2440 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2441 &cmd->t_bidi_data_nents, 2442 bidi_length, zero_flag, false); 2443 if (ret < 0) 2444 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2445 } 2446 2447 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2448 cmd->data_length, zero_flag, false); 2449 if (ret < 0) 2450 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2451 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2452 cmd->data_length) { 2453 /* 2454 * Special case for COMPARE_AND_WRITE with fabrics 2455 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2456 */ 2457 u32 caw_length = cmd->t_task_nolb * 2458 cmd->se_dev->dev_attrib.block_size; 2459 2460 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2461 &cmd->t_bidi_data_nents, 2462 caw_length, zero_flag, false); 2463 if (ret < 0) 2464 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2465 } 2466 /* 2467 * If this command is not a write we can execute it right here, 2468 * for write buffers we need to notify the fabric driver first 2469 * and let it call back once the write buffers are ready. 2470 */ 2471 target_add_to_state_list(cmd); 2472 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2473 target_execute_cmd(cmd); 2474 return 0; 2475 } 2476 2477 spin_lock_irqsave(&cmd->t_state_lock, flags); 2478 cmd->t_state = TRANSPORT_WRITE_PENDING; 2479 /* 2480 * Determine if frontend context caller is requesting the stopping of 2481 * this command for frontend exceptions. 2482 */ 2483 if (cmd->transport_state & CMD_T_STOP) { 2484 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2485 __func__, __LINE__, cmd->tag); 2486 2487 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2488 2489 complete_all(&cmd->t_transport_stop_comp); 2490 return 0; 2491 } 2492 cmd->transport_state &= ~CMD_T_ACTIVE; 2493 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2494 2495 ret = cmd->se_tfo->write_pending(cmd); 2496 if (ret) 2497 goto queue_full; 2498 2499 return 0; 2500 2501 queue_full: 2502 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2503 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2504 return 0; 2505 } 2506 EXPORT_SYMBOL(transport_generic_new_cmd); 2507 2508 static void transport_write_pending_qf(struct se_cmd *cmd) 2509 { 2510 int ret; 2511 2512 ret = cmd->se_tfo->write_pending(cmd); 2513 if (ret) { 2514 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2515 cmd); 2516 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2517 } 2518 } 2519 2520 static bool 2521 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2522 unsigned long *flags); 2523 2524 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2525 { 2526 unsigned long flags; 2527 2528 spin_lock_irqsave(&cmd->t_state_lock, flags); 2529 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2530 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2531 } 2532 2533 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2534 { 2535 int ret = 0; 2536 bool aborted = false, tas = false; 2537 2538 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2539 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2540 target_wait_free_cmd(cmd, &aborted, &tas); 2541 2542 if (!aborted || tas) 2543 ret = transport_put_cmd(cmd); 2544 } else { 2545 if (wait_for_tasks) 2546 target_wait_free_cmd(cmd, &aborted, &tas); 2547 /* 2548 * Handle WRITE failure case where transport_generic_new_cmd() 2549 * has already added se_cmd to state_list, but fabric has 2550 * failed command before I/O submission. 2551 */ 2552 if (cmd->state_active) 2553 target_remove_from_state_list(cmd); 2554 2555 if (cmd->se_lun) 2556 transport_lun_remove_cmd(cmd); 2557 2558 if (!aborted || tas) 2559 ret = transport_put_cmd(cmd); 2560 } 2561 /* 2562 * If the task has been internally aborted due to TMR ABORT_TASK 2563 * or LUN_RESET, target_core_tmr.c is responsible for performing 2564 * the remaining calls to target_put_sess_cmd(), and not the 2565 * callers of this function. 