xref: /openbmc/linux/drivers/target/target_core_transport.c (revision dcabb06bf127b3e0d3fbc94a2b65dd56c2725851)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3  * Filename:  target_core_transport.c
4  *
5  * This file contains the Generic Target Engine Core.
6  *
7  * (c) Copyright 2002-2013 Datera, Inc.
8  *
9  * Nicholas A. Bellinger <nab@kernel.org>
10  *
11  ******************************************************************************/
12 
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30 
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34 
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42 
43 static struct workqueue_struct *target_completion_wq;
44 static struct kmem_cache *se_sess_cache;
45 struct kmem_cache *se_ua_cache;
46 struct kmem_cache *t10_pr_reg_cache;
47 struct kmem_cache *t10_alua_lu_gp_cache;
48 struct kmem_cache *t10_alua_lu_gp_mem_cache;
49 struct kmem_cache *t10_alua_tg_pt_gp_cache;
50 struct kmem_cache *t10_alua_lba_map_cache;
51 struct kmem_cache *t10_alua_lba_map_mem_cache;
52 
53 static void transport_complete_task_attr(struct se_cmd *cmd);
54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
55 static void transport_handle_queue_full(struct se_cmd *cmd,
56 		struct se_device *dev, int err, bool write_pending);
57 static void target_complete_ok_work(struct work_struct *work);
58 
59 int init_se_kmem_caches(void)
60 {
61 	se_sess_cache = kmem_cache_create("se_sess_cache",
62 			sizeof(struct se_session), __alignof__(struct se_session),
63 			0, NULL);
64 	if (!se_sess_cache) {
65 		pr_err("kmem_cache_create() for struct se_session"
66 				" failed\n");
67 		goto out;
68 	}
69 	se_ua_cache = kmem_cache_create("se_ua_cache",
70 			sizeof(struct se_ua), __alignof__(struct se_ua),
71 			0, NULL);
72 	if (!se_ua_cache) {
73 		pr_err("kmem_cache_create() for struct se_ua failed\n");
74 		goto out_free_sess_cache;
75 	}
76 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
77 			sizeof(struct t10_pr_registration),
78 			__alignof__(struct t10_pr_registration), 0, NULL);
79 	if (!t10_pr_reg_cache) {
80 		pr_err("kmem_cache_create() for struct t10_pr_registration"
81 				" failed\n");
82 		goto out_free_ua_cache;
83 	}
84 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
85 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
86 			0, NULL);
87 	if (!t10_alua_lu_gp_cache) {
88 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
89 				" failed\n");
90 		goto out_free_pr_reg_cache;
91 	}
92 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
93 			sizeof(struct t10_alua_lu_gp_member),
94 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
95 	if (!t10_alua_lu_gp_mem_cache) {
96 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
97 				"cache failed\n");
98 		goto out_free_lu_gp_cache;
99 	}
100 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
101 			sizeof(struct t10_alua_tg_pt_gp),
102 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
103 	if (!t10_alua_tg_pt_gp_cache) {
104 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
105 				"cache failed\n");
106 		goto out_free_lu_gp_mem_cache;
107 	}
108 	t10_alua_lba_map_cache = kmem_cache_create(
109 			"t10_alua_lba_map_cache",
110 			sizeof(struct t10_alua_lba_map),
111 			__alignof__(struct t10_alua_lba_map), 0, NULL);
112 	if (!t10_alua_lba_map_cache) {
113 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
114 				"cache failed\n");
115 		goto out_free_tg_pt_gp_cache;
116 	}
117 	t10_alua_lba_map_mem_cache = kmem_cache_create(
118 			"t10_alua_lba_map_mem_cache",
119 			sizeof(struct t10_alua_lba_map_member),
120 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
121 	if (!t10_alua_lba_map_mem_cache) {
122 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
123 				"cache failed\n");
124 		goto out_free_lba_map_cache;
125 	}
126 
127 	target_completion_wq = alloc_workqueue("target_completion",
128 					       WQ_MEM_RECLAIM, 0);
129 	if (!target_completion_wq)
130 		goto out_free_lba_map_mem_cache;
131 
132 	return 0;
133 
134 out_free_lba_map_mem_cache:
135 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
136 out_free_lba_map_cache:
137 	kmem_cache_destroy(t10_alua_lba_map_cache);
138 out_free_tg_pt_gp_cache:
139 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
140 out_free_lu_gp_mem_cache:
141 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
142 out_free_lu_gp_cache:
143 	kmem_cache_destroy(t10_alua_lu_gp_cache);
144 out_free_pr_reg_cache:
145 	kmem_cache_destroy(t10_pr_reg_cache);
146 out_free_ua_cache:
147 	kmem_cache_destroy(se_ua_cache);
148 out_free_sess_cache:
149 	kmem_cache_destroy(se_sess_cache);
150 out:
151 	return -ENOMEM;
152 }
153 
154 void release_se_kmem_caches(void)
155 {
156 	destroy_workqueue(target_completion_wq);
157 	kmem_cache_destroy(se_sess_cache);
158 	kmem_cache_destroy(se_ua_cache);
159 	kmem_cache_destroy(t10_pr_reg_cache);
160 	kmem_cache_destroy(t10_alua_lu_gp_cache);
161 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
162 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
163 	kmem_cache_destroy(t10_alua_lba_map_cache);
164 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
165 }
166 
167 /* This code ensures unique mib indexes are handed out. */
168 static DEFINE_SPINLOCK(scsi_mib_index_lock);
169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
170 
171 /*
172  * Allocate a new row index for the entry type specified
173  */
174 u32 scsi_get_new_index(scsi_index_t type)
175 {
176 	u32 new_index;
177 
178 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
179 
180 	spin_lock(&scsi_mib_index_lock);
181 	new_index = ++scsi_mib_index[type];
182 	spin_unlock(&scsi_mib_index_lock);
183 
184 	return new_index;
185 }
186 
187 void transport_subsystem_check_init(void)
188 {
189 	int ret;
190 	static int sub_api_initialized;
191 
192 	if (sub_api_initialized)
193 		return;
194 
195 	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
196 	if (ret != 0)
197 		pr_err("Unable to load target_core_iblock\n");
198 
199 	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
200 	if (ret != 0)
201 		pr_err("Unable to load target_core_file\n");
202 
203 	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
204 	if (ret != 0)
205 		pr_err("Unable to load target_core_pscsi\n");
206 
207 	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
208 	if (ret != 0)
209 		pr_err("Unable to load target_core_user\n");
210 
211 	sub_api_initialized = 1;
212 }
213 
214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
215 {
216 	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
217 
218 	wake_up(&sess->cmd_count_wq);
219 }
220 
221 /**
222  * transport_init_session - initialize a session object
223  * @se_sess: Session object pointer.
224  *
225  * The caller must have zero-initialized @se_sess before calling this function.
226  */
227 int transport_init_session(struct se_session *se_sess)
228 {
229 	INIT_LIST_HEAD(&se_sess->sess_list);
230 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
231 	spin_lock_init(&se_sess->sess_cmd_lock);
232 	init_waitqueue_head(&se_sess->cmd_count_wq);
233 	init_completion(&se_sess->stop_done);
234 	atomic_set(&se_sess->stopped, 0);
235 	return percpu_ref_init(&se_sess->cmd_count,
236 			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
237 }
238 EXPORT_SYMBOL(transport_init_session);
239 
240 void transport_uninit_session(struct se_session *se_sess)
241 {
242 	/*
243 	 * Drivers like iscsi and loop do not call target_stop_session
244 	 * during session shutdown so we have to drop the ref taken at init
245 	 * time here.
246 	 */
247 	if (!atomic_read(&se_sess->stopped))
248 		percpu_ref_put(&se_sess->cmd_count);
249 
250 	percpu_ref_exit(&se_sess->cmd_count);
251 }
252 
253 /**
254  * transport_alloc_session - allocate a session object and initialize it
255  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
256  */
257 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
258 {
259 	struct se_session *se_sess;
260 	int ret;
261 
262 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
263 	if (!se_sess) {
264 		pr_err("Unable to allocate struct se_session from"
265 				" se_sess_cache\n");
266 		return ERR_PTR(-ENOMEM);
267 	}
268 	ret = transport_init_session(se_sess);
269 	if (ret < 0) {
270 		kmem_cache_free(se_sess_cache, se_sess);
271 		return ERR_PTR(ret);
272 	}
273 	se_sess->sup_prot_ops = sup_prot_ops;
274 
275 	return se_sess;
276 }
277 EXPORT_SYMBOL(transport_alloc_session);
278 
279 /**
280  * transport_alloc_session_tags - allocate target driver private data
281  * @se_sess:  Session pointer.
