1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static void transport_handle_queue_full(struct se_cmd *cmd, 68 struct se_device *dev); 69 static int transport_put_cmd(struct se_cmd *cmd); 70 static void target_complete_ok_work(struct work_struct *work); 71 72 int init_se_kmem_caches(void) 73 { 74 se_sess_cache = kmem_cache_create("se_sess_cache", 75 sizeof(struct se_session), __alignof__(struct se_session), 76 0, NULL); 77 if (!se_sess_cache) { 78 pr_err("kmem_cache_create() for struct se_session" 79 " failed\n"); 80 goto out; 81 } 82 se_ua_cache = kmem_cache_create("se_ua_cache", 83 sizeof(struct se_ua), __alignof__(struct se_ua), 84 0, NULL); 85 if (!se_ua_cache) { 86 pr_err("kmem_cache_create() for struct se_ua failed\n"); 87 goto out_free_sess_cache; 88 } 89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 90 sizeof(struct t10_pr_registration), 91 __alignof__(struct t10_pr_registration), 0, NULL); 92 if (!t10_pr_reg_cache) { 93 pr_err("kmem_cache_create() for struct t10_pr_registration" 94 " failed\n"); 95 goto out_free_ua_cache; 96 } 97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 99 0, NULL); 100 if (!t10_alua_lu_gp_cache) { 101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 102 " failed\n"); 103 goto out_free_pr_reg_cache; 104 } 105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 106 sizeof(struct t10_alua_lu_gp_member), 107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 108 if (!t10_alua_lu_gp_mem_cache) { 109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 110 "cache failed\n"); 111 goto out_free_lu_gp_cache; 112 } 113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 114 sizeof(struct t10_alua_tg_pt_gp), 115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 116 if (!t10_alua_tg_pt_gp_cache) { 117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 118 "cache failed\n"); 119 goto out_free_lu_gp_mem_cache; 120 } 121 t10_alua_lba_map_cache = kmem_cache_create( 122 "t10_alua_lba_map_cache", 123 sizeof(struct t10_alua_lba_map), 124 __alignof__(struct t10_alua_lba_map), 0, NULL); 125 if (!t10_alua_lba_map_cache) { 126 pr_err("kmem_cache_create() for t10_alua_lba_map_" 127 "cache failed\n"); 128 goto out_free_tg_pt_gp_cache; 129 } 130 t10_alua_lba_map_mem_cache = kmem_cache_create( 131 "t10_alua_lba_map_mem_cache", 132 sizeof(struct t10_alua_lba_map_member), 133 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 134 if (!t10_alua_lba_map_mem_cache) { 135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 136 "cache failed\n"); 137 goto out_free_lba_map_cache; 138 } 139 140 target_completion_wq = alloc_workqueue("target_completion", 141 WQ_MEM_RECLAIM, 0); 142 if (!target_completion_wq) 143 goto out_free_lba_map_mem_cache; 144 145 return 0; 146 147 out_free_lba_map_mem_cache: 148 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 149 out_free_lba_map_cache: 150 kmem_cache_destroy(t10_alua_lba_map_cache); 151 out_free_tg_pt_gp_cache: 152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 153 out_free_lu_gp_mem_cache: 154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 155 out_free_lu_gp_cache: 156 kmem_cache_destroy(t10_alua_lu_gp_cache); 157 out_free_pr_reg_cache: 158 kmem_cache_destroy(t10_pr_reg_cache); 159 out_free_ua_cache: 160 kmem_cache_destroy(se_ua_cache); 161 out_free_sess_cache: 162 kmem_cache_destroy(se_sess_cache); 163 out: 164 return -ENOMEM; 165 } 166 167 void release_se_kmem_caches(void) 168 { 169 destroy_workqueue(target_completion_wq); 170 kmem_cache_destroy(se_sess_cache); 171 kmem_cache_destroy(se_ua_cache); 172 kmem_cache_destroy(t10_pr_reg_cache); 173 kmem_cache_destroy(t10_alua_lu_gp_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 176 kmem_cache_destroy(t10_alua_lba_map_cache); 177 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 178 } 179 180 /* This code ensures unique mib indexes are handed out. */ 181 static DEFINE_SPINLOCK(scsi_mib_index_lock); 182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 183 184 /* 185 * Allocate a new row index for the entry type specified 186 */ 187 u32 scsi_get_new_index(scsi_index_t type) 188 { 189 u32 new_index; 190 191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 192 193 spin_lock(&scsi_mib_index_lock); 194 new_index = ++scsi_mib_index[type]; 195 spin_unlock(&scsi_mib_index_lock); 196 197 return new_index; 198 } 199 200 void transport_subsystem_check_init(void) 201 { 202 int ret; 203 static int sub_api_initialized; 204 205 if (sub_api_initialized) 206 return; 207 208 ret = request_module("target_core_iblock"); 209 if (ret != 0) 210 pr_err("Unable to load target_core_iblock\n"); 211 212 ret = request_module("target_core_file"); 213 if (ret != 0) 214 pr_err("Unable to load target_core_file\n"); 215 216 ret = request_module("target_core_pscsi"); 217 if (ret != 0) 218 pr_err("Unable to load target_core_pscsi\n"); 219 220 ret = request_module("target_core_user"); 221 if (ret != 0) 222 pr_err("Unable to load target_core_user\n"); 223 224 sub_api_initialized = 1; 225 } 226 227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 228 { 229 struct se_session *se_sess; 230 231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 232 if (!se_sess) { 233 pr_err("Unable to allocate struct se_session from" 234 " se_sess_cache\n"); 235 return ERR_PTR(-ENOMEM); 236 } 237 INIT_LIST_HEAD(&se_sess->sess_list); 238 INIT_LIST_HEAD(&se_sess->sess_acl_list); 239 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 240 INIT_LIST_HEAD(&se_sess->sess_wait_list); 241 spin_lock_init(&se_sess->sess_cmd_lock); 242 se_sess->sup_prot_ops = sup_prot_ops; 243 244 return se_sess; 245 } 246 EXPORT_SYMBOL(transport_init_session); 247 248 int transport_alloc_session_tags(struct se_session *se_sess, 249 unsigned int tag_num, unsigned int tag_size) 250 { 251 int rc; 252 253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 255 if (!se_sess->sess_cmd_map) { 256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 257 if (!se_sess->sess_cmd_map) { 258 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 259 return -ENOMEM; 260 } 261 } 262 263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 264 if (rc < 0) { 265 pr_err("Unable to init se_sess->sess_tag_pool," 266 " tag_num: %u\n", tag_num); 267 kvfree(se_sess->sess_cmd_map); 268 se_sess->sess_cmd_map = NULL; 269 return -ENOMEM; 270 } 271 272 return 0; 273 } 274 EXPORT_SYMBOL(transport_alloc_session_tags); 275 276 struct se_session *transport_init_session_tags(unsigned int tag_num, 277 unsigned int tag_size, 278 enum target_prot_op sup_prot_ops) 279 { 280 struct se_session *se_sess; 281 int rc; 282 283 if (tag_num != 0 && !tag_size) { 284 pr_err("init_session_tags called with percpu-ida tag_num:" 285 " %u, but zero tag_size\n", tag_num); 286 return ERR_PTR(-EINVAL); 287 } 288 if (!tag_num && tag_size) { 289 pr_err("init_session_tags called with percpu-ida tag_size:" 290 " %u, but zero tag_num\n", tag_size); 291 return ERR_PTR(-EINVAL); 292 } 293 294 se_sess = transport_init_session(sup_prot_ops); 295 if (IS_ERR(se_sess)) 296 return se_sess; 297 298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 299 if (rc < 0) { 300 transport_free_session(se_sess); 301 return ERR_PTR(-ENOMEM); 302 } 303 304 return se_sess; 305 } 306 EXPORT_SYMBOL(transport_init_session_tags); 307 308 /* 309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 310 */ 311 void __transport_register_session( 312 struct se_portal_group *se_tpg, 313 struct se_node_acl *se_nacl, 314 struct se_session *se_sess, 315 void *fabric_sess_ptr) 316 { 317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 318 unsigned char buf[PR_REG_ISID_LEN]; 319 320 se_sess->se_tpg = se_tpg; 321 se_sess->fabric_sess_ptr = fabric_sess_ptr; 322 /* 323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 324 * 325 * Only set for struct se_session's that will actually be moving I/O. 326 * eg: *NOT* discovery sessions. 327 */ 328 if (se_nacl) { 329 /* 330 * 331 * Determine if fabric allows for T10-PI feature bits exposed to 332 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 333 * 334 * If so, then always save prot_type on a per se_node_acl node 335 * basis and re-instate the previous sess_prot_type to avoid 336 * disabling PI from below any previously initiator side 337 * registered LUNs. 338 */ 339 if (se_nacl->saved_prot_type) 340 se_sess->sess_prot_type = se_nacl->saved_prot_type; 341 else if (tfo->tpg_check_prot_fabric_only) 342 se_sess->sess_prot_type = se_nacl->saved_prot_type = 343 tfo->tpg_check_prot_fabric_only(se_tpg); 344 /* 345 * If the fabric module supports an ISID based TransportID, 346 * save this value in binary from the fabric I_T Nexus now. 347 */ 348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 349 memset(&buf[0], 0, PR_REG_ISID_LEN); 350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 351 &buf[0], PR_REG_ISID_LEN); 352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 353 } 354 355 spin_lock_irq(&se_nacl->nacl_sess_lock); 356 /* 357 * The se_nacl->nacl_sess pointer will be set to the 358 * last active I_T Nexus for each struct se_node_acl. 359 */ 360 se_nacl->nacl_sess = se_sess; 361 362 list_add_tail(&se_sess->sess_acl_list, 363 &se_nacl->acl_sess_list); 364 spin_unlock_irq(&se_nacl->nacl_sess_lock); 365 } 366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 367 368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 370 } 371 EXPORT_SYMBOL(__transport_register_session); 372 373 void transport_register_session( 374 struct se_portal_group *se_tpg, 375 struct se_node_acl *se_nacl, 376 struct se_session *se_sess, 377 void *fabric_sess_ptr) 378 { 379 unsigned long flags; 380 381 spin_lock_irqsave(&se_tpg->session_lock, flags); 382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 383 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 384 } 385 EXPORT_SYMBOL(transport_register_session); 386 387 struct se_session * 388 target_alloc_session(struct se_portal_group *tpg, 389 unsigned int tag_num, unsigned int tag_size, 390 enum target_prot_op prot_op, 391 const char *initiatorname, void *private, 392 int (*callback)(struct se_portal_group *, 393 struct se_session *, void *)) 394 { 395 struct se_session *sess; 396 397 /* 398 * If the fabric driver is using percpu-ida based pre allocation 399 * of I/O descriptor tags, go ahead and perform that setup now.. 400 */ 401 if (tag_num != 0) 402 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 403 else 404 sess = transport_init_session(prot_op); 405 406 if (IS_ERR(sess)) 407 return sess; 408 409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 410 (unsigned char *)initiatorname); 411 if (!sess->se_node_acl) { 412 transport_free_session(sess); 413 return ERR_PTR(-EACCES); 414 } 415 /* 416 * Go ahead and perform any remaining fabric setup that is 417 * required before transport_register_session(). 