2566 */ 2567 if (aborted) { 2568 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2569 wait_for_completion(&cmd->cmd_wait_comp); 2570 cmd->se_tfo->release_cmd(cmd); 2571 ret = 1; 2572 } 2573 return ret; 2574 } 2575 EXPORT_SYMBOL(transport_generic_free_cmd); 2576 2577 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2578 * @se_cmd: command descriptor to add 2579 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2580 */ 2581 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2582 { 2583 struct se_session *se_sess = se_cmd->se_sess; 2584 unsigned long flags; 2585 int ret = 0; 2586 2587 /* 2588 * Add a second kref if the fabric caller is expecting to handle 2589 * fabric acknowledgement that requires two target_put_sess_cmd() 2590 * invocations before se_cmd descriptor release. 2591 */ 2592 if (ack_kref) { 2593 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2594 return -EINVAL; 2595 2596 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2597 } 2598 2599 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2600 if (se_sess->sess_tearing_down) { 2601 ret = -ESHUTDOWN; 2602 goto out; 2603 } 2604 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2605 out: 2606 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2607 2608 if (ret && ack_kref) 2609 target_put_sess_cmd(se_cmd); 2610 2611 return ret; 2612 } 2613 EXPORT_SYMBOL(target_get_sess_cmd); 2614 2615 static void target_free_cmd_mem(struct se_cmd *cmd) 2616 { 2617 transport_free_pages(cmd); 2618 2619 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2620 core_tmr_release_req(cmd->se_tmr_req); 2621 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2622 kfree(cmd->t_task_cdb); 2623 } 2624 2625 static void target_release_cmd_kref(struct kref *kref) 2626 { 2627 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2628 struct se_session *se_sess = se_cmd->se_sess; 2629 unsigned long flags; 2630 bool fabric_stop; 2631 2632 if (se_sess) { 2633 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2634 2635 spin_lock(&se_cmd->t_state_lock); 2636 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) && 2637 (se_cmd->transport_state & CMD_T_ABORTED); 2638 spin_unlock(&se_cmd->t_state_lock); 2639 2640 if (se_cmd->cmd_wait_set || fabric_stop) { 2641 list_del_init(&se_cmd->se_cmd_list); 2642 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2643 target_free_cmd_mem(se_cmd); 2644 complete(&se_cmd->cmd_wait_comp); 2645 return; 2646 } 2647 list_del_init(&se_cmd->se_cmd_list); 2648 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2649 } 2650 2651 target_free_cmd_mem(se_cmd); 2652 se_cmd->se_tfo->release_cmd(se_cmd); 2653 } 2654 2655 /** 2656 * target_put_sess_cmd - decrease the command reference count 2657 * @se_cmd: command to drop a reference from 2658 * 2659 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2660 * refcount to drop to zero. Returns zero otherwise. 2661 */ 2662 int target_put_sess_cmd(struct se_cmd *se_cmd) 2663 { 2664 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2665 } 2666 EXPORT_SYMBOL(target_put_sess_cmd); 2667 2668 /* target_sess_cmd_list_set_waiting - Flag all commands in 2669 * sess_cmd_list to complete cmd_wait_comp. Set 2670 * sess_tearing_down so no more commands are queued. 2671 * @se_sess: session to flag 2672 */ 2673 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2674 { 2675 struct se_cmd *se_cmd, *tmp_cmd; 2676 unsigned long flags; 2677 int rc; 2678 2679 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2680 if (se_sess->sess_tearing_down) { 2681 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2682 return; 2683 } 2684 se_sess->sess_tearing_down = 1; 2685 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2686 2687 list_for_each_entry_safe(se_cmd, tmp_cmd, 2688 &se_sess->sess_wait_list, se_cmd_list) { 2689 rc = kref_get_unless_zero(&se_cmd->cmd_kref); 2690 if (rc) { 2691 se_cmd->cmd_wait_set = 1; 2692 spin_lock(&se_cmd->t_state_lock); 2693 se_cmd->transport_state |= CMD_T_FABRIC_STOP; 2694 spin_unlock(&se_cmd->t_state_lock); 2695 } else 2696 list_del_init(&se_cmd->se_cmd_list); 2697 } 2698 2699 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2700 } 2701 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2702 2703 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2704 * @se_sess: session to wait for active I/O 2705 */ 2706 void target_wait_for_sess_cmds(struct se_session *se_sess) 2707 { 2708 struct se_cmd *se_cmd, *tmp_cmd; 2709 unsigned long flags; 2710 bool tas; 2711 2712 