282  * @tag_num:  Maximum number of in-flight commands between initiator and target.
283  * @tag_size: Size in bytes of the private data a target driver associates with
284  *	      each command.
285  */
286 int transport_alloc_session_tags(struct se_session *se_sess,
287 			         unsigned int tag_num, unsigned int tag_size)
288 {
289 	int rc;
290 
291 	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
292 					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
293 	if (!se_sess->sess_cmd_map) {
294 		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
295 		return -ENOMEM;
296 	}
297 
298 	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
299 			false, GFP_KERNEL, NUMA_NO_NODE);
300 	if (rc < 0) {
301 		pr_err("Unable to init se_sess->sess_tag_pool,"
302 			" tag_num: %u\n", tag_num);
303 		kvfree(se_sess->sess_cmd_map);
304 		se_sess->sess_cmd_map = NULL;
305 		return -ENOMEM;
306 	}
307 
308 	return 0;
309 }
310 EXPORT_SYMBOL(transport_alloc_session_tags);
311 
312 /**
313  * transport_init_session_tags - allocate a session and target driver private data
314  * @tag_num:  Maximum number of in-flight commands between initiator and target.
315  * @tag_size: Size in bytes of the private data a target driver associates with
316  *	      each command.
317  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
318  */
319 static struct se_session *
320 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
321 			    enum target_prot_op sup_prot_ops)
322 {
323 	struct se_session *se_sess;
324 	int rc;
325 
326 	if (tag_num != 0 && !tag_size) {
327 		pr_err("init_session_tags called with percpu-ida tag_num:"
328 		       " %u, but zero tag_size\n", tag_num);
329 		return ERR_PTR(-EINVAL);
330 	}
331 	if (!tag_num && tag_size) {
332 		pr_err("init_session_tags called with percpu-ida tag_size:"
333 		       " %u, but zero tag_num\n", tag_size);
334 		return ERR_PTR(-EINVAL);
335 	}
336 
337 	se_sess = transport_alloc_session(sup_prot_ops);
338 	if (IS_ERR(se_sess))
339 		return se_sess;
340 
341 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
342 	if (rc < 0) {
343 		transport_free_session(se_sess);
344 		return ERR_PTR(-ENOMEM);
345 	}
346 
347 	return se_sess;
348 }
349 
350 /*
351  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
352  */
353 void __transport_register_session(
354 	struct se_portal_group *se_tpg,
355 	struct se_node_acl *se_nacl,
356 	struct se_session *se_sess,
357 	void *fabric_sess_ptr)
358 {
359 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
360 	unsigned char buf[PR_REG_ISID_LEN];
361 	unsigned long flags;
362 
363 	se_sess->se_tpg = se_tpg;
364 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
365 	/*
366 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
367 	 *
368 	 * Only set for struct se_session's that will actually be moving I/O.
369 	 * eg: *NOT* discovery sessions.
370 	 */
371 	if (se_nacl) {
372 		/*
373 		 *
374 		 * Determine if fabric allows for T10-PI feature bits exposed to
375 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
376 		 *
377 		 * If so, then always save prot_type on a per se_node_acl node
378 		 * basis and re-instate the previous sess_prot_type to avoid
379 		 * disabling PI from below any previously initiator side
380 		 * registered LUNs.
381 		 */
382 		if (se_nacl->saved_prot_type)
383 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
384 		else if (tfo->tpg_check_prot_fabric_only)
385 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
386 					tfo->tpg_check_prot_fabric_only(se_tpg);
387 		/*
388 		 * If the fabric module supports an ISID based TransportID,
389 		 * save this value in binary from the fabric I_T Nexus now.
390 		 */
391 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
392 			memset(&buf[0], 0, PR_REG_ISID_LEN);
393 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
394 					&buf[0], PR_REG_ISID_LEN);
395 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
396 		}
397 
398 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
399 		/*
400 		 * The se_nacl->nacl_sess pointer will be set to the
401 		 * last active I_T Nexus for each struct se_node_acl.
402 		 */
403 		se_nacl->nacl_sess = se_sess;
404 
405 		list_add_tail(&se_sess->sess_acl_list,
406 			      &se_nacl->acl_sess_list);
407 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
408 	}
409 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
410 
411 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
412 		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
413 }
414 EXPORT_SYMBOL(__transport_register_session);
415 
416 void transport_register_session(
417 	struct se_portal_group *se_tpg,
418 	struct se_node_acl *se_nacl,
419 	struct se_session *se_sess,
420 	void *fabric_sess_ptr)
421 {
422 	unsigned long flags;
423 
424 	spin_lock_irqsave(&se_tpg->session_lock, flags);
425 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
426 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
427 }
428 EXPORT_SYMBOL(transport_register_session);
429 
430 struct se_session *
431 target_setup_session(struct se_portal_group *tpg,
432 		     unsigned int tag_num, unsigned int tag_size,
433 		     enum target_prot_op prot_op,
434 		     const char *initiatorname, void *private,
435 		     int (*callback)(struct se_portal_group *,
436 				     struct se_session *, void *))
437 {
438 	struct se_session *sess;
439 
440 	/*
441 	 * If the fabric driver is using percpu-ida based pre allocation
442 	 * of I/O descriptor tags, go ahead and perform that setup now..
443 	 */
444 	if (tag_num != 0)
445 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
446 	else
447 		sess = transport_alloc_session(prot_op);
448 
449 	if (IS_ERR(sess))
450 		return sess;
451 
452 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
453 					(unsigned char *)initiatorname);
454 	if (!sess->se_node_acl) {
455 		transport_free_session(sess);
456 		return ERR_PTR(-EACCES);
457 	}
458 	/*
459 	 * Go ahead and perform any remaining fabric setup that is
460 	 * required before transport_register_session().
461 	 */
462 	if (callback != NULL) {
463 		int rc = callback(tpg, sess, private);
464 		if (rc) {
465 			transport_free_session(sess);
466 			return ERR_PTR(rc);
467 		}
468 	}
469 
470 	transport_register_session(tpg, sess->se_node_acl, sess, private);
471 	return sess;
472 }
473 EXPORT_SYMBOL(target_setup_session);
474 
475 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
476 {
477 	struct se_session *se_sess;
478 	ssize_t len = 0;
479 
480 	spin_lock_bh(&se_tpg->session_lock);
481 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
482 		if (!se_sess->se_node_acl)
483 			continue;
484 		if (!se_sess->se_node_acl->dynamic_node_acl)
485 			continue;
486 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
487 			break;
488 
489 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
490 				se_sess->se_node_acl->initiatorname);
491 		len += 1; /* Include NULL terminator */
492 	}
493 	spin_unlock_bh(&se_tpg->session_lock);
494 
495 	return len;
496 }
497 EXPORT_SYMBOL(target_show_dynamic_sessions);
498 
499 static void target_complete_nacl(struct kref *kref)
500 {
501 	struct se_node_acl *nacl = container_of(kref,
502 				struct se_node_acl, acl_kref);
503 	struct se_portal_group *se_tpg = nacl->se_tpg;
504 
505 	if (!nacl->dynamic_stop) {
506 		complete(&nacl->acl_free_comp);
507 		return;
508 	}
509 
510 	mutex_lock(&se_tpg->acl_node_mutex);
511 	list_del_init(&nacl->acl_list);
512 	mutex_unlock(&se_tpg->acl_node_mutex);
513 
514 	core_tpg_wait_for_nacl_pr_ref(nacl);
515 	core_free_device_list_for_node(nacl, se_tpg);
516 	kfree(nacl);
517 }
518 
519 void target_put_nacl(struct se_node_acl *nacl)
520 {
521 	kref_put(&nacl->acl_kref, target_complete_nacl);
522 }
523 EXPORT_SYMBOL(target_put_nacl);
524 
525 void transport_deregister_session_configfs(struct se_session *se_sess)
526 {
527 	struct se_node_acl *se_nacl;
528 	unsigned long flags;
529 	/*
530 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
531 	 */
532 	se_nacl = se_sess->se_node_acl;
533 	if (se_nacl) {
534 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
535 		if (!list_empty(&se_sess->sess_acl_list))
536 			list_del_init(&se_sess->sess_acl_list);
537 		/*
538 		 * If the session list is empty, then clear the pointer.
539 		 * Otherwise, set the struct se_session pointer from the tail
540 		 * element of the per struct se_node_acl active session list.