418 */ 419 if (callback != NULL) { 420 int rc = callback(tpg, sess, private); 421 if (rc) { 422 transport_free_session(sess); 423 return ERR_PTR(rc); 424 } 425 } 426 427 transport_register_session(tpg, sess->se_node_acl, sess, private); 428 return sess; 429 } 430 EXPORT_SYMBOL(target_alloc_session); 431 432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 433 { 434 struct se_session *se_sess; 435 ssize_t len = 0; 436 437 spin_lock_bh(&se_tpg->session_lock); 438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 439 if (!se_sess->se_node_acl) 440 continue; 441 if (!se_sess->se_node_acl->dynamic_node_acl) 442 continue; 443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 444 break; 445 446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 447 se_sess->se_node_acl->initiatorname); 448 len += 1; /* Include NULL terminator */ 449 } 450 spin_unlock_bh(&se_tpg->session_lock); 451 452 return len; 453 } 454 EXPORT_SYMBOL(target_show_dynamic_sessions); 455 456 static void target_complete_nacl(struct kref *kref) 457 { 458 struct se_node_acl *nacl = container_of(kref, 459 struct se_node_acl, acl_kref); 460 struct se_portal_group *se_tpg = nacl->se_tpg; 461 462 if (!nacl->dynamic_stop) { 463 complete(&nacl->acl_free_comp); 464 return; 465 } 466 467 mutex_lock(&se_tpg->acl_node_mutex); 468 list_del(&nacl->acl_list); 469 mutex_unlock(&se_tpg->acl_node_mutex); 470 471 core_tpg_wait_for_nacl_pr_ref(nacl); 472 core_free_device_list_for_node(nacl, se_tpg); 473 kfree(nacl); 474 } 475 476 void target_put_nacl(struct se_node_acl *nacl) 477 { 478 kref_put(&nacl->acl_kref, target_complete_nacl); 479 } 480 EXPORT_SYMBOL(target_put_nacl); 481 482 void transport_deregister_session_configfs(struct se_session *se_sess) 483 { 484 struct se_node_acl *se_nacl; 485 unsigned long flags; 486 /* 487 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 488 */ 489 se_nacl = se_sess->se_node_acl; 490 if (se_nacl) { 491 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 492 if (!list_empty(&se_sess->sess_acl_list)) 493 list_del_init(&se_sess->sess_acl_list); 494 /* 495 * If the session list is empty, then clear the pointer. 496 * Otherwise, set the struct se_session pointer from the tail 497 * element of the per struct se_node_acl active session list. 498 */ 499 if (list_empty(&se_nacl->acl_sess_list)) 500 se_nacl->nacl_sess = NULL; 501 else { 502 se_nacl->nacl_sess = container_of( 503 se_nacl->acl_sess_list.prev, 504 struct se_session, sess_acl_list); 505 } 506 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 507 } 508 } 509 EXPORT_SYMBOL(transport_deregister_session_configfs); 510 511 void transport_free_session(struct se_session *se_sess) 512 { 513 struct se_node_acl *se_nacl = se_sess->se_node_acl; 514 515 /* 516 * Drop the se_node_acl->nacl_kref obtained from within 517 * core_tpg_get_initiator_node_acl(). 518 */ 519 if (se_nacl) { 520 struct se_portal_group *se_tpg = se_nacl->se_tpg; 521 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 522 unsigned long flags; 523 524 se_sess->se_node_acl = NULL; 525 526 /* 527 * Also determine if we need to drop the extra ->cmd_kref if 528 * it had been previously dynamically generated, and 529 * the endpoint is not caching dynamic ACLs. 530 */ 531 mutex_lock(&se_tpg->acl_node_mutex); 532 if (se_nacl->dynamic_node_acl && 533 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 534 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 535 if (list_empty(&se_nacl->acl_sess_list)) 536 se_nacl->dynamic_stop = true; 537 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 538 539 if (se_nacl->dynamic_stop) 540 list_del(&se_nacl->acl_list); 541 } 542 mutex_unlock(&se_tpg->acl_node_mutex); 543 544 if (se_nacl->dynamic_stop) 545 target_put_nacl(se_nacl); 546 547 target_put_nacl(se_nacl); 548 } 549 if (se_sess->sess_cmd_map) { 550 percpu_ida_destroy(&se_sess->sess_tag_pool); 551 kvfree(se_sess->sess_cmd_map); 552 } 553 kmem_cache_free(se_sess_cache, se_sess); 554 } 555 EXPORT_SYMBOL(transport_free_session); 556 557 void transport_deregister_session(struct se_session *se_sess) 558 { 559 struct se_portal_group *se_tpg = se_sess->se_tpg; 560 unsigned long flags; 561 562 if (!se_tpg) { 563 transport_free_session(se_sess); 564 return; 565 } 566 567 spin_lock_irqsave(&se_tpg->session_lock, flags); 568 list_del(&se_sess->sess_list); 569 se_sess->se_tpg = NULL; 570 se_sess->fabric_sess_ptr = NULL; 571 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 572 573 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 574 se_tpg->se_tpg_tfo->get_fabric_name()); 575 /* 576 * If last kref is dropping now for an explicit NodeACL, awake sleeping 577 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 578 * removal context from within transport_free_session() code. 579 * 580 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 581 * to release all remaining generate_node_acl=1 created ACL resources. 582 */ 583 584 transport_free_session(se_sess); 585 } 586 EXPORT_SYMBOL(transport_deregister_session); 587 588 static void target_remove_from_state_list(struct se_cmd *cmd) 589 { 590 struct se_device *dev = cmd->se_dev; 591 unsigned long flags; 592 593 if (!dev) 594 return; 595 596 spin_lock_irqsave(&dev->execute_task_lock, flags); 597 if (cmd->state_active) { 598 list_del(&cmd->state_list); 599 cmd->state_active = false; 600 } 601 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 602 } 603 604 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 605 { 606 unsigned long flags; 607 608 target_remove_from_state_list(cmd); 609 610 /* 611 * Clear struct se_cmd->se_lun before the handoff to FE. 612 */ 613 cmd->se_lun = NULL; 614 615 spin_lock_irqsave(&cmd->t_state_lock, flags); 616 /* 617 * Determine if frontend context caller is requesting the stopping of 618 * this command for frontend exceptions. 619 */ 620 if (cmd->transport_state & CMD_T_STOP) { 621 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 622 __func__, __LINE__, cmd->tag); 623 624 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 625 626 complete_all(&cmd->t_transport_stop_comp); 627 return 1; 628 } 629 cmd->transport_state &= ~CMD_T_ACTIVE; 630 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 631 632 /* 633 * Some fabric modules like tcm_loop can release their internally 634 * allocated I/O reference and struct se_cmd now. 635 * 636 * Fabric modules are expected to return '1' here if the se_cmd being 637 * passed is released at this point, or zero if not being released. 638 */ 639 return cmd->se_tfo->check_stop_free(cmd); 640 } 641 642 static void transport_lun_remove_cmd(struct se_cmd *cmd) 643 { 644 struct se_lun *lun = cmd->se_lun; 645 646 if (!lun) 647 return; 648 649 if (cmpxchg(&cmd->lun_ref_active, true, false)) 650 percpu_ref_put(&lun->lun_ref); 651 } 652 653 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 654 { 655 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); 656 657 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 658 transport_lun_remove_cmd(cmd); 659 /* 660 * Allow the fabric driver to unmap any resources before 661 * releasing the descriptor via TFO->release_cmd() 662 */ 663 if (remove) 664 cmd->se_tfo->aborted_task(cmd); 665 666 if (transport_cmd_check_stop_to_fabric(cmd)) 667 return; 668 if (remove && ack_kref) 669 transport_put_cmd(cmd); 670 } 671 672 static void target_complete_failure_work(struct work_struct *work) 673 { 674 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 675 676 transport_generic_request_failure(cmd, 677 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 678 } 679 680 /* 681 * Used when asking transport to copy Sense Data from the underlying 682 * Linux/SCSI struct scsi_cmnd 683 */ 684 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 685 { 686 struct se_device *dev = cmd->se_dev; 687 688 WARN_ON(!cmd->se_lun); 689 690 if (!dev) 691 return NULL; 692 693 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 694 return NULL; 695 696 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 697 698 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 699 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 700 return cmd->sense_buffer; 701 } 702 703 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 704 { 705 struct se_device *dev = cmd->se_dev; 706 int success = scsi_status == GOOD; 707 unsigned long flags; 708 709 cmd->scsi_status = scsi_status; 710 711 712 spin_lock_irqsave(&cmd->t_state_lock, flags); 713 714 if (dev && dev->transport->transport_complete) { 715 dev->transport->transport_complete(cmd, 716 cmd->t_data_sg, 717 transport_get_sense_buffer(cmd)); 718 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 719 success = 1; 720 } 721 722 /* 723 * Check for case where an explicit ABORT_TASK has been received 724 * and transport_wait_for_tasks() will be waiting for completion.. 725 */ 726 if (cmd->transport_state & CMD_T_ABORTED || 727 cmd->transport_state & CMD_T_STOP) { 728 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 729 complete_all(&cmd->t_transport_stop_comp); 730 return; 731 } else if (!success) { 732 INIT_WORK(&cmd->work, target_complete_failure_work); 733 } else { 734 INIT_WORK(&cmd->work, target_complete_ok_work); 735 } 736 737 cmd->t_state = TRANSPORT_COMPLETE; 738 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 739 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 740 741 if (cmd->se_cmd_flags & SCF_USE_CPUID) 742 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 743 else 744 queue_work(target_completion_wq, &cmd->work); 745 } 746 EXPORT_SYMBOL(target_complete_cmd); 747 748 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 749 { 750 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 751 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 752 cmd->residual_count += cmd->data_length - length; 753 } else { 754 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 755 cmd->residual_count = cmd->data_length - length; 756 } 757 758 cmd->data_length = length; 759 } 760 761 target_complete_cmd(cmd, scsi_status); 762 } 763 EXPORT_SYMBOL(target_complete_cmd_with_length); 764 765 static void target_add_to_state_list(struct se_cmd *cmd) 766 { 767 struct se_device *dev = cmd->se_dev; 768 unsigned long flags; 769 770 spin_lock_irqsave(&dev->execute_task_lock, flags); 771 if (!cmd->state_active) { 772 list_add_tail(&cmd->state_list, &dev->state_list); 773 cmd->state_active = true; 774 } 775 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 776 } 777 778 /* 779 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 780 */ 781 static void transport_write_pending_qf(struct se_cmd *cmd); 782 static void transport_complete_qf(struct se_cmd *cmd); 783 784 void target_qf_do_work(struct work_struct *work) 785 { 786 struct se_device *dev = container_of(work, struct se_device, 787 qf_work_queue); 788 LIST_HEAD(qf_cmd_list); 789 struct se_cmd *cmd, *cmd_tmp; 790 791 spin_lock_irq(&dev->qf_cmd_lock); 792 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 793 spin_unlock_irq(&dev->qf_cmd_lock); 794 795 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 796 list_del(&cmd->se_qf_node); 797 atomic_dec_mb(&dev->dev_qf_count); 798 799 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 800 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 801 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 802 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 803 : "UNKNOWN"); 804 805 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 806 transport_write_pending_qf(cmd); 807 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 808 transport_complete_qf(cmd); 809 } 810 } 811 812 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 813 { 814 switch (cmd->data_direction) { 815 case DMA_NONE: 816 return "NONE"; 817 case DMA_FROM_DEVICE: 818 return "READ"; 819 case DMA_TO_DEVICE: 820 return "WRITE"; 821 case DMA_BIDIRECTIONAL: 822 return "BIDI"; 823 default: 824 break; 825 } 826 827 return "UNKNOWN"; 828 } 829 830 void transport_dump_dev_state( 831 struct se_device *dev, 832 char *b, 833 int *bl) 834 { 835 *bl += sprintf(b + *bl, "Status: "); 836 if (dev->export_count) 837 *bl += sprintf(b + *bl, "ACTIVATED"); 838 else 839 *bl += sprintf(b + *bl, "DEACTIVATED"); 840 841 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 842 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 843 dev->dev_attrib.block_size, 844 dev->dev_attrib.hw_max_sectors); 845 *bl += sprintf(b + *bl, " "); 846 } 847 848 void transport_dump_vpd_proto_id( 849 struct t10_vpd *vpd, 850 unsigned char *p_buf, 851 int p_buf_len) 852 { 853 unsigned char buf[VPD_TMP_BUF_SIZE]; 854 int len; 855 856 memset(buf, 0, VPD_TMP_BUF_SIZE); 857 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 858 859 switch (vpd->protocol_identifier) { 860 case 0x00: 861 sprintf(buf+len, "Fibre Channel\n"); 862 break; 863 case 0x10: 864 sprintf(buf+len, "Parallel SCSI\n"); 865 break; 