list_for_each_entry_safe(se_cmd, tmp_cmd, 2713 &se_sess->sess_wait_list, se_cmd_list) { 2714 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2715 " %d\n", se_cmd, se_cmd->t_state, 2716 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2717 2718 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2719 tas = (se_cmd->transport_state & CMD_T_TAS); 2720 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2721 2722 if (!target_put_sess_cmd(se_cmd)) { 2723 if (tas) 2724 target_put_sess_cmd(se_cmd); 2725 } 2726 2727 wait_for_completion(&se_cmd->cmd_wait_comp); 2728 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2729 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2730 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2731 2732 se_cmd->se_tfo->release_cmd(se_cmd); 2733 } 2734 2735 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2736 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2737 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2738 2739 } 2740 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2741 2742 static void target_lun_confirm(struct percpu_ref *ref) 2743 { 2744 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref); 2745 2746 complete(&lun->lun_ref_comp); 2747 } 2748 2749 void transport_clear_lun_ref(struct se_lun *lun) 2750 { 2751 /* 2752 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop 2753 * the initial reference and schedule confirm kill to be 2754 * executed after one full RCU grace period has completed. 2755 */ 2756 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm); 2757 /* 2758 * The first completion waits for percpu_ref_switch_to_atomic_rcu() 2759 * to call target_lun_confirm after lun->lun_ref has been marked 2760 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t 2761 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref 2762 * fails for all new incoming I/O. 2763 */ 2764 wait_for_completion(&lun->lun_ref_comp); 2765 /* 2766 * The second completion waits for percpu_ref_put_many() to 2767 * invoke ->release() after lun->lun_ref has switched to 2768 * atomic_t mode, and lun->lun_ref.count has reached zero. 2769 * 2770 * At this point all target-core lun->lun_ref references have 2771 * been dropped via transport_lun_remove_cmd(), and it's safe 2772 * to proceed with the remaining LUN shutdown. 2773 */ 2774 wait_for_completion(&lun->lun_shutdown_comp); 2775 } 2776 2777 static bool 2778 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2779 bool *aborted, bool *tas, unsigned long *flags) 2780 __releases(&cmd->t_state_lock) 2781 __acquires(&cmd->t_state_lock) 2782 { 2783 2784 assert_spin_locked(&cmd->t_state_lock); 2785 WARN_ON_ONCE(!irqs_disabled()); 2786 2787 if (fabric_stop) 2788 cmd->transport_state |= CMD_T_FABRIC_STOP; 2789 2790 if (cmd->transport_state & CMD_T_ABORTED) 2791 *aborted = true; 2792 2793 if (cmd->transport_state & CMD_T_TAS) 2794 *tas = true; 2795 2796 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2797 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2798 return false; 2799 2800 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2801 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2802 return false; 2803 2804 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2805 return false; 2806 2807 if (fabric_stop && *aborted) 2808 return false; 2809 2810 cmd->transport_state |= CMD_T_STOP; 2811 2812 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d," 2813 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag, 2814 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2815 2816 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2817 2818 wait_for_completion(&cmd->t_transport_stop_comp); 2819 2820 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2821 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2822 2823 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 2824 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 2825 2826 return true; 2827 } 2828 2829 /** 2830 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 2831 * @cmd: command to wait on 2832 */ 2833 bool transport_wait_for_tasks(struct se_cmd *cmd) 2834 { 2835 unsigned long flags; 2836 bool ret, aborted = false, tas = false; 2837 2838 spin_lock_irqsave(&cmd->t_state_lock, flags); 