541 		 */
542 		if (list_empty(&se_nacl->acl_sess_list))
543 			se_nacl->nacl_sess = NULL;
544 		else {
545 			se_nacl->nacl_sess = container_of(
546 					se_nacl->acl_sess_list.prev,
547 					struct se_session, sess_acl_list);
548 		}
549 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
550 	}
551 }
552 EXPORT_SYMBOL(transport_deregister_session_configfs);
553 
554 void transport_free_session(struct se_session *se_sess)
555 {
556 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
557 
558 	/*
559 	 * Drop the se_node_acl->nacl_kref obtained from within
560 	 * core_tpg_get_initiator_node_acl().
561 	 */
562 	if (se_nacl) {
563 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
564 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
565 		unsigned long flags;
566 
567 		se_sess->se_node_acl = NULL;
568 
569 		/*
570 		 * Also determine if we need to drop the extra ->cmd_kref if
571 		 * it had been previously dynamically generated, and
572 		 * the endpoint is not caching dynamic ACLs.
573 		 */
574 		mutex_lock(&se_tpg->acl_node_mutex);
575 		if (se_nacl->dynamic_node_acl &&
576 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
577 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
578 			if (list_empty(&se_nacl->acl_sess_list))
579 				se_nacl->dynamic_stop = true;
580 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
581 
582 			if (se_nacl->dynamic_stop)
583 				list_del_init(&se_nacl->acl_list);
584 		}
585 		mutex_unlock(&se_tpg->acl_node_mutex);
586 
587 		if (se_nacl->dynamic_stop)
588 			target_put_nacl(se_nacl);
589 
590 		target_put_nacl(se_nacl);
591 	}
592 	if (se_sess->sess_cmd_map) {
593 		sbitmap_queue_free(&se_sess->sess_tag_pool);
594 		kvfree(se_sess->sess_cmd_map);
595 	}
596 	transport_uninit_session(se_sess);
597 	kmem_cache_free(se_sess_cache, se_sess);
598 }
599 EXPORT_SYMBOL(transport_free_session);
600 
601 static int target_release_res(struct se_device *dev, void *data)
602 {
603 	struct se_session *sess = data;
604 
605 	if (dev->reservation_holder == sess)
606 		target_release_reservation(dev);
607 	return 0;
608 }
609 
610 void transport_deregister_session(struct se_session *se_sess)
611 {
612 	struct se_portal_group *se_tpg = se_sess->se_tpg;
613 	unsigned long flags;
614 
615 	if (!se_tpg) {
616 		transport_free_session(se_sess);
617 		return;
618 	}
619 
620 	spin_lock_irqsave(&se_tpg->session_lock, flags);
621 	list_del(&se_sess->sess_list);
622 	se_sess->se_tpg = NULL;
623 	se_sess->fabric_sess_ptr = NULL;
624 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
625 
626 	/*
627 	 * Since the session is being removed, release SPC-2
628 	 * reservations held by the session that is disappearing.
629 	 */
630 	target_for_each_device(target_release_res, se_sess);
631 
632 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
633 		se_tpg->se_tpg_tfo->fabric_name);
634 	/*
635 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
636 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
637 	 * removal context from within transport_free_session() code.
638 	 *
639 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
640 	 * to release all remaining generate_node_acl=1 created ACL resources.
641 	 */
642 
643 	transport_free_session(se_sess);
644 }
645 EXPORT_SYMBOL(transport_deregister_session);
646 
647 void target_remove_session(struct se_session *se_sess)
648 {
649 	transport_deregister_session_configfs(se_sess);
650 	transport_deregister_session(se_sess);
651 }
652 EXPORT_SYMBOL(target_remove_session);
653 
654 static void target_remove_from_state_list(struct se_cmd *cmd)
655 {
656 	struct se_device *dev = cmd->se_dev;
657 	unsigned long flags;
658 
659 	if (!dev)
660 		return;
661 
662 	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
663 	if (cmd->state_active) {
664 		list_del(&cmd->state_list);
665 		cmd->state_active = false;
666 	}
667 	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
668 }
669 
670 /*
671  * This function is called by the target core after the target core has
672  * finished processing a SCSI command or SCSI TMF. Both the regular command
673  * processing code and the code for aborting commands can call this
674  * function. CMD_T_STOP is set if and only if another thread is waiting
675  * inside transport_wait_for_tasks() for t_transport_stop_comp.
676  */
677 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
678 {
679 	unsigned long flags;
680 
681 	target_remove_from_state_list(cmd);
682 
683 	/*
684 	 * Clear struct se_cmd->se_lun before the handoff to FE.
685 	 */
686 	cmd->se_lun = NULL;
687 
688 	spin_lock_irqsave(&cmd->t_state_lock, flags);
689 	/*
690 	 * Determine if frontend context caller is requesting the stopping of
691 	 * this command for frontend exceptions.
692 	 */
693 	if (cmd->transport_state & CMD_T_STOP) {
694 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
695 			__func__, __LINE__, cmd->tag);
696 
697 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
698 
699 		complete_all(&cmd->t_transport_stop_comp);
700 		return 1;
701 	}
702 	cmd->transport_state &= ~CMD_T_ACTIVE;
703 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
704 
705 	/*
706 	 * Some fabric modules like tcm_loop can release their internally
707 	 * allocated I/O reference and struct se_cmd now.
708 	 *
709 	 * Fabric modules are expected to return '1' here if the se_cmd being
710 	 * passed is released at this point, or zero if not being released.
711 	 */
712 	return cmd->se_tfo->check_stop_free(cmd);
713 }
714 
715 static void transport_lun_remove_cmd(struct se_cmd *cmd)
716 {
717 	struct se_lun *lun = cmd->se_lun;
718 
719 	if (!lun)
720 		return;
721 
722 	if (cmpxchg(&cmd->lun_ref_active, true, false))
723 		percpu_ref_put(&lun->lun_ref);
724 }
725 
726 static void target_complete_failure_work(struct work_struct *work)
727 {
728 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
729 
730 	transport_generic_request_failure(cmd,
731 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
732 }
733 
734 /*
735  * Used when asking transport to copy Sense Data from the underlying
736  * Linux/SCSI struct scsi_cmnd
737  */
738 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
739 {
740 	struct se_device *dev = cmd->se_dev;
741 
742 	WARN_ON(!cmd->se_lun);
743 
744 	if (!dev)
745 		return NULL;
746 
747 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
748 		return NULL;
749 
750 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
751 
752 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
753 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
754 	return cmd->sense_buffer;
755 }
756 
757 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
758 {
759 	unsigned char *cmd_sense_buf;
760 	unsigned long flags;
761 
762 	spin_lock_irqsave(&cmd->t_state_lock, flags);
763 	cmd_sense_buf = transport_get_sense_buffer(cmd);
764 	if (!cmd_sense_buf) {
765 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
766 		return;
767 	}
768 
769 	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
770 	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
771 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
772 }
773 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
774 
775 static void target_handle_abort(struct se_cmd *cmd)
776 {
777 	bool tas = cmd->transport_state & CMD_T_TAS;
778 	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
779 	int ret;
780 
781 	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
782 
783 	if (tas) {
784 		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
785 			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
786 			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
787 				 cmd->t_task_cdb[0], cmd->tag);
788 			trace_target_cmd_complete(cmd);
789 			ret = cmd->se_tfo->queue_status(cmd);
790 			if (ret) {
791 				transport_handle_queue_full(cmd, cmd->se_dev,
792 							    ret, false);
793 				return;
794 			}
795 		} else {
796 			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
797 			cmd->se_tfo->queue_tm_rsp(cmd);
798 		}
799 	} else {
800 		/*
801 		 * Allow the fabric driver to unmap any resources before
802 		 * releasing the descriptor via TFO->release_cmd().
803 		 */
804 		cmd->se_tfo->aborted_task(cmd);
805 		if (ack_kref)
806 			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
807 		/*
808 		 * To do: establish a unit attention condition on the I_T
809 		 * nexus associated with cmd. See also the paragraph "Aborting
810 		 * commands" in SAM.