866 case 0x20: 867 sprintf(buf+len, "SSA\n"); 868 break; 869 case 0x30: 870 sprintf(buf+len, "IEEE 1394\n"); 871 break; 872 case 0x40: 873 sprintf(buf+len, "SCSI Remote Direct Memory Access" 874 " Protocol\n"); 875 break; 876 case 0x50: 877 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 878 break; 879 case 0x60: 880 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 881 break; 882 case 0x70: 883 sprintf(buf+len, "Automation/Drive Interface Transport" 884 " Protocol\n"); 885 break; 886 case 0x80: 887 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 888 break; 889 default: 890 sprintf(buf+len, "Unknown 0x%02x\n", 891 vpd->protocol_identifier); 892 break; 893 } 894 895 if (p_buf) 896 strncpy(p_buf, buf, p_buf_len); 897 else 898 pr_debug("%s", buf); 899 } 900 901 void 902 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 903 { 904 /* 905 * Check if the Protocol Identifier Valid (PIV) bit is set.. 906 * 907 * from spc3r23.pdf section 7.5.1 908 */ 909 if (page_83[1] & 0x80) { 910 vpd->protocol_identifier = (page_83[0] & 0xf0); 911 vpd->protocol_identifier_set = 1; 912 transport_dump_vpd_proto_id(vpd, NULL, 0); 913 } 914 } 915 EXPORT_SYMBOL(transport_set_vpd_proto_id); 916 917 int transport_dump_vpd_assoc( 918 struct t10_vpd *vpd, 919 unsigned char *p_buf, 920 int p_buf_len) 921 { 922 unsigned char buf[VPD_TMP_BUF_SIZE]; 923 int ret = 0; 924 int len; 925 926 memset(buf, 0, VPD_TMP_BUF_SIZE); 927 len = sprintf(buf, "T10 VPD Identifier Association: "); 928 929 switch (vpd->association) { 930 case 0x00: 931 sprintf(buf+len, "addressed logical unit\n"); 932 break; 933 case 0x10: 934 sprintf(buf+len, "target port\n"); 935 break; 936 case 0x20: 937 sprintf(buf+len, "SCSI target device\n"); 938 break; 939 default: 940 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 941 ret = -EINVAL; 942 break; 943 } 944 945 if (p_buf) 946 strncpy(p_buf, buf, p_buf_len); 947 else 948 pr_debug("%s", buf); 949 950 return ret; 951 } 952 953 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 954 { 955 /* 956 * The VPD identification association.. 957 * 958 * from spc3r23.pdf Section 7.6.3.1 Table 297 959 */ 960 vpd->association = (page_83[1] & 0x30); 961 return transport_dump_vpd_assoc(vpd, NULL, 0); 962 } 963 EXPORT_SYMBOL(transport_set_vpd_assoc); 964 965 int transport_dump_vpd_ident_type( 966 struct t10_vpd *vpd, 967 unsigned char *p_buf, 968 int p_buf_len) 969 { 970 unsigned char buf[VPD_TMP_BUF_SIZE]; 971 int ret = 0; 972 int len; 973 974 memset(buf, 0, VPD_TMP_BUF_SIZE); 975 len = sprintf(buf, "T10 VPD Identifier Type: "); 976 977 switch (vpd->device_identifier_type) { 978 case 0x00: 979 sprintf(buf+len, "Vendor specific\n"); 980 break; 981 case 0x01: 982 sprintf(buf+len, "T10 Vendor ID based\n"); 983 break; 984 case 0x02: 985 sprintf(buf+len, "EUI-64 based\n"); 986 break; 987 case 0x03: 988 sprintf(buf+len, "NAA\n"); 989 break; 990 case 0x04: 991 sprintf(buf+len, "Relative target port identifier\n"); 992 break; 993 case 0x08: 994 sprintf(buf+len, "SCSI name string\n"); 995 break; 996 default: 997 sprintf(buf+len, "Unsupported: 0x%02x\n", 998 vpd->device_identifier_type); 999 ret = -EINVAL; 1000 break; 1001 } 1002 1003 if (p_buf) { 1004 if (p_buf_len < strlen(buf)+1) 1005 return -EINVAL; 1006 strncpy(p_buf, buf, p_buf_len); 1007 } else { 1008 pr_debug("%s", buf); 1009 } 1010 1011 return ret; 1012 } 1013 1014 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1015 { 1016 /* 1017 * The VPD identifier type.. 1018 * 1019 * from spc3r23.pdf Section 7.6.3.1 Table 298 1020 */ 1021 vpd->device_identifier_type = (page_83[1] & 0x0f); 1022 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1023 } 1024 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1025 1026 int transport_dump_vpd_ident( 1027 struct t10_vpd *vpd, 1028 unsigned char *p_buf, 1029 int p_buf_len) 1030 { 1031 unsigned char buf[VPD_TMP_BUF_SIZE]; 1032 int ret = 0; 1033 1034 memset(buf, 0, VPD_TMP_BUF_SIZE); 1035 1036 switch (vpd->device_identifier_code_set) { 1037 case 0x01: /* Binary */ 1038 snprintf(buf, sizeof(buf), 1039 "T10 VPD Binary Device Identifier: %s\n", 1040 &vpd->device_identifier[0]); 1041 break; 1042 case 0x02: /* ASCII */ 1043 snprintf(buf, sizeof(buf), 1044 "T10 VPD ASCII Device Identifier: %s\n", 1045 &vpd->device_identifier[0]); 1046 break; 1047 case 0x03: /* UTF-8 */ 1048 snprintf(buf, sizeof(buf), 1049 "T10 VPD UTF-8 Device Identifier: %s\n", 1050 &vpd->device_identifier[0]); 1051 break; 1052 default: 1053 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1054 " 0x%02x", vpd->device_identifier_code_set); 1055 ret = -EINVAL; 1056 break; 1057 } 1058 1059 if (p_buf) 1060 strncpy(p_buf, buf, p_buf_len); 1061 else 1062 pr_debug("%s", buf); 1063 1064 return ret; 1065 } 1066 1067 int 1068 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1069 { 1070 static const char hex_str[] = "0123456789abcdef"; 1071 int j = 0, i = 4; /* offset to start of the identifier */ 1072 1073 /* 1074 * The VPD Code Set (encoding) 1075 * 1076 * from spc3r23.pdf Section 7.6.3.1 Table 296 1077 */ 1078 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1079 switch (vpd->device_identifier_code_set) { 1080 case 0x01: /* Binary */ 1081 vpd->device_identifier[j++] = 1082 hex_str[vpd->device_identifier_type]; 1083 while (i < (4 + page_83[3])) { 1084 vpd->device_identifier[j++] = 1085 hex_str[(page_83[i] & 0xf0) >> 4]; 1086 vpd->device_identifier[j++] = 1087 hex_str[page_83[i] & 0x0f]; 1088 i++; 1089 } 1090 break; 1091 case 0x02: /* ASCII */ 1092 case 0x03: /* UTF-8 */ 1093 while (i < (4 + page_83[3])) 1094 vpd->device_identifier[j++] = page_83[i++]; 1095 break; 1096 default: 1097 break; 1098 } 1099 1100 return transport_dump_vpd_ident(vpd, NULL, 0); 1101 } 1102 EXPORT_SYMBOL(transport_set_vpd_ident); 1103 1104 static sense_reason_t 1105 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1106 unsigned int size) 1107 { 1108 u32 mtl; 1109 1110 if (!cmd->se_tfo->max_data_sg_nents) 1111 return TCM_NO_SENSE; 1112 /* 1113 * Check if fabric enforced maximum SGL entries per I/O descriptor 1114 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1115 * residual_count and reduce original cmd->data_length to maximum 1116 * length based on single PAGE_SIZE entry scatter-lists. 1117 */ 1118 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1119 if (cmd->data_length > mtl) { 1120 /* 1121 * If an existing CDB overflow is present, calculate new residual 1122 * based on CDB size minus fabric maximum transfer length. 1123 * 1124 * If an existing CDB underflow is present, calculate new residual 1125 * based on original cmd->data_length minus fabric maximum transfer 1126 * length. 1127 * 1128 * Otherwise, set the underflow residual based on cmd->data_length 1129 * minus fabric maximum transfer length. 1130 */ 1131 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1132 cmd->residual_count = (size - mtl); 1133 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1134 u32 orig_dl = size + cmd->residual_count; 1135 cmd->residual_count = (orig_dl - mtl); 1136 } else { 1137 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1138 cmd->residual_count = (cmd->data_length - mtl); 1139 } 1140 cmd->data_length = mtl; 1141 /* 1142 * Reset sbc_check_prot() calculated protection payload 1143 * length based upon the new smaller MTL. 1144 */ 1145 if (cmd->prot_length) { 1146 u32 sectors = (mtl / dev->dev_attrib.block_size); 1147 cmd->prot_length = dev->prot_length * sectors; 1148 } 1149 } 1150 return TCM_NO_SENSE; 1151 } 1152 1153 sense_reason_t 1154 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1155 { 1156 struct se_device *dev = cmd->se_dev; 1157 1158 if (cmd->unknown_data_length) { 1159 cmd->data_length = size; 1160 } else if (size != cmd->data_length) { 1161 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1162 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1163 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1164 cmd->data_length, size, cmd->t_task_cdb[0]); 1165 1166 if (cmd->data_direction == DMA_TO_DEVICE && 1167 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1168 pr_err("Rejecting underflow/overflow WRITE data\n"); 1169 return TCM_INVALID_CDB_FIELD; 1170 } 1171 /* 1172 * Reject READ_* or WRITE_* with overflow/underflow for 1173 * type SCF_SCSI_DATA_CDB. 1174 */ 1175 if (dev->dev_attrib.block_size != 512) { 1176 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1177 " CDB on non 512-byte sector setup subsystem" 1178 " plugin: %s\n", dev->transport->name); 1179 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1180 return TCM_INVALID_CDB_FIELD; 1181 } 1182 /* 1183 * For the overflow case keep the existing fabric provided 1184 * ->data_length. Otherwise for the underflow case, reset 1185 * ->data_length to the smaller SCSI expected data transfer 1186 * length. 1187 */ 1188 if (size > cmd->data_length) { 1189 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1190 cmd->residual_count = (size - cmd->data_length); 1191 } else { 1192 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1193 cmd->residual_count = (cmd->data_length - size); 1194 cmd->data_length = size; 1195 } 1196 } 1197 1198 return target_check_max_data_sg_nents(cmd, dev, size); 1199 1200 } 1201 1202 /* 1203 * Used by fabric modules containing a local struct se_cmd within their 1204 * fabric dependent per I/O descriptor. 1205 * 1206 * Preserves the value of @cmd->tag. 1207 */ 1208 void transport_init_se_cmd( 1209 struct se_cmd *cmd, 1210 const struct target_core_fabric_ops *tfo, 1211 struct se_session *se_sess, 1212 u32 data_length, 1213 int data_direction, 1214 int task_attr, 1215 unsigned char *sense_buffer) 1216 { 1217 INIT_LIST_HEAD(&cmd->se_delayed_node); 1218 INIT_LIST_HEAD(&cmd->se_qf_node); 1219 INIT_LIST_HEAD(&cmd->se_cmd_list); 1220 INIT_LIST_HEAD(&cmd->state_list); 1221 init_completion(&cmd->t_transport_stop_comp); 1222 init_completion(&cmd->cmd_wait_comp); 1223 spin_lock_init(&cmd->t_state_lock); 1224 kref_init(&cmd->cmd_kref); 1225 1226 cmd->se_tfo = tfo; 1227 cmd->se_sess = se_sess; 1228 cmd->data_length = data_length; 1229 cmd->data_direction = data_direction; 1230 cmd->sam_task_attr = task_attr; 1231 cmd->sense_buffer = sense_buffer; 1232 1233 cmd->state_active = false; 1234 } 1235 EXPORT_SYMBOL(transport_init_se_cmd); 1236 1237 static sense_reason_t 1238 transport_check_alloc_task_attr(struct se_cmd *cmd) 1239 { 1240 struct se_device *dev = cmd->se_dev; 1241 1242 /* 1243 * Check if SAM Task Attribute emulation is enabled for this 1244 * struct se_device storage object 1245 */ 1246 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1247 return 0; 1248 1249 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1250 pr_debug("SAM Task Attribute ACA" 1251 " emulation is not supported\n"); 1252 return TCM_INVALID_CDB_FIELD; 1253 } 1254 1255 return 0; 1256 } 1257 1258 sense_reason_t 1259 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1260 { 1261 struct se_device *dev = cmd->se_dev; 1262 sense_reason_t ret; 1263 1264 /* 1265 * Ensure that the received CDB is less than the max (252 + 8) bytes 1266 * for VARIABLE_LENGTH_CMD 1267 */ 1268 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1269 pr_err("Received SCSI CDB with command_size: %d that" 1270 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1271 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1272 return TCM_INVALID_CDB_FIELD; 1273 } 1274 /* 1275 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1276 * allocate the additional extended CDB buffer now.. Otherwise 1277 * setup the pointer from __t_task_cdb to t_task_cdb. 1278 */ 1279 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1280 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1281 GFP_KERNEL); 1282 if (!cmd->t_task_cdb) { 1283 pr_err("Unable to allocate cmd->t_task_cdb" 1284 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1285 scsi_command_size(cdb), 1286 (unsigned long)sizeof(cmd->__t_task_cdb)); 1287 return TCM_OUT_OF_RESOURCES; 1288 } 1289 } else 1290 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1291 /* 1292 * Copy the original CDB into cmd-> 1293 */ 1294 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1295 1296 trace_target_sequencer_start(cmd); 1297 1298 ret = dev->transport->parse_cdb(cmd); 1299 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1300 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1301 cmd->se_tfo->get_fabric_name(), 1302 cmd->se_sess->se_node_acl->initiatorname, 1303 cmd->t_task_cdb[0]); 1304 if (ret) 1305 return ret; 1306 1307 ret = transport_check_alloc_task_attr(cmd); 1308 if (ret) 1309 return ret; 1310 1311 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1312 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1313 return 0; 1314 } 1315 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1316 1317 /* 1318 * Used by fabric module frontends to queue tasks directly. 