2839 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 2840 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2841 2842 return ret; 2843 } 2844 EXPORT_SYMBOL(transport_wait_for_tasks); 2845 2846 struct sense_info { 2847 u8 key; 2848 u8 asc; 2849 u8 ascq; 2850 bool add_sector_info; 2851 }; 2852 2853 static const struct sense_info sense_info_table[] = { 2854 [TCM_NO_SENSE] = { 2855 .key = NOT_READY 2856 }, 2857 [TCM_NON_EXISTENT_LUN] = { 2858 .key = ILLEGAL_REQUEST, 2859 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 2860 }, 2861 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 2862 .key = ILLEGAL_REQUEST, 2863 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2864 }, 2865 [TCM_SECTOR_COUNT_TOO_MANY] = { 2866 .key = ILLEGAL_REQUEST, 2867 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2868 }, 2869 [TCM_UNKNOWN_MODE_PAGE] = { 2870 .key = ILLEGAL_REQUEST, 2871 .asc = 0x24, /* INVALID FIELD IN CDB */ 2872 }, 2873 [TCM_CHECK_CONDITION_ABORT_CMD] = { 2874 .key = ABORTED_COMMAND, 2875 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 2876 .ascq = 0x03, 2877 }, 2878 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 2879 .key = ABORTED_COMMAND, 2880 .asc = 0x0c, /* WRITE ERROR */ 2881 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 2882 }, 2883 [TCM_INVALID_CDB_FIELD] = { 2884 .key = ILLEGAL_REQUEST, 2885 .asc = 0x24, /* INVALID FIELD IN CDB */ 2886 }, 2887 [TCM_INVALID_PARAMETER_LIST] = { 2888 .key = ILLEGAL_REQUEST, 2889 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 2890 }, 2891 [TCM_TOO_MANY_TARGET_DESCS] = { 2892 .key = ILLEGAL_REQUEST, 2893 .asc = 0x26, 2894 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 2895 }, 2896 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 2897 .key = ILLEGAL_REQUEST, 2898 .asc = 0x26, 2899 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 2900 }, 2901 [TCM_TOO_MANY_SEGMENT_DESCS] = { 2902 .key = ILLEGAL_REQUEST, 2903 .asc = 0x26, 2904 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 2905 }, 2906 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 2907 .key = ILLEGAL_REQUEST, 2908 .asc = 0x26, 2909 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 2910 }, 2911 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 2912 .key = ILLEGAL_REQUEST, 2913 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 2914 }, 2915 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 2916 .key = ILLEGAL_REQUEST, 2917 .asc = 0x0c, /* WRITE ERROR */ 2918 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 2919 }, 2920 [TCM_SERVICE_CRC_ERROR] = { 2921 .key = ABORTED_COMMAND, 2922 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 2923 .ascq = 0x05, /* N/A */ 2924 }, 2925 [TCM_SNACK_REJECTED] = { 2926 .key = ABORTED_COMMAND, 2927 .asc = 0x11, /* READ ERROR */ 2928 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 2929 }, 2930 [TCM_WRITE_PROTECTED] = { 2931 .key = DATA_PROTECT, 2932 .asc = 0x27, /* WRITE PROTECTED */ 2933 }, 2934 [TCM_ADDRESS_OUT_OF_RANGE] = { 2935 .key = ILLEGAL_REQUEST, 2936 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2937 }, 2938 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 2939 .key = UNIT_ATTENTION, 2940 }, 2941 [TCM_CHECK_CONDITION_NOT_READY] = { 2942 .key = NOT_READY, 2943 }, 2944 [TCM_MISCOMPARE_VERIFY] = { 2945 .key = MISCOMPARE, 2946 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 2947 .ascq = 0x00, 2948 }, 2949 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 2950 .key = ABORTED_COMMAND, 2951 .asc = 0x10, 2952 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 2953 .add_sector_info = true, 2954 }, 2955 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 2956 .key = ABORTED_COMMAND, 2957 .asc = 0x10, 2958 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2959 .add_sector_info = true, 2960 }, 2961 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 2962 .key = ABORTED_COMMAND, 2963 .asc = 0x10, 2964 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2965 .add_sector_info = true, 2966 }, 2967 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 2968 .key = COPY_ABORTED, 2969 .asc = 0x0d, 2970 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 2971 2972 }, 2973 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 2974 /* 2975 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2976 * Solaris initiators. Returning NOT READY instead means the 2977 * operations will be retried a finite number of times and we 2978 * can survive intermittent errors. 