1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc. 7 * Copyright (c) 2005, 2006, 2007 SBE, Inc. 8 * Copyright (c) 2007-2010 Rising Tide Systems 9 * Copyright (c) 2008-2010 Linux-iSCSI.org 10 * 11 * Nicholas A. Bellinger <nab@kernel.org> 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 26 * 27 ******************************************************************************/ 28 29 #include <linux/version.h> 30 #include <linux/net.h> 31 #include <linux/delay.h> 32 #include <linux/string.h> 33 #include <linux/timer.h> 34 #include <linux/slab.h> 35 #include <linux/blkdev.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp_lock.h> 38 #include <linux/kthread.h> 39 #include <linux/in.h> 40 #include <linux/cdrom.h> 41 #include <asm/unaligned.h> 42 #include <net/sock.h> 43 #include <net/tcp.h> 44 #include <scsi/scsi.h> 45 #include <scsi/scsi_cmnd.h> 46 #include <scsi/libsas.h> /* For TASK_ATTR_* */ 47 48 #include <target/target_core_base.h> 49 #include <target/target_core_device.h> 50 #include <target/target_core_tmr.h> 51 #include <target/target_core_tpg.h> 52 #include <target/target_core_transport.h> 53 #include <target/target_core_fabric_ops.h> 54 #include <target/target_core_configfs.h> 55 56 #include "target_core_alua.h" 57 #include "target_core_hba.h" 58 #include "target_core_pr.h" 59 #include "target_core_scdb.h" 60 #include "target_core_ua.h" 61 62 /* #define DEBUG_CDB_HANDLER */ 63 #ifdef DEBUG_CDB_HANDLER 64 #define DEBUG_CDB_H(x...) printk(KERN_INFO x) 65 #else 66 #define DEBUG_CDB_H(x...) 67 #endif 68 69 /* #define DEBUG_CMD_MAP */ 70 #ifdef DEBUG_CMD_MAP 71 #define DEBUG_CMD_M(x...) printk(KERN_INFO x) 72 #else 73 #define DEBUG_CMD_M(x...) 74 #endif 75 76 /* #define DEBUG_MEM_ALLOC */ 77 #ifdef DEBUG_MEM_ALLOC 78 #define DEBUG_MEM(x...) printk(KERN_INFO x) 79 #else 80 #define DEBUG_MEM(x...) 81 #endif 82 83 /* #define DEBUG_MEM2_ALLOC */ 84 #ifdef DEBUG_MEM2_ALLOC 85 #define DEBUG_MEM2(x...) printk(KERN_INFO x) 86 #else 87 #define DEBUG_MEM2(x...) 88 #endif 89 90 /* #define DEBUG_SG_CALC */ 91 #ifdef DEBUG_SG_CALC 92 #define DEBUG_SC(x...) printk(KERN_INFO x) 93 #else 94 #define DEBUG_SC(x...) 95 #endif 96 97 /* #define DEBUG_SE_OBJ */ 98 #ifdef DEBUG_SE_OBJ 99 #define DEBUG_SO(x...) printk(KERN_INFO x) 100 #else 101 #define DEBUG_SO(x...) 102 #endif 103 104 /* #define DEBUG_CMD_VOL */ 105 #ifdef DEBUG_CMD_VOL 106 #define DEBUG_VOL(x...) printk(KERN_INFO x) 107 #else 108 #define DEBUG_VOL(x...) 109 #endif 110 111 /* #define DEBUG_CMD_STOP */ 112 #ifdef DEBUG_CMD_STOP 113 #define DEBUG_CS(x...) printk(KERN_INFO x) 114 #else 115 #define DEBUG_CS(x...) 116 #endif 117 118 /* #define DEBUG_PASSTHROUGH */ 119 #ifdef DEBUG_PASSTHROUGH 120 #define DEBUG_PT(x...) printk(KERN_INFO x) 121 #else 122 #define DEBUG_PT(x...) 123 #endif 124 125 /* #define DEBUG_TASK_STOP */ 126 #ifdef DEBUG_TASK_STOP 127 #define DEBUG_TS(x...) printk(KERN_INFO x) 128 #else 129 #define DEBUG_TS(x...) 130 #endif 131 132 /* #define DEBUG_TRANSPORT_STOP */ 133 #ifdef DEBUG_TRANSPORT_STOP 134 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x) 135 #else 136 #define DEBUG_TRANSPORT_S(x...) 137 #endif 138 139 /* #define DEBUG_TASK_FAILURE */ 140 #ifdef DEBUG_TASK_FAILURE 141 #define DEBUG_TF(x...) printk(KERN_INFO x) 142 #else 143 #define DEBUG_TF(x...) 144 #endif 145 146 /* #define DEBUG_DEV_OFFLINE */ 147 #ifdef DEBUG_DEV_OFFLINE 148 #define DEBUG_DO(x...) printk(KERN_INFO x) 149 #else 150 #define DEBUG_DO(x...) 151 #endif 152 153 /* #define DEBUG_TASK_STATE */ 154 #ifdef DEBUG_TASK_STATE 155 #define DEBUG_TSTATE(x...) printk(KERN_INFO x) 156 #else 157 #define DEBUG_TSTATE(x...) 158 #endif 159 160 /* #define DEBUG_STATUS_THR */ 161 #ifdef DEBUG_STATUS_THR 162 #define DEBUG_ST(x...) printk(KERN_INFO x) 163 #else 164 #define DEBUG_ST(x...) 165 #endif 166 167 /* #define DEBUG_TASK_TIMEOUT */ 168 #ifdef DEBUG_TASK_TIMEOUT 169 #define DEBUG_TT(x...) printk(KERN_INFO x) 170 #else 171 #define DEBUG_TT(x...) 172 #endif 173 174 /* #define DEBUG_GENERIC_REQUEST_FAILURE */ 175 #ifdef DEBUG_GENERIC_REQUEST_FAILURE 176 #define DEBUG_GRF(x...) printk(KERN_INFO x) 177 #else 178 #define DEBUG_GRF(x...) 179 #endif 180 181 /* #define DEBUG_SAM_TASK_ATTRS */ 182 #ifdef DEBUG_SAM_TASK_ATTRS 183 #define DEBUG_STA(x...) printk(KERN_INFO x) 184 #else 185 #define DEBUG_STA(x...) 186 #endif 187 188 struct se_global *se_global; 189 190 static struct kmem_cache *se_cmd_cache; 191 static struct kmem_cache *se_sess_cache; 192 struct kmem_cache *se_tmr_req_cache; 193 struct kmem_cache *se_ua_cache; 194 struct kmem_cache *se_mem_cache; 195 struct kmem_cache *t10_pr_reg_cache; 196 struct kmem_cache *t10_alua_lu_gp_cache; 197 struct kmem_cache *t10_alua_lu_gp_mem_cache; 198 struct kmem_cache *t10_alua_tg_pt_gp_cache; 199 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 200 201 /* Used for transport_dev_get_map_*() */ 202 typedef int (*map_func_t)(struct se_task *, u32); 203 204 static int transport_generic_write_pending(struct se_cmd *); 205 static int transport_processing_thread(void *); 206 static int __transport_execute_tasks(struct se_device *dev); 207 static void transport_complete_task_attr(struct se_cmd *cmd); 208 static void transport_direct_request_timeout(struct se_cmd *cmd); 209 static void transport_free_dev_tasks(struct se_cmd *cmd); 210 static u32 transport_generic_get_cdb_count(struct se_cmd *cmd, 211 unsigned long long starting_lba, u32 sectors, 212 enum dma_data_direction data_direction, 213 struct list_head *mem_list, int set_counts); 214 static int transport_generic_get_mem(struct se_cmd *cmd, u32 length, 215 u32 dma_size); 216 static int transport_generic_remove(struct se_cmd *cmd, 217 int release_to_pool, int session_reinstatement); 218 static int transport_get_sectors(struct se_cmd *cmd); 219 static struct list_head *transport_init_se_mem_list(void); 220 static int transport_map_sg_to_mem(struct se_cmd *cmd, 221 struct list_head *se_mem_list, void *in_mem, 222 u32 *se_mem_cnt); 223 static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd, 224 unsigned char *dst, struct list_head *se_mem_list); 225 static void transport_release_fe_cmd(struct se_cmd *cmd); 226 static void transport_remove_cmd_from_queue(struct se_cmd *cmd, 227 struct se_queue_obj *qobj); 228 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq); 229 static void transport_stop_all_task_timers(struct se_cmd *cmd); 230 231 int transport_emulate_control_cdb(struct se_task *task); 232 233 int init_se_global(void) 234 { 235 struct se_global *global; 236 237 global = kzalloc(sizeof(struct se_global), GFP_KERNEL); 238 if (!(global)) { 239 printk(KERN_ERR "Unable to allocate memory for struct se_global\n"); 240 return -1; 241 } 242 243 INIT_LIST_HEAD(&global->g_lu_gps_list); 244 INIT_LIST_HEAD(&global->g_se_tpg_list); 245 INIT_LIST_HEAD(&global->g_hba_list); 246 INIT_LIST_HEAD(&global->g_se_dev_list); 247 spin_lock_init(&global->g_device_lock); 248 spin_lock_init(&global->hba_lock); 249 spin_lock_init(&global->se_tpg_lock); 250 spin_lock_init(&global->lu_gps_lock); 251 spin_lock_init(&global->plugin_class_lock); 252 253 se_cmd_cache = kmem_cache_create("se_cmd_cache", 254 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL); 255 if (!(se_cmd_cache)) { 256 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n"); 257 goto out; 258 } 259 se_tmr_req_cache = kmem_cache_create("se_tmr_cache", 260 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req), 261 0, NULL); 262 if (!(se_tmr_req_cache)) { 263 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req" 264 " failed\n"); 265 goto out; 266 } 267 se_sess_cache = kmem_cache_create("se_sess_cache", 268 sizeof(struct se_session), __alignof__(struct se_session), 269 0, NULL); 270 if (!(se_sess_cache)) { 271 printk(KERN_ERR "kmem_cache_create() for struct se_session" 272 " failed\n"); 273 goto out; 274 } 275 se_ua_cache = kmem_cache_create("se_ua_cache", 276 sizeof(struct se_ua), __alignof__(struct se_ua), 277 0, NULL); 278 if (!(se_ua_cache)) { 279 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n"); 280 goto out; 281 } 282 se_mem_cache = kmem_cache_create("se_mem_cache", 283 sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL); 284 if (!(se_mem_cache)) { 285 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n"); 286 goto out; 287 } 288 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 289 sizeof(struct t10_pr_registration), 290 __alignof__(struct t10_pr_registration), 0, NULL); 291 if (!(t10_pr_reg_cache)) { 292 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration" 293 " failed\n"); 294 goto out; 295 } 296 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 297 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 298 0, NULL); 299 if (!(t10_alua_lu_gp_cache)) { 300 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache" 301 " failed\n"); 302 goto out; 303 } 304 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 305 sizeof(struct t10_alua_lu_gp_member), 306 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 307 if (!(t10_alua_lu_gp_mem_cache)) { 308 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_" 309 "cache failed\n"); 310 goto out; 311 } 312 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 313 sizeof(struct t10_alua_tg_pt_gp), 314 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 315 if (!(t10_alua_tg_pt_gp_cache)) { 316 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_" 317 "cache failed\n"); 318 goto out; 319 } 320 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 321 "t10_alua_tg_pt_gp_mem_cache", 322 sizeof(struct t10_alua_tg_pt_gp_member), 323 __alignof__(struct t10_alua_tg_pt_gp_member), 324 0, NULL); 325 if (!(t10_alua_tg_pt_gp_mem_cache)) { 326 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_" 327 "mem_t failed\n"); 328 goto out; 329 } 330 331 se_global = global; 332 333 return 0; 334 out: 335 if (se_cmd_cache) 336 kmem_cache_destroy(se_cmd_cache); 337 if (se_tmr_req_cache) 338 kmem_cache_destroy(se_tmr_req_cache); 339 if (se_sess_cache) 340 kmem_cache_destroy(se_sess_cache); 341 if (se_ua_cache) 342 kmem_cache_destroy(se_ua_cache); 343 if (se_mem_cache) 344 kmem_cache_destroy(se_mem_cache); 345 if (t10_pr_reg_cache) 346 kmem_cache_destroy(t10_pr_reg_cache); 347 if (t10_alua_lu_gp_cache) 348 kmem_cache_destroy(t10_alua_lu_gp_cache); 349 if (t10_alua_lu_gp_mem_cache) 350 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 351 if (t10_alua_tg_pt_gp_cache) 352 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 353 if (t10_alua_tg_pt_gp_mem_cache) 354 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 355 kfree(global); 356 return -1; 357 } 358 359 void release_se_global(void) 360 { 361 struct se_global *global; 362 363 global = se_global; 364 if (!(global)) 365 return; 366 367 kmem_cache_destroy(se_cmd_cache); 368 kmem_cache_destroy(se_tmr_req_cache); 369 kmem_cache_destroy(se_sess_cache); 370 kmem_cache_destroy(se_ua_cache); 371 kmem_cache_destroy(se_mem_cache); 372 kmem_cache_destroy(t10_pr_reg_cache); 373 kmem_cache_destroy(t10_alua_lu_gp_cache); 374 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 375 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 376 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 377 kfree(global); 378 379 se_global = NULL; 380 } 381 382 /* SCSI statistics table index */ 383 static struct scsi_index_table scsi_index_table; 384 385 /* 386 * Initialize the index table for allocating unique row indexes to various mib 387 * tables. 388 */ 389 void init_scsi_index_table(void) 390 { 391 memset(&scsi_index_table, 0, sizeof(struct scsi_index_table)); 392 spin_lock_init(&scsi_index_table.lock); 393 } 394 395 /* 396 * Allocate a new row index for the entry type specified 397 */ 398 u32 scsi_get_new_index(scsi_index_t type) 399 { 400 u32 new_index; 401 402 if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) { 403 printk(KERN_ERR "Invalid index type %d\n", type); 404 return -EINVAL; 405 } 406 407 spin_lock(&scsi_index_table.lock); 408 new_index = ++scsi_index_table.scsi_mib_index[type]; 409 if (new_index == 0) 410 new_index = ++scsi_index_table.scsi_mib_index[type]; 411 spin_unlock(&scsi_index_table.lock); 412 413 return new_index; 414 } 415 416 void transport_init_queue_obj(struct se_queue_obj *qobj) 417 { 418 atomic_set(&qobj->queue_cnt, 0); 419 INIT_LIST_HEAD(&qobj->qobj_list); 420 init_waitqueue_head(&qobj->thread_wq); 421 spin_lock_init(&qobj->cmd_queue_lock); 422 } 423 EXPORT_SYMBOL(transport_init_queue_obj); 424 425 static int transport_subsystem_reqmods(void) 426 { 427 int ret; 428 429 ret = request_module("target_core_iblock"); 430 if (ret != 0) 431 printk(KERN_ERR "Unable to load target_core_iblock\n"); 432 433 ret = request_module("target_core_file"); 434 if (ret != 0) 435 printk(KERN_ERR "Unable to load target_core_file\n"); 436 437 ret = request_module("target_core_pscsi"); 438 if (ret != 0) 439 printk(KERN_ERR "Unable to load target_core_pscsi\n"); 440 441 ret = request_module("target_core_stgt"); 442 if (ret != 0) 443 printk(KERN_ERR "Unable to load target_core_stgt\n"); 444 445 return 0; 446 } 447 448 int transport_subsystem_check_init(void) 449 { 450 if (se_global->g_sub_api_initialized) 451 return 0; 452 /* 453 * Request the loading of known TCM subsystem plugins.. 454 */ 455 if (transport_subsystem_reqmods() < 0) 456 return -1; 457 458 se_global->g_sub_api_initialized = 1; 459 return 0; 460 } 461 462 struct se_session *transport_init_session(void) 463 { 464 struct se_session *se_sess; 465 466 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 467 if (!(se_sess)) { 468 printk(KERN_ERR "Unable to allocate struct se_session from" 469 " se_sess_cache\n"); 470 return ERR_PTR(-ENOMEM); 471 } 472 INIT_LIST_HEAD(&se_sess->sess_list); 473 INIT_LIST_HEAD(&se_sess->sess_acl_list); 474 475 return se_sess; 476 } 477 EXPORT_SYMBOL(transport_init_session); 478 479 /* 480 * Called with spin_lock_bh(&struct se_portal_group->session_lock called. 481 */ 482 void __transport_register_session( 483 struct se_portal_group *se_tpg, 484 struct se_node_acl *se_nacl, 485 struct se_session *se_sess, 486 void *fabric_sess_ptr) 487 { 488 unsigned char buf[PR_REG_ISID_LEN]; 489 490 se_sess->se_tpg = se_tpg; 491 se_sess->fabric_sess_ptr = fabric_sess_ptr; 492 /* 493 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 494 * 495 * Only set for struct se_session's that will actually be moving I/O. 496 * eg: *NOT* discovery sessions. 497 */ 498 if (se_nacl) { 499 /* 500 * If the fabric module supports an ISID based TransportID, 501 * save this value in binary from the fabric I_T Nexus now. 502 */ 503 if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) { 504 memset(&buf[0], 0, PR_REG_ISID_LEN); 505 TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess, 506 &buf[0], PR_REG_ISID_LEN); 507 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 508 } 509 spin_lock_irq(&se_nacl->nacl_sess_lock); 510 /* 511 * The se_nacl->nacl_sess pointer will be set to the 512 * last active I_T Nexus for each struct se_node_acl. 513 */ 514 se_nacl->nacl_sess = se_sess; 515 516 list_add_tail(&se_sess->sess_acl_list, 517 &se_nacl->acl_sess_list); 518 spin_unlock_irq(&se_nacl->nacl_sess_lock); 519 } 520 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 521 522 printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 523 TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr); 524 } 525 EXPORT_SYMBOL(__transport_register_session); 526 527 void transport_register_session( 528 struct se_portal_group *se_tpg, 529 struct se_node_acl *se_nacl, 530 struct se_session *se_sess, 531 void *fabric_sess_ptr) 532 { 533 spin_lock_bh(&se_tpg->session_lock); 534 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 535 spin_unlock_bh(&se_tpg->session_lock); 536 } 537 EXPORT_SYMBOL(transport_register_session); 538 539 void transport_deregister_session_configfs(struct se_session *se_sess) 540 { 541 struct se_node_acl *se_nacl; 542 543 /* 544 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 545 */ 546 se_nacl = se_sess->se_node_acl; 547 if ((se_nacl)) { 548 spin_lock_irq(&se_nacl->nacl_sess_lock); 549 list_del(&se_sess->sess_acl_list); 550 /* 551 * If the session list is empty, then clear the pointer. 552 * Otherwise, set the struct se_session pointer from the tail 553 * element of the per struct se_node_acl active session list. 554 */ 555 if (list_empty(&se_nacl->acl_sess_list)) 556 se_nacl->nacl_sess = NULL; 557 else { 558 se_nacl->nacl_sess = container_of( 559 se_nacl->acl_sess_list.prev, 560 struct se_session, sess_acl_list); 561 } 562 spin_unlock_irq(&se_nacl->nacl_sess_lock); 563 } 564 } 565 EXPORT_SYMBOL(transport_deregister_session_configfs); 566 567 void transport_free_session(struct se_session *se_sess) 568 { 569 kmem_cache_free(se_sess_cache, se_sess); 570 } 571 EXPORT_SYMBOL(transport_free_session); 572 573 void transport_deregister_session(struct se_session *se_sess) 574 { 575 struct se_portal_group *se_tpg = se_sess->se_tpg; 576 struct se_node_acl *se_nacl; 577 578 if (!(se_tpg)) { 579 transport_free_session(se_sess); 580 return; 581 } 582 583 spin_lock_bh(&se_tpg->session_lock); 584 list_del(&se_sess->sess_list); 585 se_sess->se_tpg = NULL; 586 se_sess->fabric_sess_ptr = NULL; 587 spin_unlock_bh(&se_tpg->session_lock); 588 589 /* 590 * Determine if we need to do extra work for this initiator node's 591 * struct se_node_acl if it had been previously dynamically generated. 592 */ 593 se_nacl = se_sess->se_node_acl; 594 if ((se_nacl)) { 595 spin_lock_bh(&se_tpg->acl_node_lock); 596 if (se_nacl->dynamic_node_acl) { 597 if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache( 598 se_tpg))) { 599 list_del(&se_nacl->acl_list); 600 se_tpg->num_node_acls--; 601 spin_unlock_bh(&se_tpg->acl_node_lock); 602 603 core_tpg_wait_for_nacl_pr_ref(se_nacl); 604 core_free_device_list_for_node(se_nacl, se_tpg); 605 TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg, 606 se_nacl); 607 spin_lock_bh(&se_tpg->acl_node_lock); 608 } 609 } 610 spin_unlock_bh(&se_tpg->acl_node_lock); 611 } 612 613 transport_free_session(se_sess); 614 615 printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n", 616 TPG_TFO(se_tpg)->get_fabric_name()); 617 } 618 EXPORT_SYMBOL(transport_deregister_session); 619 620 /* 621 * Called with T_TASK(cmd)->t_state_lock held. 622 */ 623 static void transport_all_task_dev_remove_state(struct se_cmd *cmd) 624 { 625 struct se_device *dev; 626 struct se_task *task; 627 unsigned long flags; 628 629 if (!T_TASK(cmd)) 630 return; 631 632 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { 633 dev = task->se_dev; 634 if (!(dev)) 635 continue; 636 637 if (atomic_read(&task->task_active)) 638 continue; 639 640 if (!(atomic_read(&task->task_state_active))) 641 continue; 642 643 spin_lock_irqsave(&dev->execute_task_lock, flags); 644 list_del(&task->t_state_list); 645 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n", 646 CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task); 647 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 648 649 atomic_set(&task->task_state_active, 0); 650 atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left); 651 } 652 } 653 654 /* transport_cmd_check_stop(): 655 * 656 * 'transport_off = 1' determines if t_transport_active should be cleared. 657 * 'transport_off = 2' determines if task_dev_state should be removed. 658 * 659 * A non-zero u8 t_state sets cmd->t_state. 660 * Returns 1 when command is stopped, else 0. 661 */ 662 static int transport_cmd_check_stop( 663 struct se_cmd *cmd, 664 int transport_off, 665 u8 t_state) 666 { 667 unsigned long flags; 668 669 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 670 /* 671 * Determine if IOCTL context caller in requesting the stopping of this 672 * command for LUN shutdown purposes. 673 */ 674 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) { 675 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)" 676 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__, 677 CMD_TFO(cmd)->get_task_tag(cmd)); 678 679 cmd->deferred_t_state = cmd->t_state; 680 cmd->t_state = TRANSPORT_DEFERRED_CMD; 681 atomic_set(&T_TASK(cmd)->t_transport_active, 0); 682 if (transport_off == 2) 683 transport_all_task_dev_remove_state(cmd); 684 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 685 686 complete(&T_TASK(cmd)->transport_lun_stop_comp); 687 return 1; 688 } 689 /* 690 * Determine if frontend context caller is requesting the stopping of 691 * this command for frontend excpections. 692 */ 693 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) { 694 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) ==" 695 " TRUE for ITT: 0x%08x\n", __func__, __LINE__, 696 CMD_TFO(cmd)->get_task_tag(cmd)); 697 698 cmd->deferred_t_state = cmd->t_state; 699 cmd->t_state = TRANSPORT_DEFERRED_CMD; 700 if (transport_off == 2) 701 transport_all_task_dev_remove_state(cmd); 702 703 /* 704 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff 705 * to FE. 706 */ 707 if (transport_off == 2) 708 cmd->se_lun = NULL; 709 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 710 711 complete(&T_TASK(cmd)->t_transport_stop_comp); 712 return 1; 713 } 714 if (transport_off) { 715 atomic_set(&T_TASK(cmd)->t_transport_active, 0); 716 if (transport_off == 2) { 717 transport_all_task_dev_remove_state(cmd); 718 /* 719 * Clear struct se_cmd->se_lun before the transport_off == 2 720 * handoff to fabric module. 721 */ 722 cmd->se_lun = NULL; 723 /* 724 * Some fabric modules like tcm_loop can release 725 * their internally allocated I/O refrence now and 726 * struct se_cmd now. 727 */ 728 if (CMD_TFO(cmd)->check_stop_free != NULL) { 729 spin_unlock_irqrestore( 730 &T_TASK(cmd)->t_state_lock, flags); 731 732 CMD_TFO(cmd)->check_stop_free(cmd); 733 return 1; 734 } 735 } 736 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 737 738 return 0; 739 } else if (t_state) 740 cmd->t_state = t_state; 741 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 742 743 return 0; 744 } 745 746 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 747 { 748 return transport_cmd_check_stop(cmd, 2, 0); 749 } 750 751 static void transport_lun_remove_cmd(struct se_cmd *cmd) 752 { 753 struct se_lun *lun = SE_LUN(cmd); 754 unsigned long flags; 755 756 if (!lun) 757 return; 758 759 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 760 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { 761 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 762 goto check_lun; 763 } 764 atomic_set(&T_TASK(cmd)->transport_dev_active, 0); 765 transport_all_task_dev_remove_state(cmd); 766 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 767 768 transport_free_dev_tasks(cmd); 769 770 check_lun: 771 spin_lock_irqsave(&lun->lun_cmd_lock, flags); 772 if (atomic_read(&T_TASK(cmd)->transport_lun_active)) { 773 list_del(&cmd->se_lun_list); 774 atomic_set(&T_TASK(cmd)->transport_lun_active, 0); 775 #if 0 776 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n" 777 CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun); 778 #endif 779 } 780 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); 781 } 782 783 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 784 { 785 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); 786 transport_lun_remove_cmd(cmd); 787 788 if (transport_cmd_check_stop_to_fabric(cmd)) 789 return; 790 if (remove) 791 transport_generic_remove(cmd, 0, 0); 792 } 793 794 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd) 795 { 796 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); 797 798 if (transport_cmd_check_stop_to_fabric(cmd)) 799 return; 800 801 transport_generic_remove(cmd, 0, 0); 802 } 803 804 static int transport_add_cmd_to_queue( 805 struct se_cmd *cmd, 806 int t_state) 807 { 808 struct se_device *dev = cmd->se_dev; 809 struct se_queue_obj *qobj = dev->dev_queue_obj; 810 struct se_queue_req *qr; 811 unsigned long flags; 812 813 qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC); 814 if (!