1319 * May only be used from process context. 1320 */ 1321 int transport_handle_cdb_direct( 1322 struct se_cmd *cmd) 1323 { 1324 sense_reason_t ret; 1325 1326 if (!cmd->se_lun) { 1327 dump_stack(); 1328 pr_err("cmd->se_lun is NULL\n"); 1329 return -EINVAL; 1330 } 1331 if (in_interrupt()) { 1332 dump_stack(); 1333 pr_err("transport_generic_handle_cdb cannot be called" 1334 " from interrupt context\n"); 1335 return -EINVAL; 1336 } 1337 /* 1338 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1339 * outstanding descriptors are handled correctly during shutdown via 1340 * transport_wait_for_tasks() 1341 * 1342 * Also, we don't take cmd->t_state_lock here as we only expect 1343 * this to be called for initial descriptor submission. 1344 */ 1345 cmd->t_state = TRANSPORT_NEW_CMD; 1346 cmd->transport_state |= CMD_T_ACTIVE; 1347 1348 /* 1349 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1350 * so follow TRANSPORT_NEW_CMD processing thread context usage 1351 * and call transport_generic_request_failure() if necessary.. 1352 */ 1353 ret = transport_generic_new_cmd(cmd); 1354 if (ret) 1355 transport_generic_request_failure(cmd, ret); 1356 return 0; 1357 } 1358 EXPORT_SYMBOL(transport_handle_cdb_direct); 1359 1360 sense_reason_t 1361 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1362 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1363 { 1364 if (!sgl || !sgl_count) 1365 return 0; 1366 1367 /* 1368 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1369 * scatterlists already have been set to follow what the fabric 1370 * passes for the original expected data transfer length. 1371 */ 1372 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1373 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1374 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1375 return TCM_INVALID_CDB_FIELD; 1376 } 1377 1378 cmd->t_data_sg = sgl; 1379 cmd->t_data_nents = sgl_count; 1380 cmd->t_bidi_data_sg = sgl_bidi; 1381 cmd->t_bidi_data_nents = sgl_bidi_count; 1382 1383 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1384 return 0; 1385 } 1386 1387 /* 1388 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1389 * se_cmd + use pre-allocated SGL memory. 1390 * 1391 * @se_cmd: command descriptor to submit 1392 * @se_sess: associated se_sess for endpoint 1393 * @cdb: pointer to SCSI CDB 1394 * @sense: pointer to SCSI sense buffer 1395 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1396 * @data_length: fabric expected data transfer length 1397 * @task_addr: SAM task attribute 1398 * @data_dir: DMA data direction 1399 * @flags: flags for command submission from target_sc_flags_tables 1400 * @sgl: struct scatterlist memory for unidirectional mapping 1401 * @sgl_count: scatterlist count for unidirectional mapping 1402 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1403 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1404 * @sgl_prot: struct scatterlist memory protection information 1405 * @sgl_prot_count: scatterlist count for protection information 1406 * 1407 * Task tags are supported if the caller has set @se_cmd->tag. 1408 * 1409 * Returns non zero to signal active I/O shutdown failure. All other 1410 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1411 * but still return zero here. 1412 * 1413 * This may only be called from process context, and also currently 1414 * assumes internal allocation of fabric payload buffer by target-core. 1415 */ 1416 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1417 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1418 u32 data_length, int task_attr, int data_dir, int flags, 1419 struct scatterlist *sgl, u32 sgl_count, 1420 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1421 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1422 { 1423 struct se_portal_group *se_tpg; 1424 sense_reason_t rc; 1425 int ret; 1426 1427 se_tpg = se_sess->se_tpg; 1428 BUG_ON(!se_tpg); 1429 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1430 BUG_ON(in_interrupt()); 1431 /* 1432 * Initialize se_cmd for target operation. From this point 1433 * exceptions are handled by sending exception status via 1434 * target_core_fabric_ops->queue_status() callback 1435 */ 1436 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1437 data_length, data_dir, task_attr, sense); 1438 1439 if (flags & TARGET_SCF_USE_CPUID) 1440 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1441 else 1442 se_cmd->cpuid = WORK_CPU_UNBOUND; 1443 1444 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1445 se_cmd->unknown_data_length = 1; 1446 /* 1447 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1448 * se_sess->sess_cmd_list. A second kref_get here is necessary 1449 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1450 * kref_put() to happen during fabric packet acknowledgement. 1451 */ 1452 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1453 if (ret) 1454 return ret; 1455 /* 1456 * Signal bidirectional data payloads to target-core 1457 */ 1458 if (flags & TARGET_SCF_BIDI_OP) 1459 se_cmd->se_cmd_flags |= SCF_BIDI; 1460 /* 1461 * Locate se_lun pointer and attach it to struct se_cmd 1462 */ 1463 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1464 if (rc) { 1465 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1466 target_put_sess_cmd(se_cmd); 1467 return 0; 1468 } 1469 1470 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1471 if (rc != 0) { 1472 transport_generic_request_failure(se_cmd, rc); 1473 return 0; 1474 } 1475 1476 /* 1477 * Save pointers for SGLs containing protection information, 1478 * if present. 1479 */ 1480 if (sgl_prot_count) { 1481 se_cmd->t_prot_sg = sgl_prot; 1482 se_cmd->t_prot_nents = sgl_prot_count; 1483 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1484 } 1485 1486 /* 1487 * When a non zero sgl_count has been passed perform SGL passthrough 1488 * mapping for pre-allocated fabric memory instead of having target 1489 * core perform an internal SGL allocation.. 1490 */ 1491 if (sgl_count != 0) { 1492 BUG_ON(!sgl); 1493 1494 /* 1495 * A work-around for tcm_loop as some userspace code via 1496 * scsi-generic do not memset their associated read buffers, 1497 * so go ahead and do that here for type non-data CDBs. Also 1498 * note that this is currently guaranteed to be a single SGL 1499 * for this case by target core in target_setup_cmd_from_cdb() 1500 * -> transport_generic_cmd_sequencer(). 1501 */ 1502 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1503 se_cmd->data_direction == DMA_FROM_DEVICE) { 1504 unsigned char *buf = NULL; 1505 1506 if (sgl) 1507 buf = kmap(sg_page(sgl)) + sgl->offset; 1508 1509 if (buf) { 1510 memset(buf, 0, sgl->length); 1511 kunmap(sg_page(sgl)); 1512 } 1513 } 1514 1515 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1516 sgl_bidi, sgl_bidi_count); 1517 if (rc != 0) { 1518 transport_generic_request_failure(se_cmd, rc); 1519 return 0; 1520 } 1521 } 1522 1523 /* 1524 * Check if we need to delay processing because of ALUA 1525 * Active/NonOptimized primary access state.. 1526 */ 1527 core_alua_check_nonop_delay(se_cmd); 1528 1529 transport_handle_cdb_direct(se_cmd); 1530 return 0; 1531 } 1532 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1533 1534 /* 1535 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1536 * 1537 * @se_cmd: command descriptor to submit 1538 * @se_sess: associated se_sess for endpoint 1539 * @cdb: pointer to SCSI CDB 1540 * @sense: pointer to SCSI sense buffer 1541 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1542 * @data_length: fabric expected data transfer length 1543 * @task_addr: SAM task attribute 1544 * @data_dir: DMA data direction 1545 * @flags: flags for command submission from target_sc_flags_tables 1546 * 1547 * Task tags are supported if the caller has set @se_cmd->tag. 1548 * 1549 * Returns non zero to signal active I/O shutdown failure. All other 1550 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1551 * but still return zero here. 1552 * 1553 * This may only be called from process context, and also currently 1554 * assumes internal allocation of fabric payload buffer by target-core. 1555 * 1556 * It also assumes interal target core SGL memory allocation. 1557 */ 1558 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1559 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1560 u32 data_length, int task_attr, int data_dir, int flags) 1561 { 1562 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1563 unpacked_lun, data_length, task_attr, data_dir, 1564 flags, NULL, 0, NULL, 0, NULL, 0); 1565 } 1566 EXPORT_SYMBOL(target_submit_cmd); 1567 1568 static void target_complete_tmr_failure(struct work_struct *work) 1569 { 1570 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1571 1572 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1573 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1574 1575 transport_cmd_check_stop_to_fabric(se_cmd); 1576 } 1577 1578 /** 1579 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1580 * for TMR CDBs 1581 * 1582 * @se_cmd: command descriptor to submit 1583 * @se_sess: associated se_sess for endpoint 1584 * @sense: pointer to SCSI sense buffer 1585 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1586 * @fabric_context: fabric context for TMR req 1587 * @tm_type: Type of TM request 1588 * @gfp: gfp type for caller 1589 * @tag: referenced task tag for TMR_ABORT_TASK 1590 * @flags: submit cmd flags 1591 * 1592 * Callable from all contexts. 1593 **/ 1594 1595 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1596 unsigned char *sense, u64 unpacked_lun, 1597 void *fabric_tmr_ptr, unsigned char tm_type, 1598 gfp_t gfp, u64 tag, int flags) 1599 { 1600 struct se_portal_group *se_tpg; 1601 int ret; 1602 1603 se_tpg = se_sess->se_tpg; 1604 BUG_ON(!se_tpg); 1605 1606 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1607 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1608 /* 1609 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1610 * allocation failure. 1611 */ 1612 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1613 if (ret < 0) 1614 return -ENOMEM; 1615 1616 if (tm_type == TMR_ABORT_TASK) 1617 se_cmd->se_tmr_req->ref_task_tag = tag; 1618 1619 /* See target_submit_cmd for commentary */ 1620 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1621 if (ret) { 1622 core_tmr_release_req(se_cmd->se_tmr_req); 1623 return ret; 1624 } 1625 1626 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1627 if (ret) { 1628 /* 1629 * For callback during failure handling, push this work off 1630 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1631 */ 1632 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1633 schedule_work(&se_cmd->work); 1634 return 0; 1635 } 1636 transport_generic_handle_tmr(se_cmd); 1637 return 0; 1638 } 1639 EXPORT_SYMBOL(target_submit_tmr); 1640 1641 /* 1642 * Handle SAM-esque emulation for generic transport request failures. 