811 		 */
812 	}
813 
814 	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
815 
816 	transport_lun_remove_cmd(cmd);
817 
818 	transport_cmd_check_stop_to_fabric(cmd);
819 }
820 
821 static void target_abort_work(struct work_struct *work)
822 {
823 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
824 
825 	target_handle_abort(cmd);
826 }
827 
828 static bool target_cmd_interrupted(struct se_cmd *cmd)
829 {
830 	int post_ret;
831 
832 	if (cmd->transport_state & CMD_T_ABORTED) {
833 		if (cmd->transport_complete_callback)
834 			cmd->transport_complete_callback(cmd, false, &post_ret);
835 		INIT_WORK(&cmd->work, target_abort_work);
836 		queue_work(target_completion_wq, &cmd->work);
837 		return true;
838 	} else if (cmd->transport_state & CMD_T_STOP) {
839 		if (cmd->transport_complete_callback)
840 			cmd->transport_complete_callback(cmd, false, &post_ret);
841 		complete_all(&cmd->t_transport_stop_comp);
842 		return true;
843 	}
844 
845 	return false;
846 }
847 
848 /* May be called from interrupt context so must not sleep. */
849 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
850 {
851 	int success;
852 	unsigned long flags;
853 
854 	if (target_cmd_interrupted(cmd))
855 		return;
856 
857 	cmd->scsi_status = scsi_status;
858 
859 	spin_lock_irqsave(&cmd->t_state_lock, flags);
860 	switch (cmd->scsi_status) {
861 	case SAM_STAT_CHECK_CONDITION:
862 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
863 			success = 1;
864 		else
865 			success = 0;
866 		break;
867 	default:
868 		success = 1;
869 		break;
870 	}
871 
872 	cmd->t_state = TRANSPORT_COMPLETE;
873 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
874 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
875 
876 	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
877 		  target_complete_failure_work);
878 	queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
879 }
880 EXPORT_SYMBOL(target_complete_cmd);
881 
882 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
883 {
884 	if (length < cmd->data_length) {
885 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
886 			cmd->residual_count += cmd->data_length - length;
887 		} else {
888 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
889 			cmd->residual_count = cmd->data_length - length;
890 		}
891 
892 		cmd->data_length = length;
893 	}
894 }
895 EXPORT_SYMBOL(target_set_cmd_data_length);
896 
897 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
898 {
899 	if (scsi_status == SAM_STAT_GOOD ||
900 	    cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
901 		target_set_cmd_data_length(cmd, length);
902 	}
903 
904 	target_complete_cmd(cmd, scsi_status);
905 }
906 EXPORT_SYMBOL(target_complete_cmd_with_length);
907 
908 static void target_add_to_state_list(struct se_cmd *cmd)
909 {
910 	struct se_device *dev = cmd->se_dev;
911 	unsigned long flags;
912 
913 	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
914 	if (!cmd->state_active) {
915 		list_add_tail(&cmd->state_list,
916 			      &dev->queues[cmd->cpuid].state_list);
917 		cmd->state_active = true;
918 	}
919 	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
920 }
921 
922 /*
923  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
924  */
925 static void transport_write_pending_qf(struct se_cmd *cmd);
926 static void transport_complete_qf(struct se_cmd *cmd);
927 
928 void target_qf_do_work(struct work_struct *work)
929 {
930 	struct se_device *dev = container_of(work, struct se_device,
931 					qf_work_queue);
932 	LIST_HEAD(qf_cmd_list);
933 	struct se_cmd *cmd, *cmd_tmp;
934 
935 	spin_lock_irq(&dev->qf_cmd_lock);
936 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
937 	spin_unlock_irq(&dev->qf_cmd_lock);
938 
939 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
940 		list_del(&cmd->se_qf_node);
941 		atomic_dec_mb(&dev->dev_qf_count);
942 
943 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
944 			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
945 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
946 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
947 			: "UNKNOWN");
948 
949 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
950 			transport_write_pending_qf(cmd);
951 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
952 			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
953 			transport_complete_qf(cmd);
954 	}
955 }
956 
957 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
958 {
959 	switch (cmd->data_direction) {
960 	case DMA_NONE:
961 		return "NONE";
962 	case DMA_FROM_DEVICE:
963 		return "READ";
964 	case DMA_TO_DEVICE:
965 		return "WRITE";
966 	case DMA_BIDIRECTIONAL:
967 		return "BIDI";
968 	default:
969 		break;
970 	}
971 
972 	return "UNKNOWN";
973 }
974 
975 void transport_dump_dev_state(
976 	struct se_device *dev,
977 	char *b,
978 	int *bl)
979 {
980 	*bl += sprintf(b + *bl, "Status: ");
981 	if (dev->export_count)
982 		*bl += sprintf(b + *bl, "ACTIVATED");
983 	else
984 		*bl += sprintf(b + *bl, "DEACTIVATED");
985 
986 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
987 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
988 		dev->dev_attrib.block_size,
989 		dev->dev_attrib.hw_max_sectors);
990 	*bl += sprintf(b + *bl, "        ");
991 }
992 
993 void transport_dump_vpd_proto_id(
994 	struct t10_vpd *vpd,
995 	unsigned char *p_buf,
996 	int p_buf_len)
997 {
998 	unsigned char buf[VPD_TMP_BUF_SIZE];
999 	int len;
1000 
1001 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1002 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1003 
1004 	switch (vpd->protocol_identifier) {
1005 	case 0x00:
1006 		sprintf(buf+len, "Fibre Channel\n");
1007 		break;
1008 	case 0x10:
1009 		sprintf(buf+len, "Parallel SCSI\n");
1010 		break;
1011 	case 0x20:
1012 		sprintf(buf+len, "SSA\n");
1013 		break;
1014 	case 0x30:
1015 		sprintf(buf+len, "IEEE 1394\n");
1016 		break;
1017 	case 0x40:
1018 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1019 				" Protocol\n");
1020 		break;
1021 	case 0x50:
1022 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1023 		break;
1024 	case 0x60:
1025 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1026 		break;
1027 	case 0x70:
1028 		sprintf(buf+len, "Automation/Drive Interface Transport"
1029 				" Protocol\n");
1030 		break;
1031 	case 0x80:
1032 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1033 		break;
1034 	default:
1035 		sprintf(buf+len, "Unknown 0x%02x\n",
1036 				vpd->protocol_identifier);
1037 		break;
1038 	}
1039 
1040 	if (p_buf)
1041 		strncpy(p_buf, buf, p_buf_len);
1042 	else
1043 		pr_debug("%s", buf);
1044 }
1045 
1046 void
1047 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1048 {
1049 	/*
1050 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1051 	 *
1052 	 * from spc3r23.pdf section 7.5.1
1053 	 */
1054 	 if (page_83[1] & 0x80) {
1055 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1056 		vpd->protocol_identifier_set = 1;
1057 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1058 	}
1059 }
1060 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1061 
1062 int transport_dump_vpd_assoc(
1063 	struct t10_vpd *vpd,
1064 	unsigned char *p_buf,
1065 	int p_buf_len)
1066 {
1067 	unsigned char buf[VPD_TMP_BUF_SIZE];
1068 	int ret = 0;
1069 	int len;
1070 
1071 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1072 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1073 
1074 	switch (vpd->association) {
1075 	case 0x00:
1076 		sprintf(buf+len, "addressed logical unit\n");
1077 		break;
1078 	case 0x10:
1079 		sprintf(buf+len, "target port\n");
1080 		break;
1081 	case 0x20:
1082 		sprintf(buf+len, "SCSI target device\n");
1083 		break;
1084 	default:
1085 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1086 		ret = -EINVAL;
1087 		break;
1088 	}
1089 
1090 	if (p_buf)
1091 		strncpy(p_buf, buf, p_buf_len);
1092 	else
1093 		pr_debug("%s", buf);
1094 
1095 	return ret;
1096 }
1097 
1098 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1099 {
1100 	/*
1101 	 * The VPD identification association..
1102 	 *
1103 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1104 	 */
1105 	vpd->association = (page_83[1] & 0x30);
1106 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1107 }
1108 EXPORT_SYMBOL(transport_set_vpd_assoc);
1109 
1110 int transport_dump_vpd_ident_type(
1111 	struct t10_vpd *vpd,
1112 	unsigned char *p_buf,
1113 	int p_buf_len)
1114 {
1115 	unsigned char buf[VPD_TMP_BUF_SIZE];
1116 	int ret = 0;
1117 	int len;
1118 
1119 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1120 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1121 
1122 	switch (vpd->device_identifier_type) {
1123 	case 0x00:
1124 		sprintf(buf+len, "Vendor specific\n");
1125 		break;
1126 	case 0x01:
1127 		sprintf(buf+len, "T10 Vendor ID based\n");
1128 		break;
1129 	case 0x02:
1130 		sprintf(buf+len, "EUI-64 based\n");
1131 		break;
1132 	case 0x03:
1133 		sprintf(buf+len, "NAA\n");
1134 		break;
1135 	case 0x04:
1136 		sprintf(buf+len, "Relative target port identifier\n");
1137 		break;
1138 	case 0x08:
1139 		sprintf(buf+len, "SCSI name string\n");
1140 		break;
1141 	default:
1142 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1143 				vpd->device_identifier_type);
1144 		ret = -EINVAL;
1145 		break;
1146 	}
1147 
1148 	if (p_buf) {
1149 		if (p_buf_len < strlen(buf)+1)
1150 			return -EINVAL;
1151 		strncpy(p_buf, buf, p_buf_len);
1152 	} else {
1153 		pr_debug("%s", buf);
1154 	}
1155 
1156 	return ret;
1157 }
1158 
1159 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1160 {
1161 	/*
1162 	 * The VPD identifier type..