(qr)) { 815 printk(KERN_ERR "Unable to allocate memory for" 816 " struct se_queue_req\n"); 817 return -1; 818 } 819 INIT_LIST_HEAD(&qr->qr_list); 820 821 qr->cmd = (void *)cmd; 822 qr->state = t_state; 823 824 if (t_state) { 825 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 826 cmd->t_state = t_state; 827 atomic_set(&T_TASK(cmd)->t_transport_active, 1); 828 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 829 } 830 831 spin_lock_irqsave(&qobj->cmd_queue_lock, flags); 832 list_add_tail(&qr->qr_list, &qobj->qobj_list); 833 atomic_inc(&T_TASK(cmd)->t_transport_queue_active); 834 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 835 836 atomic_inc(&qobj->queue_cnt); 837 wake_up_interruptible(&qobj->thread_wq); 838 return 0; 839 } 840 841 /* 842 * Called with struct se_queue_obj->cmd_queue_lock held. 843 */ 844 static struct se_queue_req * 845 __transport_get_qr_from_queue(struct se_queue_obj *qobj) 846 { 847 struct se_cmd *cmd; 848 struct se_queue_req *qr = NULL; 849 850 if (list_empty(&qobj->qobj_list)) 851 return NULL; 852 853 list_for_each_entry(qr, &qobj->qobj_list, qr_list) 854 break; 855 856 if (qr->cmd) { 857 cmd = (struct se_cmd *)qr->cmd; 858 atomic_dec(&T_TASK(cmd)->t_transport_queue_active); 859 } 860 list_del(&qr->qr_list); 861 atomic_dec(&qobj->queue_cnt); 862 863 return qr; 864 } 865 866 static struct se_queue_req * 867 transport_get_qr_from_queue(struct se_queue_obj *qobj) 868 { 869 struct se_cmd *cmd; 870 struct se_queue_req *qr; 871 unsigned long flags; 872 873 spin_lock_irqsave(&qobj->cmd_queue_lock, flags); 874 if (list_empty(&qobj->qobj_list)) { 875 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 876 return NULL; 877 } 878 879 list_for_each_entry(qr, &qobj->qobj_list, qr_list) 880 break; 881 882 if (qr->cmd) { 883 cmd = (struct se_cmd *)qr->cmd; 884 atomic_dec(&T_TASK(cmd)->t_transport_queue_active); 885 } 886 list_del(&qr->qr_list); 887 atomic_dec(&qobj->queue_cnt); 888 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 889 890 return qr; 891 } 892 893 static void transport_remove_cmd_from_queue(struct se_cmd *cmd, 894 struct se_queue_obj *qobj) 895 { 896 struct se_cmd *q_cmd; 897 struct se_queue_req *qr = NULL, *qr_p = NULL; 898 unsigned long flags; 899 900 spin_lock_irqsave(&qobj->cmd_queue_lock, flags); 901 if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) { 902 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 903 return; 904 } 905 906 list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) { 907 q_cmd = (struct se_cmd *)qr->cmd; 908 if (q_cmd != cmd) 909 continue; 910 911 atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active); 912 atomic_dec(&qobj->queue_cnt); 913 list_del(&qr->qr_list); 914 kfree(qr); 915 } 916 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); 917 918 if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) { 919 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n", 920 CMD_TFO(cmd)->get_task_tag(cmd), 921 atomic_read(&T_TASK(cmd)->t_transport_queue_active)); 922 } 923 } 924 925 /* 926 * Completion function used by TCM subsystem plugins (such as FILEIO) 927 * for queueing up response from struct se_subsystem_api->do_task() 928 */ 929 void transport_complete_sync_cache(struct se_cmd *cmd, int good) 930 { 931 struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next, 932 struct se_task, t_list); 933 934 if (good) { 935 cmd->scsi_status = SAM_STAT_GOOD; 936 task->task_scsi_status = GOOD; 937 } else { 938 task->task_scsi_status = SAM_STAT_CHECK_CONDITION; 939 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST; 940 TASK_CMD(task)->transport_error_status = 941 PYX_TRANSPORT_ILLEGAL_REQUEST; 942 } 943 944 transport_complete_task(task, good); 945 } 946 EXPORT_SYMBOL(transport_complete_sync_cache); 947 948 /* transport_complete_task(): 949 * 950 * Called from interrupt and non interrupt context depending 951 * on the transport plugin. 952 */ 953 void transport_complete_task(struct se_task *task, int success) 954 { 955 struct se_cmd *cmd = TASK_CMD(task); 956 struct se_device *dev = task->se_dev; 957 int t_state; 958 unsigned long flags; 959 #if 0 960 printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task, 961 T_TASK(cmd)->t_task_cdb[0], dev); 962 #endif 963 if (dev) { 964 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags); 965 atomic_inc(&dev->depth_left); 966 atomic_inc(&SE_HBA(dev)->left_queue_depth); 967 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); 968 } 969 970 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 971 atomic_set(&task->task_active, 0); 972 973 /* 974 * See if any sense data exists, if so set the TASK_SENSE flag. 975 * Also check for any other post completion work that needs to be 976 * done by the plugins. 977 */ 978 if (dev && dev->transport->transport_complete) { 979 if (dev->transport->transport_complete(task) != 0) { 980 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 981 task->task_sense = 1; 982 success = 1; 983 } 984 } 985 986 /* 987 * See if we are waiting for outstanding struct se_task 988 * to complete for an exception condition 989 */ 990 if (atomic_read(&task->task_stop)) { 991 /* 992 * Decrement T_TASK(cmd)->t_se_count if this task had 993 * previously thrown its timeout exception handler. 994 */ 995 if (atomic_read(&task->task_timeout)) { 996 atomic_dec(&T_TASK(cmd)->t_se_count); 997 atomic_set(&task->task_timeout, 0); 998 } 999 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 1000 1001 complete(&task->task_stop_comp); 1002 return; 1003 } 1004 /* 1005 * If the task's timeout handler has fired, use the t_task_cdbs_timeout 1006 * left counter to determine when the struct se_cmd is ready to be queued to 1007 * the processing thread. 1008 */ 1009 if (atomic_read(&task->task_timeout)) { 1010 if (!(atomic_dec_and_test( 1011 &T_TASK(cmd)->t_task_cdbs_timeout_left))) { 1012 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, 1013 flags); 1014 return; 1015 } 1016 t_state = TRANSPORT_COMPLETE_TIMEOUT; 1017 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 1018 1019 transport_add_cmd_to_queue(cmd, t_state); 1020 return; 1021 } 1022 atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left); 1023 1024 /* 1025 * Decrement the outstanding t_task_cdbs_left count. The last 1026 * struct se_task from struct se_cmd will complete itself into the 1027 * device queue depending upon int success. 1028 */ 1029 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) { 1030 if (!success) 1031 T_TASK(cmd)->t_tasks_failed = 1; 1032 1033 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 1034 return; 1035 } 1036 1037 if (!success || T_TASK(cmd)->t_tasks_failed) { 1038 t_state = TRANSPORT_COMPLETE_FAILURE; 1039 if (!task->task_error_status) { 1040 task->task_error_status = 1041 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE; 1042 cmd->transport_error_status = 1043 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE; 1044 } 1045 } else { 1046 atomic_set(&T_TASK(cmd)->t_transport_complete, 1); 1047 t_state = TRANSPORT_COMPLETE_OK; 1048 } 1049 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 1050 1051 transport_add_cmd_to_queue(cmd, t_state); 1052 } 1053 EXPORT_SYMBOL(transport_complete_task); 1054 1055 /* 1056 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's 1057 * struct se_task list are ready to be added to the active execution list 1058 * struct se_device 1059 1060 * Called with se_dev_t->execute_task_lock called. 1061 */ 1062 static inline int transport_add_task_check_sam_attr( 1063 struct se_task *task, 1064 struct se_task *task_prev, 1065 struct se_device *dev) 1066 { 1067 /* 1068 * No SAM Task attribute emulation enabled, add to tail of 1069 * execution queue 1070 */ 1071 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) { 1072 list_add_tail(&task->t_execute_list, &dev->execute_task_list); 1073 return 0; 1074 } 1075 /* 1076 * HEAD_OF_QUEUE attribute for received CDB, which means 1077 * the first task that is associated with a struct se_cmd goes to 1078 * head of the struct se_device->execute_task_list, and task_prev 1079 * after that for each subsequent task 1080 */ 1081 if (task->task_se_cmd->sam_task_attr == TASK_ATTR_HOQ) { 1082 list_add(&task->t_execute_list, 1083 (task_prev != NULL) ? 1084 &task_prev->t_execute_list : 1085 &dev->execute_task_list); 1086 1087 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x" 1088 " in execution queue\n", 1089 T_TASK(task->task_se_cmd)->t_task_cdb[0]); 1090 return 1; 1091 } 1092 /* 1093 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been 1094 * transitioned from Dermant -> Active state, and are added to the end 1095 * of the struct se_device->execute_task_list 1096 */ 1097 list_add_tail(&task->t_execute_list, &dev->execute_task_list); 1098 return 0; 1099 } 1100 1101 /* __transport_add_task_to_execute_queue(): 1102 * 1103 * Called with se_dev_t->execute_task_lock called. 1104 */ 1105 static void __transport_add_task_to_execute_queue( 1106 struct se_task *task, 1107 struct se_task *task_prev, 1108 struct se_device *dev) 1109 { 1110 int head_of_queue; 1111 1112 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev); 1113 atomic_inc(&dev->execute_tasks); 1114 1115 if (atomic_read(&task->task_state_active)) 1116 return; 1117 /* 1118 * Determine if this task needs to go to HEAD_OF_QUEUE for the 1119 * state list as well. Running with SAM Task Attribute emulation 1120 * will always return head_of_queue == 0 here 1121 */ 1122 if (head_of_queue) 1123 list_add(&task->t_state_list, (task_prev) ? 1124 &task_prev->t_state_list : 1125 &dev->state_task_list); 1126 else 1127 list_add_tail(&task->t_state_list, &dev->state_task_list); 1128 1129 atomic_set(&task->task_state_active, 1); 1130 1131 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n", 1132 CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd), 1133 task, dev); 1134 } 1135 1136 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd) 1137 { 1138 struct se_device *dev; 1139 struct se_task *task; 1140 unsigned long flags; 1141 1142 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 1143 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { 1144 dev = task->se_dev; 1145 1146 if (atomic_read(&task->task_state_active)) 1147 continue; 1148 1149 spin_lock(&dev->execute_task_lock); 1150 list_add_tail(&task->t_state_list, &dev->state_task_list); 1151 atomic_set(&task->task_state_active, 1); 1152 1153 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n", 1154 CMD_TFO(task->task_se_cmd)->get_task_tag( 1155 task->task_se_cmd), task, dev); 1156 1157 spin_unlock(&dev->execute_task_lock); 1158 } 1159 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 1160 } 1161 1162 static void transport_add_tasks_from_cmd(struct se_cmd *cmd) 1163 { 1164 struct se_device *dev = SE_DEV(cmd); 1165 struct se_task *task, *task_prev = NULL; 1166 unsigned long flags; 1167 1168 spin_lock_irqsave(&dev->execute_task_lock, flags); 1169 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { 1170 if (atomic_read(&task->task_execute_queue)) 1171 continue; 1172 /* 1173 * __transport_add_task_to_execute_queue() handles the 1174 * SAM Task Attribute emulation if enabled 1175 */ 1176 __transport_add_task_to_execute_queue(task, task_prev, dev); 1177 atomic_set(&task->task_execute_queue, 1); 1178 task_prev = task; 1179 } 1180 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 1181 1182 return; 1183 } 1184 1185 /* transport_get_task_from_execute_queue(): 1186 * 1187 * Called with dev->execute_task_lock held. 1188 */ 1189 static struct se_task * 1190 transport_get_task_from_execute_queue(struct se_device *dev) 1191 { 1192 struct se_task *task; 1193 1194 if (list_empty(&dev->execute_task_list)) 1195 return NULL; 1196 1197 list_for_each_entry(task, &dev->execute_task_list, t_execute_list) 1198 break; 1199 1200 list_del(&task->t_execute_list); 1201 atomic_dec(&dev->execute_tasks); 1202 1203 return task; 1204 } 1205 1206 /* transport_remove_task_from_execute_queue(): 1207 * 1208 * 1209 */ 1210 static void transport_remove_task_from_execute_queue( 1211 struct se_task *task, 1212 struct se_device *dev) 1213 { 1214 unsigned long flags; 1215 1216 spin_lock_irqsave(&dev->execute_task_lock, flags); 1217 list_del(&task->t_execute_list); 1218 atomic_dec(&dev->execute_tasks); 1219 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 1220 } 1221 1222 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 1223 { 1224 switch (cmd->data_direction) { 1225 case DMA_NONE: 1226 return "NONE"; 1227 case DMA_FROM_DEVICE: 1228 return "READ"; 1229 case DMA_TO_DEVICE: 1230 return "WRITE"; 1231 case DMA_BIDIRECTIONAL: 1232 return "BIDI"; 1233 default: 1234 break; 1235 } 1236 1237 return "UNKNOWN"; 1238 } 1239 1240 void transport_dump_dev_state( 1241 struct se_device *dev, 1242 char *b, 1243 int *bl) 1244 { 1245 *bl += sprintf(b + *bl, "Status: "); 1246 switch (dev->dev_status) { 1247 case TRANSPORT_DEVICE_ACTIVATED: 1248 *bl += sprintf(b + *bl, "ACTIVATED"); 1249 break; 1250 case TRANSPORT_DEVICE_DEACTIVATED: 1251 *bl += sprintf(b + *bl, "DEACTIVATED"); 1252 break; 1253 case TRANSPORT_DEVICE_SHUTDOWN: 1254 *bl += sprintf(b + *bl, "SHUTDOWN"); 1255 break; 1256 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED: 1257 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED: 1258 *bl += sprintf(b + *bl, "OFFLINE"); 1259 break; 1260 default: 1261 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status); 1262 break; 1263 } 1264 1265 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d", 1266 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left), 1267 dev->queue_depth); 1268 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n", 1269 DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors); 1270 *bl += sprintf(b + *bl, " "); 1271 } 1272 1273 /* transport_release_all_cmds(): 1274 * 1275 * 1276 */ 1277 static void transport_release_all_cmds(struct se_device *dev) 1278 { 1279 struct se_cmd *cmd = NULL; 1280 struct se_queue_req *qr = NULL, *qr_p = NULL; 1281 int bug_out = 0, t_state; 1282 unsigned long flags; 1283 1284 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); 1285 list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list, 1286 qr_list) { 1287 1288 cmd = (struct se_cmd *)qr->cmd; 1289 t_state = qr->state; 1290 list_del(&qr->qr_list); 1291 kfree(qr); 1292 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, 1293 flags); 1294 1295 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u," 1296 " t_state: %u directly\n", 1297 CMD_TFO(cmd)->get_task_tag(cmd), 1298 CMD_TFO(cmd)->get_cmd_state(cmd), t_state); 1299 1300 transport_release_fe_cmd(cmd); 1301 bug_out = 1; 1302 1303 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); 1304 } 1305 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags); 1306 #if 0 1307 if (bug_out) 1308 BUG(); 1309 #endif 1310 } 1311 1312 void transport_dump_vpd_proto_id( 1313 struct t10_vpd *vpd, 1314 unsigned char *p_buf, 1315 int p_buf_len) 1316 { 1317 unsigned char buf[VPD_TMP_BUF_SIZE]; 1318 int len; 1319 1320 memset(buf, 0, VPD_TMP_BUF_SIZE); 1321 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 1322 1323 switch (vpd->protocol_identifier) { 1324 case 0x00: 1325 sprintf(buf+len, "Fibre Channel\n"); 1326 break; 1327 case 0x10: 1328 sprintf(buf+len, "Parallel SCSI\n"); 1329 break; 1330 case 0x20: 1331 sprintf(buf+len, "SSA\n"); 1332 break; 1333 case 0x30: 1334 sprintf(buf+len, "IEEE 1394\n"); 1335 break; 1336 case 0x40: 1337 sprintf(buf+len, "SCSI Remote Direct Memory Access" 1338 " Protocol\n"); 1339 break; 1340 case 0x50: 1341 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 1342 break; 1343 case 0x60: 1344 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 1345 break; 1346 case 0x70: 1347 sprintf(buf+len, "Automation/Drive Interface Transport" 1348 " Protocol\n"); 1349 break; 1350 case 0x80: 1351 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 1352 break; 1353 default: 1354 sprintf(buf+len, "Unknown 0x%02x\n", 1355 vpd->protocol_identifier); 1356 break; 1357 } 1358 1359 if (p_buf) 1360 strncpy(p_buf, buf, p_buf_len); 1361 else 1362 printk(KERN_INFO "%s", buf); 1363 } 1364 1365 void 1366 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 1367 { 1368 /* 1369 * Check if the Protocol Identifier Valid (PIV) bit is set.. 1370 * 1371 * from spc3r23.pdf section 7.5.1 1372 */ 1373 if (page_83[1] & 0x80) { 1374 vpd->protocol_identifier = (page_83[0] & 0xf0); 1375 vpd->protocol_identifier_set = 1; 1376 transport_dump_vpd_proto_id(vpd, NULL, 0); 1377 } 1378 } 1379 EXPORT_SYMBOL(transport_set_vpd_proto_id); 1380 1381 int transport_dump_vpd_assoc( 1382 struct t10_vpd *vpd, 1383 unsigned char *p_buf, 1384 int p_buf_len) 1385 { 1386 unsigned char buf[VPD_TMP_BUF_SIZE]; 1387 int ret = 0, len; 1388 1389 memset(buf, 0, VPD_TMP_BUF_SIZE); 1390 len = sprintf(buf, "T10 VPD Identifier Association: "); 1391 1392 switch (vpd->association) { 1393 case 0x00: 1394 sprintf(buf+len, "addressed logical unit\n"); 1395 break; 1396 case 0x10: 1397 sprintf(buf+len, "target port\n"); 1398 break; 1399 case 0x20: 1400 sprintf(buf+len, "SCSI target device\n"); 1401 break; 1402 default: 1403 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 1404 ret = -1; 1405 break; 1406 } 1407 1408 if (p_buf) 1409 strncpy(p_buf, buf, p_buf_len); 1410 else 1411 printk("%s", buf); 1412 1413 return ret; 1414 } 1415 1416 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 1417 { 1418 /* 1419 * The VPD identification association.. 1420 * 1421 * from spc3r23.pdf Section 7.6.3.1 Table 297 1422 */ 1423 vpd->association = (page_83[1] & 0x30); 1424 return transport_dump_vpd_assoc(vpd, NULL, 0); 1425 } 1426 EXPORT_SYMBOL(transport_set_vpd_assoc); 1427 1428 int transport_dump_vpd_ident_type( 1429 struct t10_vpd *vpd, 1430 unsigned char *p_buf, 1431 int p_buf_len) 1432 { 1433 unsigned char buf[VPD_TMP_BUF_SIZE]; 1434 int ret = 0, len; 1435 1436 memset(buf, 0, VPD_TMP_BUF_SIZE); 1437 len = sprintf(buf, "T10 VPD Identifier Type: "); 1438 1439 switch (vpd->device_identifier_type) { 1440 case 0x00: 1441 sprintf(buf+len, "Vendor specific\n"); 1442 break; 1443 case 0x01: 1444 sprintf(buf+len, "T10 Vendor ID based\n"); 1445 break; 1446 case 0x02: 1447 sprintf(buf+len, "EUI-64 based\n"); 1448 break; 1449 case 0x03: 1450 sprintf(buf+len, "NAA\n"); 1451 break; 1452 case 0x04: 1453 sprintf(buf+len, "Relative target port identifier\n"); 1454 break; 1455 case 0x08: 1456 sprintf(buf+len, "SCSI name string\n"); 1457 break; 1458 default: 1459 sprintf(buf+len, "Unsupported: 0x%02x\n", 1460 vpd->device_identifier_type); 1461 ret = -1; 1462 break; 1463 } 1464 1465 if (p_buf) 1466 strncpy(p_buf, buf, p_buf_len); 1467 else 1468 printk("%s", buf); 1469 1470 return ret; 1471 } 1472 1473 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1474 { 1475 /* 1476 * The VPD identifier type.. 1477 * 1478 * from spc3r23.pdf Section 7.6.3.1 Table 298 1479 */ 1480 vpd->device_identifier_type = (page_83[1] & 0x0f); 1481 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1482 } 1483 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1484 1485 int transport_dump_vpd_ident( 1486 struct t10_vpd *vpd, 1487 unsigned char *p_buf, 1488 int p_buf_len) 1489 { 1490 unsigned char buf[VPD_TMP_BUF_SIZE]; 1491 int ret = 0; 1492 1493 memset(buf, 0, VPD_TMP_BUF_SIZE); 1494 1495 switch (vpd->device_identifier_code_set) { 1496 case 0x01: /* Binary */ 1497 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n", 1498 &vpd->device_identifier[0]); 1499 break; 1500 case 0x02: /* ASCII */ 1501 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n", 1502 &vpd->device_identifier[0]); 1503 break; 1504 case 0x03: /* UTF-8 */ 1505 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n", 1506 &vpd->device_identifier[0]); 1507 break; 1508 default: 1509 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1510 " 0x%02x", vpd->device_identifier_code_set); 1511 ret = -1; 1512 break; 1513 } 1514 1515 if (p_buf) 1516 strncpy(p_buf, buf, p_buf_len); 1517 else 1518 printk("%s", buf); 1519 1520 return ret; 1521 } 1522 1523 int 1524 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1525 { 1526 static const char hex_str[] = "0123456789abcdef"; 1527 int j = 0, i = 4; /* offset to start of the identifer */ 1528 1529 /* 1530 * The VPD Code Set (encoding) 1531 * 1532 * from spc3r23.pdf Section 7.6.3.1 Table 296 1533 */ 1534 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1535 switch (vpd->device_identifier_code_set) { 1536 case 0x01: /* Binary */ 1537 vpd->device_identifier[j++] = 1538 hex_str[vpd->device_identifier_type]; 1539 while (i < (4 + page_83[3])) { 1540 vpd->device_identifier[j++] = 1541 hex_str[(page_83[i] & 0xf0) >> 4]; 1542 vpd->device_identifier[j++] = 1543 hex_str[page_83[i] & 0x0f]; 1544 i++; 1545 } 1546 break; 1547 case 0x02: /* ASCII */ 1548 case 0x03: /* UTF-8 */ 1549 while (i < (4 + page_83[3])) 1550 vpd->device_identifier[j++] = page_83[i++]; 1551 break; 1552 default: 1553 break; 1554 } 1555 1556 return transport_dump_vpd_ident(vpd, NULL, 0); 1557 } 1558 EXPORT_SYMBOL(transport_set_vpd_ident); 1559 1560 static void core_setup_task_attr_emulation(struct se_device *dev) 1561 { 1562 /* 1563 * If this device is from Target_Core_Mod/pSCSI, disable the 1564 * SAM Task Attribute emulation. 1565 * 1566 * This is currently not available in upsream Linux/SCSI Target 1567 * mode code, and is assumed to be disabled while using TCM/pSCSI. 1568 */ 1569 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { 1570 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH; 1571 return; 1572 } 1573 1574 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED; 1575 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x" 1576 " device\n", TRANSPORT(dev)->name, 1577 TRANSPORT(dev)->get_device_rev(dev)); 1578 } 1579 1580 static void scsi_dump_inquiry(struct se_device *dev) 1581 { 1582 struct t10_wwn *wwn = DEV_T10_WWN(dev); 1583 int i, device_type; 1584 /* 1585 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer 1586 */ 1587 printk(" Vendor: "); 1588 for (i = 0; i < 8; i++) 1589 if (wwn->vendor[i] >= 0x20) 1590 printk("%c", wwn->vendor[i]); 1591 else 1592 printk(" "); 1593 1594 printk(" Model: "); 1595 for (i = 0; i < 16; i++) 1596 if (wwn->model[i] >= 0x20) 1597 printk("%c", wwn->model[i]); 1598 else 1599 printk(" "); 1600 1601 printk(" Revision: "); 1602 for (i = 0; i < 4; i++) 1603 if (wwn->revision[i] >= 0x20) 1604 printk("%c", wwn->revision[i]); 1605 else 1606 printk(" "); 1607 1608 printk("\n"); 1609 1610 device_type = TRANSPORT(dev)->get_device_type(dev); 1611 printk(" Type: %s ", scsi_device_type(device_type)); 1612 printk(" ANSI SCSI revision: %02x\n", 1613 TRANSPORT(dev)->get_device_rev(dev)); 1614 } 1615 1616 struct se_device *transport_add_device_to_core_hba( 1617 struct se_hba *hba, 1618 struct se_subsystem_api *transport, 1619 struct se_subsystem_dev *se_dev, 1620 u32 device_flags, 1621 void *transport_dev, 1622 struct se_dev_limits *dev_limits, 1623 const char *inquiry_prod, 1624 const char *inquiry_rev) 1625 { 1626 int ret = 0, force_pt; 1627 struct se_device *dev; 1628 1629 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL); 1630 if (!(dev)) { 1631 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n"); 1632 return NULL; 1633 } 1634 dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL); 1635 if (!(dev->dev_queue_obj)) { 1636 printk(KERN_ERR "Unable to allocate memory for" 1637 " dev->dev_queue_obj\n"); 1638 kfree(dev); 1639 return NULL; 1640 } 1641 transport_init_queue_obj(dev->dev_queue_obj); 1642 1643 dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj), 1644 GFP_KERNEL); 1645 if (!