1643 */ 1644 void transport_generic_request_failure(struct se_cmd *cmd, 1645 sense_reason_t sense_reason) 1646 { 1647 int ret = 0, post_ret = 0; 1648 1649 if (transport_check_aborted_status(cmd, 1)) 1650 return; 1651 1652 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" 1653 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); 1654 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1655 cmd->se_tfo->get_cmd_state(cmd), 1656 cmd->t_state, sense_reason); 1657 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1658 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1659 (cmd->transport_state & CMD_T_STOP) != 0, 1660 (cmd->transport_state & CMD_T_SENT) != 0); 1661 1662 /* 1663 * For SAM Task Attribute emulation for failed struct se_cmd 1664 */ 1665 transport_complete_task_attr(cmd); 1666 /* 1667 * Handle special case for COMPARE_AND_WRITE failure, where the 1668 * callback is expected to drop the per device ->caw_sem. 1669 */ 1670 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1671 cmd->transport_complete_callback) 1672 cmd->transport_complete_callback(cmd, false, &post_ret); 1673 1674 switch (sense_reason) { 1675 case TCM_NON_EXISTENT_LUN: 1676 case TCM_UNSUPPORTED_SCSI_OPCODE: 1677 case TCM_INVALID_CDB_FIELD: 1678 case TCM_INVALID_PARAMETER_LIST: 1679 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1680 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1681 case TCM_UNKNOWN_MODE_PAGE: 1682 case TCM_WRITE_PROTECTED: 1683 case TCM_ADDRESS_OUT_OF_RANGE: 1684 case TCM_CHECK_CONDITION_ABORT_CMD: 1685 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1686 case TCM_CHECK_CONDITION_NOT_READY: 1687 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1688 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1689 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1690 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1691 case TCM_TOO_MANY_TARGET_DESCS: 1692 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1693 case TCM_TOO_MANY_SEGMENT_DESCS: 1694 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1695 break; 1696 case TCM_OUT_OF_RESOURCES: 1697 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1698 break; 1699 case TCM_RESERVATION_CONFLICT: 1700 /* 1701 * No SENSE Data payload for this case, set SCSI Status 1702 * and queue the response to $FABRIC_MOD. 1703 * 1704 * Uses linux/include/scsi/scsi.h SAM status codes defs 1705 */ 1706 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1707 /* 1708 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1709 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1710 * CONFLICT STATUS. 1711 * 1712 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1713 */ 1714 if (cmd->se_sess && 1715 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1716 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1717 cmd->orig_fe_lun, 0x2C, 1718 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1719 } 1720 trace_target_cmd_complete(cmd); 1721 ret = cmd->se_tfo->queue_status(cmd); 1722 if (ret == -EAGAIN || ret == -ENOMEM) 1723 goto queue_full; 1724 goto check_stop; 1725 default: 1726 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1727 cmd->t_task_cdb[0], sense_reason); 1728 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1729 break; 1730 } 1731 1732 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1733 if (ret == -EAGAIN || ret == -ENOMEM) 1734 goto queue_full; 1735 1736 check_stop: 1737 transport_lun_remove_cmd(cmd); 1738 transport_cmd_check_stop_to_fabric(cmd); 1739 return; 1740 1741 queue_full: 1742 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1743 transport_handle_queue_full(cmd, cmd->se_dev); 1744 } 1745 EXPORT_SYMBOL(transport_generic_request_failure); 1746 1747 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1748 { 1749 sense_reason_t ret; 1750 1751 if (!cmd->execute_cmd) { 1752 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1753 goto err; 1754 } 1755 if (do_checks) { 1756 /* 1757 * Check for an existing UNIT ATTENTION condition after 1758 * target_handle_task_attr() has done SAM task attr 1759 * checking, and possibly have already defered execution 1760 * out to target_restart_delayed_cmds() context. 1761 */ 1762 ret = target_scsi3_ua_check(cmd); 1763 if (ret) 1764 goto err; 1765 1766 ret = target_alua_state_check(cmd); 1767 if (ret) 1768 goto err; 1769 1770 ret = target_check_reservation(cmd); 1771 if (ret) { 1772 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1773 goto err; 1774 } 1775 } 1776 1777 ret = cmd->execute_cmd(cmd); 1778 if (!ret) 1779 return; 1780 err: 1781 spin_lock_irq(&cmd->t_state_lock); 1782 cmd->transport_state &= ~CMD_T_SENT; 1783 spin_unlock_irq(&cmd->t_state_lock); 1784 1785 transport_generic_request_failure(cmd, ret); 1786 } 1787 1788 static int target_write_prot_action(struct se_cmd *cmd) 1789 { 1790 u32 sectors; 1791 /* 1792 * Perform WRITE_INSERT of PI using software emulation when backend 1793 * device has PI enabled, if the transport has not already generated 1794 * PI using hardware WRITE_INSERT offload. 1795 */ 1796 switch (cmd->prot_op) { 1797 case TARGET_PROT_DOUT_INSERT: 1798 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1799 sbc_dif_generate(cmd); 1800 break; 1801 case TARGET_PROT_DOUT_STRIP: 1802 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1803 break; 1804 1805 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1806 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1807 sectors, 0, cmd->t_prot_sg, 0); 1808 if (unlikely(cmd->pi_err)) { 1809 spin_lock_irq(&cmd->t_state_lock); 1810 cmd->transport_state &= ~CMD_T_SENT; 1811 spin_unlock_irq(&cmd->t_state_lock); 1812 transport_generic_request_failure(cmd, cmd->pi_err); 1813 return -1; 1814 } 1815 break; 1816 default: 1817 break; 1818 } 1819 1820 return 0; 1821 } 1822 1823 static bool target_handle_task_attr(struct se_cmd *cmd) 1824 { 1825 struct se_device *dev = cmd->se_dev; 1826 1827 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1828 return false; 1829 1830 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 1831 1832 /* 1833 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1834 * to allow the passed struct se_cmd list of tasks to the front of the list. 1835 */ 1836 switch (cmd->sam_task_attr) { 1837 case TCM_HEAD_TAG: 1838 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1839 cmd->t_task_cdb[0]); 1840 return false; 1841 case TCM_ORDERED_TAG: 1842 atomic_inc_mb(&dev->dev_ordered_sync); 1843 1844 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1845 cmd->t_task_cdb[0]); 1846 1847 /* 1848 * Execute an ORDERED command if no other older commands 1849 * exist that need to be completed first. 1850 */ 1851 if (!atomic_read(&dev->simple_cmds)) 1852 return false; 1853 break; 1854 default: 1855 /* 1856 * For SIMPLE and UNTAGGED Task Attribute commands 1857 */ 1858 atomic_inc_mb(&dev->simple_cmds); 1859 break; 1860 } 1861 1862 if (atomic_read(&dev->dev_ordered_sync) == 0) 1863 return false; 1864 1865 spin_lock(&dev->delayed_cmd_lock); 1866 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1867 spin_unlock(&dev->delayed_cmd_lock); 1868 1869 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1870 cmd->t_task_cdb[0], cmd->sam_task_attr); 1871 return true; 1872 } 1873 1874 static int __transport_check_aborted_status(struct se_cmd *, int); 1875 1876 void target_execute_cmd(struct se_cmd *cmd) 1877 { 1878 /* 1879 * Determine if frontend context caller is requesting the stopping of 1880 * this command for frontend exceptions. 1881 * 1882 * If the received CDB has aleady been aborted stop processing it here. 1883 */ 1884 spin_lock_irq(&cmd->t_state_lock); 1885 if (__transport_check_aborted_status(cmd, 1)) { 1886 spin_unlock_irq(&cmd->t_state_lock); 1887 return; 1888 } 1889 if (cmd->transport_state & CMD_T_STOP) { 1890 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1891 __func__, __LINE__, cmd->tag); 1892 1893 spin_unlock_irq(&cmd->t_state_lock); 1894 complete_all(&cmd->t_transport_stop_comp); 1895 return; 1896 } 1897 1898 cmd->t_state = TRANSPORT_PROCESSING; 1899 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 1900 spin_unlock_irq(&cmd->t_state_lock); 1901 1902 if (target_write_prot_action(cmd)) 1903 return; 1904 1905 if (target_handle_task_attr(cmd)) { 1906 spin_lock_irq(&cmd->t_state_lock); 1907 cmd->transport_state &= ~CMD_T_SENT; 1908 spin_unlock_irq(&cmd->t_state_lock); 1909 return; 1910 } 1911 1912 __target_execute_cmd(cmd, true); 1913 } 1914 EXPORT_SYMBOL(target_execute_cmd); 1915 1916 /* 1917 * Process all commands up to the last received ORDERED task attribute which 1918 * requires another blocking boundary 1919 */ 1920 static void target_restart_delayed_cmds(struct se_device *dev) 1921 { 1922 for (;;) { 1923 struct se_cmd *cmd; 1924 1925 spin_lock(&dev->delayed_cmd_lock); 1926 if (list_empty(&dev->delayed_cmd_list)) { 1927 spin_unlock(&dev->delayed_cmd_lock); 1928 break; 1929 } 1930 1931 cmd = list_entry(dev->delayed_cmd_list.next, 1932 struct se_cmd, se_delayed_node); 1933 list_del(&cmd->se_delayed_node); 1934 spin_unlock(&dev->delayed_cmd_lock); 1935 1936 __target_execute_cmd(cmd, true); 1937 1938 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1939 break; 1940 } 1941 } 1942 1943 /* 1944 * Called from I/O completion to determine which dormant/delayed 1945 * and ordered cmds need to have their tasks added to the execution queue. 1946 */ 1947 static void transport_complete_task_attr(struct se_cmd *cmd) 1948 { 1949 struct se_device *dev = cmd->se_dev; 1950 1951 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1952 return; 1953 1954 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 1955 goto restart; 1956 1957 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1958 atomic_dec_mb(&dev->simple_cmds); 1959 dev->dev_cur_ordered_id++; 1960 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1961 dev->dev_cur_ordered_id++; 1962 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 1963 dev->dev_cur_ordered_id); 1964 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1965 atomic_dec_mb(&dev->dev_ordered_sync); 1966 1967 dev->dev_cur_ordered_id++; 1968 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 1969 dev->dev_cur_ordered_id); 1970 } 1971 restart: 1972 target_restart_delayed_cmds(dev); 1973 } 1974 1975 static void transport_complete_qf(struct se_cmd *cmd) 1976 { 1977 int ret = 0; 1978 1979 transport_complete_task_attr(cmd); 1980 1981 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1982 trace_target_cmd_complete(cmd); 1983 ret = cmd->se_tfo->queue_status(cmd); 1984 goto out; 1985 } 1986 1987 switch (cmd->data_direction) { 1988 case DMA_FROM_DEVICE: 1989 if (cmd->scsi_status) 1990 goto queue_status; 1991 1992 trace_target_cmd_complete(cmd); 1993 ret = cmd->se_tfo->queue_data_in(cmd); 1994 break; 1995 case DMA_TO_DEVICE: 1996 if (cmd->se_cmd_flags & SCF_BIDI) { 1997 ret = cmd->se_tfo->queue_data_in(cmd); 1998 break; 1999 } 2000 /* Fall through for DMA_TO_DEVICE */ 2001 case DMA_NONE: 2002 queue_status: 2003 trace_target_cmd_complete(cmd); 2004 ret = cmd->se_tfo->queue_status(cmd); 2005 break; 2006 default: 2007 break; 2008 } 2009 2010 out: 2011 if (ret < 0) { 2012 transport_handle_queue_full(cmd, cmd->se_dev); 2013 return; 2014 } 2015 transport_lun_remove_cmd(cmd); 2016 transport_cmd_check_stop_to_fabric(cmd); 2017 } 2018 2019 static void transport_handle_queue_full( 2020 struct se_cmd *cmd, 2021 struct se_device *dev) 2022 { 2023 spin_lock_irq(&dev->qf_cmd_lock); 2024 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2025 atomic_inc_mb(&dev->dev_qf_count); 2026 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2027 2028 schedule_work(&cmd->se_dev->qf_work_queue); 2029 } 2030 2031 static bool target_read_prot_action(struct se_cmd *cmd) 2032 { 2033 switch (cmd->prot_op) { 2034 case TARGET_PROT_DIN_STRIP: 2035 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2036 u32 sectors = cmd->data_length >> 2037 ilog2(cmd->se_dev->dev_attrib.block_size); 2038 2039 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2040 sectors, 0, cmd->t_prot_sg, 2041 0); 2042 if (cmd->pi_err) 2043 return true; 2044 } 2045 break; 2046 case TARGET_PROT_DIN_INSERT: 2047 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2048 break; 2049 2050 sbc_dif_generate(cmd); 2051 break; 2052 default: 2053 break; 2054 } 2055 2056 return false; 2057 } 2058 2059 static void target_complete_ok_work(struct work_struct *work) 2060 { 2061 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2062 int ret; 2063 2064 /* 2065 * Check if we need to move delayed/dormant tasks from cmds on the 2066 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2067 * Attribute. 