1163 	 *
1164 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1165 	 */
1166 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1167 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1168 }
1169 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1170 
1171 int transport_dump_vpd_ident(
1172 	struct t10_vpd *vpd,
1173 	unsigned char *p_buf,
1174 	int p_buf_len)
1175 {
1176 	unsigned char buf[VPD_TMP_BUF_SIZE];
1177 	int ret = 0;
1178 
1179 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1180 
1181 	switch (vpd->device_identifier_code_set) {
1182 	case 0x01: /* Binary */
1183 		snprintf(buf, sizeof(buf),
1184 			"T10 VPD Binary Device Identifier: %s\n",
1185 			&vpd->device_identifier[0]);
1186 		break;
1187 	case 0x02: /* ASCII */
1188 		snprintf(buf, sizeof(buf),
1189 			"T10 VPD ASCII Device Identifier: %s\n",
1190 			&vpd->device_identifier[0]);
1191 		break;
1192 	case 0x03: /* UTF-8 */
1193 		snprintf(buf, sizeof(buf),
1194 			"T10 VPD UTF-8 Device Identifier: %s\n",
1195 			&vpd->device_identifier[0]);
1196 		break;
1197 	default:
1198 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1199 			" 0x%02x", vpd->device_identifier_code_set);
1200 		ret = -EINVAL;
1201 		break;
1202 	}
1203 
1204 	if (p_buf)
1205 		strncpy(p_buf, buf, p_buf_len);
1206 	else
1207 		pr_debug("%s", buf);
1208 
1209 	return ret;
1210 }
1211 
1212 int
1213 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1214 {
1215 	static const char hex_str[] = "0123456789abcdef";
1216 	int j = 0, i = 4; /* offset to start of the identifier */
1217 
1218 	/*
1219 	 * The VPD Code Set (encoding)
1220 	 *
1221 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1222 	 */
1223 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1224 	switch (vpd->device_identifier_code_set) {
1225 	case 0x01: /* Binary */
1226 		vpd->device_identifier[j++] =
1227 				hex_str[vpd->device_identifier_type];
1228 		while (i < (4 + page_83[3])) {
1229 			vpd->device_identifier[j++] =
1230 				hex_str[(page_83[i] & 0xf0) >> 4];
1231 			vpd->device_identifier[j++] =
1232 				hex_str[page_83[i] & 0x0f];
1233 			i++;
1234 		}
1235 		break;
1236 	case 0x02: /* ASCII */
1237 	case 0x03: /* UTF-8 */
1238 		while (i < (4 + page_83[3]))
1239 			vpd->device_identifier[j++] = page_83[i++];
1240 		break;
1241 	default:
1242 		break;
1243 	}
1244 
1245 	return transport_dump_vpd_ident(vpd, NULL, 0);
1246 }
1247 EXPORT_SYMBOL(transport_set_vpd_ident);
1248 
1249 static sense_reason_t
1250 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1251 			       unsigned int size)
1252 {
1253 	u32 mtl;
1254 
1255 	if (!cmd->se_tfo->max_data_sg_nents)
1256 		return TCM_NO_SENSE;
1257 	/*
1258 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1259 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1260 	 * residual_count and reduce original cmd->data_length to maximum
1261 	 * length based on single PAGE_SIZE entry scatter-lists.
1262 	 */
1263 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1264 	if (cmd->data_length > mtl) {
1265 		/*
1266 		 * If an existing CDB overflow is present, calculate new residual
1267 		 * based on CDB size minus fabric maximum transfer length.
1268 		 *
1269 		 * If an existing CDB underflow is present, calculate new residual
1270 		 * based on original cmd->data_length minus fabric maximum transfer
1271 		 * length.
1272 		 *
1273 		 * Otherwise, set the underflow residual based on cmd->data_length
1274 		 * minus fabric maximum transfer length.
1275 		 */
1276 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1277 			cmd->residual_count = (size - mtl);
1278 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1279 			u32 orig_dl = size + cmd->residual_count;
1280 			cmd->residual_count = (orig_dl - mtl);
1281 		} else {
1282 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1283 			cmd->residual_count = (cmd->data_length - mtl);
1284 		}
1285 		cmd->data_length = mtl;
1286 		/*
1287 		 * Reset sbc_check_prot() calculated protection payload
1288 		 * length based upon the new smaller MTL.
1289 		 */
1290 		if (cmd->prot_length) {
1291 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1292 			cmd->prot_length = dev->prot_length * sectors;
1293 		}
1294 	}
1295 	return TCM_NO_SENSE;
1296 }
1297 
1298 /**
1299  * target_cmd_size_check - Check whether there will be a residual.
1300  * @cmd: SCSI command.
1301  * @size: Data buffer size derived from CDB. The data buffer size provided by
1302  *   the SCSI transport driver is available in @cmd->data_length.
1303  *
1304  * Compare the data buffer size from the CDB with the data buffer limit from the transport
1305  * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1306  *
1307  * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd().
1308  *
1309  * Return: TCM_NO_SENSE
1310  */
1311 sense_reason_t
1312 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1313 {
1314 	struct se_device *dev = cmd->se_dev;
1315 
1316 	if (cmd->unknown_data_length) {
1317 		cmd->data_length = size;
1318 	} else if (size != cmd->data_length) {
1319 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1320 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1321 			" 0x%02x\n", cmd->se_tfo->fabric_name,
1322 				cmd->data_length, size, cmd->t_task_cdb[0]);
1323 		/*
1324 		 * For READ command for the overflow case keep the existing
1325 		 * fabric provided ->data_length. Otherwise for the underflow
1326 		 * case, reset ->data_length to the smaller SCSI expected data
1327 		 * transfer length.
1328 		 */
1329 		if (size > cmd->data_length) {
1330 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1331 			cmd->residual_count = (size - cmd->data_length);
1332 		} else {
1333 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1334 			cmd->residual_count = (cmd->data_length - size);
1335 			/*
1336 			 * Do not truncate ->data_length for WRITE command to
1337 			 * dump all payload
1338 			 */
1339 			if (cmd->data_direction == DMA_FROM_DEVICE) {
1340 				cmd->data_length = size;
1341 			}
1342 		}
1343 
1344 		if (cmd->data_direction == DMA_TO_DEVICE) {
1345 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1346 				pr_err_ratelimited("Rejecting underflow/overflow"
1347 						   " for WRITE data CDB\n");
1348 				return TCM_INVALID_FIELD_IN_COMMAND_IU;
1349 			}
1350 			/*
1351 			 * Some fabric drivers like iscsi-target still expect to
1352 			 * always reject overflow writes.  Reject this case until
1353 			 * full fabric driver level support for overflow writes
1354 			 * is introduced tree-wide.
1355 			 */
1356 			if (size > cmd->data_length) {
1357 				pr_err_ratelimited("Rejecting overflow for"
1358 						   " WRITE control CDB\n");
1359 				return TCM_INVALID_CDB_FIELD;
1360 			}
1361 		}
1362 	}
1363 
1364 	return target_check_max_data_sg_nents(cmd, dev, size);
1365 
1366 }
1367 
1368 /*
1369  * Used by fabric modules containing a local struct se_cmd within their
1370  * fabric dependent per I/O descriptor.
1371  *
1372  * Preserves the value of @cmd->tag.