(dev->dev_status_queue_obj)) { 1646 printk(KERN_ERR "Unable to allocate memory for" 1647 " dev->dev_status_queue_obj\n"); 1648 kfree(dev->dev_queue_obj); 1649 kfree(dev); 1650 return NULL; 1651 } 1652 transport_init_queue_obj(dev->dev_status_queue_obj); 1653 1654 dev->dev_flags = device_flags; 1655 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED; 1656 dev->dev_ptr = (void *) transport_dev; 1657 dev->se_hba = hba; 1658 dev->se_sub_dev = se_dev; 1659 dev->transport = transport; 1660 atomic_set(&dev->active_cmds, 0); 1661 INIT_LIST_HEAD(&dev->dev_list); 1662 INIT_LIST_HEAD(&dev->dev_sep_list); 1663 INIT_LIST_HEAD(&dev->dev_tmr_list); 1664 INIT_LIST_HEAD(&dev->execute_task_list); 1665 INIT_LIST_HEAD(&dev->delayed_cmd_list); 1666 INIT_LIST_HEAD(&dev->ordered_cmd_list); 1667 INIT_LIST_HEAD(&dev->state_task_list); 1668 spin_lock_init(&dev->execute_task_lock); 1669 spin_lock_init(&dev->delayed_cmd_lock); 1670 spin_lock_init(&dev->ordered_cmd_lock); 1671 spin_lock_init(&dev->state_task_lock); 1672 spin_lock_init(&dev->dev_alua_lock); 1673 spin_lock_init(&dev->dev_reservation_lock); 1674 spin_lock_init(&dev->dev_status_lock); 1675 spin_lock_init(&dev->dev_status_thr_lock); 1676 spin_lock_init(&dev->se_port_lock); 1677 spin_lock_init(&dev->se_tmr_lock); 1678 1679 dev->queue_depth = dev_limits->queue_depth; 1680 atomic_set(&dev->depth_left, dev->queue_depth); 1681 atomic_set(&dev->dev_ordered_id, 0); 1682 1683 se_dev_set_default_attribs(dev, dev_limits); 1684 1685 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX); 1686 dev->creation_time = get_jiffies_64(); 1687 spin_lock_init(&dev->stats_lock); 1688 1689 spin_lock(&hba->device_lock); 1690 list_add_tail(&dev->dev_list, &hba->hba_dev_list); 1691 hba->dev_count++; 1692 spin_unlock(&hba->device_lock); 1693 /* 1694 * Setup the SAM Task Attribute emulation for struct se_device 1695 */ 1696 core_setup_task_attr_emulation(dev); 1697 /* 1698 * Force PR and ALUA passthrough emulation with internal object use. 1699 */ 1700 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE); 1701 /* 1702 * Setup the Reservations infrastructure for struct se_device 1703 */ 1704 core_setup_reservations(dev, force_pt); 1705 /* 1706 * Setup the Asymmetric Logical Unit Assignment for struct se_device 1707 */ 1708 if (core_setup_alua(dev, force_pt) < 0) 1709 goto out; 1710 1711 /* 1712 * Startup the struct se_device processing thread 1713 */ 1714 dev->process_thread = kthread_run(transport_processing_thread, dev, 1715 "LIO_%s", TRANSPORT(dev)->name); 1716 if (IS_ERR(dev->process_thread)) { 1717 printk(KERN_ERR "Unable to create kthread: LIO_%s\n", 1718 TRANSPORT(dev)->name); 1719 goto out; 1720 } 1721 1722 /* 1723 * Preload the initial INQUIRY const values if we are doing 1724 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI 1725 * passthrough because this is being provided by the backend LLD. 1726 * This is required so that transport_get_inquiry() copies these 1727 * originals once back into DEV_T10_WWN(dev) for the virtual device 1728 * setup. 1729 */ 1730 if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) { 1731 if (!(inquiry_prod) || !(inquiry_prod)) { 1732 printk(KERN_ERR "All non TCM/pSCSI plugins require" 1733 " INQUIRY consts\n"); 1734 goto out; 1735 } 1736 1737 strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8); 1738 strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16); 1739 strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4); 1740 } 1741 scsi_dump_inquiry(dev); 1742 1743 out: 1744 if (!ret) 1745 return dev; 1746 kthread_stop(dev->process_thread); 1747 1748 spin_lock(&hba->device_lock); 1749 list_del(&dev->dev_list); 1750 hba->dev_count--; 1751 spin_unlock(&hba->device_lock); 1752 1753 se_release_vpd_for_dev(dev); 1754 1755 kfree(dev->dev_status_queue_obj); 1756 kfree(dev->dev_queue_obj); 1757 kfree(dev); 1758 1759 return NULL; 1760 } 1761 EXPORT_SYMBOL(transport_add_device_to_core_hba); 1762 1763 /* transport_generic_prepare_cdb(): 1764 * 1765 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will 1766 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2. 1767 * The point of this is since we are mapping iSCSI LUNs to 1768 * SCSI Target IDs having a non-zero LUN in the CDB will throw the 1769 * devices and HBAs for a loop. 1770 */ 1771 static inline void transport_generic_prepare_cdb( 1772 unsigned char *cdb) 1773 { 1774 switch (cdb[0]) { 1775 case READ_10: /* SBC - RDProtect */ 1776 case READ_12: /* SBC - RDProtect */ 1777 case READ_16: /* SBC - RDProtect */ 1778 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */ 1779 case VERIFY: /* SBC - VRProtect */ 1780 case VERIFY_16: /* SBC - VRProtect */ 1781 case WRITE_VERIFY: /* SBC - VRProtect */ 1782 case WRITE_VERIFY_12: /* SBC - VRProtect */ 1783 break; 1784 default: 1785 cdb[1] &= 0x1f; /* clear logical unit number */ 1786 break; 1787 } 1788 } 1789 1790 static struct se_task * 1791 transport_generic_get_task(struct se_cmd *cmd, 1792 enum dma_data_direction data_direction) 1793 { 1794 struct se_task *task; 1795 struct se_device *dev = SE_DEV(cmd); 1796 unsigned long flags; 1797 1798 task = dev->transport->alloc_task(cmd); 1799 if (!task) { 1800 printk(KERN_ERR "Unable to allocate struct se_task\n"); 1801 return NULL; 1802 } 1803 1804 INIT_LIST_HEAD(&task->t_list); 1805 INIT_LIST_HEAD(&task->t_execute_list); 1806 INIT_LIST_HEAD(&task->t_state_list); 1807 init_completion(&task->task_stop_comp); 1808 task->task_no = T_TASK(cmd)->t_tasks_no++; 1809 task->task_se_cmd = cmd; 1810 task->se_dev = dev; 1811 task->task_data_direction = data_direction; 1812 1813 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 1814 list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list); 1815 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 1816 1817 return task; 1818 } 1819 1820 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *); 1821 1822 void transport_device_setup_cmd(struct se_cmd *cmd) 1823 { 1824 cmd->se_dev = SE_LUN(cmd)->lun_se_dev; 1825 } 1826 EXPORT_SYMBOL(transport_device_setup_cmd); 1827 1828 /* 1829 * Used by fabric modules containing a local struct se_cmd within their 1830 * fabric dependent per I/O descriptor. 1831 */ 1832 void transport_init_se_cmd( 1833 struct se_cmd *cmd, 1834 struct target_core_fabric_ops *tfo, 1835 struct se_session *se_sess, 1836 u32 data_length, 1837 int data_direction, 1838 int task_attr, 1839 unsigned char *sense_buffer) 1840 { 1841 INIT_LIST_HEAD(&cmd->se_lun_list); 1842 INIT_LIST_HEAD(&cmd->se_delayed_list); 1843 INIT_LIST_HEAD(&cmd->se_ordered_list); 1844 /* 1845 * Setup t_task pointer to t_task_backstore 1846 */ 1847 cmd->t_task = &cmd->t_task_backstore; 1848 1849 INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list); 1850 init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp); 1851 init_completion(&T_TASK(cmd)->transport_lun_stop_comp); 1852 init_completion(&T_TASK(cmd)->t_transport_stop_comp); 1853 spin_lock_init(&T_TASK(cmd)->t_state_lock); 1854 atomic_set(&T_TASK(cmd)->transport_dev_active, 1); 1855 1856 cmd->se_tfo = tfo; 1857 cmd->se_sess = se_sess; 1858 cmd->data_length = data_length; 1859 cmd->data_direction = data_direction; 1860 cmd->sam_task_attr = task_attr; 1861 cmd->sense_buffer = sense_buffer; 1862 } 1863 EXPORT_SYMBOL(transport_init_se_cmd); 1864 1865 static int transport_check_alloc_task_attr(struct se_cmd *cmd) 1866 { 1867 /* 1868 * Check if SAM Task Attribute emulation is enabled for this 1869 * struct se_device storage object 1870 */ 1871 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) 1872 return 0; 1873 1874 if (cmd->sam_task_attr == TASK_ATTR_ACA) { 1875 DEBUG_STA("SAM Task Attribute ACA" 1876 " emulation is not supported\n"); 1877 return -1; 1878 } 1879 /* 1880 * Used to determine when ORDERED commands should go from 1881 * Dormant to Active status. 1882 */ 1883 cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id); 1884 smp_mb__after_atomic_inc(); 1885 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1886 cmd->se_ordered_id, cmd->sam_task_attr, 1887 TRANSPORT(cmd->se_dev)->name); 1888 return 0; 1889 } 1890 1891 void transport_free_se_cmd( 1892 struct se_cmd *se_cmd) 1893 { 1894 if (se_cmd->se_tmr_req) 1895 core_tmr_release_req(se_cmd->se_tmr_req); 1896 /* 1897 * Check and free any extended CDB buffer that was allocated 1898 */ 1899 if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb) 1900 kfree(T_TASK(se_cmd)->t_task_cdb); 1901 } 1902 EXPORT_SYMBOL(transport_free_se_cmd); 1903 1904 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int); 1905 1906 /* transport_generic_allocate_tasks(): 1907 * 1908 * Called from fabric RX Thread. 1909 */ 1910 int transport_generic_allocate_tasks( 1911 struct se_cmd *cmd, 1912 unsigned char *cdb) 1913 { 1914 int ret; 1915 1916 transport_generic_prepare_cdb(cdb); 1917 1918 /* 1919 * This is needed for early exceptions. 1920 */ 1921 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks; 1922 1923 transport_device_setup_cmd(cmd); 1924 /* 1925 * Ensure that the received CDB is less than the max (252 + 8) bytes 1926 * for VARIABLE_LENGTH_CMD 1927 */ 1928 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1929 printk(KERN_ERR "Received SCSI CDB with command_size: %d that" 1930 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1931 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1932 return -1; 1933 } 1934 /* 1935 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1936 * allocate the additional extended CDB buffer now.. Otherwise 1937 * setup the pointer from __t_task_cdb to t_task_cdb. 1938 */ 1939 if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) { 1940 T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb), 1941 GFP_KERNEL); 1942 if (!(T_TASK(cmd)->t_task_cdb)) { 1943 printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb" 1944 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n", 1945 scsi_command_size(cdb), 1946 (unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb)); 1947 return -1; 1948 } 1949 } else 1950 T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0]; 1951 /* 1952 * Copy the original CDB into T_TASK(cmd). 1953 */ 1954 memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb)); 1955 /* 1956 * Setup the received CDB based on SCSI defined opcodes and 1957 * perform unit attention, persistent reservations and ALUA 1958 * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb 1959 * pointer is expected to be setup before we reach this point. 1960 */ 1961 ret = transport_generic_cmd_sequencer(cmd, cdb); 1962 if (ret < 0) 1963 return ret; 1964 /* 1965 * Check for SAM Task Attribute Emulation 1966 */ 1967 if (transport_check_alloc_task_attr(cmd) < 0) { 1968 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1969 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1970 return -2; 1971 } 1972 spin_lock(&cmd->se_lun->lun_sep_lock); 1973 if (cmd->se_lun->lun_sep) 1974 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1975 spin_unlock(&cmd->se_lun->lun_sep_lock); 1976 return 0; 1977 } 1978 EXPORT_SYMBOL(transport_generic_allocate_tasks); 1979 1980 /* 1981 * Used by fabric module frontends not defining a TFO->new_cmd_map() 1982 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis 1983 */ 1984 int transport_generic_handle_cdb( 1985 struct se_cmd *cmd) 1986 { 1987 if (!SE_LUN(cmd)) { 1988 dump_stack(); 1989 printk(KERN_ERR "SE_LUN(cmd) is NULL\n"); 1990 return -1; 1991 } 1992 1993 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD); 1994 return 0; 1995 } 1996 EXPORT_SYMBOL(transport_generic_handle_cdb); 1997 1998 /* 1999 * Used by fabric module frontends defining a TFO->new_cmd_map() caller 2000 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to 2001 * complete setup in TCM process context w/ TFO->new_cmd_map(). 2002 */ 2003 int transport_generic_handle_cdb_map( 2004 struct se_cmd *cmd) 2005 { 2006 if (!SE_LUN(cmd)) { 2007 dump_stack(); 2008 printk(KERN_ERR "SE_LUN(cmd) is NULL\n"); 2009 return -1; 2010 } 2011 2012 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP); 2013 return 0; 2014 } 2015 EXPORT_SYMBOL(transport_generic_handle_cdb_map); 2016 2017 /* transport_generic_handle_data(): 2018 * 2019 * 2020 */ 2021 int transport_generic_handle_data( 2022 struct se_cmd *cmd) 2023 { 2024 /* 2025 * For the software fabric case, then we assume the nexus is being 2026 * failed/shutdown when signals are pending from the kthread context 2027 * caller, so we return a failure. For the HW target mode case running 2028 * in interrupt code, the signal_pending() check is skipped. 2029 */ 2030 if (!in_interrupt() && signal_pending(current)) 2031 return -1; 2032 /* 2033 * If the received CDB has aleady been ABORTED by the generic 2034 * target engine, we now call transport_check_aborted_status() 2035 * to queue any delated TASK_ABORTED status for the received CDB to the 2036 * fabric module as we are expecting no futher incoming DATA OUT 2037 * sequences at this point. 2038 */ 2039 if (transport_check_aborted_status(cmd, 1) != 0) 2040 return 0; 2041 2042 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE); 2043 return 0; 2044 } 2045 EXPORT_SYMBOL(transport_generic_handle_data); 2046 2047 /* transport_generic_handle_tmr(): 2048 * 2049 * 2050 */ 2051 int transport_generic_handle_tmr( 2052 struct se_cmd *cmd) 2053 { 2054 /* 2055 * This is needed for early exceptions. 2056 */ 2057 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks; 2058 transport_device_setup_cmd(cmd); 2059 2060 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR); 2061 return 0; 2062 } 2063 EXPORT_SYMBOL(transport_generic_handle_tmr); 2064 2065 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd) 2066 { 2067 struct se_task *task, *task_tmp; 2068 unsigned long flags; 2069 int ret = 0; 2070 2071 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n", 2072 CMD_TFO(cmd)->get_task_tag(cmd)); 2073 2074 /* 2075 * No tasks remain in the execution queue 2076 */ 2077 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 2078 list_for_each_entry_safe(task, task_tmp, 2079 &T_TASK(cmd)->t_task_list, t_list) { 2080 DEBUG_TS("task_no[%d] - Processing task %p\n", 2081 task->task_no, task); 2082 /* 2083 * If the struct se_task has not been sent and is not active, 2084 * remove the struct se_task from the execution queue. 2085 */ 2086 if (!atomic_read(&task->task_sent) && 2087 !atomic_read(&task->task_active)) { 2088 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, 2089 flags); 2090 transport_remove_task_from_execute_queue(task, 2091 task->se_dev); 2092 2093 DEBUG_TS("task_no[%d] - Removed from execute queue\n", 2094 task->task_no); 2095 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 2096 continue; 2097 } 2098 2099 /* 2100 * If the struct se_task is active, sleep until it is returned 2101 * from the plugin. 2102 */ 2103 if (atomic_read(&task->task_active)) { 2104 atomic_set(&task->task_stop, 1); 2105 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, 2106 flags); 2107 2108 DEBUG_TS("task_no[%d] - Waiting to complete\n", 2109 task->task_no); 2110 wait_for_completion(&task->task_stop_comp); 2111 DEBUG_TS("task_no[%d] - Stopped successfully\n", 2112 task->task_no); 2113 2114 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 2115 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left); 2116 2117 atomic_set(&task->task_active, 0); 2118 atomic_set(&task->task_stop, 0); 2119 } else { 2120 DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no); 2121 ret++; 2122 } 2123 2124 __transport_stop_task_timer(task, &flags); 2125 } 2126 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2127 2128 return ret; 2129 } 2130 2131 static void transport_failure_reset_queue_depth(struct se_device *dev) 2132 { 2133 unsigned long flags; 2134 2135 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);; 2136 atomic_inc(&dev->depth_left); 2137 atomic_inc(&SE_HBA(dev)->left_queue_depth); 2138 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); 2139 } 2140 2141 /* 2142 * Handle SAM-esque emulation for generic transport request failures. 2143 */ 2144 static void transport_generic_request_failure( 2145 struct se_cmd *cmd, 2146 struct se_device *dev, 2147 int complete, 2148 int sc) 2149 { 2150 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 2151 " CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd), 2152 T_TASK(cmd)->t_task_cdb[0]); 2153 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:" 2154 " %d/%d transport_error_status: %d\n", 2155 CMD_TFO(cmd)->get_cmd_state(cmd), 2156 cmd->t_state, cmd->deferred_t_state, 2157 cmd->transport_error_status); 2158 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d" 2159 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --" 2160 " t_transport_active: %d t_transport_stop: %d" 2161 " t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs, 2162 atomic_read(&T_TASK(cmd)->t_task_cdbs_left), 2163 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent), 2164 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left), 2165 atomic_read(&T_TASK(cmd)->t_transport_active), 2166 atomic_read(&T_TASK(cmd)->t_transport_stop), 2167 atomic_read(&T_TASK(cmd)->t_transport_sent)); 2168 2169 transport_stop_all_task_timers(cmd); 2170 2171 if (dev) 2172 transport_failure_reset_queue_depth(dev); 2173 /* 2174 * For SAM Task Attribute emulation for failed struct se_cmd 2175 */ 2176 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 2177 transport_complete_task_attr(cmd); 2178 2179 if (complete) { 2180 transport_direct_request_timeout(cmd); 2181 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE; 2182 } 2183 2184 switch (cmd->transport_error_status) { 2185 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE: 2186 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 2187 break; 2188 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS: 2189 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY; 2190 break; 2191 case PYX_TRANSPORT_INVALID_CDB_FIELD: 2192 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 2193 break; 2194 case PYX_TRANSPORT_INVALID_PARAMETER_LIST: 2195 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST; 2196 break; 2197 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES: 2198 if (!sc) 2199 transport_new_cmd_failure(cmd); 2200 /* 2201 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES, 2202 * we force this session to fall back to session 2203 * recovery. 2204 */ 2205 CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess); 2206 CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0); 2207 2208 goto check_stop; 2209 case PYX_TRANSPORT_LU_COMM_FAILURE: 2210 case PYX_TRANSPORT_ILLEGAL_REQUEST: 2211 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2212 break; 2213 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE: 2214 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE; 2215 break; 2216 case PYX_TRANSPORT_WRITE_PROTECTED: 2217 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED; 2218 break; 2219 case PYX_TRANSPORT_RESERVATION_CONFLICT: 2220 /* 2221 * No SENSE Data payload for this case, set SCSI Status 2222 * and queue the response to $FABRIC_MOD. 2223 * 2224 * Uses linux/include/scsi/scsi.h SAM status codes defs 2225 */ 2226 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 2227 /* 2228 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 2229 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 2230 * CONFLICT STATUS. 2231 * 2232 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 2233 */ 2234 if (SE_SESS(cmd) && 2235 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2) 2236 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl, 2237 cmd->orig_fe_lun, 0x2C, 2238 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 2239 2240 CMD_TFO(cmd)->queue_status(cmd); 2241 goto check_stop; 2242 case PYX_TRANSPORT_USE_SENSE_REASON: 2243 /* 2244 * struct se_cmd->scsi_sense_reason already set 2245 */ 2246 break; 2247 default: 2248 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n", 2249 T_TASK(cmd)->t_task_cdb[0], 2250 cmd->transport_error_status); 2251 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 2252 break; 2253 } 2254 2255 if (!sc) 2256 transport_new_cmd_failure(cmd); 2257 else 2258 transport_send_check_condition_and_sense(cmd, 2259 cmd->scsi_sense_reason, 0); 2260 check_stop: 2261 transport_lun_remove_cmd(cmd); 2262 if (!(transport_cmd_check_stop_to_fabric(cmd))) 2263 ; 2264 } 2265 2266 static void transport_direct_request_timeout(struct se_cmd *cmd) 2267 { 2268 unsigned long flags; 2269 2270 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 2271 if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) { 2272 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2273 return; 2274 } 2275 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) { 2276 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2277 return; 2278 } 2279 2280 atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout), 2281 &T_TASK(cmd)->t_se_count); 2282 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2283 } 2284 2285 static void transport_generic_request_timeout(struct se_cmd *cmd) 2286 { 2287 unsigned long flags; 2288 2289 /* 2290 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove() 2291 * to allow last call to free memory resources. 2292 */ 2293 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 2294 if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) { 2295 int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1); 2296 2297 atomic_sub(tmp, &T_TASK(cmd)->t_se_count); 2298 } 2299 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2300 2301 transport_generic_remove(cmd, 0, 0); 2302 } 2303 2304 static int 2305 transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length) 2306 { 2307 unsigned char *buf; 2308 2309 buf = kzalloc(data_length, GFP_KERNEL); 2310 if (!(buf)) { 2311 printk(KERN_ERR "Unable to allocate memory for buffer\n"); 2312 return -1; 2313 } 2314 2315 T_TASK(cmd)->t_tasks_se_num = 0; 2316 T_TASK(cmd)->t_task_buf = buf; 2317 2318 return 0; 2319 } 2320 2321 static inline u32 transport_lba_21(unsigned char *cdb) 2322 { 2323 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3]; 2324 } 2325 2326 static inline u32 transport_lba_32(unsigned char *cdb) 2327 { 2328 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; 2329 } 2330 2331 static inline unsigned long long transport_lba_64(unsigned char *cdb) 2332 { 2333 unsigned int __v1, __v2; 2334 2335 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; 2336 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; 2337 2338 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; 2339 } 2340 2341 /* 2342 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs 2343 */ 2344 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb) 2345 { 2346 unsigned int __v1, __v2; 2347 2348 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15]; 2349 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19]; 2350 2351 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; 2352 } 2353 2354 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd) 2355 { 2356 unsigned long flags; 2357 2358 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags); 2359 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 2360 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags); 2361 } 2362 2363 /* 2364 * Called from interrupt context. 2365 */ 2366 static void transport_task_timeout_handler(unsigned long data) 2367 { 2368 struct se_task *task = (struct se_task *)data; 2369 struct se_cmd *cmd = TASK_CMD(task); 2370 unsigned long flags; 2371 2372 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd); 2373 2374 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 2375 if (task->task_flags & TF_STOP) { 2376 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2377 return; 2378 } 2379 task->task_flags &= ~TF_RUNNING; 2380 2381 /* 2382 * Determine if transport_complete_task() has already been called. 2383 */ 2384 if (!