2068 */ 2069 transport_complete_task_attr(cmd); 2070 2071 /* 2072 * Check to schedule QUEUE_FULL work, or execute an existing 2073 * cmd->transport_qf_callback() 2074 */ 2075 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2076 schedule_work(&cmd->se_dev->qf_work_queue); 2077 2078 /* 2079 * Check if we need to send a sense buffer from 2080 * the struct se_cmd in question. 2081 */ 2082 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2083 WARN_ON(!cmd->scsi_status); 2084 ret = transport_send_check_condition_and_sense( 2085 cmd, 0, 1); 2086 if (ret == -EAGAIN || ret == -ENOMEM) 2087 goto queue_full; 2088 2089 transport_lun_remove_cmd(cmd); 2090 transport_cmd_check_stop_to_fabric(cmd); 2091 return; 2092 } 2093 /* 2094 * Check for a callback, used by amongst other things 2095 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2096 */ 2097 if (cmd->transport_complete_callback) { 2098 sense_reason_t rc; 2099 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2100 bool zero_dl = !(cmd->data_length); 2101 int post_ret = 0; 2102 2103 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2104 if (!rc && !post_ret) { 2105 if (caw && zero_dl) 2106 goto queue_rsp; 2107 2108 return; 2109 } else if (rc) { 2110 ret = transport_send_check_condition_and_sense(cmd, 2111 rc, 0); 2112 if (ret == -EAGAIN || ret == -ENOMEM) 2113 goto queue_full; 2114 2115 transport_lun_remove_cmd(cmd); 2116 transport_cmd_check_stop_to_fabric(cmd); 2117 return; 2118 } 2119 } 2120 2121 queue_rsp: 2122 switch (cmd->data_direction) { 2123 case DMA_FROM_DEVICE: 2124 if (cmd->scsi_status) 2125 goto queue_status; 2126 2127 atomic_long_add(cmd->data_length, 2128 &cmd->se_lun->lun_stats.tx_data_octets); 2129 /* 2130 * Perform READ_STRIP of PI using software emulation when 2131 * backend had PI enabled, if the transport will not be 2132 * performing hardware READ_STRIP offload. 2133 */ 2134 if (target_read_prot_action(cmd)) { 2135 ret = transport_send_check_condition_and_sense(cmd, 2136 cmd->pi_err, 0); 2137 if (ret == -EAGAIN || ret == -ENOMEM) 2138 goto queue_full; 2139 2140 transport_lun_remove_cmd(cmd); 2141 transport_cmd_check_stop_to_fabric(cmd); 2142 return; 2143 } 2144 2145 trace_target_cmd_complete(cmd); 2146 ret = cmd->se_tfo->queue_data_in(cmd); 2147 if (ret == -EAGAIN || ret == -ENOMEM) 2148 goto queue_full; 2149 break; 2150 case DMA_TO_DEVICE: 2151 atomic_long_add(cmd->data_length, 2152 &cmd->se_lun->lun_stats.rx_data_octets); 2153 /* 2154 * Check if we need to send READ payload for BIDI-COMMAND 2155 */ 2156 if (cmd->se_cmd_flags & SCF_BIDI) { 2157 atomic_long_add(cmd->data_length, 2158 &cmd->se_lun->lun_stats.tx_data_octets); 2159 ret = cmd->se_tfo->queue_data_in(cmd); 2160 if (ret == -EAGAIN || ret == -ENOMEM) 2161 goto queue_full; 2162 break; 2163 } 2164 /* Fall through for DMA_TO_DEVICE */ 2165 case DMA_NONE: 2166 queue_status: 2167 trace_target_cmd_complete(cmd); 2168 ret = cmd->se_tfo->queue_status(cmd); 2169 if (ret == -EAGAIN || ret == -ENOMEM) 2170 goto queue_full; 2171 break; 2172 default: 2173 break; 2174 } 2175 2176 transport_lun_remove_cmd(cmd); 2177 transport_cmd_check_stop_to_fabric(cmd); 2178 return; 2179 2180 queue_full: 2181 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2182 " data_direction: %d\n", cmd, cmd->data_direction); 2183 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2184 transport_handle_queue_full(cmd, cmd->se_dev); 2185 } 2186 2187 void target_free_sgl(struct scatterlist *sgl, int nents) 2188 { 2189 struct scatterlist *sg; 2190 int count; 2191 2192 for_each_sg(sgl, sg, nents, count) 2193 __free_page(sg_page(sg)); 2194 2195 kfree(sgl); 2196 } 2197 EXPORT_SYMBOL(target_free_sgl); 2198 2199 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2200 { 2201 /* 2202 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2203 * emulation, and free + reset pointers if necessary.. 2204 */ 2205 if (!cmd->t_data_sg_orig) 2206 return; 2207 2208 kfree(cmd->t_data_sg); 2209 cmd->t_data_sg = cmd->t_data_sg_orig; 2210 cmd->t_data_sg_orig = NULL; 2211 cmd->t_data_nents = cmd->t_data_nents_orig; 2212 cmd->t_data_nents_orig = 0; 2213 } 2214 2215 static inline void transport_free_pages(struct se_cmd *cmd) 2216 { 2217 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2218 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2219 cmd->t_prot_sg = NULL; 2220 cmd->t_prot_nents = 0; 2221 } 2222 2223 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2224 /* 2225 * Release special case READ buffer payload required for 2226 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2227 */ 2228 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2229 target_free_sgl(cmd->t_bidi_data_sg, 2230 cmd->t_bidi_data_nents); 2231 cmd->t_bidi_data_sg = NULL; 2232 cmd->t_bidi_data_nents = 0; 2233 } 2234 transport_reset_sgl_orig(cmd); 2235 return; 2236 } 2237 transport_reset_sgl_orig(cmd); 2238 2239 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2240 cmd->t_data_sg = NULL; 2241 cmd->t_data_nents = 0; 2242 2243 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2244 cmd->t_bidi_data_sg = NULL; 2245 cmd->t_bidi_data_nents = 0; 2246 } 2247 2248 /** 2249 * transport_put_cmd - release a reference to a command 2250 * @cmd: command to release 2251 * 2252 * This routine releases our reference to the command and frees it if possible. 2253 */ 2254 static int transport_put_cmd(struct se_cmd *cmd) 2255 { 2256 BUG_ON(!cmd->se_tfo); 2257 /* 2258 * If this cmd has been setup with target_get_sess_cmd(), drop 2259 * the kref and call ->release_cmd() in kref callback. 2260 */ 2261 return target_put_sess_cmd(cmd); 2262 } 2263 2264 void *transport_kmap_data_sg(struct se_cmd *cmd) 2265 { 2266 struct scatterlist *sg = cmd->t_data_sg; 2267 struct page **pages; 2268 int i; 2269 2270 /* 2271 * We need to take into account a possible offset here for fabrics like 2272 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2273 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2274 */ 2275 if (!cmd->t_data_nents) 2276 return NULL; 2277 2278 BUG_ON(!sg); 2279 if (cmd->t_data_nents == 1) 2280 return kmap(sg_page(sg)) + sg->offset; 2281 2282 /* >1 page. use vmap */ 2283 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2284 if (!pages) 2285 return NULL; 2286 2287 /* convert sg[] to pages[] */ 2288 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2289 pages[i] = sg_page(sg); 2290 } 2291 2292 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2293 kfree(pages); 2294 if (!cmd->t_data_vmap) 2295 return NULL; 2296 2297 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2298 } 2299 EXPORT_SYMBOL(transport_kmap_data_sg); 2300 2301 void transport_kunmap_data_sg(struct se_cmd *cmd) 2302 { 2303 if (!cmd->t_data_nents) { 2304 return; 2305 } else if (cmd->t_data_nents == 1) { 2306 kunmap(sg_page(cmd->t_data_sg)); 2307 return; 2308 } 2309 2310 vunmap(cmd->t_data_vmap); 2311 cmd->t_data_vmap = NULL; 2312 } 2313 EXPORT_SYMBOL(transport_kunmap_data_sg); 2314 2315 int 2316 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2317 bool zero_page, bool chainable) 2318 { 2319 struct scatterlist *sg; 2320 struct page *page; 2321 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2322 unsigned int nalloc, nent; 2323 int i = 0; 2324 2325 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE); 2326 if (chainable) 2327 nalloc++; 2328 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL); 2329 if (!sg) 2330 return -ENOMEM; 2331 2332 sg_init_table(sg, nalloc); 2333 2334 while (length) { 2335 u32 page_len = min_t(u32, length, PAGE_SIZE); 2336 page = alloc_page(GFP_KERNEL | zero_flag); 2337 if (!page) 2338 goto out; 2339 2340 sg_set_page(&sg[i], page, page_len, 0); 2341 length -= page_len; 2342 i++; 2343 } 2344 *sgl = sg; 2345 *nents = nent; 2346 return 0; 2347 2348 out: 2349 while (i > 0) { 2350 i--; 2351 __free_page(sg_page(&sg[i])); 2352 } 2353 kfree(sg); 2354 return -ENOMEM; 2355 } 2356 EXPORT_SYMBOL(target_alloc_sgl); 2357 2358 /* 2359 * Allocate any required resources to execute the command. For writes we 2360 * might not have the payload yet, so notify the fabric via a call to 2361 * ->write_pending instead. Otherwise place it on the execution queue. 2362 */ 2363 sense_reason_t 2364 transport_generic_new_cmd(struct se_cmd *cmd) 2365 { 2366 unsigned long flags; 2367 int ret = 0; 2368 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2369 2370 if (cmd->prot_op != TARGET_PROT_NORMAL && 2371 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2372 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2373 cmd->prot_length, true, false); 2374 if (ret < 0) 2375 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2376 } 2377 2378 /* 2379 * Determine is the TCM fabric module has already allocated physical 2380 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2381 * beforehand. 2382 */ 2383 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2384 cmd->data_length) { 2385 2386 if ((cmd->se_cmd_flags & SCF_BIDI) || 2387 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2388 u32 bidi_length; 2389 2390 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2391 bidi_length = cmd->t_task_nolb * 2392 cmd->se_dev->dev_attrib.block_size; 2393 else 2394 bidi_length = cmd->data_length; 2395 2396 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2397 &cmd->t_bidi_data_nents, 2398 bidi_length, zero_flag, false); 2399 if (ret < 0) 2400 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2401 } 2402 2403 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2404 cmd->data_length, zero_flag, false); 2405 if (ret < 0) 2406 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2407 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2408 cmd->data_length) { 2409 /* 2410 * Special case for COMPARE_AND_WRITE with fabrics 2411 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2412 */ 2413 u32 caw_length = cmd->t_task_nolb * 2414 cmd->se_dev->dev_attrib.block_size; 2415 2416 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2417 &cmd->t_bidi_data_nents, 2418 caw_length, zero_flag, false); 2419 if (ret < 0) 2420 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2421 } 2422 /* 2423 * If this command is not a write we can execute it right here, 2424 * for write buffers we need to notify the fabric driver first 2425 * and let it call back once the write buffers are ready. 2426 */ 2427 target_add_to_state_list(cmd); 2428 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2429 target_execute_cmd(cmd); 2430 return 0; 2431 } 2432 2433 spin_lock_irqsave(&cmd->t_state_lock, flags); 2434 cmd->t_state = TRANSPORT_WRITE_PENDING; 2435 /* 2436 * Determine if frontend context caller is requesting the stopping of 2437 * this command for frontend exceptions. 