1373  */
1374 void transport_init_se_cmd(
1375 	struct se_cmd *cmd,
1376 	const struct target_core_fabric_ops *tfo,
1377 	struct se_session *se_sess,
1378 	u32 data_length,
1379 	int data_direction,
1380 	int task_attr,
1381 	unsigned char *sense_buffer, u64 unpacked_lun)
1382 {
1383 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1384 	INIT_LIST_HEAD(&cmd->se_qf_node);
1385 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1386 	INIT_LIST_HEAD(&cmd->state_list);
1387 	init_completion(&cmd->t_transport_stop_comp);
1388 	cmd->free_compl = NULL;
1389 	cmd->abrt_compl = NULL;
1390 	spin_lock_init(&cmd->t_state_lock);
1391 	INIT_WORK(&cmd->work, NULL);
1392 	kref_init(&cmd->cmd_kref);
1393 
1394 	cmd->se_tfo = tfo;
1395 	cmd->se_sess = se_sess;
1396 	cmd->data_length = data_length;
1397 	cmd->data_direction = data_direction;
1398 	cmd->sam_task_attr = task_attr;
1399 	cmd->sense_buffer = sense_buffer;
1400 	cmd->orig_fe_lun = unpacked_lun;
1401 
1402 	if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1403 		cmd->cpuid = smp_processor_id();
1404 
1405 	cmd->state_active = false;
1406 }
1407 EXPORT_SYMBOL(transport_init_se_cmd);
1408 
1409 static sense_reason_t
1410 transport_check_alloc_task_attr(struct se_cmd *cmd)
1411 {
1412 	struct se_device *dev = cmd->se_dev;
1413 
1414 	/*
1415 	 * Check if SAM Task Attribute emulation is enabled for this
1416 	 * struct se_device storage object
1417 	 */
1418 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1419 		return 0;
1420 
1421 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1422 		pr_debug("SAM Task Attribute ACA"
1423 			" emulation is not supported\n");
1424 		return TCM_INVALID_CDB_FIELD;
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 sense_reason_t
1431 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb)
1432 {
1433 	sense_reason_t ret;
1434 
1435 	cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1436 	/*
1437 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1438 	 * for VARIABLE_LENGTH_CMD
1439 	 */
1440 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1441 		pr_err("Received SCSI CDB with command_size: %d that"
1442 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1443 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1444 		ret = TCM_INVALID_CDB_FIELD;
1445 		goto err;
1446 	}
1447 	/*
1448 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1449 	 * allocate the additional extended CDB buffer now..  Otherwise
1450 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1451 	 */
1452 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1453 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1454 						GFP_KERNEL);
1455 		if (!cmd->t_task_cdb) {
1456 			pr_err("Unable to allocate cmd->t_task_cdb"
1457 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1458 				scsi_command_size(cdb),
1459 				(unsigned long)sizeof(cmd->__t_task_cdb));
1460 			ret = TCM_OUT_OF_RESOURCES;
1461 			goto err;
1462 		}
1463 	}
1464 	/*
1465 	 * Copy the original CDB into cmd->
1466 	 */
1467 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1468 
1469 	trace_target_sequencer_start(cmd);
1470 	return 0;
1471 
1472 err:
1473 	/*
1474 	 * Copy the CDB here to allow trace_target_cmd_complete() to
1475 	 * print the cdb to the trace buffers.
1476 	 */
1477 	memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1478 					 (unsigned int)TCM_MAX_COMMAND_SIZE));
1479 	return ret;
1480 }
1481 EXPORT_SYMBOL(target_cmd_init_cdb);
1482 
1483 sense_reason_t
1484 target_cmd_parse_cdb(struct se_cmd *cmd)
1485 {
1486 	struct se_device *dev = cmd->se_dev;
1487 	sense_reason_t ret;
1488 
1489 	ret = dev->transport->parse_cdb(cmd);
1490 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1491 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1492 				    cmd->se_tfo->fabric_name,
1493 				    cmd->se_sess->se_node_acl->initiatorname,
1494 				    cmd->t_task_cdb[0]);
1495 	if (ret)
1496 		return ret;
1497 
1498 	ret = transport_check_alloc_task_attr(cmd);
1499 	if (ret)
1500 		return ret;
1501 
1502 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1503 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1504 	return 0;
1505 }
1506 EXPORT_SYMBOL(target_cmd_parse_cdb);
1507 
1508 /*
1509  * Used by fabric module frontends to queue tasks directly.
1510  * May only be used from process context.
1511  */
1512 int transport_handle_cdb_direct(
1513 	struct se_cmd *cmd)
1514 {
1515 	sense_reason_t ret;
1516 
1517 	might_sleep();
1518 
1519 	if (!cmd->se_lun) {
1520 		dump_stack();
1521 		pr_err("cmd->se_lun is NULL\n");
1522 		return -EINVAL;
1523 	}
1524 
1525 	/*
1526 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1527 	 * outstanding descriptors are handled correctly during shutdown via
1528 	 * transport_wait_for_tasks()
1529 	 *
1530 	 * Also, we don't take cmd->t_state_lock here as we only expect
1531 	 * this to be called for initial descriptor submission.
1532 	 */
1533 	cmd->t_state = TRANSPORT_NEW_CMD;
1534 	cmd->transport_state |= CMD_T_ACTIVE;
1535 
1536 	/*
1537 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1538 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1539 	 * and call transport_generic_request_failure() if necessary..
1540 	 */
1541 	ret = transport_generic_new_cmd(cmd);
1542 	if (ret)
1543 		transport_generic_request_failure(cmd, ret);
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL(transport_handle_cdb_direct);
1547 
1548 sense_reason_t
1549 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1550 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1551 {
1552 	if (!sgl || !sgl_count)
1553 		return 0;
1554 
1555 	/*
1556 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1557 	 * scatterlists already have been set to follow what the fabric
1558 	 * passes for the original expected data transfer length.
1559 	 */
1560 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1561 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1562 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1563 		return TCM_INVALID_CDB_FIELD;
1564 	}
1565 
1566 	cmd->t_data_sg = sgl;
1567 	cmd->t_data_nents = sgl_count;
1568 	cmd->t_bidi_data_sg = sgl_bidi;
1569 	cmd->t_bidi_data_nents = sgl_bidi_count;
1570 
1571 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1572 	return 0;
1573 }
1574 
1575 /**
1576  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1577  * 			 se_cmd + use pre-allocated SGL memory.
1578  *
1579  * @se_cmd: command descriptor to submit
1580  * @se_sess: associated se_sess for endpoint
1581  * @cdb: pointer to SCSI CDB
1582  * @sense: pointer to SCSI sense buffer
1583  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1584  * @data_length: fabric expected data transfer length
1585  * @task_attr: SAM task attribute
1586  * @data_dir: DMA data direction
1587  * @flags: flags for command submission from target_sc_flags_tables
1588  * @sgl: struct scatterlist memory for unidirectional mapping
1589  * @sgl_count: scatterlist count for unidirectional mapping
1590  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1591  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1592  * @sgl_prot: struct scatterlist memory protection information
1593  * @sgl_prot_count: scatterlist count for protection information
1594  *
1595  * Task tags are supported if the caller has set @se_cmd->tag.
1596  *
1597  * Returns non zero to signal active I/O shutdown failure.  All other
1598  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1599  * but still return zero here.
1600  *
1601  * This may only be called from process context, and also currently
1602  * assumes internal allocation of fabric payload buffer by target-core.
1603  */
1604 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1605 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1606 		u32 data_length, int task_attr, int data_dir, int flags,
1607 		struct scatterlist *sgl, u32 sgl_count,
1608 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1609 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1610 {
1611 	struct se_portal_group *se_tpg;
1612 	sense_reason_t rc;
1613 	int ret;
1614 
1615 	might_sleep();
1616 
1617 	se_tpg = se_sess->se_tpg;
1618 	BUG_ON(!se_tpg);
1619 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1620 
1621 	if (flags & TARGET_SCF_USE_CPUID)
1622 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1623 	/*
1624 	 * Initialize se_cmd for target operation.  From this point
1625 	 * exceptions are handled by sending exception status via
1626 	 * target_core_fabric_ops->queue_status() callback
1627 	 */
1628 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1629 				data_length, data_dir, task_attr, sense,
1630 				unpacked_lun);
1631 
1632 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1633 		se_cmd->unknown_data_length = 1;
1634 	/*
1635 	 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1636 	 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1637 	 * kref_put() to happen during fabric packet acknowledgement.
1638 	 */
1639 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1640 	if (ret)
1641 		return ret;
1642 	/*
1643 	 * Signal bidirectional data payloads to target-core
1644 	 */
1645 	if (flags & TARGET_SCF_BIDI_OP)
1646 		se_cmd->se_cmd_flags |= SCF_BIDI;
1647 
1648 	rc = target_cmd_init_cdb(se_cmd, cdb);
1649 	if (rc) {
1650 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1651 		target_put_sess_cmd(se_cmd);
1652 		return 0;
1653 	}
1654 
1655 	/*
1656 	 * Locate se_lun pointer and attach it to struct se_cmd
1657 	 */
1658 	rc = transport_lookup_cmd_lun(se_cmd);
1659 	if (rc) {
1660 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1661 		target_put_sess_cmd(se_cmd);
1662 		return 0;
1663 	}
1664 
1665 	rc = target_cmd_parse_cdb(se_cmd);
1666 	if (rc != 0) {
1667 		transport_generic_request_failure(se_cmd, rc);
1668 		return 0;
1669 	}
1670 
1671 	/*
1672 	 * Save pointers for SGLs containing protection information,
1673 	 * if present.
1674 	 */
1675 	if (sgl_prot_count) {
1676 		se_cmd->t_prot_sg = sgl_prot;
1677 		se_cmd->t_prot_nents = sgl_prot_count;
1678 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1679 	}
1680 
1681 	/*
1682 	 * When a non zero sgl_count has been passed perform SGL passthrough
1683 	 * mapping for pre-allocated fabric memory instead of having target
1684 	 * core perform an internal SGL allocation..