2979 */ 2980 .key = NOT_READY, 2981 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 2982 }, 2983 }; 2984 2985 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 2986 { 2987 const struct sense_info *si; 2988 u8 *buffer = cmd->sense_buffer; 2989 int r = (__force int)reason; 2990 u8 asc, ascq; 2991 bool desc_format = target_sense_desc_format(cmd->se_dev); 2992 2993 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 2994 si = &sense_info_table[r]; 2995 else 2996 si = &sense_info_table[(__force int) 2997 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 2998 2999 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 3000 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 3001 WARN_ON_ONCE(asc == 0); 3002 } else if (si->asc == 0) { 3003 WARN_ON_ONCE(cmd->scsi_asc == 0); 3004 asc = cmd->scsi_asc; 3005 ascq = cmd->scsi_ascq; 3006 } else { 3007 asc = si->asc; 3008 ascq = si->ascq; 3009 } 3010 3011 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 3012 if (si->add_sector_info) 3013 return scsi_set_sense_information(buffer, 3014 cmd->scsi_sense_length, 3015 cmd->bad_sector); 3016 3017 return 0; 3018 } 3019 3020 int 3021 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3022 sense_reason_t reason, int from_transport) 3023 { 3024 unsigned long flags; 3025 3026 spin_lock_irqsave(&cmd->t_state_lock, flags); 3027 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3028 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3029 return 0; 3030 } 3031 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3032 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3033 3034 if (!from_transport) { 3035 int rc; 3036 3037 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3038 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3039 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3040 rc = translate_sense_reason(cmd, reason); 3041 if (rc) 3042 return rc; 3043 } 3044 3045 trace_target_cmd_complete(cmd); 3046 return cmd->se_tfo->queue_status(cmd); 3047 } 3048 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3049 3050 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3051 __releases(&cmd->t_state_lock) 3052 __acquires(&cmd->t_state_lock) 3053 { 3054 int ret; 3055 3056 assert_spin_locked(&cmd->t_state_lock); 3057 WARN_ON_ONCE(!irqs_disabled()); 3058 3059 if (!(cmd->transport_state & CMD_T_ABORTED)) 3060 return 0; 3061 /* 3062 * If cmd has been aborted but either no status is to be sent or it has 3063 * already been sent, just return 3064 */ 3065 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { 3066 if (send_status) 3067 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3068 return 1; 3069 } 3070 3071 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" 3072 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); 3073 3074 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 3075 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3076 trace_target_cmd_complete(cmd); 3077 3078 spin_unlock_irq(&cmd->t_state_lock); 3079 ret = cmd->se_tfo->queue_status(cmd); 3080 if (ret) 3081 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 3082 spin_lock_irq(&cmd->t_state_lock); 3083 3084 return 1; 3085 } 3086 3087 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3088 { 3089 int ret; 3090 3091 spin_lock_irq(&cmd->t_state_lock); 3092 ret = __transport_check_aborted_status(cmd, send_status); 3093 spin_unlock_irq(&cmd->t_state_lock); 3094 3095 return ret; 3096 } 3097 EXPORT_SYMBOL(transport_check_aborted_status); 3098 3099 void transport_send_task_abort(struct se_cmd *cmd) 3100 { 3101 unsigned long flags; 3102 int ret; 3103 3104 spin_lock_irqsave(&cmd->t_state_lock, flags); 3105 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 3106 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3107 return; 3108 } 3109 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3110 3111 /* 3112 * If there are still expected incoming fabric WRITEs, we wait 3113 * until until they have completed before sending a TASK_ABORTED 3114 * response. This response with TASK_ABORTED status will be 3115 * queued back to fabric module by transport_check_aborted_status(). 