2438 */ 2439 if (cmd->transport_state & CMD_T_STOP) { 2440 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2441 __func__, __LINE__, cmd->tag); 2442 2443 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2444 2445 complete_all(&cmd->t_transport_stop_comp); 2446 return 0; 2447 } 2448 cmd->transport_state &= ~CMD_T_ACTIVE; 2449 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2450 2451 ret = cmd->se_tfo->write_pending(cmd); 2452 if (ret == -EAGAIN || ret == -ENOMEM) 2453 goto queue_full; 2454 2455 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2456 WARN_ON(ret); 2457 2458 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2459 2460 queue_full: 2461 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2462 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2463 transport_handle_queue_full(cmd, cmd->se_dev); 2464 return 0; 2465 } 2466 EXPORT_SYMBOL(transport_generic_new_cmd); 2467 2468 static void transport_write_pending_qf(struct se_cmd *cmd) 2469 { 2470 int ret; 2471 2472 ret = cmd->se_tfo->write_pending(cmd); 2473 if (ret == -EAGAIN || ret == -ENOMEM) { 2474 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2475 cmd); 2476 transport_handle_queue_full(cmd, cmd->se_dev); 2477 } 2478 } 2479 2480 static bool 2481 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2482 unsigned long *flags); 2483 2484 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2485 { 2486 unsigned long flags; 2487 2488 spin_lock_irqsave(&cmd->t_state_lock, flags); 2489 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2490 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2491 } 2492 2493 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2494 { 2495 int ret = 0; 2496 bool aborted = false, tas = false; 2497 2498 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2499 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2500 target_wait_free_cmd(cmd, &aborted, &tas); 2501 2502 if (!aborted || tas) 2503 ret = transport_put_cmd(cmd); 2504 } else { 2505 if (wait_for_tasks) 2506 target_wait_free_cmd(cmd, &aborted, &tas); 2507 /* 2508 * Handle WRITE failure case where transport_generic_new_cmd() 2509 * has already added se_cmd to state_list, but fabric has 2510 * failed command before I/O submission. 2511 */ 2512 if (cmd->state_active) 2513 target_remove_from_state_list(cmd); 2514 2515 if (cmd->se_lun) 2516 transport_lun_remove_cmd(cmd); 2517 2518 if (!aborted || tas) 2519 ret = transport_put_cmd(cmd); 2520 } 2521 /* 2522 * If the task has been internally aborted due to TMR ABORT_TASK 2523 * or LUN_RESET, target_core_tmr.c is responsible for performing 2524 * the remaining calls to target_put_sess_cmd(), and not the 2525 * callers of this function. 2526 */ 2527 if (aborted) { 2528 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2529 wait_for_completion(&cmd->cmd_wait_comp); 2530 cmd->se_tfo->release_cmd(cmd); 2531 ret = 1; 2532 } 2533 return ret; 2534 } 2535 EXPORT_SYMBOL(transport_generic_free_cmd); 2536 2537 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2538 * @se_cmd: command descriptor to add 2539 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2540 */ 2541 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2542 { 2543 struct se_session *se_sess = se_cmd->se_sess; 2544 unsigned long flags; 2545 int ret = 0; 2546 2547 /* 2548 * Add a second kref if the fabric caller is expecting to handle 2549 * fabric acknowledgement that requires two target_put_sess_cmd() 2550 * invocations before se_cmd descriptor release. 2551 */ 2552 if (ack_kref) { 2553 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2554 return -EINVAL; 2555 2556 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2557 } 2558 2559 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2560 if (se_sess->sess_tearing_down) { 2561 ret = -ESHUTDOWN; 2562 goto out; 2563 } 2564 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2565 out: 2566 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2567 2568 if (ret && ack_kref) 2569 target_put_sess_cmd(se_cmd); 2570 2571 return ret; 2572 } 2573 EXPORT_SYMBOL(target_get_sess_cmd); 2574 2575 static void target_free_cmd_mem(struct se_cmd *cmd) 2576 { 2577 transport_free_pages(cmd); 2578 2579 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2580 core_tmr_release_req(cmd->se_tmr_req); 2581 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2582 kfree(cmd->t_task_cdb); 2583 } 2584 2585 static void target_release_cmd_kref(struct kref *kref) 2586 { 2587 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2588 struct se_session *se_sess = se_cmd->se_sess; 2589 unsigned long flags; 2590 bool fabric_stop; 2591 2592 if (se_sess) { 2593 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2594 2595 spin_lock(&se_cmd->t_state_lock); 2596 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) && 2597 (se_cmd->transport_state & CMD_T_ABORTED); 2598 spin_unlock(&se_cmd->t_state_lock); 2599 2600 if (se_cmd->cmd_wait_set || fabric_stop) { 2601 list_del_init(&se_cmd->se_cmd_list); 2602 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2603 target_free_cmd_mem(se_cmd); 2604 complete(&se_cmd->cmd_wait_comp); 2605 return; 2606 } 2607 list_del_init(&se_cmd->se_cmd_list); 2608 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2609 } 2610 2611 target_free_cmd_mem(se_cmd); 2612 se_cmd->se_tfo->release_cmd(se_cmd); 2613 } 2614 2615 /** 2616 * target_put_sess_cmd - decrease the command reference count 2617 * @se_cmd: command to drop a reference from 2618 * 2619 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2620 * refcount to drop to zero. Returns zero otherwise. 2621 */ 2622 int target_put_sess_cmd(struct se_cmd *se_cmd) 2623 { 2624 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2625 } 2626 EXPORT_SYMBOL(target_put_sess_cmd); 2627 2628 /* target_sess_cmd_list_set_waiting - Flag all commands in 2629 * sess_cmd_list to complete cmd_wait_comp. Set 2630 * sess_tearing_down so no more commands are queued. 2631 * @se_sess: session to flag 2632 */ 2633 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2634 { 2635 struct se_cmd *se_cmd, *tmp_cmd; 2636 unsigned long flags; 2637 int rc; 2638 2639 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2640 if (se_sess->sess_tearing_down) { 2641 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2642 return; 2643 } 2644 se_sess->sess_tearing_down = 1; 2645 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2646 2647 list_for_each_entry_safe(se_cmd, tmp_cmd, 2648 &se_sess->sess_wait_list, se_cmd_list) { 2649 rc = kref_get_unless_zero(&se_cmd->cmd_kref); 2650 if (rc) { 2651 se_cmd->cmd_wait_set = 1; 2652 spin_lock(&se_cmd->t_state_lock); 2653 se_cmd->transport_state |= CMD_T_FABRIC_STOP; 2654 spin_unlock(&se_cmd->t_state_lock); 2655 } else 2656 list_del_init(&se_cmd->se_cmd_list); 2657 } 2658 2659 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2660 } 2661 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2662 2663 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2664 * @se_sess: session to wait for active I/O 2665 */ 2666 void target_wait_for_sess_cmds(struct se_session *se_sess) 2667 { 2668 struct se_cmd *se_cmd, *tmp_cmd; 2669 unsigned long flags; 2670 bool tas; 2671 2672 list_for_each_entry_safe(se_cmd, tmp_cmd, 2673 &se_sess->sess_wait_list, se_cmd_list) { 2674 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2675 " %d\n", se_cmd, se_cmd->t_state, 2676 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2677 2678 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2679 tas = (se_cmd->transport_state & CMD_T_TAS); 2680 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2681 2682 if (!target_put_sess_cmd(se_cmd)) { 2683 if (tas) 2684 target_put_sess_cmd(se_cmd); 2685 } 2686 2687 wait_for_completion(&se_cmd->cmd_wait_comp); 2688 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2689 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2690 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2691 2692 se_cmd->se_tfo->release_cmd(se_cmd); 2693 } 2694 2695 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2696 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2697 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2698 2699 } 2700 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2701 2702 static void target_lun_confirm(struct percpu_ref *ref) 2703 { 2704 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref); 2705 2706 complete(&lun->lun_ref_comp); 2707 } 2708 2709 void transport_clear_lun_ref(struct se_lun *lun) 2710 { 2711 /* 2712 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop 2713 * the initial reference and schedule confirm kill to be 2714 * executed after one full RCU grace period has completed. 2715 */ 2716 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm); 2717 /* 2718 * The first completion waits for percpu_ref_switch_to_atomic_rcu() 2719 * to call target_lun_confirm after lun->lun_ref has been marked 2720 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t 2721 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref 2722 * fails for all new incoming I/O. 2723 */ 2724 wait_for_completion(&lun->lun_ref_comp); 2725 /* 2726 * The second completion waits for percpu_ref_put_many() to 2727 * invoke ->release() after lun->lun_ref has switched to 2728 * atomic_t mode, and lun->lun_ref.count has reached zero. 2729 * 2730 * At this point all target-core lun->lun_ref references have 2731 * been dropped via transport_lun_remove_cmd(), and it's safe 2732 * to proceed with the remaining LUN shutdown. 2733 */ 2734 wait_for_completion(&lun->lun_shutdown_comp); 2735 } 2736 2737 static bool 2738 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2739 bool *aborted, bool *tas, unsigned long *flags) 2740 __releases(&cmd->t_state_lock) 2741 __acquires(&cmd->t_state_lock) 2742 { 2743 2744 assert_spin_locked(&cmd->t_state_lock); 2745 WARN_ON_ONCE(!irqs_disabled()); 2746 2747 if (fabric_stop) 2748 cmd->transport_state |= CMD_T_FABRIC_STOP; 2749 2750 if (cmd->transport_state & CMD_T_ABORTED) 2751 *aborted = true; 2752 2753 if (cmd->transport_state & CMD_T_TAS) 2754 *tas = true; 2755 2756 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2757 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2758 return false; 2759 2760 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2761 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2762 return false; 2763 2764 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2765 return false; 2766 2767 if (fabric_stop && *aborted) 2768 return false; 2769 2770 cmd->transport_state |= CMD_T_STOP; 2771 2772 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d," 2773 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag, 2774 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2775 2776 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2777 2778 wait_for_completion(&cmd->t_transport_stop_comp); 2779 2780 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2781 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2782 2783 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 2784 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 2785 2786 return true; 2787 } 2788 2789 /** 2790 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 2791 * @cmd: command to wait on 2792 */ 2793 bool transport_wait_for_tasks(struct se_cmd *cmd) 2794 { 2795 unsigned long flags; 2796 bool ret, aborted = false, tas = false; 2797 2798 spin_lock_irqsave(&cmd->t_state_lock, flags); 2799 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 2800 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2801 2802 return ret; 2803 } 2804 EXPORT_SYMBOL(transport_wait_for_tasks); 2805 2806 struct sense_info { 2807 u8 key; 2808 u8 asc; 2809 u8 ascq; 2810 bool add_sector_info; 2811 }; 2812 2813 static const struct sense_info sense_info_table[] = { 2814 [TCM_NO_SENSE] = { 2815 .key = NOT_READY 2816 }, 2817 [TCM_NON_EXISTENT_LUN] = { 2818 .key = ILLEGAL_REQUEST, 2819 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 2820 }, 2821 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 2822 .key = ILLEGAL_REQUEST, 2823 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2824 }, 2825 [TCM_SECTOR_COUNT_TOO_MANY] = { 2826 .key = ILLEGAL_REQUEST, 2827 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2828 }, 2829 [TCM_UNKNOWN_MODE_PAGE] = { 2830 .key = ILLEGAL_REQUEST, 2831 .asc = 0x24, /* INVALID FIELD IN CDB */ 2832 }, 2833 [TCM_CHECK_CONDITION_ABORT_CMD] = { 2834 .key = ABORTED_COMMAND, 2835 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 2836 .ascq = 0x03, 2837 }, 2838 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 2839 .key = ABORTED_COMMAND, 2840 .asc = 0x0c, /* WRITE ERROR */ 2841 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 2842 }, 2843 [TCM_INVALID_CDB_FIELD] = { 2844 .key = ILLEGAL_REQUEST, 2845 .asc = 0x24, /* INVALID FIELD IN CDB */ 2846 }, 2847 [TCM_INVALID_PARAMETER_LIST] = { 2848 .key = ILLEGAL_REQUEST, 2849 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 2850 }, 2851 [TCM_TOO_MANY_TARGET_DESCS] = { 2852 .key = ILLEGAL_REQUEST, 2853 .asc = 0x26, 2854 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 2855 }, 2856 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 2857 .key = ILLEGAL_REQUEST, 2858 .asc = 0x26, 2859 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 2860 }, 2861 [TCM_TOO_MANY_SEGMENT_DESCS] = { 2862 .key = ILLEGAL_REQUEST, 2863 .asc = 0x26, 2864 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 2865 }, 2866 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 2867 .key = ILLEGAL_REQUEST, 2868 .asc = 0x26, 2869 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 2870 }, 2871 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 2872 .key = ILLEGAL_REQUEST, 2873 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 2874 }, 2875 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 2876 .key = ILLEGAL_REQUEST, 2877 .asc = 0x0c, /* WRITE ERROR */ 2878 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 2879 }, 2880 [TCM_SERVICE_CRC_ERROR] = { 2881 .key = ABORTED_COMMAND, 2882 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 2883 .ascq = 0x05, /* N/A */ 2884 }, 2885 [TCM_SNACK_REJECTED] = { 2886 .key = ABORTED_COMMAND, 2887 .asc = 0x11, /* READ ERROR */ 2888 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 2889 }, 2890 [TCM_WRITE_PROTECTED] = { 2891 .key = DATA_PROTECT, 2892 .asc = 0x27, /* WRITE PROTECTED */ 2893 }, 2894 [TCM_ADDRESS_OUT_OF_RANGE] = { 2895 .key = ILLEGAL_REQUEST, 2896 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2897 }, 2898 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 2899 .key = UNIT_ATTENTION, 2900 }, 2901 [TCM_CHECK_CONDITION_NOT_READY] = { 2902 .key = NOT_READY, 2903 }, 2904 [TCM_MISCOMPARE_VERIFY] = { 2905 .key = MISCOMPARE, 2906 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 2907 .ascq = 0x00, 2908 }, 2909 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 2910 .key = ABORTED_COMMAND, 2911 .asc = 0x10, 2912 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 2913 .add_sector_info = true, 2914 }, 2915 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 2916 .key = ABORTED_COMMAND, 2917 .asc = 0x10, 2918 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2919 .add_sector_info = true, 2920 }, 2921 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 2922 .key = ABORTED_COMMAND, 2923 .asc = 0x10, 2924 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2925 .add_sector_info = true, 2926 }, 2927 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 2928 .key = COPY_ABORTED, 2929 .asc = 0x0d, 2930 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 2931 2932 }, 2933 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 2934 /* 2935 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2936 * Solaris initiators. Returning NOT READY instead means the 2937 * operations will be retried a finite number of times and we 2938 * can survive intermittent errors. 2939 */ 2940 .key = NOT_READY, 2941 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 2942 }, 2943 }; 2944 2945 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 2946 { 2947 const struct sense_info *si; 2948 u8 *buffer = cmd->sense_buffer; 2949 int r = (__force int)reason; 2950 u8 asc, ascq; 2951 bool desc_format = target_sense_desc_format(cmd->se_dev); 2952 2953 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 2954 si = &sense_info_table[r]; 2955 else 2956 si = &sense_info_table[(__force int) 2957 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 2958 2959 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 2960 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2961 WARN_ON_ONCE(asc == 0); 2962 } else if (si->asc == 0) { 2963 WARN_ON_ONCE(cmd->scsi_asc == 0); 2964 asc = cmd->scsi_asc; 2965 ascq = cmd->scsi_ascq; 2966 } else { 2967 asc = si->asc; 2968 ascq = si->ascq; 2969 } 2970 2971 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 2972 if (si->add_sector_info) 2973 return scsi_set_sense_information(buffer, 2974 cmd->scsi_sense_length, 2975 cmd->bad_sector); 2976 2977 return 0; 2978 } 2979 2980 int 2981 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2982 sense_reason_t reason, int from_transport) 2983 { 2984 unsigned long flags; 2985 2986 spin_lock_irqsave(&cmd->t_state_lock, flags); 2987 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2988 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2989 return 0; 2990 } 2991 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2992 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2993 2994 if (!from_transport) { 2995 int rc; 2996 2997 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2998 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2999 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3000 rc = translate_sense_reason(cmd, reason); 3001 if (rc) 3002 return rc; 3003 } 3004 3005 trace_target_cmd_complete(cmd); 3006 return cmd->se_tfo->queue_status(cmd); 3007 } 3008 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3009 3010 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3011 __releases(&cmd->t_state_lock) 3012 __acquires(&cmd->t_state_lock) 3013 { 3014 assert_spin_locked(&cmd->t_state_lock); 3015 WARN_ON_ONCE(!irqs_disabled()); 3016 3017 if (!(cmd->transport_state & CMD_T_ABORTED)) 3018 return 0; 3019 /* 3020 * If cmd has been aborted but either no status is to be sent or it has 3021 * already been sent, just return 3022 */ 3023 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { 3024 if (send_status) 3025 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3026 return 1; 3027 } 3028 3029 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" 3030 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); 3031 3032 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 3033 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3034 trace_target_cmd_complete(cmd); 3035 3036 spin_unlock_irq(&cmd->t_state_lock); 3037 cmd->se_tfo->queue_status(cmd); 3038 spin_lock_irq(&cmd->t_state_lock); 3039 3040 return 1; 3041 } 3042 3043 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3044 { 3045 int ret; 3046 3047 spin_lock_irq(&cmd->t_state_lock); 3048 ret = __transport_check_aborted_status(cmd, send_status); 3049 spin_unlock_irq(&cmd->t_state_lock); 3050 3051 return ret; 3052 } 3053 EXPORT_SYMBOL(transport_check_aborted_status); 3054 3055 void transport_send_task_abort(struct se_cmd *cmd) 3056 { 3057 unsigned long flags; 3058 3059 spin_lock_irqsave(&cmd->t_state_lock, flags); 3060 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 3061 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3062 return; 3063 } 3064 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3065 3066 /* 3067 * If there are still expected incoming fabric WRITEs, we wait 3068 * until until they have completed before sending a TASK_ABORTED 3069 * response. This response with TASK_ABORTED status will be 3070 * queued back to fabric module by transport_check_aborted_status(). 3071 */ 3072 if (cmd->data_direction == DMA_TO_DEVICE) { 3073 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3074 spin_lock_irqsave(&cmd->t_state_lock, flags); 3075 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { 3076 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3077 goto send_abort; 3078 } 3079 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3080 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3081 return; 3082 } 3083 } 3084 send_abort: 3085 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3086 3087 transport_lun_remove_cmd(cmd); 3088 3089 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 3090 cmd->t_task_cdb[0], cmd->tag); 3091 3092 trace_target_cmd_complete(cmd); 3093 cmd->se_tfo->queue_status(cmd); 3094 } 3095 3096 static void target_tmr_work(struct work_struct *work) 3097 { 3098 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3099 struct se_device *dev = cmd->se_dev; 3100 struct se_tmr_req *tmr = cmd->se_tmr_req; 3101 unsigned long flags; 3102 int ret; 3103 3104 spin_lock_irqsave(&cmd->t_state_lock, flags); 3105 if (cmd->transport_state & CMD_T_ABORTED) { 3106 tmr->response = TMR_FUNCTION_REJECTED; 3107 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3108 goto check_stop; 3109 } 3110 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3111 3112 switch (tmr->function) { 3113 case TMR_ABORT_TASK: 3114 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3115 break; 3116 case TMR_ABORT_TASK_SET: 3117 case TMR_CLEAR_ACA: 3118 case TMR_CLEAR_TASK_SET: 3119 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3120 break; 3121 case TMR_LUN_RESET: 3122 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3123 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3124 TMR_FUNCTION_REJECTED; 3125 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3126 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3127 cmd->orig_fe_lun, 0x29, 3128 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3129 } 3130 break; 3131 case TMR_TARGET_WARM_RESET: 3132 tmr->response = TMR_FUNCTION_REJECTED; 3133 break; 3134 case TMR_TARGET_COLD_RESET: 3135 tmr->response = TMR_FUNCTION_REJECTED; 3136 break; 3137 default: 3138 pr_err("Uknown TMR function: 0x%02x.\n", 3139 tmr->function); 3140 tmr->response = TMR_FUNCTION_REJECTED; 3141 break; 3142 } 3143 3144 spin_lock_irqsave(&cmd->t_state_lock, flags); 3145 if (cmd->transport_state & CMD_T_ABORTED) { 3146 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3147 goto check_stop; 3148 } 3149 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3150 3151 cmd->se_tfo->queue_tm_rsp(cmd); 3152 3153 check_stop: 3154 transport_cmd_check_stop_to_fabric(cmd); 3155 } 3156 3157 int transport_generic_handle_tmr( 3158 struct se_cmd *cmd) 3159 { 3160 unsigned long flags; 3161 bool aborted = false; 3162 3163 spin_lock_irqsave(&cmd->t_state_lock, flags); 3164 if (cmd->transport_state & CMD_T_ABORTED) { 3165 aborted = true; 3166 } else { 3167 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3168 cmd->transport_state |= CMD_T_ACTIVE; 3169 } 3170 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3171 3172 if (aborted) { 3173 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d" 3174 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function, 3175 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3176 transport_cmd_check_stop_to_fabric(cmd); 3177 return 0; 3178 } 3179 3180 INIT_WORK(&cmd->work, target_tmr_work); 3181 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3182 return 0; 3183 } 3184 EXPORT_SYMBOL(transport_generic_handle_tmr); 3185 3186 bool 3187 target_check_wce(struct se_device *dev) 3188 { 3189 bool wce = false; 3190 3191 if (dev->transport->get_write_cache) 3192 wce = dev->transport->get_write_cache(dev); 3193 else if (dev->dev_attrib.emulate_write_cache > 0) 3194 wce = true; 3195 3196 return wce; 3197 } 3198 3199 bool 3200 target_check_fua(struct se_device *dev) 3201 { 3202 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3203 } 3204