1685 	 */
1686 	if (sgl_count != 0) {
1687 		BUG_ON(!sgl);
1688 
1689 		/*
1690 		 * A work-around for tcm_loop as some userspace code via
1691 		 * scsi-generic do not memset their associated read buffers,
1692 		 * so go ahead and do that here for type non-data CDBs.  Also
1693 		 * note that this is currently guaranteed to be a single SGL
1694 		 * for this case by target core in target_setup_cmd_from_cdb()
1695 		 * -> transport_generic_cmd_sequencer().
1696 		 */
1697 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1698 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1699 			unsigned char *buf = NULL;
1700 
1701 			if (sgl)
1702 				buf = kmap(sg_page(sgl)) + sgl->offset;
1703 
1704 			if (buf) {
1705 				memset(buf, 0, sgl->length);
1706 				kunmap(sg_page(sgl));
1707 			}
1708 		}
1709 
1710 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1711 				sgl_bidi, sgl_bidi_count);
1712 		if (rc != 0) {
1713 			transport_generic_request_failure(se_cmd, rc);
1714 			return 0;
1715 		}
1716 	}
1717 
1718 	/*
1719 	 * Check if we need to delay processing because of ALUA
1720 	 * Active/NonOptimized primary access state..
1721 	 */
1722 	core_alua_check_nonop_delay(se_cmd);
1723 
1724 	transport_handle_cdb_direct(se_cmd);
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1728 
1729 /**
1730  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1731  *
1732  * @se_cmd: command descriptor to submit
1733  * @se_sess: associated se_sess for endpoint
1734  * @cdb: pointer to SCSI CDB
1735  * @sense: pointer to SCSI sense buffer
1736  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1737  * @data_length: fabric expected data transfer length
1738  * @task_attr: SAM task attribute
1739  * @data_dir: DMA data direction
1740  * @flags: flags for command submission from target_sc_flags_tables
1741  *
1742  * Task tags are supported if the caller has set @se_cmd->tag.
1743  *
1744  * Returns non zero to signal active I/O shutdown failure.  All other
1745  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1746  * but still return zero here.
1747  *
1748  * This may only be called from process context, and also currently
1749  * assumes internal allocation of fabric payload buffer by target-core.
1750  *
1751  * It also assumes interal target core SGL memory allocation.
1752  */
1753 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1754 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1755 		u32 data_length, int task_attr, int data_dir, int flags)
1756 {
1757 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1758 			unpacked_lun, data_length, task_attr, data_dir,
1759 			flags, NULL, 0, NULL, 0, NULL, 0);
1760 }
1761 EXPORT_SYMBOL(target_submit_cmd);
1762 
1763 static void target_complete_tmr_failure(struct work_struct *work)
1764 {
1765 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1766 
1767 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1768 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1769 
1770 	transport_lun_remove_cmd(se_cmd);
1771 	transport_cmd_check_stop_to_fabric(se_cmd);
1772 }
1773 
1774 /**
1775  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1776  *                     for TMR CDBs
1777  *
1778  * @se_cmd: command descriptor to submit
1779  * @se_sess: associated se_sess for endpoint
1780  * @sense: pointer to SCSI sense buffer
1781  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1782  * @fabric_tmr_ptr: fabric context for TMR req
1783  * @tm_type: Type of TM request
1784  * @gfp: gfp type for caller
1785  * @tag: referenced task tag for TMR_ABORT_TASK
1786  * @flags: submit cmd flags
1787  *
1788  * Callable from all contexts.
1789  **/
1790 
1791 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1792 		unsigned char *sense, u64 unpacked_lun,
1793 		void *fabric_tmr_ptr, unsigned char tm_type,
1794 		gfp_t gfp, u64 tag, int flags)
1795 {
1796 	struct se_portal_group *se_tpg;
1797 	int ret;
1798 
1799 	se_tpg = se_sess->se_tpg;
1800 	BUG_ON(!se_tpg);
1801 
1802 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1803 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1804 	/*
1805 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1806 	 * allocation failure.
1807 	 */
1808 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1809 	if (ret < 0)
1810 		return -ENOMEM;
1811 
1812 	if (tm_type == TMR_ABORT_TASK)
1813 		se_cmd->se_tmr_req->ref_task_tag = tag;
1814 
1815 	/* See target_submit_cmd for commentary */
1816 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1817 	if (ret) {
1818 		core_tmr_release_req(se_cmd->se_tmr_req);
1819 		return ret;
1820 	}
1821 
1822 	ret = transport_lookup_tmr_lun(se_cmd);
1823 	if (ret)
1824 		goto failure;
1825 
1826 	transport_generic_handle_tmr(se_cmd);
1827 	return 0;
1828 
1829 	/*
1830 	 * For callback during failure handling, push this work off
1831 	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1832 	 */
1833 failure:
1834 	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1835 	schedule_work(&se_cmd->work);
1836 	return 0;
1837 }
1838 EXPORT_SYMBOL(target_submit_tmr);
1839 
1840 /*
1841  * Handle SAM-esque emulation for generic transport request failures.
1842  */
1843 void transport_generic_request_failure(struct se_cmd *cmd,
1844 		sense_reason_t sense_reason)
1845 {
1846 	int ret = 0, post_ret;
1847 
1848 	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1849 		 sense_reason);
1850 	target_show_cmd("-----[ ", cmd);
1851 
1852 	/*
1853 	 * For SAM Task Attribute emulation for failed struct se_cmd
1854 	 */
1855 	transport_complete_task_attr(cmd);
1856 
1857 	if (cmd->transport_complete_callback)
1858 		cmd->transport_complete_callback(cmd, false, &post_ret);
1859 
1860 	if (cmd->transport_state & CMD_T_ABORTED) {
1861 		INIT_WORK(&cmd->work, target_abort_work);
1862 		queue_work(target_completion_wq, &cmd->work);
1863 		return;
1864 	}
1865 
1866 	switch (sense_reason) {
1867 	case TCM_NON_EXISTENT_LUN:
1868 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1869 	case TCM_INVALID_CDB_FIELD:
1870 	case TCM_INVALID_PARAMETER_LIST:
1871 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1872 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1873 	case TCM_UNKNOWN_MODE_PAGE:
1874 	case TCM_WRITE_PROTECTED:
1875 	case TCM_ADDRESS_OUT_OF_RANGE:
1876 	case TCM_CHECK_CONDITION_ABORT_CMD:
1877 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1878 	case TCM_CHECK_CONDITION_NOT_READY:
1879 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1880 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1881 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1882 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1883 	case TCM_TOO_MANY_TARGET_DESCS:
1884 	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1885 	case TCM_TOO_MANY_SEGMENT_DESCS:
1886 	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1887 	case TCM_INVALID_FIELD_IN_COMMAND_IU:
1888 		break;
1889 	case TCM_OUT_OF_RESOURCES:
1890 		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1891 		goto queue_status;
1892 	case TCM_LUN_BUSY:
1893 		cmd->scsi_status = SAM_STAT_BUSY;
1894 		goto queue_status;
1895 	case TCM_RESERVATION_CONFLICT:
1896 		/*
1897 		 * No SENSE Data payload for this case, set SCSI Status
1898 		 * and queue the response to $FABRIC_MOD.
1899 		 *
1900 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1901 		 */
1902 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1903 		/*
1904 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1905 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1906 		 * CONFLICT STATUS.
1907 		 *
1908 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1909 		 */
1910 		if (cmd->se_sess &&
1911 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
1912 					== TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
1913 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1914 					       cmd->orig_fe_lun, 0x2C,
1915 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1916 		}
1917 
1918 		goto queue_status;
1919 	default:
1920 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1921 			cmd->t_task_cdb[0], sense_reason);
1922 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1923 		break;
1924 	}
1925 
1926 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1927 	if (ret)
1928 		goto queue_full;
1929 
1930 check_stop:
1931 	transport_lun_remove_cmd(cmd);
1932 	transport_cmd_check_stop_to_fabric(cmd);
1933 	return;
1934 
1935 queue_status:
1936 	trace_target_cmd_complete(cmd);
1937 	ret = cmd->se_tfo->queue_status(cmd);
1938 	if (!ret)
1939 		goto check_stop;
1940 queue_full:
1941 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1942 }
1943 EXPORT_SYMBOL(transport_generic_request_failure);
1944 
1945 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1946 {
1947 	sense_reason_t ret;
1948 
1949 	if (!cmd->execute_cmd) {
1950 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1951 		goto err;
1952 	}
1953 	if (do_checks) {
1954 		/*
1955 		 * Check for an existing UNIT ATTENTION condition after
1956 		 * target_handle_task_attr() has done SAM task attr
1957 		 * checking, and possibly have already defered execution
1958 		 * out to target_restart_delayed_cmds() context.