(atomic_read(&task->task_active))) { 2385 DEBUG_TT("transport task: %p cmd: %p timeout task_active" 2386 " == 0\n", task, cmd); 2387 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2388 return; 2389 } 2390 2391 atomic_inc(&T_TASK(cmd)->t_se_count); 2392 atomic_inc(&T_TASK(cmd)->t_transport_timeout); 2393 T_TASK(cmd)->t_tasks_failed = 1; 2394 2395 atomic_set(&task->task_timeout, 1); 2396 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT; 2397 task->task_scsi_status = 1; 2398 2399 if (atomic_read(&task->task_stop)) { 2400 DEBUG_TT("transport task: %p cmd: %p timeout task_stop" 2401 " == 1\n", task, cmd); 2402 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2403 complete(&task->task_stop_comp); 2404 return; 2405 } 2406 2407 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) { 2408 DEBUG_TT("transport task: %p cmd: %p timeout non zero" 2409 " t_task_cdbs_left\n", task, cmd); 2410 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2411 return; 2412 } 2413 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n", 2414 task, cmd); 2415 2416 cmd->t_state = TRANSPORT_COMPLETE_FAILURE; 2417 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2418 2419 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE); 2420 } 2421 2422 /* 2423 * Called with T_TASK(cmd)->t_state_lock held. 2424 */ 2425 static void transport_start_task_timer(struct se_task *task) 2426 { 2427 struct se_device *dev = task->se_dev; 2428 int timeout; 2429 2430 if (task->task_flags & TF_RUNNING) 2431 return; 2432 /* 2433 * If the task_timeout is disabled, exit now. 2434 */ 2435 timeout = DEV_ATTRIB(dev)->task_timeout; 2436 if (!(timeout)) 2437 return; 2438 2439 init_timer(&task->task_timer); 2440 task->task_timer.expires = (get_jiffies_64() + timeout * HZ); 2441 task->task_timer.data = (unsigned long) task; 2442 task->task_timer.function = transport_task_timeout_handler; 2443 2444 task->task_flags |= TF_RUNNING; 2445 add_timer(&task->task_timer); 2446 #if 0 2447 printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:" 2448 " %d\n", task->task_se_cmd, task, timeout); 2449 #endif 2450 } 2451 2452 /* 2453 * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held. 2454 */ 2455 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags) 2456 { 2457 struct se_cmd *cmd = TASK_CMD(task); 2458 2459 if (!(task->task_flags & TF_RUNNING)) 2460 return; 2461 2462 task->task_flags |= TF_STOP; 2463 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags); 2464 2465 del_timer_sync(&task->task_timer); 2466 2467 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags); 2468 task->task_flags &= ~TF_RUNNING; 2469 task->task_flags &= ~TF_STOP; 2470 } 2471 2472 static void transport_stop_all_task_timers(struct se_cmd *cmd) 2473 { 2474 struct se_task *task = NULL, *task_tmp; 2475 unsigned long flags; 2476 2477 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 2478 list_for_each_entry_safe(task, task_tmp, 2479 &T_TASK(cmd)->t_task_list, t_list) 2480 __transport_stop_task_timer(task, &flags); 2481 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2482 } 2483 2484 static inline int transport_tcq_window_closed(struct se_device *dev) 2485 { 2486 if (dev->dev_tcq_window_closed++ < 2487 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) { 2488 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT); 2489 } else 2490 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG); 2491 2492 wake_up_interruptible(&dev->dev_queue_obj->thread_wq); 2493 return 0; 2494 } 2495 2496 /* 2497 * Called from Fabric Module context from transport_execute_tasks() 2498 * 2499 * The return of this function determins if the tasks from struct se_cmd 2500 * get added to the execution queue in transport_execute_tasks(), 2501 * or are added to the delayed or ordered lists here. 2502 */ 2503 static inline int transport_execute_task_attr(struct se_cmd *cmd) 2504 { 2505 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) 2506 return 1; 2507 /* 2508 * Check for the existance of HEAD_OF_QUEUE, and if true return 1 2509 * to allow the passed struct se_cmd list of tasks to the front of the list. 2510 */ 2511 if (cmd->sam_task_attr == TASK_ATTR_HOQ) { 2512 atomic_inc(&SE_DEV(cmd)->dev_hoq_count); 2513 smp_mb__after_atomic_inc(); 2514 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:" 2515 " 0x%02x, se_ordered_id: %u\n", 2516 T_TASK(cmd)->t_task_cdb[0], 2517 cmd->se_ordered_id); 2518 return 1; 2519 } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) { 2520 spin_lock(&SE_DEV(cmd)->ordered_cmd_lock); 2521 list_add_tail(&cmd->se_ordered_list, 2522 &SE_DEV(cmd)->ordered_cmd_list); 2523 spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock); 2524 2525 atomic_inc(&SE_DEV(cmd)->dev_ordered_sync); 2526 smp_mb__after_atomic_inc(); 2527 2528 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered" 2529 " list, se_ordered_id: %u\n", 2530 T_TASK(cmd)->t_task_cdb[0], 2531 cmd->se_ordered_id); 2532 /* 2533 * Add ORDERED command to tail of execution queue if 2534 * no other older commands exist that need to be 2535 * completed first. 2536 */ 2537 if (!(atomic_read(&SE_DEV(cmd)->simple_cmds))) 2538 return 1; 2539 } else { 2540 /* 2541 * For SIMPLE and UNTAGGED Task Attribute commands 2542 */ 2543 atomic_inc(&SE_DEV(cmd)->simple_cmds); 2544 smp_mb__after_atomic_inc(); 2545 } 2546 /* 2547 * Otherwise if one or more outstanding ORDERED task attribute exist, 2548 * add the dormant task(s) built for the passed struct se_cmd to the 2549 * execution queue and become in Active state for this struct se_device. 2550 */ 2551 if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) { 2552 /* 2553 * Otherwise, add cmd w/ tasks to delayed cmd queue that 2554 * will be drained upon competion of HEAD_OF_QUEUE task. 2555 */ 2556 spin_lock(&SE_DEV(cmd)->delayed_cmd_lock); 2557 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR; 2558 list_add_tail(&cmd->se_delayed_list, 2559 &SE_DEV(cmd)->delayed_cmd_list); 2560 spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock); 2561 2562 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to" 2563 " delayed CMD list, se_ordered_id: %u\n", 2564 T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr, 2565 cmd->se_ordered_id); 2566 /* 2567 * Return zero to let transport_execute_tasks() know 2568 * not to add the delayed tasks to the execution list. 2569 */ 2570 return 0; 2571 } 2572 /* 2573 * Otherwise, no ORDERED task attributes exist.. 2574 */ 2575 return 1; 2576 } 2577 2578 /* 2579 * Called from fabric module context in transport_generic_new_cmd() and 2580 * transport_generic_process_write() 2581 */ 2582 static int transport_execute_tasks(struct se_cmd *cmd) 2583 { 2584 int add_tasks; 2585 2586 if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) { 2587 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) { 2588 cmd->transport_error_status = 2589 PYX_TRANSPORT_LU_COMM_FAILURE; 2590 transport_generic_request_failure(cmd, NULL, 0, 1); 2591 return 0; 2592 } 2593 } 2594 /* 2595 * Call transport_cmd_check_stop() to see if a fabric exception 2596 * has occured that prevents execution. 2597 */ 2598 if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) { 2599 /* 2600 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE 2601 * attribute for the tasks of the received struct se_cmd CDB 2602 */ 2603 add_tasks = transport_execute_task_attr(cmd); 2604 if (add_tasks == 0) 2605 goto execute_tasks; 2606 /* 2607 * This calls transport_add_tasks_from_cmd() to handle 2608 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation 2609 * (if enabled) in __transport_add_task_to_execute_queue() and 2610 * transport_add_task_check_sam_attr(). 2611 */ 2612 transport_add_tasks_from_cmd(cmd); 2613 } 2614 /* 2615 * Kick the execution queue for the cmd associated struct se_device 2616 * storage object. 2617 */ 2618 execute_tasks: 2619 __transport_execute_tasks(SE_DEV(cmd)); 2620 return 0; 2621 } 2622 2623 /* 2624 * Called to check struct se_device tcq depth window, and once open pull struct se_task 2625 * from struct se_device->execute_task_list and 2626 * 2627 * Called from transport_processing_thread() 2628 */ 2629 static int __transport_execute_tasks(struct se_device *dev) 2630 { 2631 int error; 2632 struct se_cmd *cmd = NULL; 2633 struct se_task *task; 2634 unsigned long flags; 2635 2636 /* 2637 * Check if there is enough room in the device and HBA queue to send 2638 * struct se_transport_task's to the selected transport. 2639 */ 2640 check_depth: 2641 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags); 2642 if (!(atomic_read(&dev->depth_left)) || 2643 !(atomic_read(&SE_HBA(dev)->left_queue_depth))) { 2644 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); 2645 return transport_tcq_window_closed(dev); 2646 } 2647 dev->dev_tcq_window_closed = 0; 2648 2649 spin_lock(&dev->execute_task_lock); 2650 task = transport_get_task_from_execute_queue(dev); 2651 spin_unlock(&dev->execute_task_lock); 2652 2653 if (!task) { 2654 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); 2655 return 0; 2656 } 2657 2658 atomic_dec(&dev->depth_left); 2659 atomic_dec(&SE_HBA(dev)->left_queue_depth); 2660 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); 2661 2662 cmd = TASK_CMD(task); 2663 2664 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 2665 atomic_set(&task->task_active, 1); 2666 atomic_set(&task->task_sent, 1); 2667 atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent); 2668 2669 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) == 2670 T_TASK(cmd)->t_task_cdbs) 2671 atomic_set(&cmd->transport_sent, 1); 2672 2673 transport_start_task_timer(task); 2674 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2675 /* 2676 * The struct se_cmd->transport_emulate_cdb() function pointer is used 2677 * to grab REPORT_LUNS CDBs before they hit the 2678 * struct se_subsystem_api->do_task() caller below. 2679 */ 2680 if (cmd->transport_emulate_cdb) { 2681 error = cmd->transport_emulate_cdb(cmd); 2682 if (error != 0) { 2683 cmd->transport_error_status = error; 2684 atomic_set(&task->task_active, 0); 2685 atomic_set(&cmd->transport_sent, 0); 2686 transport_stop_tasks_for_cmd(cmd); 2687 transport_generic_request_failure(cmd, dev, 0, 1); 2688 goto check_depth; 2689 } 2690 /* 2691 * Handle the successful completion for transport_emulate_cdb() 2692 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC 2693 * Otherwise the caller is expected to complete the task with 2694 * proper status. 2695 */ 2696 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) { 2697 cmd->scsi_status = SAM_STAT_GOOD; 2698 task->task_scsi_status = GOOD; 2699 transport_complete_task(task, 1); 2700 } 2701 } else { 2702 /* 2703 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and 2704 * RAMDISK we use the internal transport_emulate_control_cdb() logic 2705 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK 2706 * LUN emulation code. 2707 * 2708 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we 2709 * call ->do_task() directly and let the underlying TCM subsystem plugin 2710 * code handle the CDB emulation. 2711 */ 2712 if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) && 2713 (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB))) 2714 error = transport_emulate_control_cdb(task); 2715 else 2716 error = TRANSPORT(dev)->do_task(task); 2717 2718 if (error != 0) { 2719 cmd->transport_error_status = error; 2720 atomic_set(&task->task_active, 0); 2721 atomic_set(&cmd->transport_sent, 0); 2722 transport_stop_tasks_for_cmd(cmd); 2723 transport_generic_request_failure(cmd, dev, 0, 1); 2724 } 2725 } 2726 2727 goto check_depth; 2728 2729 return 0; 2730 } 2731 2732 void transport_new_cmd_failure(struct se_cmd *se_cmd) 2733 { 2734 unsigned long flags; 2735 /* 2736 * Any unsolicited data will get dumped for failed command inside of 2737 * the fabric plugin 2738 */ 2739 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags); 2740 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED; 2741 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 2742 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags); 2743 2744 CMD_TFO(se_cmd)->new_cmd_failure(se_cmd); 2745 } 2746 2747 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int); 2748 2749 static inline u32 transport_get_sectors_6( 2750 unsigned char *cdb, 2751 struct se_cmd *cmd, 2752 int *ret) 2753 { 2754 struct se_device *dev = SE_LUN(cmd)->lun_se_dev; 2755 2756 /* 2757 * Assume TYPE_DISK for non struct se_device objects. 2758 * Use 8-bit sector value. 2759 */ 2760 if (!dev) 2761 goto type_disk; 2762 2763 /* 2764 * Use 24-bit allocation length for TYPE_TAPE. 2765 */ 2766 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) 2767 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4]; 2768 2769 /* 2770 * Everything else assume TYPE_DISK Sector CDB location. 2771 * Use 8-bit sector value. 2772 */ 2773 type_disk: 2774 return (u32)cdb[4]; 2775 } 2776 2777 static inline u32 transport_get_sectors_10( 2778 unsigned char *cdb, 2779 struct se_cmd *cmd, 2780 int *ret) 2781 { 2782 struct se_device *dev = SE_LUN(cmd)->lun_se_dev; 2783 2784 /* 2785 * Assume TYPE_DISK for non struct se_device objects. 2786 * Use 16-bit sector value. 2787 */ 2788 if (!dev) 2789 goto type_disk; 2790 2791 /* 2792 * XXX_10 is not defined in SSC, throw an exception 2793 */ 2794 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) { 2795 *ret = -1; 2796 return 0; 2797 } 2798 2799 /* 2800 * Everything else assume TYPE_DISK Sector CDB location. 2801 * Use 16-bit sector value. 2802 */ 2803 type_disk: 2804 return (u32)(cdb[7] << 8) + cdb[8]; 2805 } 2806 2807 static inline u32 transport_get_sectors_12( 2808 unsigned char *cdb, 2809 struct se_cmd *cmd, 2810 int *ret) 2811 { 2812 struct se_device *dev = SE_LUN(cmd)->lun_se_dev; 2813 2814 /* 2815 * Assume TYPE_DISK for non struct se_device objects. 2816 * Use 32-bit sector value. 2817 */ 2818 if (!dev) 2819 goto type_disk; 2820 2821 /* 2822 * XXX_12 is not defined in SSC, throw an exception 2823 */ 2824 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) { 2825 *ret = -1; 2826 return 0; 2827 } 2828 2829 /* 2830 * Everything else assume TYPE_DISK Sector CDB location. 2831 * Use 32-bit sector value. 2832 */ 2833 type_disk: 2834 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9]; 2835 } 2836 2837 static inline u32 transport_get_sectors_16( 2838 unsigned char *cdb, 2839 struct se_cmd *cmd, 2840 int *ret) 2841 { 2842 struct se_device *dev = SE_LUN(cmd)->lun_se_dev; 2843 2844 /* 2845 * Assume TYPE_DISK for non struct se_device objects. 2846 * Use 32-bit sector value. 2847 */ 2848 if (!dev) 2849 goto type_disk; 2850 2851 /* 2852 * Use 24-bit allocation length for TYPE_TAPE. 2853 */ 2854 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) 2855 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14]; 2856 2857 type_disk: 2858 return (u32)(cdb[10] << 24) + (cdb[11] << 16) + 2859 (cdb[12] << 8) + cdb[13]; 2860 } 2861 2862 /* 2863 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants 2864 */ 2865 static inline u32 transport_get_sectors_32( 2866 unsigned char *cdb, 2867 struct se_cmd *cmd, 2868 int *ret) 2869 { 2870 /* 2871 * Assume TYPE_DISK for non struct se_device objects. 2872 * Use 32-bit sector value. 2873 */ 2874 return (u32)(cdb[28] << 24) + (cdb[29] << 16) + 2875 (cdb[30] << 8) + cdb[31]; 2876 2877 } 2878 2879 static inline u32 transport_get_size( 2880 u32 sectors, 2881 unsigned char *cdb, 2882 struct se_cmd *cmd) 2883 { 2884 struct se_device *dev = SE_DEV(cmd); 2885 2886 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) { 2887 if (cdb[1] & 1) { /* sectors */ 2888 return DEV_ATTRIB(dev)->block_size * sectors; 2889 } else /* bytes */ 2890 return sectors; 2891 } 2892 #if 0 2893 printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for" 2894 " %s object\n", DEV_ATTRIB(dev)->block_size, sectors, 2895 DEV_ATTRIB(dev)->block_size * sectors, 2896 TRANSPORT(dev)->name); 2897 #endif 2898 return DEV_ATTRIB(dev)->block_size * sectors; 2899 } 2900 2901 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2]) 2902 { 2903 unsigned char result = 0; 2904 /* 2905 * MSB 2906 */ 2907 if ((val[0] >= 'a') && (val[0] <= 'f')) 2908 result = ((val[0] - 'a' + 10) & 0xf) << 4; 2909 else 2910 if ((val[0] >= 'A') && (val[0] <= 'F')) 2911 result = ((val[0] - 'A' + 10) & 0xf) << 4; 2912 else /* digit */ 2913 result = ((val[0] - '0') & 0xf) << 4; 2914 /* 2915 * LSB 2916 */ 2917 if ((val[1] >= 'a') && (val[1] <= 'f')) 2918 result |= ((val[1] - 'a' + 10) & 0xf); 2919 else 2920 if ((val[1] >= 'A') && (val[1] <= 'F')) 2921 result |= ((val[1] - 'A' + 10) & 0xf); 2922 else /* digit */ 2923 result |= ((val[1] - '0') & 0xf); 2924 2925 return result; 2926 } 2927 EXPORT_SYMBOL(transport_asciihex_to_binaryhex); 2928 2929 static void transport_xor_callback(struct se_cmd *cmd) 2930 { 2931 unsigned char *buf, *addr; 2932 struct se_mem *se_mem; 2933 unsigned int offset; 2934 int i; 2935 /* 2936 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command 2937 * 2938 * 1) read the specified logical block(s); 2939 * 2) transfer logical blocks from the data-out buffer; 2940 * 3) XOR the logical blocks transferred from the data-out buffer with 2941 * the logical blocks read, storing the resulting XOR data in a buffer; 2942 * 4) if the DISABLE WRITE bit is set to zero, then write the logical 2943 * blocks transferred from the data-out buffer; and 2944 * 5) transfer the resulting XOR data to the data-in buffer. 2945 */ 2946 buf = kmalloc(cmd->data_length, GFP_KERNEL); 2947 if (!(buf)) { 2948 printk(KERN_ERR "Unable to allocate xor_callback buf\n"); 2949 return; 2950 } 2951 /* 2952 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list 2953 * into the locally allocated *buf 2954 */ 2955 transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list); 2956 /* 2957 * Now perform the XOR against the BIDI read memory located at 2958 * T_TASK(cmd)->t_mem_bidi_list 2959 */ 2960 2961 offset = 0; 2962 list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) { 2963 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0); 2964 if (!(addr)) 2965 goto out; 2966 2967 for (i = 0; i < se_mem->se_len; i++) 2968 *(addr + se_mem->se_off + i) ^= *(buf + offset + i); 2969 2970 offset += se_mem->se_len; 2971 kunmap_atomic(addr, KM_USER0); 2972 } 2973 out: 2974 kfree(buf); 2975 } 2976 2977 /* 2978 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd 2979 */ 2980 static int transport_get_sense_data(struct se_cmd *cmd) 2981 { 2982 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL; 2983 struct se_device *dev; 2984 struct se_task *task = NULL, *task_tmp; 2985 unsigned long flags; 2986 u32 offset = 0; 2987 2988 if (!SE_LUN(cmd)) { 2989 printk(KERN_ERR "SE_LUN(cmd) is NULL\n"); 2990 return -1; 2991 } 2992 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 2993 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2994 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 2995 return 0; 2996 } 2997 2998 list_for_each_entry_safe(task, task_tmp, 2999 &T_TASK(cmd)->t_task_list, t_list) { 3000 3001 if (!task->task_sense) 3002 continue; 3003 3004 dev = task->se_dev; 3005 if (!(dev)) 3006 continue; 3007 3008 if (!TRANSPORT(dev)->get_sense_buffer) { 3009 printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer" 3010 " is NULL\n"); 3011 continue; 3012 } 3013 3014 sense_buffer = TRANSPORT(dev)->get_sense_buffer(task); 3015 if (!(sense_buffer)) { 3016 printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate" 3017 " sense buffer for task with sense\n", 3018 CMD_TFO(cmd)->get_task_tag(cmd), task->task_no); 3019 continue; 3020 } 3021 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 3022 3023 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd, 3024 TRANSPORT_SENSE_BUFFER); 3025 3026 memcpy((void *)&buffer[offset], (void *)sense_buffer, 3027 TRANSPORT_SENSE_BUFFER); 3028 cmd->scsi_status = task->task_scsi_status; 3029 /* Automatically padded */ 3030 cmd->scsi_sense_length = 3031 (TRANSPORT_SENSE_BUFFER + offset); 3032 3033 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x" 3034 " and sense\n", 3035 dev->se_hba->hba_id, TRANSPORT(dev)->name, 3036 cmd->scsi_status); 3037 return 0; 3038 } 3039 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 3040 3041 return -1; 3042 } 3043 3044 static int transport_allocate_resources(struct se_cmd *cmd) 3045 { 3046 u32 length = cmd->data_length; 3047 3048 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) || 3049 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) 3050 return transport_generic_get_mem(cmd, length, PAGE_SIZE); 3051 else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) 3052 return transport_generic_allocate_buf(cmd, length); 3053 else 3054 return 0; 3055 } 3056 3057 static int 3058 transport_handle_reservation_conflict(struct se_cmd *cmd) 3059 { 3060 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; 3061 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 3062 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT; 3063 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 3064 /* 3065 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 3066 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 3067 * CONFLICT STATUS. 3068 * 3069 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 3070 */ 3071 if (SE_SESS(cmd) && 3072 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2) 3073 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl, 3074 cmd->orig_fe_lun, 0x2C, 3075 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 3076 return -2; 3077 } 3078 3079 /* transport_generic_cmd_sequencer(): 3080 * 3081 * Generic Command Sequencer that should work for most DAS transport 3082 * drivers. 3083 * 3084 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD 3085 * RX Thread. 3086 * 3087 * FIXME: Need to support other SCSI OPCODES where as well. 3088 */ 3089 static int transport_generic_cmd_sequencer( 3090 struct se_cmd *cmd, 3091 unsigned char *cdb) 3092 { 3093 struct se_device *dev = SE_DEV(cmd); 3094 struct se_subsystem_dev *su_dev = dev->se_sub_dev; 3095 int ret = 0, sector_ret = 0, passthrough; 3096 u32 sectors = 0, size = 0, pr_reg_type = 0; 3097 u16 service_action; 3098 u8 alua_ascq = 0; 3099 /* 3100 * Check for an existing UNIT ATTENTION condition 3101 */ 3102 if (core_scsi3_ua_check(cmd, cdb) < 0) { 3103 cmd->transport_wait_for_tasks = 3104 &transport_nop_wait_for_tasks; 3105 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 3106 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION; 3107 return -2; 3108 } 3109 /* 3110 * Check status of Asymmetric Logical Unit Assignment port 3111 */ 3112 ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq); 3113 if (ret != 0) { 3114 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; 3115 /* 3116 * Set SCSI additional sense code (ASC) to 'LUN Not Accessable'; 3117 * The ALUA additional sense code qualifier (ASCQ) is determined 3118 * by the ALUA primary or secondary access state.. 3119 */ 3120 if (ret > 0) { 3121 #if 0 3122 printk(KERN_INFO "[%s]: ALUA TG Port not available," 3123 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n", 3124 CMD_TFO(cmd)->get_fabric_name(), alua_ascq); 3125 #endif 3126 transport_set_sense_codes(cmd, 0x04, alua_ascq); 3127 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 3128 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY; 3129 return -2; 3130 } 3131 goto out_invalid_cdb_field; 3132 } 3133 /* 3134 * Check status for SPC-3 Persistent Reservations 3135 */ 3136 if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) { 3137 if (T10_PR_OPS(su_dev)->t10_seq_non_holder( 3138 cmd, cdb, pr_reg_type) != 0) 3139 return transport_handle_reservation_conflict(cmd); 3140 /* 3141 * This means the CDB is allowed for the SCSI Initiator port 3142 * when said port is *NOT* holding the legacy SPC-2 or 3143 * SPC-3 Persistent Reservation. 