3116 */ 3117 if (cmd->data_direction == DMA_TO_DEVICE) { 3118 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3119 spin_lock_irqsave(&cmd->t_state_lock, flags); 3120 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { 3121 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3122 goto send_abort; 3123 } 3124 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3125 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3126 return; 3127 } 3128 } 3129 send_abort: 3130 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3131 3132 transport_lun_remove_cmd(cmd); 3133 3134 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 3135 cmd->t_task_cdb[0], cmd->tag); 3136 3137 trace_target_cmd_complete(cmd); 3138 ret = cmd->se_tfo->queue_status(cmd); 3139 if (ret) 3140 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 3141 } 3142 3143 static void target_tmr_work(struct work_struct *work) 3144 { 3145 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3146 struct se_device *dev = cmd->se_dev; 3147 struct se_tmr_req *tmr = cmd->se_tmr_req; 3148 unsigned long flags; 3149 int ret; 3150 3151 spin_lock_irqsave(&cmd->t_state_lock, flags); 3152 if (cmd->transport_state & CMD_T_ABORTED) { 3153 tmr->response = TMR_FUNCTION_REJECTED; 3154 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3155 goto check_stop; 3156 } 3157 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3158 3159 switch (tmr->function) { 3160 case TMR_ABORT_TASK: 3161 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3162 break; 3163 case TMR_ABORT_TASK_SET: 3164 case TMR_CLEAR_ACA: 3165 case TMR_CLEAR_TASK_SET: 3166 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3167 break; 3168 case TMR_LUN_RESET: 3169 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3170 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3171 TMR_FUNCTION_REJECTED; 3172 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3173 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3174 cmd->orig_fe_lun, 0x29, 3175 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3176 } 3177 break; 3178 case TMR_TARGET_WARM_RESET: 3179 tmr->response = TMR_FUNCTION_REJECTED; 3180 break; 3181 case TMR_TARGET_COLD_RESET: 3182 tmr->response = TMR_FUNCTION_REJECTED; 3183 break; 3184 default: 3185 pr_err("Uknown TMR function: 0x%02x.\n", 3186 tmr->function); 3187 tmr->response = TMR_FUNCTION_REJECTED; 3188 break; 3189 } 3190 3191 spin_lock_irqsave(&cmd->t_state_lock, flags); 3192 if (cmd->transport_state & CMD_T_ABORTED) { 3193 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3194 goto check_stop; 3195 } 3196 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3197 3198 cmd->se_tfo->queue_tm_rsp(cmd); 3199 3200 check_stop: 3201 transport_cmd_check_stop_to_fabric(cmd); 3202 } 3203 3204 int transport_generic_handle_tmr( 3205 struct se_cmd *cmd) 3206 { 3207 unsigned long flags; 3208 bool aborted = false; 3209 3210 spin_lock_irqsave(&cmd->t_state_lock, flags); 3211 if (cmd->transport_state & CMD_T_ABORTED) { 3212 aborted = true; 3213 } else { 3214 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3215 cmd->transport_state |= CMD_T_ACTIVE; 3216 } 3217 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3218 3219 if (aborted) { 3220 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d" 3221 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function, 3222 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3223 transport_cmd_check_stop_to_fabric(cmd); 3224 return 0; 3225 } 3226 3227 INIT_WORK(&cmd->work, target_tmr_work); 3228 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3229 return 0; 3230 } 3231 EXPORT_SYMBOL(transport_generic_handle_tmr); 3232 3233 bool 3234 target_check_wce(struct se_device *dev) 3235 { 3236 bool wce = false; 3237 3238 if (dev->transport->get_write_cache) 3239 wce = dev->transport->get_write_cache(dev); 3240 else if (dev->dev_attrib.emulate_write_cache > 0) 3241 wce = true; 3242 3243 return wce; 3244 } 3245 3246 bool 3247 target_check_fua(struct se_device *dev) 3248 { 3249 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3250 } 3251