3144 */ 3145 } 3146 3147 switch (cdb[0]) { 3148 case READ_6: 3149 sectors = transport_get_sectors_6(cdb, cmd, §or_ret); 3150 if (sector_ret) 3151 goto out_unsupported_cdb; 3152 size = transport_get_size(sectors, cdb, cmd); 3153 cmd->transport_split_cdb = &split_cdb_XX_6; 3154 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb); 3155 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3156 break; 3157 case READ_10: 3158 sectors = transport_get_sectors_10(cdb, cmd, §or_ret); 3159 if (sector_ret) 3160 goto out_unsupported_cdb; 3161 size = transport_get_size(sectors, cdb, cmd); 3162 cmd->transport_split_cdb = &split_cdb_XX_10; 3163 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); 3164 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3165 break; 3166 case READ_12: 3167 sectors = transport_get_sectors_12(cdb, cmd, §or_ret); 3168 if (sector_ret) 3169 goto out_unsupported_cdb; 3170 size = transport_get_size(sectors, cdb, cmd); 3171 cmd->transport_split_cdb = &split_cdb_XX_12; 3172 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); 3173 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3174 break; 3175 case READ_16: 3176 sectors = transport_get_sectors_16(cdb, cmd, §or_ret); 3177 if (sector_ret) 3178 goto out_unsupported_cdb; 3179 size = transport_get_size(sectors, cdb, cmd); 3180 cmd->transport_split_cdb = &split_cdb_XX_16; 3181 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb); 3182 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3183 break; 3184 case WRITE_6: 3185 sectors = transport_get_sectors_6(cdb, cmd, §or_ret); 3186 if (sector_ret) 3187 goto out_unsupported_cdb; 3188 size = transport_get_size(sectors, cdb, cmd); 3189 cmd->transport_split_cdb = &split_cdb_XX_6; 3190 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb); 3191 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3192 break; 3193 case WRITE_10: 3194 sectors = transport_get_sectors_10(cdb, cmd, §or_ret); 3195 if (sector_ret) 3196 goto out_unsupported_cdb; 3197 size = transport_get_size(sectors, cdb, cmd); 3198 cmd->transport_split_cdb = &split_cdb_XX_10; 3199 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); 3200 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); 3201 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3202 break; 3203 case WRITE_12: 3204 sectors = transport_get_sectors_12(cdb, cmd, §or_ret); 3205 if (sector_ret) 3206 goto out_unsupported_cdb; 3207 size = transport_get_size(sectors, cdb, cmd); 3208 cmd->transport_split_cdb = &split_cdb_XX_12; 3209 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); 3210 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); 3211 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3212 break; 3213 case WRITE_16: 3214 sectors = transport_get_sectors_16(cdb, cmd, §or_ret); 3215 if (sector_ret) 3216 goto out_unsupported_cdb; 3217 size = transport_get_size(sectors, cdb, cmd); 3218 cmd->transport_split_cdb = &split_cdb_XX_16; 3219 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb); 3220 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); 3221 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3222 break; 3223 case XDWRITEREAD_10: 3224 if ((cmd->data_direction != DMA_TO_DEVICE) || 3225 !(T_TASK(cmd)->t_tasks_bidi)) 3226 goto out_invalid_cdb_field; 3227 sectors = transport_get_sectors_10(cdb, cmd, §or_ret); 3228 if (sector_ret) 3229 goto out_unsupported_cdb; 3230 size = transport_get_size(sectors, cdb, cmd); 3231 cmd->transport_split_cdb = &split_cdb_XX_10; 3232 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); 3233 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3234 passthrough = (TRANSPORT(dev)->transport_type == 3235 TRANSPORT_PLUGIN_PHBA_PDEV); 3236 /* 3237 * Skip the remaining assignments for TCM/PSCSI passthrough 3238 */ 3239 if (passthrough) 3240 break; 3241 /* 3242 * Setup BIDI XOR callback to be run during transport_generic_complete_ok() 3243 */ 3244 cmd->transport_complete_callback = &transport_xor_callback; 3245 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); 3246 break; 3247 case VARIABLE_LENGTH_CMD: 3248 service_action = get_unaligned_be16(&cdb[8]); 3249 /* 3250 * Determine if this is TCM/PSCSI device and we should disable 3251 * internal emulation for this CDB. 3252 */ 3253 passthrough = (TRANSPORT(dev)->transport_type == 3254 TRANSPORT_PLUGIN_PHBA_PDEV); 3255 3256 switch (service_action) { 3257 case XDWRITEREAD_32: 3258 sectors = transport_get_sectors_32(cdb, cmd, §or_ret); 3259 if (sector_ret) 3260 goto out_unsupported_cdb; 3261 size = transport_get_size(sectors, cdb, cmd); 3262 /* 3263 * Use WRITE_32 and READ_32 opcodes for the emulated 3264 * XDWRITE_READ_32 logic. 3265 */ 3266 cmd->transport_split_cdb = &split_cdb_XX_32; 3267 T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb); 3268 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; 3269 3270 /* 3271 * Skip the remaining assignments for TCM/PSCSI passthrough 3272 */ 3273 if (passthrough) 3274 break; 3275 3276 /* 3277 * Setup BIDI XOR callback to be run during 3278 * transport_generic_complete_ok() 3279 */ 3280 cmd->transport_complete_callback = &transport_xor_callback; 3281 T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8); 3282 break; 3283 case WRITE_SAME_32: 3284 sectors = transport_get_sectors_32(cdb, cmd, §or_ret); 3285 if (sector_ret) 3286 goto out_unsupported_cdb; 3287 size = transport_get_size(sectors, cdb, cmd); 3288 T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]); 3289 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3290 3291 /* 3292 * Skip the remaining assignments for TCM/PSCSI passthrough 3293 */ 3294 if (passthrough) 3295 break; 3296 3297 if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) { 3298 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA" 3299 " bits not supported for Block Discard" 3300 " Emulation\n"); 3301 goto out_invalid_cdb_field; 3302 } 3303 /* 3304 * Currently for the emulated case we only accept 3305 * tpws with the UNMAP=1 bit set. 3306 */ 3307 if (!(cdb[10] & 0x08)) { 3308 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not" 3309 " supported for Block Discard Emulation\n"); 3310 goto out_invalid_cdb_field; 3311 } 3312 break; 3313 default: 3314 printk(KERN_ERR "VARIABLE_LENGTH_CMD service action" 3315 " 0x%04x not supported\n", service_action); 3316 goto out_unsupported_cdb; 3317 } 3318 break; 3319 case 0xa3: 3320 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) { 3321 /* MAINTENANCE_IN from SCC-2 */ 3322 /* 3323 * Check for emulated MI_REPORT_TARGET_PGS. 3324 */ 3325 if (cdb[1] == MI_REPORT_TARGET_PGS) { 3326 cmd->transport_emulate_cdb = 3327 (T10_ALUA(su_dev)->alua_type == 3328 SPC3_ALUA_EMULATED) ? 3329 &core_emulate_report_target_port_groups : 3330 NULL; 3331 } 3332 size = (cdb[6] << 24) | (cdb[7] << 16) | 3333 (cdb[8] << 8) | cdb[9]; 3334 } else { 3335 /* GPCMD_SEND_KEY from multi media commands */ 3336 size = (cdb[8] << 8) + cdb[9]; 3337 } 3338 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3339 break; 3340 case MODE_SELECT: 3341 size = cdb[4]; 3342 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3343 break; 3344 case MODE_SELECT_10: 3345 size = (cdb[7] << 8) + cdb[8]; 3346 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3347 break; 3348 case MODE_SENSE: 3349 size = cdb[4]; 3350 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3351 break; 3352 case MODE_SENSE_10: 3353 case GPCMD_READ_BUFFER_CAPACITY: 3354 case GPCMD_SEND_OPC: 3355 case LOG_SELECT: 3356 case LOG_SENSE: 3357 size = (cdb[7] << 8) + cdb[8]; 3358 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3359 break; 3360 case READ_BLOCK_LIMITS: 3361 size = READ_BLOCK_LEN; 3362 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3363 break; 3364 case GPCMD_GET_CONFIGURATION: 3365 case GPCMD_READ_FORMAT_CAPACITIES: 3366 case GPCMD_READ_DISC_INFO: 3367 case GPCMD_READ_TRACK_RZONE_INFO: 3368 size = (cdb[7] << 8) + cdb[8]; 3369 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3370 break; 3371 case PERSISTENT_RESERVE_IN: 3372 case PERSISTENT_RESERVE_OUT: 3373 cmd->transport_emulate_cdb = 3374 (T10_RES(su_dev)->res_type == 3375 SPC3_PERSISTENT_RESERVATIONS) ? 3376 &core_scsi3_emulate_pr : NULL; 3377 size = (cdb[7] << 8) + cdb[8]; 3378 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3379 break; 3380 case GPCMD_MECHANISM_STATUS: 3381 case GPCMD_READ_DVD_STRUCTURE: 3382 size = (cdb[8] << 8) + cdb[9]; 3383 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3384 break; 3385 case READ_POSITION: 3386 size = READ_POSITION_LEN; 3387 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3388 break; 3389 case 0xa4: 3390 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) { 3391 /* MAINTENANCE_OUT from SCC-2 3392 * 3393 * Check for emulated MO_SET_TARGET_PGS. 3394 */ 3395 if (cdb[1] == MO_SET_TARGET_PGS) { 3396 cmd->transport_emulate_cdb = 3397 (T10_ALUA(su_dev)->alua_type == 3398 SPC3_ALUA_EMULATED) ? 3399 &core_emulate_set_target_port_groups : 3400 NULL; 3401 } 3402 3403 size = (cdb[6] << 24) | (cdb[7] << 16) | 3404 (cdb[8] << 8) | cdb[9]; 3405 } else { 3406 /* GPCMD_REPORT_KEY from multi media commands */ 3407 size = (cdb[8] << 8) + cdb[9]; 3408 } 3409 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3410 break; 3411 case INQUIRY: 3412 size = (cdb[3] << 8) + cdb[4]; 3413 /* 3414 * Do implict HEAD_OF_QUEUE processing for INQUIRY. 3415 * See spc4r17 section 5.3 3416 */ 3417 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 3418 cmd->sam_task_attr = TASK_ATTR_HOQ; 3419 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3420 break; 3421 case READ_BUFFER: 3422 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; 3423 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3424 break; 3425 case READ_CAPACITY: 3426 size = READ_CAP_LEN; 3427 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3428 break; 3429 case READ_MEDIA_SERIAL_NUMBER: 3430 case SECURITY_PROTOCOL_IN: 3431 case SECURITY_PROTOCOL_OUT: 3432 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; 3433 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3434 break; 3435 case SERVICE_ACTION_IN: 3436 case ACCESS_CONTROL_IN: 3437 case ACCESS_CONTROL_OUT: 3438 case EXTENDED_COPY: 3439 case READ_ATTRIBUTE: 3440 case RECEIVE_COPY_RESULTS: 3441 case WRITE_ATTRIBUTE: 3442 size = (cdb[10] << 24) | (cdb[11] << 16) | 3443 (cdb[12] << 8) | cdb[13]; 3444 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3445 break; 3446 case RECEIVE_DIAGNOSTIC: 3447 case SEND_DIAGNOSTIC: 3448 size = (cdb[3] << 8) | cdb[4]; 3449 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3450 break; 3451 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */ 3452 #if 0 3453 case GPCMD_READ_CD: 3454 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; 3455 size = (2336 * sectors); 3456 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3457 break; 3458 #endif 3459 case READ_TOC: 3460 size = cdb[8]; 3461 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3462 break; 3463 case REQUEST_SENSE: 3464 size = cdb[4]; 3465 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3466 break; 3467 case READ_ELEMENT_STATUS: 3468 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9]; 3469 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3470 break; 3471 case WRITE_BUFFER: 3472 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; 3473 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3474 break; 3475 case RESERVE: 3476 case RESERVE_10: 3477 /* 3478 * The SPC-2 RESERVE does not contain a size in the SCSI CDB. 3479 * Assume the passthrough or $FABRIC_MOD will tell us about it. 3480 */ 3481 if (cdb[0] == RESERVE_10) 3482 size = (cdb[7] << 8) | cdb[8]; 3483 else 3484 size = cmd->data_length; 3485 3486 /* 3487 * Setup the legacy emulated handler for SPC-2 and 3488 * >= SPC-3 compatible reservation handling (CRH=1) 3489 * Otherwise, we assume the underlying SCSI logic is 3490 * is running in SPC_PASSTHROUGH, and wants reservations 3491 * emulation disabled. 3492 */ 3493 cmd->transport_emulate_cdb = 3494 (T10_RES(su_dev)->res_type != 3495 SPC_PASSTHROUGH) ? 3496 &core_scsi2_emulate_crh : NULL; 3497 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; 3498 break; 3499 case RELEASE: 3500 case RELEASE_10: 3501 /* 3502 * The SPC-2 RELEASE does not contain a size in the SCSI CDB. 3503 * Assume the passthrough or $FABRIC_MOD will tell us about it. 3504 */ 3505 if (cdb[0] == RELEASE_10) 3506 size = (cdb[7] << 8) | cdb[8]; 3507 else 3508 size = cmd->data_length; 3509 3510 cmd->transport_emulate_cdb = 3511 (T10_RES(su_dev)->res_type != 3512 SPC_PASSTHROUGH) ? 3513 &core_scsi2_emulate_crh : NULL; 3514 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; 3515 break; 3516 case SYNCHRONIZE_CACHE: 3517 case 0x91: /* SYNCHRONIZE_CACHE_16: */ 3518 /* 3519 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE 3520 */ 3521 if (cdb[0] == SYNCHRONIZE_CACHE) { 3522 sectors = transport_get_sectors_10(cdb, cmd, §or_ret); 3523 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); 3524 } else { 3525 sectors = transport_get_sectors_16(cdb, cmd, §or_ret); 3526 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb); 3527 } 3528 if (sector_ret) 3529 goto out_unsupported_cdb; 3530 3531 size = transport_get_size(sectors, cdb, cmd); 3532 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; 3533 3534 /* 3535 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb() 3536 */ 3537 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 3538 break; 3539 /* 3540 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation 3541 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks() 3542 */ 3543 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC; 3544 /* 3545 * Check to ensure that LBA + Range does not exceed past end of 3546 * device. 3547 */ 3548 if (transport_get_sectors(cmd) < 0) 3549 goto out_invalid_cdb_field; 3550 break; 3551 case UNMAP: 3552 size = get_unaligned_be16(&cdb[7]); 3553 passthrough = (TRANSPORT(dev)->transport_type == 3554 TRANSPORT_PLUGIN_PHBA_PDEV); 3555 /* 3556 * Determine if the received UNMAP used to for direct passthrough 3557 * into Linux/SCSI with struct request via TCM/pSCSI or we are 3558 * signaling the use of internal transport_generic_unmap() emulation 3559 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO 3560 * subsystem plugin backstores. 3561 */ 3562 if (!(passthrough)) 3563 cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP; 3564 3565 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3566 break; 3567 case WRITE_SAME_16: 3568 sectors = transport_get_sectors_16(cdb, cmd, §or_ret); 3569 if (sector_ret) 3570 goto out_unsupported_cdb; 3571 size = transport_get_size(sectors, cdb, cmd); 3572 T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]); 3573 passthrough = (TRANSPORT(dev)->transport_type == 3574 TRANSPORT_PLUGIN_PHBA_PDEV); 3575 /* 3576 * Determine if the received WRITE_SAME_16 is used to for direct 3577 * passthrough into Linux/SCSI with struct request via TCM/pSCSI 3578 * or we are signaling the use of internal WRITE_SAME + UNMAP=1 3579 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and 3580 * TCM/FILEIO subsystem plugin backstores. 3581 */ 3582 if (!(passthrough)) { 3583 if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) { 3584 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA" 3585 " bits not supported for Block Discard" 3586 " Emulation\n"); 3587 goto out_invalid_cdb_field; 3588 } 3589 /* 3590 * Currently for the emulated case we only accept 3591 * tpws with the UNMAP=1 bit set. 3592 */ 3593 if (!(cdb[1] & 0x08)) { 3594 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not " 3595 " supported for Block Discard Emulation\n"); 3596 goto out_invalid_cdb_field; 3597 } 3598 } 3599 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; 3600 break; 3601 case ALLOW_MEDIUM_REMOVAL: 3602 case GPCMD_CLOSE_TRACK: 3603 case ERASE: 3604 case INITIALIZE_ELEMENT_STATUS: 3605 case GPCMD_LOAD_UNLOAD: 3606 case REZERO_UNIT: 3607 case SEEK_10: 3608 case GPCMD_SET_SPEED: 3609 case SPACE: 3610 case START_STOP: 3611 case TEST_UNIT_READY: 3612 case VERIFY: 3613 case WRITE_FILEMARKS: 3614 case MOVE_MEDIUM: 3615 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; 3616 break; 3617 case REPORT_LUNS: 3618 cmd->transport_emulate_cdb = 3619 &transport_core_report_lun_response; 3620 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; 3621 /* 3622 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS 3623 * See spc4r17 section 5.3 3624 */ 3625 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 3626 cmd->sam_task_attr = TASK_ATTR_HOQ; 3627 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; 3628 break; 3629 default: 3630 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode" 3631 " 0x%02x, sending CHECK_CONDITION.\n", 3632 CMD_TFO(cmd)->get_fabric_name(), cdb[0]); 3633 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; 3634 goto out_unsupported_cdb; 3635 } 3636 3637 if (size != cmd->data_length) { 3638 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:" 3639 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 3640 " 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(), 3641 cmd->data_length, size, cdb[0]); 3642 3643 cmd->cmd_spdtl = size; 3644 3645 if (cmd->data_direction == DMA_TO_DEVICE) { 3646 printk(KERN_ERR "Rejecting underflow/overflow" 3647 " WRITE data\n"); 3648 goto out_invalid_cdb_field; 3649 } 3650 /* 3651 * Reject READ_* or WRITE_* with overflow/underflow for 3652 * type SCF_SCSI_DATA_SG_IO_CDB. 3653 */ 3654 if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512)) { 3655 printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op" 3656 " CDB on non 512-byte sector setup subsystem" 3657 " plugin: %s\n", TRANSPORT(dev)->name); 3658 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 3659 goto out_invalid_cdb_field; 3660 } 3661 3662 if (size > cmd->data_length) { 3663 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 3664 cmd->residual_count = (size - cmd->data_length); 3665 } else { 3666 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 3667 cmd->residual_count = (cmd->data_length - size); 3668 } 3669 cmd->data_length = size; 3670 } 3671 3672 transport_set_supported_SAM_opcode(cmd); 3673 return ret; 3674 3675 out_unsupported_cdb: 3676 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 3677 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 3678 return -2; 3679 out_invalid_cdb_field: 3680 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 3681 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 3682 return -2; 3683 } 3684 3685 static inline void transport_release_tasks(struct se_cmd *); 3686 3687 /* 3688 * This function will copy a contiguous *src buffer into a destination 3689 * struct scatterlist array. 3690 */ 3691 static void transport_memcpy_write_contig( 3692 struct se_cmd *cmd, 3693 struct scatterlist *sg_d, 3694 unsigned char *src) 3695 { 3696 u32 i = 0, length = 0, total_length = cmd->data_length; 3697 void *dst; 3698 3699 while (total_length) { 3700 length = sg_d[i].length; 3701 3702 if (length > total_length) 3703 length = total_length; 3704 3705 dst = sg_virt(&sg_d[i]); 3706 3707 memcpy(dst, src, length); 3708 3709 if (!(total_length -= length)) 3710 return; 3711 3712 src += length; 3713 i++; 3714 } 3715 } 3716 3717 /* 3718 * This function will copy a struct scatterlist array *sg_s into a destination 3719 * contiguous *dst buffer. 3720 */ 3721 static void transport_memcpy_read_contig( 3722 struct se_cmd *cmd, 3723 unsigned char *dst, 3724 struct scatterlist *sg_s) 3725 { 3726 u32 i = 0, length = 0, total_length = cmd->data_length; 3727 void *src; 3728 3729 while (total_length) { 3730 length = sg_s[i].length; 3731 3732 if (length > total_length) 3733 length = total_length; 3734 3735 src = sg_virt(&sg_s[i]); 3736 3737 memcpy(dst, src, length); 3738 3739 if (!(total_length -= length)) 3740 return; 3741 3742 dst += length; 3743 i++; 3744 } 3745 } 3746 3747 static void transport_memcpy_se_mem_read_contig( 3748 struct se_cmd *cmd, 3749 unsigned char *dst, 3750 struct list_head *se_mem_list) 3751 { 3752 struct se_mem *se_mem; 3753 void *src; 3754 u32 length = 0, total_length = cmd->data_length; 3755 3756 list_for_each_entry(se_mem, se_mem_list, se_list) { 3757 length = se_mem->se_len; 3758 3759 if (length > total_length) 3760 length = total_length; 3761 3762 src = page_address(se_mem->se_page) + se_mem->se_off; 3763 3764 memcpy(dst, src, length); 3765 3766 if (!(total_length -= length)) 3767 return; 3768 3769 dst += length; 3770 } 3771 } 3772 3773 /* 3774 * Called from transport_generic_complete_ok() and 3775 * transport_generic_request_failure() to determine which dormant/delayed 3776 * and ordered cmds need to have their tasks added to the execution queue. 3777 */ 3778 static void transport_complete_task_attr(struct se_cmd *cmd) 3779 { 3780 struct se_device *dev = SE_DEV(cmd); 3781 struct se_cmd *cmd_p, *cmd_tmp; 3782 int new_active_tasks = 0; 3783 3784 if (cmd->sam_task_attr == TASK_ATTR_SIMPLE) { 3785 atomic_dec(&dev->simple_cmds); 3786 smp_mb__after_atomic_dec(); 3787 dev->dev_cur_ordered_id++; 3788 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for" 3789 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 3790 cmd->se_ordered_id); 3791 } else if (cmd->sam_task_attr == TASK_ATTR_HOQ) { 3792 atomic_dec(&dev->dev_hoq_count); 3793 smp_mb__after_atomic_dec(); 3794 dev->dev_cur_ordered_id++; 3795 DEBUG_STA("Incremented dev_cur_ordered_id: %u for" 3796 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 3797 cmd->se_ordered_id); 3798 } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) { 3799 spin_lock(&dev->ordered_cmd_lock); 3800 list_del(&cmd->se_ordered_list); 3801 atomic_dec(&dev->dev_ordered_sync); 3802 smp_mb__after_atomic_dec(); 3803 spin_unlock(&dev->ordered_cmd_lock); 3804 3805 dev->dev_cur_ordered_id++; 3806 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:" 3807 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 3808 } 3809 /* 3810 * Process all commands up to the last received 3811 * ORDERED task attribute which requires another blocking 3812 * boundary 3813 */ 3814 spin_lock(&dev->delayed_cmd_lock); 3815 list_for_each_entry_safe(cmd_p, cmd_tmp, 3816 &dev->delayed_cmd_list, se_delayed_list) { 3817 3818 list_del(&cmd_p->se_delayed_list); 3819 spin_unlock(&dev->delayed_cmd_lock); 3820 3821 DEBUG_STA("Calling add_tasks() for" 3822 " cmd_p: 0x%02x Task Attr: 0x%02x" 3823 " Dormant -> Active, se_ordered_id: %u\n", 3824 T_TASK(cmd_p)->t_task_cdb[0], 3825 cmd_p->sam_task_attr, cmd_p->se_ordered_id); 3826 3827 transport_add_tasks_from_cmd(cmd_p); 3828 new_active_tasks++; 3829 3830 spin_lock(&dev->delayed_cmd_lock); 3831 if (cmd_p->sam_task_attr == TASK_ATTR_ORDERED) 3832 break; 3833 } 3834 spin_unlock(&dev->delayed_cmd_lock); 3835 /* 3836 * If new tasks have become active, wake up the transport thread 3837 * to do the processing of the Active tasks. 3838 */ 3839 if (new_active_tasks != 0) 3840 wake_up_interruptible(&dev->dev_queue_obj->thread_wq); 3841 } 3842 3843 static void transport_generic_complete_ok(struct se_cmd *cmd) 3844 { 3845 int reason = 0; 3846 /* 3847 * Check if we need to move delayed/dormant tasks from cmds on the 3848 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 3849 * Attribute. 3850 */ 3851 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) 3852 transport_complete_task_attr(cmd); 3853 /* 3854 * Check if we need to retrieve a sense buffer from 3855 * the struct se_cmd in question. 3856 */ 3857 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 3858 if (transport_get_sense_data(cmd) < 0) 3859 reason = TCM_NON_EXISTENT_LUN; 3860 3861 /* 3862 * Only set when an struct se_task->task_scsi_status returned 3863 * a non GOOD status. 3864 */ 3865 if (cmd->scsi_status) { 3866 transport_send_check_condition_and_sense( 3867 cmd, reason, 1); 3868 transport_lun_remove_cmd(cmd); 3869 transport_cmd_check_stop_to_fabric(cmd); 3870 return; 3871 } 3872 } 3873 /* 3874 * Check for a callback, used by amoungst other things 3875 * XDWRITE_READ_10 emulation. 3876 */ 3877 if (cmd->transport_complete_callback) 3878 cmd->transport_complete_callback(cmd); 3879 3880 switch (cmd->data_direction) { 3881 case DMA_FROM_DEVICE: 3882 spin_lock(&cmd->se_lun->lun_sep_lock); 3883 if (SE_LUN(cmd)->lun_sep) { 3884 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets += 3885 cmd->data_length; 3886 } 3887 spin_unlock(&cmd->se_lun->lun_sep_lock); 3888 /* 3889 * If enabled by TCM fabirc module pre-registered SGL 3890 * memory, perform the memcpy() from the TCM internal 3891 * contigious buffer back to the original SGL. 3892 */ 3893 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG) 3894 transport_memcpy_write_contig(cmd, 3895 T_TASK(cmd)->t_task_pt_sgl, 3896 T_TASK(cmd)->t_task_buf); 3897 3898 CMD_TFO(cmd)->queue_data_in(cmd); 3899 break; 3900 case DMA_TO_DEVICE: 3901 spin_lock(&cmd->se_lun->lun_sep_lock); 3902 if (SE_LUN(cmd)->lun_sep) { 3903 SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets += 3904 cmd->data_length; 3905 } 3906 spin_unlock(&cmd->se_lun->lun_sep_lock); 3907 /* 3908 * Check if we need to send READ payload for BIDI-COMMAND 3909 */ 3910 if (T_TASK(cmd)->t_mem_bidi_list != NULL) { 3911 spin_lock(&cmd->se_lun->lun_sep_lock); 3912 if (SE_LUN(cmd)->lun_sep) { 3913 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets += 3914 cmd->data_length; 3915 } 3916 spin_unlock(&cmd->se_lun->lun_sep_lock); 3917 CMD_TFO(cmd)->queue_data_in(cmd); 3918 break; 3919 } 3920 /* Fall through for DMA_TO_DEVICE */ 3921 case DMA_NONE: 3922 CMD_TFO(cmd)->queue_status(cmd); 3923 break; 3924 default: 3925 break; 3926 } 3927 3928 transport_lun_remove_cmd(cmd); 3929 transport_cmd_check_stop_to_fabric(cmd); 3930 } 3931 3932 static void transport_free_dev_tasks(struct se_cmd *cmd) 3933 { 3934 struct se_task *task, *task_tmp; 3935 unsigned long flags; 3936 3937 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 3938 list_for_each_entry_safe(task, task_tmp, 3939 &T_TASK(cmd)->t_task_list, t_list) { 3940 if (atomic_read(&task->task_active)) 3941 continue; 3942 3943 kfree(task->task_sg_bidi); 3944 kfree(task->task_sg); 3945 3946 list_del(&task->t_list); 3947 3948 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 3949 if (task->se_dev) 3950 TRANSPORT(task->se_dev)->free_task(task); 3951 else 3952 printk(KERN_ERR "task[%u] - task->se_dev is NULL\n", 3953 task->task_no); 3954 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 3955 } 3956 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 3957 } 3958 3959 static inline void transport_free_pages(struct se_cmd *cmd) 3960 { 3961 struct se_mem *se_mem, *se_mem_tmp; 3962 int free_page = 1; 3963 3964 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) 3965 free_page = 0; 3966 if (cmd->se_dev->transport->do_se_mem_map) 3967 free_page = 0; 3968 3969 if (T_TASK(cmd)->t_task_buf) { 3970 kfree(T_TASK(cmd)->t_task_buf); 3971 T_TASK(cmd)->t_task_buf = NULL; 3972 return; 3973 } 3974 3975 /* 3976 * Caller will handle releasing of struct se_mem. 3977 */ 3978 if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC) 3979 return; 3980 3981 if (!(T_TASK(cmd)->t_tasks_se_num)) 3982 return; 3983 3984 list_for_each_entry_safe(se_mem, se_mem_tmp, 3985 T_TASK(cmd)->t_mem_list, se_list) { 3986 /* 3987 * We only release call __free_page(struct se_mem->se_page) when 3988 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use, 3989 */ 3990 if (free_page) 3991 __free_page(se_mem->se_page); 3992 3993 list_del(&se_mem->se_list); 3994 kmem_cache_free(se_mem_cache, se_mem); 3995 } 3996 3997 if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) { 3998 list_for_each_entry_safe(se_mem, se_mem_tmp, 3999 T_TASK(cmd)->t_mem_bidi_list, se_list) { 4000 /* 4001 * We only release call __free_page(struct se_mem->se_page) when 4002 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use, 4003 */ 4004 if (free_page) 4005 __free_page(se_mem->se_page); 4006 4007 list_del(&se_mem->se_list); 4008 kmem_cache_free(se_mem_cache, se_mem); 4009 } 4010 } 4011 4012 kfree(T_TASK(cmd)->t_mem_bidi_list); 4013 T_TASK(cmd)->t_mem_bidi_list = NULL; 4014 kfree(T_TASK(cmd)->t_mem_list); 4015 T_TASK(cmd)->t_mem_list = NULL; 4016 T_TASK(cmd)->t_tasks_se_num = 0; 4017 } 4018 4019 static inline void transport_release_tasks(struct se_cmd *cmd) 4020 { 4021 transport_free_dev_tasks(cmd); 4022 } 4023 4024 static inline int transport_dec_and_check(struct se_cmd *cmd) 4025 { 4026 unsigned long flags; 4027 4028 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 4029 if (atomic_read(&T_TASK(cmd)->t_fe_count)) { 4030 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) { 4031 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, 4032 flags); 4033 return 1; 4034 } 4035 } 4036 4037 if (atomic_read(&T_TASK(cmd)->t_se_count)) { 4038 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) { 4039 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, 4040 flags); 4041 return 1; 4042 } 4043 } 4044 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 4045 4046 return 0; 4047 } 4048 4049 static void transport_release_fe_cmd(struct se_cmd *cmd) 4050 { 4051 unsigned long flags; 4052 4053 if (transport_dec_and_check(cmd)) 4054 return; 4055 4056 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 4057 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { 4058 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 4059 goto free_pages; 4060 } 4061 atomic_set(&T_TASK(cmd)->transport_dev_active, 0); 4062 transport_all_task_dev_remove_state(cmd); 4063 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 4064 4065 transport_release_tasks(cmd); 4066 free_pages: 4067 transport_free_pages(cmd); 4068 transport_free_se_cmd(cmd); 4069 CMD_TFO(cmd)->release_cmd_direct(cmd); 4070 } 4071 4072 static int transport_generic_remove( 4073 struct se_cmd *cmd, 4074 int release_to_pool, 4075 int session_reinstatement) 4076 { 4077 unsigned long flags; 4078 4079 if (!(T_TASK(cmd))) 4080 goto release_cmd; 4081 4082 if (transport_dec_and_check(cmd)) { 4083 if (session_reinstatement) { 4084 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 4085 transport_all_task_dev_remove_state(cmd); 4086 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, 4087 flags); 4088 } 4089 return 1; 4090 } 4091 4092 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 4093 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { 4094 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 4095 goto free_pages; 4096 } 4097 atomic_set(&T_TASK(cmd)->transport_dev_active, 0); 4098 transport_all_task_dev_remove_state(cmd); 4099 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 4100 4101 transport_release_tasks(cmd); 4102 free_pages: 4103 transport_free_pages(cmd); 4104 4105 release_cmd: 4106 if (release_to_pool) { 4107 transport_release_cmd_to_pool(cmd); 4108 } else { 4109 transport_free_se_cmd(cmd); 4110 CMD_TFO(cmd)->release_cmd_direct(cmd); 4111 } 4112 4113 return 0; 4114 } 4115 4116 /* 4117 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map 4118 * @cmd: Associated se_cmd descriptor 4119 * @mem: SGL style memory for TCM WRITE / READ 4120 * @sg_mem_num: Number of SGL elements 4121 * @mem_bidi_in: SGL style memory for TCM BIDI READ 4122 * @sg_mem_bidi_num: Number of BIDI READ SGL elements 4123 * 4124 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage 4125 * of parameters. 4126 */ 4127 int transport_generic_map_mem_to_cmd( 4128 struct se_cmd *cmd, 4129 struct scatterlist *mem, 4130 u32 sg_mem_num, 4131 struct scatterlist *mem_bidi_in, 4132 u32 sg_mem_bidi_num) 4133 { 4134 u32 se_mem_cnt_out = 0; 4135 int ret; 4136 4137 if (!(mem) || !(sg_mem_num)) 4138 return 0; 4139 /* 4140 * Passed *mem will contain a list_head containing preformatted 4141 * struct se_mem elements... 4142 */ 4143 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) { 4144 if ((mem_bidi_in) || (sg_mem_bidi_num)) { 4145 printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported" 4146 " with BIDI-COMMAND\n"); 4147 return -ENOSYS; 4148 } 4149 4150 T_TASK(cmd)->t_mem_list = (struct list_head *)mem; 4151 T_TASK(cmd)->t_tasks_se_num = sg_mem_num; 4152 cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC; 4153 return 0; 4154 } 4155 /* 4156 * Otherwise, assume the caller is passing a struct scatterlist 4157 * array from include/linux/scatterlist.h 4158 */ 4159 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) || 4160 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) { 4161 /* 4162 * For CDB using TCM struct se_mem linked list scatterlist memory 4163 * processed into a TCM struct se_subsystem_dev, we do the mapping 4164 * from the passed physical memory to struct se_mem->se_page here. 4165 */ 4166 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list(); 4167 if (!(T_TASK(cmd)->t_mem_list)) 4168 return -ENOMEM; 4169 4170 ret = transport_map_sg_to_mem(cmd, 4171 T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out); 4172 if (ret < 0) 4173 return -ENOMEM; 4174 4175 T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out; 4176 /* 4177 * Setup BIDI READ list of struct se_mem elements 4178 */ 4179 if ((mem_bidi_in) && (sg_mem_bidi_num)) { 4180 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list(); 4181 if (!(T_TASK(cmd)->t_mem_bidi_list)) { 4182 kfree(T_TASK(cmd)->t_mem_list); 4183 return -ENOMEM; 4184 } 4185 se_mem_cnt_out = 0; 4186 4187 ret = transport_map_sg_to_mem(cmd, 4188 T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in, 4189 &se_mem_cnt_out); 4190 if (ret < 0) { 4191 kfree(T_TASK(cmd)->t_mem_list); 4192 return -ENOMEM; 4193 } 4194 4195 T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out; 4196 } 4197 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 4198 4199 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) { 4200 if (mem_bidi_in || sg_mem_bidi_num) { 4201 printk(KERN_ERR "BIDI-Commands not supported using " 4202 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n"); 4203 return -ENOSYS; 4204 } 4205 /* 4206 * For incoming CDBs using a contiguous buffer internall with TCM, 4207 * save the passed struct scatterlist memory. After TCM storage object 4208 * processing has completed for this struct se_cmd, TCM core will call 4209 * transport_memcpy_[write,read]_contig() as necessary from 4210 * transport_generic_complete_ok() and transport_write_pending() in order 4211 * to copy the TCM buffer to/from the original passed *mem in SGL -> 4212 * struct scatterlist format. 4213 */ 4214 cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG; 4215 T_TASK(cmd)->t_task_pt_sgl = mem; 4216 } 4217 4218 return 0; 4219 } 4220 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd); 4221 4222 4223 static inline long long transport_dev_end_lba(struct se_device *dev) 4224 { 4225 return dev->transport->get_blocks(dev) + 1; 4226 } 4227 4228 static int transport_get_sectors(struct se_cmd *cmd) 4229 { 4230 struct se_device *dev = SE_DEV(cmd); 4231 4232 T_TASK(cmd)->t_tasks_sectors = 4233 (cmd->data_length / DEV_ATTRIB(dev)->block_size); 4234 if (!(T_TASK(cmd)->t_tasks_sectors)) 4235 T_TASK(cmd)->t_tasks_sectors = 1; 4236 4237 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK) 4238 return 0; 4239 4240 if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) > 4241 transport_dev_end_lba(dev)) { 4242 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds" 4243 " transport_dev_end_lba(): %llu\n", 4244 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors, 4245 transport_dev_end_lba(dev)); 4246 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 4247 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY; 4248 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS; 4249 } 4250 4251 return 0; 4252 } 4253 4254 static int transport_new_cmd_obj(struct se_cmd *cmd) 4255 { 4256 struct se_device *dev = SE_DEV(cmd); 4257 u32 task_cdbs = 0, rc; 4258 4259 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) { 4260 task_cdbs++; 4261 T_TASK(cmd)->t_task_cdbs++; 4262 } else { 4263 int set_counts = 1; 4264 4265 /* 4266 * Setup any BIDI READ tasks and memory from 4267 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks 4268 * are queued first for the non pSCSI passthrough case. 4269 */ 4270 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) && 4271 (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) { 4272 rc = transport_generic_get_cdb_count(cmd, 4273 T_TASK(cmd)->t_task_lba, 4274 T_TASK(cmd)->t_tasks_sectors, 4275 DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list, 4276 set_counts); 4277 if (!(rc)) { 4278 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 4279 cmd->scsi_sense_reason = 4280 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 4281 return PYX_TRANSPORT_LU_COMM_FAILURE; 4282 } 4283 set_counts = 0; 4284 } 4285 /* 4286 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list 4287 * Note for BIDI transfers this will contain the WRITE payload 4288 */ 4289 task_cdbs = transport_generic_get_cdb_count(cmd, 4290 T_TASK(cmd)->t_task_lba, 4291 T_TASK(cmd)->t_tasks_sectors, 4292 cmd->data_direction, T_TASK(cmd)->t_mem_list, 4293 set_counts); 4294 if (!(task_cdbs)) { 4295 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 4296 cmd->scsi_sense_reason = 4297 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 4298 return PYX_TRANSPORT_LU_COMM_FAILURE; 4299 } 4300 T_TASK(cmd)->t_task_cdbs += task_cdbs; 4301 4302 #if 0 4303 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:" 4304 " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length, 4305 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors, 4306 T_TASK(cmd)->t_task_cdbs); 4307 #endif 4308 } 4309 4310 atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs); 4311 atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs); 4312 atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs); 4313 return 0; 4314 } 4315 4316 static struct list_head *transport_init_se_mem_list(void) 4317 { 4318 struct list_head *se_mem_list; 4319 4320 se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL); 4321 if (!(se_mem_list)) { 4322 printk(KERN_ERR "Unable to allocate memory for se_mem_list\n"); 4323 return NULL; 4324 } 4325 INIT_LIST_HEAD(se_mem_list); 4326 4327 return se_mem_list; 4328 } 4329 4330 static int 4331 transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size) 4332 { 4333 unsigned char *buf; 4334 struct se_mem *se_mem; 4335 4336 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list(); 4337 if (!(T_TASK(cmd)->t_mem_list)) 4338 return -ENOMEM; 4339 4340 /* 4341 * If the device uses memory mapping this is enough. 4342 */ 4343 if (cmd->se_dev->transport->do_se_mem_map) 4344 return 0; 4345 4346 /* 4347 * Setup BIDI-COMMAND READ list of struct se_mem elements 4348 */ 4349 if (T_TASK(cmd)->t_tasks_bidi) { 4350 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list(); 4351 if (!(T_TASK(cmd)->t_mem_bidi_list)) { 4352 kfree(T_TASK(cmd)->t_mem_list); 4353 return -ENOMEM; 4354 } 4355 } 4356 4357 while (length) { 4358 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL); 4359 if (!(se_mem)) { 4360 printk(KERN_ERR "Unable to allocate struct se_mem\n"); 4361 goto out; 4362 } 4363 INIT_LIST_HEAD(&se_mem->se_list); 4364 se_mem->se_len = (length > dma_size) ? dma_size : length; 4365 4366 /* #warning FIXME Allocate contigous pages for struct se_mem elements */ 4367 se_mem->se_page = (struct page *) alloc_pages(GFP_KERNEL, 0); 4368 if (!(se_mem->se_page)) { 4369 printk(KERN_ERR "alloc_pages() failed\n"); 4370 goto out; 4371 } 4372 4373 buf = kmap_atomic(se_mem->se_page, KM_IRQ0); 4374 if (!(buf)) { 4375 printk(KERN_ERR "kmap_atomic() failed\n"); 4376 goto out; 4377 } 4378 memset(buf, 0, se_mem->se_len); 4379 kunmap_atomic(buf, KM_IRQ0); 4380 4381 list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list); 4382 T_TASK(cmd)->t_tasks_se_num++; 4383 4384 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)" 4385 " Offset(%u)\n", se_mem->se_page, se_mem->se_len, 4386 se_mem->se_off); 4387 4388 length -= se_mem->se_len; 4389 } 4390 4391 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n", 4392 T_TASK(cmd)->t_tasks_se_num); 4393 4394 return 0; 4395 out: 4396 return -1; 4397 } 4398 4399 extern u32 transport_calc_sg_num( 4400 struct se_task *task, 4401 struct se_mem *in_se_mem, 4402 u32 task_offset) 4403 { 4404 struct se_cmd *se_cmd = task->task_se_cmd; 4405 struct se_device *se_dev = SE_DEV(se_cmd); 4406 struct se_mem *se_mem = in_se_mem; 4407 struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd); 4408 u32 sg_length, task_size = task->task_size, task_sg_num_padded; 4409 4410 while (task_size != 0) { 4411 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)" 4412 " se_mem->se_off(%u) task_offset(%u)\n", 4413 se_mem->se_page, se_mem->se_len, 4414 se_mem->se_off, task_offset); 4415 4416 if (task_offset == 0) { 4417 if (task_size >= se_mem->se_len) { 4418 sg_length = se_mem->se_len; 4419 4420 if (!(list_is_last(&se_mem->se_list, 4421 T_TASK(se_cmd)->t_mem_list))) 4422 se_mem = list_entry(se_mem->se_list.next, 4423 struct se_mem, se_list); 4424 } else { 4425 sg_length = task_size; 4426 task_size -= sg_length; 4427 goto next; 4428 } 4429 4430 DEBUG_SC("sg_length(%u) task_size(%u)\n", 4431 sg_length, task_size); 4432 } else { 4433 if ((se_mem->se_len - task_offset) > task_size) { 4434 sg_length = task_size; 4435 task_size -= sg_length; 4436 goto next; 4437 } else { 4438 sg_length = (se_mem->se_len - task_offset); 4439 4440 if (!(list_is_last(&se_mem->se_list, 4441 T_TASK(se_cmd)->t_mem_list))) 4442 se_mem = list_entry(se_mem->se_list.next, 4443 struct se_mem, se_list); 4444 } 4445 4446 DEBUG_SC("sg_length(%u) task_size(%u)\n", 4447 sg_length, task_size); 4448 4449 task_offset = 0; 4450 } 4451 task_size -= sg_length; 4452 next: 4453 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n", 4454 task->task_no, task_size); 4455 4456 task->task_sg_num++; 4457 } 4458 /* 4459 * Check if the fabric module driver is requesting that all 4460 * struct se_task->task_sg[] be chained together.. If so, 4461 * then allocate an extra padding SG entry for linking and 4462 * marking the end of the chained SGL. 4463 */ 4464 if (tfo->task_sg_chaining) { 4465 task_sg_num_padded = (task->task_sg_num + 1); 4466 task->task_padded_sg = 1; 4467 } else 4468 task_sg_num_padded = task->task_sg_num; 4469 4470 task->task_sg = kzalloc(task_sg_num_padded * 4471 sizeof(struct scatterlist), GFP_KERNEL); 4472 if (!(task->task_sg)) { 4473 printk(KERN_ERR "Unable to allocate memory for" 4474 " task->task_sg\n"); 4475 return 0; 4476 } 4477 sg_init_table(&task->task_sg[0], task_sg_num_padded); 4478 /* 4479 * Setup task->task_sg_bidi for SCSI READ payload for 4480 * TCM/pSCSI passthrough if present for BIDI-COMMAND 4481 */ 4482 if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) && 4483 (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) { 4484 task->task_sg_bidi = kzalloc(task_sg_num_padded * 4485 sizeof(struct scatterlist), GFP_KERNEL); 4486 if (!(task->task_sg_bidi)) { 4487 printk(KERN_ERR "Unable to allocate memory for" 4488 " task->task_sg_bidi\n"); 4489 return 0; 4490 } 4491 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded); 4492 } 4493 /* 4494 * For the chaining case, setup the proper end of SGL for the 4495 * initial submission struct task into struct se_subsystem_api. 4496 * This will be cleared later by transport_do_task_sg_chain() 4497 */ 4498 if (task->task_padded_sg) { 4499 sg_mark_end(&task->task_sg[task->task_sg_num - 1]); 4500 /* 4501 * Added the 'if' check before marking end of bi-directional 4502 * scatterlist (which gets created only in case of request 4503 * (RD + WR). 4504 */ 4505 if (task->task_sg_bidi) 4506 sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]); 4507 } 4508 4509 DEBUG_SC("Successfully allocated task->task_sg_num(%u)," 4510 " task_sg_num_padded(%u)\n", task->task_sg_num, 4511 task_sg_num_padded); 4512 4513 return task->task_sg_num; 4514 } 4515 4516 static inline int transport_set_tasks_sectors_disk( 4517 struct se_task *task, 4518 struct se_device *dev, 4519 unsigned long long lba, 4520 u32 sectors, 4521 int *max_sectors_set) 4522 { 4523 if ((lba + sectors) > transport_dev_end_lba(dev)) { 4524 task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1); 4525 4526 if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) { 4527 task->task_sectors = DEV_ATTRIB(dev)->max_sectors; 4528 *max_sectors_set = 1; 4529 } 4530 } else { 4531 if (sectors > DEV_ATTRIB(dev)->max_sectors) { 4532 task->task_sectors = DEV_ATTRIB(dev)->max_sectors; 4533 *max_sectors_set = 1; 4534 } else 4535 task->task_sectors = sectors; 4536 } 4537 4538 return 0; 4539 } 4540 4541 static inline int transport_set_tasks_sectors_non_disk( 4542 struct se_task *task, 4543 struct se_device *dev, 4544 unsigned long long lba, 4545 u32 sectors, 4546 int *max_sectors_set) 4547 { 4548 if (sectors > DEV_ATTRIB(dev)->max_sectors) { 4549 task->task_sectors = DEV_ATTRIB(dev)->max_sectors; 4550 *max_sectors_set = 1; 4551 } else 4552 task->task_sectors = sectors; 4553 4554 return 0; 4555 } 4556 4557 static inline int transport_set_tasks_sectors( 4558 struct se_task *task, 4559 struct se_device *dev, 4560 unsigned long long lba, 4561 u32 sectors, 4562 int *max_sectors_set) 4563 { 4564 return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ? 4565 transport_set_tasks_sectors_disk(task, dev, lba, sectors, 4566 max_sectors_set) : 4567 transport_set_tasks_sectors_non_disk(task, dev, lba, sectors, 4568 max_sectors_set); 4569 } 4570 4571 static int transport_map_sg_to_mem( 4572 struct se_cmd *cmd, 4573 struct list_head *se_mem_list, 4574 void *in_mem, 4575 u32 *se_mem_cnt) 4576 { 4577 struct se_mem *se_mem; 4578 struct scatterlist *sg; 4579 u32 sg_count = 1, cmd_size = cmd->data_length; 4580 4581 if (!in_mem) { 4582 printk(KERN_ERR "No source scatterlist\n"); 4583 return -1; 4584 } 4585 sg = (struct scatterlist *)in_mem; 4586 4587 while (cmd_size) { 4588 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL); 4589 if (!(se_mem)) { 4590 printk(KERN_ERR "Unable to allocate struct se_mem\n"); 4591 return -1; 4592 } 4593 INIT_LIST_HEAD(&se_mem->se_list); 4594 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u" 4595 " sg_page: %p offset: %d length: %d\n", cmd_size, 4596 sg_page(sg), sg->offset, sg->length); 4597 4598 se_mem->se_page = sg_page(sg); 4599 se_mem->se_off = sg->offset; 4600 4601 if (cmd_size > sg->length) { 4602 se_mem->se_len = sg->length; 4603 sg = sg_next(sg); 4604 sg_count++; 4605 } else 4606 se_mem->se_len = cmd_size; 4607 4608 cmd_size -= se_mem->se_len; 4609 4610 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n", 4611 *se_mem_cnt, cmd_size); 4612 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n", 4613 se_mem->se_page, se_mem->se_off, se_mem->se_len); 4614 4615 list_add_tail(&se_mem->se_list, se_mem_list); 4616 (*se_mem_cnt)++; 4617 } 4618 4619 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)" 4620 " struct se_mem\n", sg_count, *se_mem_cnt); 4621 4622 if (sg_count != *se_mem_cnt) 4623 BUG(); 4624 4625 return 0; 4626 } 4627 4628 /* transport_map_mem_to_sg(): 4629 * 4630 * 4631 */ 4632 int transport_map_mem_to_sg( 4633 struct se_task *task, 4634 struct list_head *se_mem_list, 4635 void *in_mem, 4636 struct se_mem *in_se_mem, 4637 struct se_mem **out_se_mem, 4638 u32 *se_mem_cnt, 4639 u32 *task_offset) 4640 { 4641 struct se_cmd *se_cmd = task->task_se_cmd; 4642 struct se_mem *se_mem = in_se_mem; 4643 struct scatterlist *sg = (struct scatterlist *)in_mem; 4644 u32 task_size = task->task_size, sg_no = 0; 4645 4646 if (!sg) { 4647 printk(KERN_ERR "Unable to locate valid struct" 4648 " scatterlist pointer\n"); 4649 return -1; 4650 } 4651 4652 while (task_size != 0) { 4653 /* 4654 * Setup the contigious array of scatterlists for 4655 * this struct se_task. 4656 */ 4657 sg_assign_page(sg, se_mem->se_page); 4658 4659 if (*task_offset == 0) { 4660 sg->offset = se_mem->se_off; 4661 4662 if (task_size >= se_mem->se_len) { 4663 sg->length = se_mem->se_len; 4664 4665 if (!(list_is_last(&se_mem->se_list, 4666 T_TASK(se_cmd)->t_mem_list))) { 4667 se_mem = list_entry(se_mem->se_list.next, 4668 struct se_mem, se_list); 4669 (*se_mem_cnt)++; 4670 } 4671 } else { 4672 sg->length = task_size; 4673 /* 4674 * Determine if we need to calculate an offset 4675 * into the struct se_mem on the next go around.. 4676 */ 4677 task_size -= sg->length; 4678 if (!(task_size)) 4679 *task_offset = sg->length; 4680 4681 goto next; 4682 } 4683 4684 } else { 4685 sg->offset = (*task_offset + se_mem->se_off); 4686 4687 if ((se_mem->se_len - *task_offset) > task_size) { 4688 sg->length = task_size; 4689 /* 4690 * Determine if we need to calculate an offset 4691 * into the struct se_mem on the next go around.. 4692 */ 4693 task_size -= sg->length; 4694 if (!(task_size)) 4695 *task_offset += sg->length; 4696 4697 goto next; 4698 } else { 4699 sg->length = (se_mem->se_len - *task_offset); 4700 4701 if (!(list_is_last(&se_mem->se_list, 4702 T_TASK(se_cmd)->t_mem_list))) { 4703 se_mem = list_entry(se_mem->se_list.next, 4704 struct se_mem, se_list); 4705 (*se_mem_cnt)++; 4706 } 4707 } 4708 4709 *task_offset = 0; 4710 } 4711 task_size -= sg->length; 4712 next: 4713 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing" 4714 " task_size to(%u), task_offset: %u\n", task->task_no, sg_no, 4715 sg_page(sg), sg->length, sg->offset, task_size, *task_offset); 4716 4717 sg_no++; 4718 if (!(task_size)) 4719 break; 4720 4721 sg = sg_next(sg); 4722 4723 if (task_size > se_cmd->data_length) 4724 BUG(); 4725 } 4726 *out_se_mem = se_mem; 4727 4728 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)" 4729 " SGs\n", task->task_no, *se_mem_cnt, sg_no); 4730 4731 return 0; 4732 } 4733 4734 /* 4735 * This function can be used by HW target mode drivers to create a linked 4736 * scatterlist from all contiguously allocated struct se_task->task_sg[]. 4737 * This is intended to be called during the completion path by TCM Core 4738 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled. 4739 */ 4740 void transport_do_task_sg_chain(struct se_cmd *cmd) 4741 { 4742 struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL; 4743 struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL; 4744 struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL; 4745 struct se_task *task; 4746 struct target_core_fabric_ops *tfo = CMD_TFO(cmd); 4747 u32 task_sg_num = 0, sg_count = 0; 4748 int i; 4749 4750 if (tfo->task_sg_chaining == 0) { 4751 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:" 4752 " %s\n", tfo->get_fabric_name()); 4753 dump_stack(); 4754 return; 4755 } 4756 /* 4757 * Walk the struct se_task list and setup scatterlist chains 4758 * for each contiguosly allocated struct se_task->task_sg[]. 4759 */ 4760 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { 4761 if (!(task->task_sg) || !(task->task_padded_sg)) 4762 continue; 4763 4764 if (sg_head && sg_link) { 4765 sg_head_cur = &task->task_sg[0]; 4766 sg_link_cur = &task->task_sg[task->task_sg_num]; 4767 /* 4768 * Either add chain or mark end of scatterlist 4769 */ 4770 if (!(list_is_last(&task->t_list, 4771 &T_TASK(cmd)->t_task_list))) { 4772 /* 4773 * Clear existing SGL termination bit set in 4774 * transport_calc_sg_num(), see sg_mark_end() 4775 */ 4776 sg_end_cur = &task->task_sg[task->task_sg_num - 1]; 4777 sg_end_cur->page_link &= ~0x02; 4778 4779 sg_chain(sg_head, task_sg_num, sg_head_cur); 4780 sg_count += (task->task_sg_num + 1); 4781 } else 4782 sg_count += task->task_sg_num; 4783 4784 sg_head = sg_head_cur; 4785 sg_link = sg_link_cur; 4786 task_sg_num = task->task_sg_num; 4787 continue; 4788 } 4789 sg_head = sg_first = &task->task_sg[0]; 4790 sg_link = &task->task_sg[task->task_sg_num]; 4791 task_sg_num = task->task_sg_num; 4792 /* 4793 * Check for single task.. 4794 */ 4795 if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) { 4796 /* 4797 * Clear existing SGL termination bit set in 4798 * transport_calc_sg_num(), see sg_mark_end() 4799 */ 4800 sg_end = &task->task_sg[task->task_sg_num - 1]; 4801 sg_end->page_link &= ~0x02; 4802 sg_count += (task->task_sg_num + 1); 4803 } else 4804 sg_count += task->task_sg_num; 4805 } 4806 /* 4807 * Setup the starting pointer and total t_tasks_sg_linked_no including 4808 * padding SGs for linking and to mark the end. 4809 */ 4810 T_TASK(cmd)->t_tasks_sg_chained = sg_first; 4811 T_TASK(cmd)->t_tasks_sg_chained_no = sg_count; 4812 4813 DEBUG_CMD_M("Setup T_TASK(cmd)->t_tasks_sg_chained: %p and" 4814 " t_tasks_sg_chained_no: %u\n", T_TASK(cmd)->t_tasks_sg_chained, 4815 T_TASK(cmd)->t_tasks_sg_chained_no); 4816 4817 for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg, 4818 T_TASK(cmd)->t_tasks_sg_chained_no, i) { 4819 4820 DEBUG_CMD_M("SG: %p page: %p length: %d offset: %d\n", 4821 sg, sg_page(sg), sg->length, sg->offset); 4822 if (sg_is_chain(sg)) 4823 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg); 4824 if (sg_is_last(sg)) 4825 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg); 4826 } 4827 4828 } 4829 EXPORT_SYMBOL(transport_do_task_sg_chain); 4830 4831 static int transport_do_se_mem_map( 4832 struct se_device *dev, 4833 struct se_task *task, 4834 struct list_head *se_mem_list, 4835 void *in_mem, 4836 struct se_mem *in_se_mem, 4837 struct se_mem **out_se_mem, 4838 u32 *se_mem_cnt, 4839 u32 *task_offset_in) 4840 { 4841 u32 task_offset = *task_offset_in; 4842 int ret = 0; 4843 /* 4844 * se_subsystem_api_t->do_se_mem_map is used when internal allocation 4845 * has been done by the transport plugin. 4846 */ 4847 if (TRANSPORT(dev)->do_se_mem_map) { 4848 ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list, 4849 in_mem, in_se_mem, out_se_mem, se_mem_cnt, 4850 task_offset_in); 4851 if (ret == 0) 4852 T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt; 4853 4854 return ret; 4855 } 4856 4857 BUG_ON(list_empty(se_mem_list)); 4858 /* 4859 * This is the normal path for all normal non BIDI and BIDI-COMMAND 4860 * WRITE payloads.. If we need to do BIDI READ passthrough for 4861 * TCM/pSCSI the first call to transport_do_se_mem_map -> 4862 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the 4863 * allocation for task->task_sg_bidi, and the subsequent call to 4864 * transport_do_se_mem_map() from transport_generic_get_cdb_count() 4865 */ 4866 if (!(task->task_sg_bidi)) { 4867 /* 4868 * Assume default that transport plugin speaks preallocated 4869 * scatterlists. 4870 */ 4871 if (!(transport_calc_sg_num(task, in_se_mem, task_offset))) 4872 return -1; 4873 /* 4874 * struct se_task->task_sg now contains the struct scatterlist array. 4875 */ 4876 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg, 4877 in_se_mem, out_se_mem, se_mem_cnt, 4878 task_offset_in); 4879 } 4880 /* 4881 * Handle the se_mem_list -> struct task->task_sg_bidi 4882 * memory map for the extra BIDI READ payload 4883 */ 4884 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi, 4885 in_se_mem, out_se_mem, se_mem_cnt, 4886 task_offset_in); 4887 } 4888 4889 static u32 transport_generic_get_cdb_count( 4890 struct se_cmd *cmd, 4891 unsigned long long lba, 4892 u32 sectors, 4893 enum dma_data_direction data_direction, 4894 struct list_head *mem_list, 4895 int set_counts) 4896 { 4897 unsigned char *cdb = NULL; 4898 struct se_task *task; 4899 struct se_mem *se_mem = NULL, *se_mem_lout = NULL; 4900 struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL; 4901 struct se_device *dev = SE_DEV(cmd); 4902 int max_sectors_set = 0, ret; 4903 u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0; 4904 4905 if (!mem_list) { 4906 printk(KERN_ERR "mem_list is NULL in transport_generic_get" 4907 "_cdb_count()\n"); 4908 return 0; 4909 } 4910 /* 4911 * While using RAMDISK_DR backstores is the only case where 4912 * mem_list will ever be empty at this point. 4913 */ 4914 if (!(list_empty(mem_list))) 4915 se_mem = list_entry(mem_list->next, struct se_mem, se_list); 4916 /* 4917 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to 4918 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation 4919 */ 4920 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) && 4921 !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) && 4922 (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) 4923 se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next, 4924 struct se_mem, se_list); 4925 4926 while (sectors) { 4927 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n", 4928 CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors, 4929 transport_dev_end_lba(dev)); 4930 4931 task = transport_generic_get_task(cmd, data_direction); 4932 if (!(task)) 4933 goto out; 4934 4935 transport_set_tasks_sectors(task, dev, lba, sectors, 4936 &max_sectors_set); 4937 4938 task->task_lba = lba; 4939 lba += task->task_sectors; 4940 sectors -= task->task_sectors; 4941 task->task_size = (task->task_sectors * 4942 DEV_ATTRIB(dev)->block_size); 4943 4944 cdb = TRANSPORT(dev)->get_cdb(task); 4945 if ((cdb)) { 4946 memcpy(cdb, T_TASK(cmd)->t_task_cdb, 4947 scsi_command_size(T_TASK(cmd)->t_task_cdb)); 4948 cmd->transport_split_cdb(task->task_lba, 4949 &task->task_sectors, cdb); 4950 } 4951 4952 /* 4953 * Perform the SE OBJ plugin and/or Transport plugin specific 4954 * mapping for T_TASK(cmd)->t_mem_list. And setup the 4955 * task->task_sg and if necessary task->task_sg_bidi 4956 */ 4957 ret = transport_do_se_mem_map(dev, task, mem_list, 4958 NULL, se_mem, &se_mem_lout, &se_mem_cnt, 4959 &task_offset_in); 4960 if (ret < 0) 4961 goto out; 4962 4963 se_mem = se_mem_lout; 4964 /* 4965 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi 4966 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI 4967 * 4968 * Note that the first call to transport_do_se_mem_map() above will 4969 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map() 4970 * -> transport_calc_sg_num(), and the second here will do the 4971 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI. 4972 */ 4973 if (task->task_sg_bidi != NULL) { 4974 ret = transport_do_se_mem_map(dev, task, 4975 T_TASK(cmd)->t_mem_bidi_list, NULL, 4976 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt, 4977 &task_offset_in); 4978 if (ret < 0) 4979 goto out; 4980 4981 se_mem_bidi = se_mem_bidi_lout; 4982 } 4983 task_cdbs++; 4984 4985 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n", 4986 task_cdbs, task->task_sg_num); 4987 4988 if (max_sectors_set) { 4989 max_sectors_set = 0; 4990 continue; 4991 } 4992 4993 if (!sectors) 4994 break; 4995 } 4996 4997 if (set_counts) { 4998 atomic_inc(&T_TASK(cmd)->t_fe_count); 4999 atomic_inc(&T_TASK(cmd)->t_se_count); 5000 } 5001 5002 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n", 5003 CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE) 5004 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs); 5005 5006 return task_cdbs; 5007 out: 5008 return 0; 5009 } 5010 5011 static int 5012 transport_map_control_cmd_to_task(struct se_cmd *cmd) 5013 { 5014 struct se_device *dev = SE_DEV(cmd); 5015 unsigned char *cdb; 5016 struct se_task *task; 5017 int ret; 5018 5019 task = transport_generic_get_task(cmd, cmd->data_direction); 5020 if (!task) 5021 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; 5022 5023 cdb = TRANSPORT(dev)->get_cdb(task); 5024 if (cdb) 5025 memcpy(cdb, cmd->t_task->t_task_cdb, 5026 scsi_command_size(cmd->t_task->t_task_cdb)); 5027 5028 task->task_size = cmd->data_length; 5029 task->task_sg_num = 5030 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0; 5031 5032 atomic_inc(&cmd->t_task->t_fe_count); 5033 atomic_inc(&cmd->t_task->t_se_count); 5034 5035 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) { 5036 struct se_mem *se_mem = NULL, *se_mem_lout = NULL; 5037 u32 se_mem_cnt = 0, task_offset = 0; 5038 5039 if (!list_empty(T_TASK(cmd)->t_mem_list)) 5040 se_mem = list_entry(T_TASK(cmd)->t_mem_list->next, 5041 struct se_mem, se_list); 5042 5043 ret = transport_do_se_mem_map(dev, task, 5044 cmd->t_task->t_mem_list, NULL, se_mem, 5045 &se_mem_lout, &se_mem_cnt, &task_offset); 5046 if (ret < 0) 5047 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; 5048 5049 if (dev->transport->map_task_SG) 5050 return dev->transport->map_task_SG(task); 5051 return 0; 5052 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) { 5053 if (dev->transport->map_task_non_SG) 5054 return dev->transport->map_task_non_SG(task); 5055 return 0; 5056 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) { 5057 if (dev->transport->cdb_none) 5058 return dev->transport->cdb_none(task); 5059 return 0; 5060 } else { 5061 BUG(); 5062 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; 5063 } 5064 } 5065 5066 /* transport_generic_new_cmd(): Called from transport_processing_thread() 5067 * 5068 * Allocate storage transport resources from a set of values predefined 5069 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process. 5070 * Any non zero return here is treated as an "out of resource' op here. 5071 */ 5072 /* 5073 * Generate struct se_task(s) and/or their payloads for this CDB. 5074 */ 5075 static int transport_generic_new_cmd(struct se_cmd *cmd) 5076 { 5077 struct se_portal_group *se_tpg; 5078 struct se_task *task; 5079 struct se_device *dev = SE_DEV(cmd); 5080 int ret = 0; 5081 5082 /* 5083 * Determine is the TCM fabric module has already allocated physical 5084 * memory, and is directly calling transport_generic_map_mem_to_cmd() 5085 * to setup beforehand the linked list of physical memory at 5086 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page 5087 */ 5088 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) { 5089 ret = transport_allocate_resources(cmd); 5090 if (ret < 0) 5091 return ret; 5092 } 5093 5094 ret = transport_get_sectors(cmd); 5095 if (ret < 0) 5096 return ret; 5097 5098 ret = transport_new_cmd_obj(cmd); 5099 if (ret < 0) 5100 return ret; 5101 5102 /* 5103 * Determine if the calling TCM fabric module is talking to 5104 * Linux/NET via kernel sockets and needs to allocate a 5105 * struct iovec array to complete the struct se_cmd 5106 */ 5107 se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg; 5108 if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) { 5109 ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd); 5110 if (ret < 0) 5111 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; 5112 } 5113 5114 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) { 5115 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { 5116 if (atomic_read(&task->task_sent)) 5117 continue; 5118 if (!dev->transport->map_task_SG) 5119 continue; 5120 5121 ret = dev->transport->map_task_SG(task); 5122 if (ret < 0) 5123 return ret; 5124 } 5125 } else { 5126 ret = transport_map_control_cmd_to_task(cmd); 5127 if (ret < 0) 5128 return ret; 5129 } 5130 5131 /* 5132 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready.. 5133 * This WRITE struct se_cmd (and all of its associated struct se_task's) 5134 * will be added to the struct se_device execution queue after its WRITE 5135 * data has arrived. (ie: It gets handled by the transport processing 5136 * thread a second time) 5137 */ 5138 if (cmd->data_direction == DMA_TO_DEVICE) { 5139 transport_add_tasks_to_state_queue(cmd); 5140 return transport_generic_write_pending(cmd); 5141 } 5142 /* 5143 * Everything else but a WRITE, add the struct se_cmd's struct se_task's 5144 * to the execution queue. 5145 */ 5146 transport_execute_tasks(cmd); 5147 return 0; 5148 } 5149 5150 /* transport_generic_process_write(): 5151 * 5152 * 5153 */ 5154 void transport_generic_process_write(struct se_cmd *cmd) 5155 { 5156 #if 0 5157 /* 5158 * Copy SCSI Presented DTL sector(s) from received buffers allocated to 5159 * original EDTL 5160 */ 5161 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 5162 if (!T_TASK(cmd)->t_tasks_se_num) { 5163 unsigned char *dst, *buf = 5164 (unsigned char *)T_TASK(cmd)->t_task_buf; 5165 5166 dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL); 5167 if (!(dst)) { 5168 printk(KERN_ERR "Unable to allocate memory for" 5169 " WRITE underflow\n"); 5170 transport_generic_request_failure(cmd, NULL, 5171 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1); 5172 return; 5173 } 5174 memcpy(dst, buf, cmd->cmd_spdtl); 5175 5176 kfree(T_TASK(cmd)->t_task_buf); 5177 T_TASK(cmd)->t_task_buf = dst; 5178 } else { 5179 struct scatterlist *sg = 5180 (struct scatterlist *sg)T_TASK(cmd)->t_task_buf; 5181 struct scatterlist *orig_sg; 5182 5183 orig_sg = kzalloc(sizeof(struct scatterlist) * 5184 T_TASK(cmd)->t_tasks_se_num, 5185 GFP_KERNEL))) { 5186 if (!(orig_sg)) { 5187 printk(KERN_ERR "Unable to allocate memory" 5188 " for WRITE underflow\n"); 5189 transport_generic_request_failure(cmd, NULL, 5190 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1); 5191 return; 5192 } 5193 5194 memcpy(orig_sg, T_TASK(cmd)->t_task_buf, 5195 sizeof(struct scatterlist) * 5196 T_TASK(cmd)->t_tasks_se_num); 5197 5198 cmd->data_length = cmd->cmd_spdtl; 5199 /* 5200 * FIXME, clear out original struct se_task and state 5201 * information. 5202 */ 5203 if (transport_generic_new_cmd(cmd) < 0) { 5204 transport_generic_request_failure(cmd, NULL, 5205 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1); 5206 kfree(orig_sg); 5207 return; 5208 } 5209 5210 transport_memcpy_write_sg(cmd, orig_sg); 5211 } 5212 } 5213 #endif 5214 transport_execute_tasks(cmd); 5215 } 5216 EXPORT_SYMBOL(transport_generic_process_write); 5217 5218 /* transport_generic_write_pending(): 5219 * 5220 * 5221 */ 5222 static int transport_generic_write_pending(struct se_cmd *cmd) 5223 { 5224 unsigned long flags; 5225 int ret; 5226 5227 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 5228 cmd->t_state = TRANSPORT_WRITE_PENDING; 5229 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 5230 /* 5231 * For the TCM control CDBs using a contiguous buffer, do the memcpy 5232 * from the passed Linux/SCSI struct scatterlist located at 5233 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at 5234 * T_TASK(se_cmd)->t_task_buf. 5235 */ 5236 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG) 5237 transport_memcpy_read_contig(cmd, 5238 T_TASK(cmd)->t_task_buf, 5239 T_TASK(cmd)->t_task_pt_sgl); 5240 /* 5241 * Clear the se_cmd for WRITE_PENDING status in order to set 5242 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data 5243 * can be called from HW target mode interrupt code. This is safe 5244 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending 5245 * because the se_cmd->se_lun pointer is not being cleared. 5246 */ 5247 transport_cmd_check_stop(cmd, 1, 0); 5248 5249 /* 5250 * Call the fabric write_pending function here to let the 5251 * frontend know that WRITE buffers are ready. 5252 */ 5253 ret = CMD_TFO(cmd)->write_pending(cmd); 5254 if (ret < 0) 5255 return ret; 5256 5257 return PYX_TRANSPORT_WRITE_PENDING; 5258 } 5259 5260 /* transport_release_cmd_to_pool(): 5261 * 5262 * 5263 */ 5264 void transport_release_cmd_to_pool(struct se_cmd *cmd) 5265 { 5266 BUG_ON(!T_TASK(cmd)); 5267 BUG_ON(!CMD_TFO(cmd)); 5268 5269 transport_free_se_cmd(cmd); 5270 CMD_TFO(cmd)->release_cmd_to_pool(cmd); 5271 } 5272 EXPORT_SYMBOL(transport_release_cmd_to_pool); 5273 5274 /* transport_generic_free_cmd(): 5275 * 5276 * Called from processing frontend to release storage engine resources 5277 */ 5278 void transport_generic_free_cmd( 5279 struct se_cmd *cmd, 5280 int wait_for_tasks, 5281 int release_to_pool, 5282 int session_reinstatement) 5283 { 5284 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd)) 5285 transport_release_cmd_to_pool(cmd); 5286 else { 5287 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd); 5288 5289 if (SE_LUN(cmd)) { 5290 #if 0 5291 printk(KERN_INFO "cmd: %p ITT: 0x%08x contains" 5292 " SE_LUN(cmd)\n", cmd, 5293 CMD_TFO(cmd)->get_task_tag(cmd)); 5294 #endif 5295 transport_lun_remove_cmd(cmd); 5296 } 5297 5298 if (wait_for_tasks && cmd->transport_wait_for_tasks) 5299 cmd->transport_wait_for_tasks(cmd, 0, 0); 5300 5301 transport_generic_remove(cmd, release_to_pool, 5302 session_reinstatement); 5303 } 5304 } 5305 EXPORT_SYMBOL(transport_generic_free_cmd); 5306 5307 static void transport_nop_wait_for_tasks( 5308 struct se_cmd *cmd, 5309 int remove_cmd, 5310 int session_reinstatement) 5311 { 5312 return; 5313 } 5314 5315 /* transport_lun_wait_for_tasks(): 5316 * 5317 * Called from ConfigFS context to stop the passed struct se_cmd to allow 5318 * an struct se_lun to be successfully shutdown. 5319 */ 5320 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) 5321 { 5322 unsigned long flags; 5323 int ret; 5324 /* 5325 * If the frontend has already requested this struct se_cmd to 5326 * be stopped, we can safely ignore this struct se_cmd. 5327 */ 5328 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 5329 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) { 5330 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0); 5331 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop ==" 5332 " TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd)); 5333 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 5334 transport_cmd_check_stop(cmd, 1, 0); 5335 return -1; 5336 } 5337 atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1); 5338 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 5339 5340 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq); 5341 5342 ret = transport_stop_tasks_for_cmd(cmd); 5343 5344 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:" 5345 " %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret); 5346 if (!ret) { 5347 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n", 5348 CMD_TFO(cmd)->get_task_tag(cmd)); 5349 wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp); 5350 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n", 5351 CMD_TFO(cmd)->get_task_tag(cmd)); 5352 } 5353 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); 5354 5355 return 0; 5356 } 5357 5358 /* #define DEBUG_CLEAR_LUN */ 5359 #ifdef DEBUG_CLEAR_LUN 5360 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x) 5361 #else 5362 #define DEBUG_CLEAR_L(x...) 5363 #endif 5364 5365 static void __transport_clear_lun_from_sessions(struct se_lun *lun) 5366 { 5367 struct se_cmd *cmd = NULL; 5368 unsigned long lun_flags, cmd_flags; 5369 /* 5370 * Do exception processing and return CHECK_CONDITION status to the 5371 * Initiator Port. 5372 */ 5373 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 5374 while (!list_empty_careful(&lun->lun_cmd_list)) { 5375 cmd = list_entry(lun->lun_cmd_list.next, 5376 struct se_cmd, se_lun_list); 5377 list_del(&cmd->se_lun_list); 5378 5379 if (!(T_TASK(cmd))) { 5380 printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL" 5381 "[i,t]_state: %u/%u\n", 5382 CMD_TFO(cmd)->get_task_tag(cmd), 5383 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state); 5384 BUG(); 5385 } 5386 atomic_set(&T_TASK(cmd)->transport_lun_active, 0); 5387 /* 5388 * This will notify iscsi_target_transport.c: 5389 * transport_cmd_check_stop() that a LUN shutdown is in 5390 * progress for the iscsi_cmd_t. 5391 */ 5392 spin_lock(&T_TASK(cmd)->t_state_lock); 5393 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport" 5394 "_lun_stop for ITT: 0x%08x\n", 5395 SE_LUN(cmd)->unpacked_lun, 5396 CMD_TFO(cmd)->get_task_tag(cmd)); 5397 atomic_set(&T_TASK(cmd)->transport_lun_stop, 1); 5398 spin_unlock(&T_TASK(cmd)->t_state_lock); 5399 5400 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 5401 5402 if (!(SE_LUN(cmd))) { 5403 printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n", 5404 CMD_TFO(cmd)->get_task_tag(cmd), 5405 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state); 5406 BUG(); 5407 } 5408 /* 5409 * If the Storage engine still owns the iscsi_cmd_t, determine 5410 * and/or stop its context. 5411 */ 5412 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport" 5413 "_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun, 5414 CMD_TFO(cmd)->get_task_tag(cmd)); 5415 5416 if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) { 5417 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 5418 continue; 5419 } 5420 5421 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun" 5422 "_wait_for_tasks(): SUCCESS\n", 5423 SE_LUN(cmd)->unpacked_lun, 5424 CMD_TFO(cmd)->get_task_tag(cmd)); 5425 5426 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags); 5427 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { 5428 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); 5429 goto check_cond; 5430 } 5431 atomic_set(&T_TASK(cmd)->transport_dev_active, 0); 5432 transport_all_task_dev_remove_state(cmd); 5433 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); 5434 5435 transport_free_dev_tasks(cmd); 5436 /* 5437 * The Storage engine stopped this struct se_cmd before it was 5438 * send to the fabric frontend for delivery back to the 5439 * Initiator Node. Return this SCSI CDB back with an 5440 * CHECK_CONDITION status. 5441 */ 5442 check_cond: 5443 transport_send_check_condition_and_sense(cmd, 5444 TCM_NON_EXISTENT_LUN, 0); 5445 /* 5446 * If the fabric frontend is waiting for this iscsi_cmd_t to 5447 * be released, notify the waiting thread now that LU has 5448 * finished accessing it. 5449 */ 5450 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags); 5451 if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) { 5452 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for" 5453 " struct se_cmd: %p ITT: 0x%08x\n", 5454 lun->unpacked_lun, 5455 cmd, CMD_TFO(cmd)->get_task_tag(cmd)); 5456 5457 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, 5458 cmd_flags); 5459 transport_cmd_check_stop(cmd, 1, 0); 5460 complete(&T_TASK(cmd)->transport_lun_fe_stop_comp); 5461 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 5462 continue; 5463 } 5464 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n", 5465 lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd)); 5466 5467 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); 5468 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 5469 } 5470 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 5471 } 5472 5473 static int transport_clear_lun_thread(void *p) 5474 { 5475 struct se_lun *lun = (struct se_lun *)p; 5476 5477 __transport_clear_lun_from_sessions(lun); 5478 complete(&lun->lun_shutdown_comp); 5479 5480 return 0; 5481 } 5482 5483 int transport_clear_lun_from_sessions(struct se_lun *lun) 5484 { 5485 struct task_struct *kt; 5486 5487 kt = kthread_run(transport_clear_lun_thread, (void *)lun, 5488 "tcm_cl_%u", lun->unpacked_lun); 5489 if (IS_ERR(kt)) { 5490 printk(KERN_ERR "Unable to start clear_lun thread\n"); 5491 return -1; 5492 } 5493 wait_for_completion(&lun->lun_shutdown_comp); 5494 5495 return 0; 5496 } 5497 5498 /* transport_generic_wait_for_tasks(): 5499 * 5500 * Called from frontend or passthrough context to wait for storage engine 5501 * to pause and/or release frontend generated struct se_cmd. 5502 */ 5503 static void transport_generic_wait_for_tasks( 5504 struct se_cmd *cmd, 5505 int remove_cmd, 5506 int session_reinstatement) 5507 { 5508 unsigned long flags; 5509 5510 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) 5511 return; 5512 5513 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 5514 /* 5515 * If we are already stopped due to an external event (ie: LUN shutdown) 5516 * sleep until the connection can have the passed struct se_cmd back. 5517 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by 5518 * transport_clear_lun_from_sessions() once the ConfigFS context caller 5519 * has completed its operation on the struct se_cmd. 5520 */ 5521 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) { 5522 5523 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping" 5524 " wait_for_completion(&T_TASK(cmd)transport_lun_fe" 5525 "_stop_comp); for ITT: 0x%08x\n", 5526 CMD_TFO(cmd)->get_task_tag(cmd)); 5527 /* 5528 * There is a special case for WRITES where a FE exception + 5529 * LUN shutdown means ConfigFS context is still sleeping on 5530 * transport_lun_stop_comp in transport_lun_wait_for_tasks(). 5531 * We go ahead and up transport_lun_stop_comp just to be sure 5532 * here. 5533 */ 5534 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 5535 complete(&T_TASK(cmd)->transport_lun_stop_comp); 5536 wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp); 5537 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 5538 5539 transport_all_task_dev_remove_state(cmd); 5540 /* 5541 * At this point, the frontend who was the originator of this 5542 * struct se_cmd, now owns the structure and can be released through 5543 * normal means below. 5544 */ 5545 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped" 5546 " wait_for_completion(&T_TASK(cmd)transport_lun_fe_" 5547 "stop_comp); for ITT: 0x%08x\n", 5548 CMD_TFO(cmd)->get_task_tag(cmd)); 5549 5550 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0); 5551 } 5552 if (!atomic_read(&T_TASK(cmd)->t_transport_active)) 5553 goto remove; 5554 5555 atomic_set(&T_TASK(cmd)->t_transport_stop, 1); 5556 5557 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x" 5558 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop" 5559 " = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd), 5560 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state, 5561 cmd->deferred_t_state); 5562 5563 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 5564 5565 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq); 5566 5567 wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp); 5568 5569 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 5570 atomic_set(&T_TASK(cmd)->t_transport_active, 0); 5571 atomic_set(&T_TASK(cmd)->t_transport_stop, 0); 5572 5573 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion(" 5574 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n", 5575 CMD_TFO(cmd)->get_task_tag(cmd)); 5576 remove: 5577 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 5578 if (!remove_cmd) 5579 return; 5580 5581 transport_generic_free_cmd(cmd, 0, 0, session_reinstatement); 5582 } 5583 5584 static int transport_get_sense_codes( 5585 struct se_cmd *cmd, 5586 u8 *asc, 5587 u8 *ascq) 5588 { 5589 *asc = cmd->scsi_asc; 5590 *ascq = cmd->scsi_ascq; 5591 5592 return 0; 5593 } 5594 5595 static int transport_set_sense_codes( 5596 struct se_cmd *cmd, 5597 u8 asc, 5598 u8 ascq) 5599 { 5600 cmd->scsi_asc = asc; 5601 cmd->scsi_ascq = ascq; 5602 5603 return 0; 5604 } 5605 5606 int transport_send_check_condition_and_sense( 5607 struct se_cmd *cmd, 5608 u8 reason, 5609 int from_transport) 5610 { 5611 unsigned char *buffer = cmd->sense_buffer; 5612 unsigned long flags; 5613 int offset; 5614 u8 asc = 0, ascq = 0; 5615 5616 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 5617 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 5618 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 5619 return 0; 5620 } 5621 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 5622 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); 5623 5624 if (!reason && from_transport) 5625 goto after_reason; 5626 5627 if (!from_transport) 5628 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 5629 /* 5630 * Data Segment and SenseLength of the fabric response PDU. 5631 * 5632 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE 5633 * from include/scsi/scsi_cmnd.h 5634 */ 5635 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd, 5636 TRANSPORT_SENSE_BUFFER); 5637 /* 5638 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 5639 * SENSE KEY values from include/scsi/scsi.h 5640 */ 5641 switch (reason) { 5642 case TCM_NON_EXISTENT_LUN: 5643 case TCM_UNSUPPORTED_SCSI_OPCODE: 5644 case TCM_SECTOR_COUNT_TOO_MANY: 5645 /* CURRENT ERROR */ 5646 buffer[offset] = 0x70; 5647 /* ILLEGAL REQUEST */ 5648 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 5649 /* INVALID COMMAND OPERATION CODE */ 5650 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20; 5651 break; 5652 case TCM_UNKNOWN_MODE_PAGE: 5653 /* CURRENT ERROR */ 5654 buffer[offset] = 0x70; 5655 /* ILLEGAL REQUEST */ 5656 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 5657 /* INVALID FIELD IN CDB */ 5658 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; 5659 break; 5660 case TCM_CHECK_CONDITION_ABORT_CMD: 5661 /* CURRENT ERROR */ 5662 buffer[offset] = 0x70; 5663 /* ABORTED COMMAND */ 5664 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 5665 /* BUS DEVICE RESET FUNCTION OCCURRED */ 5666 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29; 5667 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03; 5668 break; 5669 case TCM_INCORRECT_AMOUNT_OF_DATA: 5670 /* CURRENT ERROR */ 5671 buffer[offset] = 0x70; 5672 /* ABORTED COMMAND */ 5673 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 5674 /* WRITE ERROR */ 5675 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; 5676 /* NOT ENOUGH UNSOLICITED DATA */ 5677 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d; 5678 break; 5679 case TCM_INVALID_CDB_FIELD: 5680 /* CURRENT ERROR */ 5681 buffer[offset] = 0x70; 5682 /* ABORTED COMMAND */ 5683 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 5684 /* INVALID FIELD IN CDB */ 5685 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; 5686 break; 5687 case TCM_INVALID_PARAMETER_LIST: 5688 /* CURRENT ERROR */ 5689 buffer[offset] = 0x70; 5690 /* ABORTED COMMAND */ 5691 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 5692 /* INVALID FIELD IN PARAMETER LIST */ 5693 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26; 5694 break; 5695 case TCM_UNEXPECTED_UNSOLICITED_DATA: 5696 /* CURRENT ERROR */ 5697 buffer[offset] = 0x70; 5698 /* ABORTED COMMAND */ 5699 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 5700 /* WRITE ERROR */ 5701 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; 5702 /* UNEXPECTED_UNSOLICITED_DATA */ 5703 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c; 5704 break; 5705 case TCM_SERVICE_CRC_ERROR: 5706 /* CURRENT ERROR */ 5707 buffer[offset] = 0x70; 5708 /* ABORTED COMMAND */ 5709 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 5710 /* PROTOCOL SERVICE CRC ERROR */ 5711 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47; 5712 /* N/A */ 5713 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05; 5714 break; 5715 case TCM_SNACK_REJECTED: 5716 /* CURRENT ERROR */ 5717 buffer[offset] = 0x70; 5718 /* ABORTED COMMAND */ 5719 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 5720 /* READ ERROR */ 5721 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11; 5722 /* FAILED RETRANSMISSION REQUEST */ 5723 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13; 5724 break; 5725 case TCM_WRITE_PROTECTED: 5726 /* CURRENT ERROR */ 5727 buffer[offset] = 0x70; 5728 /* DATA PROTECT */ 5729 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 5730 /* WRITE PROTECTED */ 5731 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27; 5732 break; 5733 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 5734 /* CURRENT ERROR */ 5735 buffer[offset] = 0x70; 5736 /* UNIT ATTENTION */ 5737 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 5738 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 5739 buffer[offset+SPC_ASC_KEY_OFFSET] = asc; 5740 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; 5741 break; 5742 case TCM_CHECK_CONDITION_NOT_READY: 5743 /* CURRENT ERROR */ 5744 buffer[offset] = 0x70; 5745 /* Not Ready */ 5746 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY; 5747 transport_get_sense_codes(cmd, &asc, &ascq); 5748 buffer[offset+SPC_ASC_KEY_OFFSET] = asc; 5749 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; 5750 break; 5751 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 5752 default: 5753 /* CURRENT ERROR */ 5754 buffer[offset] = 0x70; 5755 /* ILLEGAL REQUEST */ 5756 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 5757 /* LOGICAL UNIT COMMUNICATION FAILURE */ 5758 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80; 5759 break; 5760 } 5761 /* 5762 * This code uses linux/include/scsi/scsi.h SAM status codes! 5763 */ 5764 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 5765 /* 5766 * Automatically padded, this value is encoded in the fabric's 5767 * data_length response PDU containing the SCSI defined sense data. 5768 */ 5769 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset; 5770 5771 after_reason: 5772 CMD_TFO(cmd)->queue_status(cmd); 5773 return 0; 5774 } 5775 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 5776 5777 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 5778 { 5779 int ret = 0; 5780 5781 if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) { 5782 if (!(send_status) || 5783 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 5784 return 1; 5785 #if 0 5786 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED" 5787 " status for CDB: 0x%02x ITT: 0x%08x\n", 5788 T_TASK(cmd)->t_task_cdb[0], 5789 CMD_TFO(cmd)->get_task_tag(cmd)); 5790 #endif 5791 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 5792 CMD_TFO(cmd)->queue_status(cmd); 5793 ret = 1; 5794 } 5795 return ret; 5796 } 5797 EXPORT_SYMBOL(transport_check_aborted_status); 5798 5799 void transport_send_task_abort(struct se_cmd *cmd) 5800 { 5801 /* 5802 * If there are still expected incoming fabric WRITEs, we wait 5803 * until until they have completed before sending a TASK_ABORTED 5804 * response. This response with TASK_ABORTED status will be 5805 * queued back to fabric module by transport_check_aborted_status(). 5806 */ 5807 if (cmd->data_direction == DMA_TO_DEVICE) { 5808 if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) { 5809 atomic_inc(&T_TASK(cmd)->t_transport_aborted); 5810 smp_mb__after_atomic_inc(); 5811 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 5812 transport_new_cmd_failure(cmd); 5813 return; 5814 } 5815 } 5816 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 5817 #if 0 5818 printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 5819 " ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0], 5820 CMD_TFO(cmd)->get_task_tag(cmd)); 5821 #endif 5822 CMD_TFO(cmd)->queue_status(cmd); 5823 } 5824 5825 /* transport_generic_do_tmr(): 5826 * 5827 * 5828 */ 5829 int transport_generic_do_tmr(struct se_cmd *cmd) 5830 { 5831 struct se_cmd *ref_cmd; 5832 struct se_device *dev = SE_DEV(cmd); 5833 struct se_tmr_req *tmr = cmd->se_tmr_req; 5834 int ret; 5835 5836 switch (tmr->function) { 5837 case ABORT_TASK: 5838 ref_cmd = tmr->ref_cmd; 5839 tmr->response = TMR_FUNCTION_REJECTED; 5840 break; 5841 case ABORT_TASK_SET: 5842 case CLEAR_ACA: 5843 case CLEAR_TASK_SET: 5844 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 5845 break; 5846 case LUN_RESET: 5847 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 5848 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 5849 TMR_FUNCTION_REJECTED; 5850 break; 5851 #if 0 5852 case TARGET_WARM_RESET: 5853 transport_generic_host_reset(dev->se_hba); 5854 tmr->response = TMR_FUNCTION_REJECTED; 5855 break; 5856 case TARGET_COLD_RESET: 5857 transport_generic_host_reset(dev->se_hba); 5858 transport_generic_cold_reset(dev->se_hba); 5859 tmr->response = TMR_FUNCTION_REJECTED; 5860 break; 5861 #endif 5862 default: 5863 printk(KERN_ERR "Uknown TMR function: 0x%02x.\n", 5864 tmr->function); 5865 tmr->response = TMR_FUNCTION_REJECTED; 5866 break; 5867 } 5868 5869 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 5870 CMD_TFO(cmd)->queue_tm_rsp(cmd); 5871 5872 transport_cmd_check_stop(cmd, 2, 0); 5873 return 0; 5874 } 5875 5876 /* 5877 * Called with spin_lock_irq(&dev->execute_task_lock); held 5878 * 5879 */ 5880 static struct se_task * 5881 transport_get_task_from_state_list(struct se_device *dev) 5882 { 5883 struct se_task *task; 5884 5885 if (list_empty(&dev->state_task_list)) 5886 return NULL; 5887 5888 list_for_each_entry(task, &dev->state_task_list, t_state_list) 5889 break; 5890 5891 list_del(&task->t_state_list); 5892 atomic_set(&task->task_state_active, 0); 5893 5894 return task; 5895 } 5896 5897 static void transport_processing_shutdown(struct se_device *dev) 5898 { 5899 struct se_cmd *cmd; 5900 struct se_queue_req *qr; 5901 struct se_task *task; 5902 u8 state; 5903 unsigned long flags; 5904 /* 5905 * Empty the struct se_device's struct se_task state list. 5906 */ 5907 spin_lock_irqsave(&dev->execute_task_lock, flags); 5908 while ((task = transport_get_task_from_state_list(dev))) { 5909 if (!(TASK_CMD(task))) { 5910 printk(KERN_ERR "TASK_CMD(task) is NULL!\n"); 5911 continue; 5912 } 5913 cmd = TASK_CMD(task); 5914 5915 if (!T_TASK(cmd)) { 5916 printk(KERN_ERR "T_TASK(cmd) is NULL for task: %p cmd:" 5917 " %p ITT: 0x%08x\n", task, cmd, 5918 CMD_TFO(cmd)->get_task_tag(cmd)); 5919 continue; 5920 } 5921 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 5922 5923 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 5924 5925 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x," 5926 " i_state/def_i_state: %d/%d, t_state/def_t_state:" 5927 " %d/%d cdb: 0x%02x\n", cmd, task, 5928 CMD_TFO(cmd)->get_task_tag(cmd), cmd->cmd_sn, 5929 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->deferred_i_state, 5930 cmd->t_state, cmd->deferred_t_state, 5931 T_TASK(cmd)->t_task_cdb[0]); 5932 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:" 5933 " %d t_task_cdbs_sent: %d -- t_transport_active: %d" 5934 " t_transport_stop: %d t_transport_sent: %d\n", 5935 CMD_TFO(cmd)->get_task_tag(cmd), 5936 T_TASK(cmd)->t_task_cdbs, 5937 atomic_read(&T_TASK(cmd)->t_task_cdbs_left), 5938 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent), 5939 atomic_read(&T_TASK(cmd)->t_transport_active), 5940 atomic_read(&T_TASK(cmd)->t_transport_stop), 5941 atomic_read(&T_TASK(cmd)->t_transport_sent)); 5942 5943 if (atomic_read(&task->task_active)) { 5944 atomic_set(&task->task_stop, 1); 5945 spin_unlock_irqrestore( 5946 &T_TASK(cmd)->t_state_lock, flags); 5947 5948 DEBUG_DO("Waiting for task: %p to shutdown for dev:" 5949 " %p\n", task, dev); 5950 wait_for_completion(&task->task_stop_comp); 5951 DEBUG_DO("Completed task: %p shutdown for dev: %p\n", 5952 task, dev); 5953 5954 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); 5955 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left); 5956 5957 atomic_set(&task->task_active, 0); 5958 atomic_set(&task->task_stop, 0); 5959 } 5960 __transport_stop_task_timer(task, &flags); 5961 5962 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_ex_left))) { 5963 spin_unlock_irqrestore( 5964 &T_TASK(cmd)->t_state_lock, flags); 5965 5966 DEBUG_DO("Skipping task: %p, dev: %p for" 5967 " t_task_cdbs_ex_left: %d\n", task, dev, 5968 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left)); 5969 5970 spin_lock_irqsave(&dev->execute_task_lock, flags); 5971 continue; 5972 } 5973 5974 if (atomic_read(&T_TASK(cmd)->t_transport_active)) { 5975 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:" 5976 " %p\n", task, dev); 5977 5978 if (atomic_read(&T_TASK(cmd)->t_fe_count)) { 5979 spin_unlock_irqrestore( 5980 &T_TASK(cmd)->t_state_lock, flags); 5981 transport_send_check_condition_and_sense( 5982 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 5983 0); 5984 transport_remove_cmd_from_queue(cmd, 5985 SE_DEV(cmd)->dev_queue_obj); 5986 5987 transport_lun_remove_cmd(cmd); 5988 transport_cmd_check_stop(cmd, 1, 0); 5989 } else { 5990 spin_unlock_irqrestore( 5991 &T_TASK(cmd)->t_state_lock, flags); 5992 5993 transport_remove_cmd_from_queue(cmd, 5994 SE_DEV(cmd)->dev_queue_obj); 5995 5996 transport_lun_remove_cmd(cmd); 5997 5998 if (transport_cmd_check_stop(cmd, 1, 0)) 5999 transport_generic_remove(cmd, 0, 0); 6000 } 6001 6002 spin_lock_irqsave(&dev->execute_task_lock, flags); 6003 continue; 6004 } 6005 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n", 6006 task, dev); 6007 6008 if (atomic_read(&T_TASK(cmd)->t_fe_count)) { 6009 spin_unlock_irqrestore( 6010 &T_TASK(cmd)->t_state_lock, flags); 6011 transport_send_check_condition_and_sense(cmd, 6012 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0); 6013 transport_remove_cmd_from_queue(cmd, 6014 SE_DEV(cmd)->dev_queue_obj); 6015 6016 transport_lun_remove_cmd(cmd); 6017 transport_cmd_check_stop(cmd, 1, 0); 6018 } else { 6019 spin_unlock_irqrestore( 6020 &T_TASK(cmd)->t_state_lock, flags); 6021 6022 transport_remove_cmd_from_queue(cmd, 6023 SE_DEV(cmd)->dev_queue_obj); 6024 transport_lun_remove_cmd(cmd); 6025 6026 if (transport_cmd_check_stop(cmd, 1, 0)) 6027 transport_generic_remove(cmd, 0, 0); 6028 } 6029 6030 spin_lock_irqsave(&dev->execute_task_lock, flags); 6031 } 6032 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 6033 /* 6034 * Empty the struct se_device's struct se_cmd list. 6035 */ 6036 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); 6037 while ((qr = __transport_get_qr_from_queue(dev->dev_queue_obj))) { 6038 spin_unlock_irqrestore( 6039 &dev->dev_queue_obj->cmd_queue_lock, flags); 6040 cmd = (struct se_cmd *)qr->cmd; 6041 state = qr->state; 6042 kfree(qr); 6043 6044 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n", 6045 cmd, state); 6046 6047 if (atomic_read(&T_TASK(cmd)->t_fe_count)) { 6048 transport_send_check_condition_and_sense(cmd, 6049 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0); 6050 6051 transport_lun_remove_cmd(cmd); 6052 transport_cmd_check_stop(cmd, 1, 0); 6053 } else { 6054 transport_lun_remove_cmd(cmd); 6055 if (transport_cmd_check_stop(cmd, 1, 0)) 6056 transport_generic_remove(cmd, 0, 0); 6057 } 6058 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); 6059 } 6060 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags); 6061 } 6062 6063 /* transport_processing_thread(): 6064 * 6065 * 6066 */ 6067 static int transport_processing_thread(void *param) 6068 { 6069 int ret, t_state; 6070 struct se_cmd *cmd; 6071 struct se_device *dev = (struct se_device *) param; 6072 struct se_queue_req *qr; 6073 6074 set_user_nice(current, -20); 6075 6076 while (!kthread_should_stop()) { 6077 ret = wait_event_interruptible(dev->dev_queue_obj->thread_wq, 6078 atomic_read(&dev->dev_queue_obj->queue_cnt) || 6079 kthread_should_stop()); 6080 if (ret < 0) 6081 goto out; 6082 6083 spin_lock_irq(&dev->dev_status_lock); 6084 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) { 6085 spin_unlock_irq(&dev->dev_status_lock); 6086 transport_processing_shutdown(dev); 6087 continue; 6088 } 6089 spin_unlock_irq(&dev->dev_status_lock); 6090 6091 get_cmd: 6092 __transport_execute_tasks(dev); 6093 6094 qr = transport_get_qr_from_queue(dev->dev_queue_obj); 6095 if (!(qr)) 6096 continue; 6097 6098 cmd = (struct se_cmd *)qr->cmd; 6099 t_state = qr->state; 6100 kfree(qr); 6101 6102 switch (t_state) { 6103 case TRANSPORT_NEW_CMD_MAP: 6104 if (!(CMD_TFO(cmd)->new_cmd_map)) { 6105 printk(KERN_ERR "CMD_TFO(cmd)->new_cmd_map is" 6106 " NULL for TRANSPORT_NEW_CMD_MAP\n"); 6107 BUG(); 6108 } 6109 ret = CMD_TFO(cmd)->new_cmd_map(cmd); 6110 if (ret < 0) { 6111 cmd->transport_error_status = ret; 6112 transport_generic_request_failure(cmd, NULL, 6113 0, (cmd->data_direction != 6114 DMA_TO_DEVICE)); 6115 break; 6116 } 6117 /* Fall through */ 6118 case TRANSPORT_NEW_CMD: 6119 ret = transport_generic_new_cmd(cmd); 6120 if (ret < 0) { 6121 cmd->transport_error_status = ret; 6122 transport_generic_request_failure(cmd, NULL, 6123 0, (cmd->data_direction != 6124 DMA_TO_DEVICE)); 6125 } 6126 break; 6127 case TRANSPORT_PROCESS_WRITE: 6128 transport_generic_process_write(cmd); 6129 break; 6130 case TRANSPORT_COMPLETE_OK: 6131 transport_stop_all_task_timers(cmd); 6132 transport_generic_complete_ok(cmd); 6133 break; 6134 case TRANSPORT_REMOVE: 6135 transport_generic_remove(cmd, 1, 0); 6136 break; 6137 case TRANSPORT_PROCESS_TMR: 6138 transport_generic_do_tmr(cmd); 6139 break; 6140 case TRANSPORT_COMPLETE_FAILURE: 6141 transport_generic_request_failure(cmd, NULL, 1, 1); 6142 break; 6143 case TRANSPORT_COMPLETE_TIMEOUT: 6144 transport_stop_all_task_timers(cmd); 6145 transport_generic_request_timeout(cmd); 6146 break; 6147 default: 6148 printk(KERN_ERR "Unknown t_state: %d deferred_t_state:" 6149 " %d for ITT: 0x%08x i_state: %d on SE LUN:" 6150 " %u\n", t_state, cmd->deferred_t_state, 6151 CMD_TFO(cmd)->get_task_tag(cmd), 6152 CMD_TFO(cmd)->get_cmd_state(cmd), 6153 SE_LUN(cmd)->unpacked_lun); 6154 BUG(); 6155 } 6156 6157 goto get_cmd; 6158 } 6159 6160 out: 6161 transport_release_all_cmds(dev); 6162 dev->process_thread = NULL; 6163 return 0; 6164 } 6165