1959 		 */
1960 		ret = target_scsi3_ua_check(cmd);
1961 		if (ret)
1962 			goto err;
1963 
1964 		ret = target_alua_state_check(cmd);
1965 		if (ret)
1966 			goto err;
1967 
1968 		ret = target_check_reservation(cmd);
1969 		if (ret) {
1970 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1971 			goto err;
1972 		}
1973 	}
1974 
1975 	ret = cmd->execute_cmd(cmd);
1976 	if (!ret)
1977 		return;
1978 err:
1979 	spin_lock_irq(&cmd->t_state_lock);
1980 	cmd->transport_state &= ~CMD_T_SENT;
1981 	spin_unlock_irq(&cmd->t_state_lock);
1982 
1983 	transport_generic_request_failure(cmd, ret);
1984 }
1985 
1986 static int target_write_prot_action(struct se_cmd *cmd)
1987 {
1988 	u32 sectors;
1989 	/*
1990 	 * Perform WRITE_INSERT of PI using software emulation when backend
1991 	 * device has PI enabled, if the transport has not already generated
1992 	 * PI using hardware WRITE_INSERT offload.
1993 	 */
1994 	switch (cmd->prot_op) {
1995 	case TARGET_PROT_DOUT_INSERT:
1996 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1997 			sbc_dif_generate(cmd);
1998 		break;
1999 	case TARGET_PROT_DOUT_STRIP:
2000 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2001 			break;
2002 
2003 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2004 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2005 					     sectors, 0, cmd->t_prot_sg, 0);
2006 		if (unlikely(cmd->pi_err)) {
2007 			spin_lock_irq(&cmd->t_state_lock);
2008 			cmd->transport_state &= ~CMD_T_SENT;
2009 			spin_unlock_irq(&cmd->t_state_lock);
2010 			transport_generic_request_failure(cmd, cmd->pi_err);
2011 			return -1;
2012 		}
2013 		break;
2014 	default:
2015 		break;
2016 	}
2017 
2018 	return 0;
2019 }
2020 
2021 static bool target_handle_task_attr(struct se_cmd *cmd)
2022 {
2023 	struct se_device *dev = cmd->se_dev;
2024 
2025 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2026 		return false;
2027 
2028 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2029 
2030 	/*
2031 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2032 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
2033 	 */
2034 	switch (cmd->sam_task_attr) {
2035 	case TCM_HEAD_TAG:
2036 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2037 			 cmd->t_task_cdb[0]);
2038 		return false;
2039 	case TCM_ORDERED_TAG:
2040 		atomic_inc_mb(&dev->dev_ordered_sync);
2041 
2042 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2043 			 cmd->t_task_cdb[0]);
2044 
2045 		/*
2046 		 * Execute an ORDERED command if no other older commands
2047 		 * exist that need to be completed first.
2048 		 */
2049 		if (!atomic_read(&dev->simple_cmds))
2050 			return false;
2051 		break;
2052 	default:
2053 		/*
2054 		 * For SIMPLE and UNTAGGED Task Attribute commands
2055 		 */
2056 		atomic_inc_mb(&dev->simple_cmds);
2057 		break;
2058 	}
2059 
2060 	if (atomic_read(&dev->dev_ordered_sync) == 0)
2061 		return false;
2062 
2063 	spin_lock(&dev->delayed_cmd_lock);
2064 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2065 	spin_unlock(&dev->delayed_cmd_lock);
2066 
2067 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2068 		cmd->t_task_cdb[0], cmd->sam_task_attr);
2069 	return true;
2070 }
2071 
2072 void target_execute_cmd(struct se_cmd *cmd)
2073 {
2074 	/*
2075 	 * Determine if frontend context caller is requesting the stopping of
2076 	 * this command for frontend exceptions.
2077 	 *
2078 	 * If the received CDB has already been aborted stop processing it here.
2079 	 */
2080 	if (target_cmd_interrupted(cmd))
2081 		return;
2082 
2083 	spin_lock_irq(&cmd->t_state_lock);
2084 	cmd->t_state = TRANSPORT_PROCESSING;
2085 	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2086 	spin_unlock_irq(&cmd->t_state_lock);
2087 
2088 	if (target_write_prot_action(cmd))
2089 		return;
2090 
2091 	if (target_handle_task_attr(cmd)) {
2092 		spin_lock_irq(&cmd->t_state_lock);
2093 		cmd->transport_state &= ~CMD_T_SENT;
2094 		spin_unlock_irq(&cmd->t_state_lock);
2095 		return;
2096 	}
2097 
2098 	__target_execute_cmd(cmd, true);
2099 }
2100 EXPORT_SYMBOL(target_execute_cmd);
2101 
2102 /*
2103  * Process all commands up to the last received ORDERED task attribute which
2104  * requires another blocking boundary
2105  */
2106 static void target_restart_delayed_cmds(struct se_device *dev)
2107 {
2108 	for (;;) {
2109 		struct se_cmd *cmd;
2110 
2111 		spin_lock(&dev->delayed_cmd_lock);
2112 		if (list_empty(&dev->delayed_cmd_list)) {
2113 			spin_unlock(&dev->delayed_cmd_lock);
2114 			break;
2115 		}
2116 
2117 		cmd = list_entry(dev->delayed_cmd_list.next,
2118 				 struct se_cmd, se_delayed_node);
2119 		list_del(&cmd->se_delayed_node);
2120 		spin_unlock(&dev->delayed_cmd_lock);
2121 
2122 		cmd->transport_state |= CMD_T_SENT;
2123 
2124 		__target_execute_cmd(cmd, true);
2125 
2126 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2127 			break;
2128 	}
2129 }
2130 
2131 /*
2132  * Called from I/O completion to determine which dormant/delayed
2133  * and ordered cmds need to have their tasks added to the execution queue.
2134  */
2135 static void transport_complete_task_attr(struct se_cmd *cmd)
2136 {
2137 	struct se_device *dev = cmd->se_dev;
2138 
2139 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2140 		return;
2141 
2142 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2143 		goto restart;
2144 
2145 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2146 		atomic_dec_mb(&dev->simple_cmds);
2147 		dev->dev_cur_ordered_id++;
2148 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2149 		dev->dev_cur_ordered_id++;
2150 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2151 			 dev->dev_cur_ordered_id);
2152 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2153 		atomic_dec_mb(&dev->dev_ordered_sync);
2154 
2155 		dev->dev_cur_ordered_id++;
2156 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2157 			 dev->dev_cur_ordered_id);
2158 	}
2159 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2160 
2161 restart:
2162 	target_restart_delayed_cmds(dev);
2163 }
2164 
2165 static void transport_complete_qf(struct se_cmd *cmd)
2166 {
2167 	int ret = 0;
2168 
2169 	transport_complete_task_attr(cmd);
2170 	/*
2171 	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2172 	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2173 	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2174 	 * if a scsi_status is not already set.
2175 	 *
2176 	 * If a fabric driver ->queue_status() has returned non zero, always
2177 	 * keep retrying no matter what..
2178 	 */
2179 	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2180 		if (cmd->scsi_status)
2181 			goto queue_status;
2182 
2183 		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2184 		goto queue_status;
2185 	}
2186 
2187 	/*
2188 	 * Check if we need to send a sense buffer from
2189 	 * the struct se_cmd in question. We do NOT want
2190 	 * to take this path of the IO has been marked as
2191 	 * needing to be treated like a "normal read". This
2192 	 * is the case if it's a tape read, and either the
2193 	 * FM, EOM, or ILI bits are set, but there is no
2194 	 * sense data.
2195 	 */
2196 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2197 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2198 		goto queue_status;
2199 
2200 	switch (cmd->data_direction) {
2201 	case DMA_FROM_DEVICE:
2202 		/* queue status if not treating this as a normal read */
2203 		if (cmd->scsi_status &&
2204 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2205 			goto queue_status;
2206 
2207 		trace_target_cmd_complete(cmd);
2208 		ret = cmd->se_tfo->queue_data_in(cmd);
2209 		break;
2210 	case DMA_TO_DEVICE:
2211 		if (cmd->se_cmd_flags & SCF_BIDI) {
2212 			ret = cmd->se_tfo->queue_data_in(cmd);
2213 			break;
2214 		}
2215 		fallthrough;
2216 	case DMA_NONE:
2217 queue_status:
2218 		trace_target_cmd_complete(cmd);
2219 		ret = cmd->se_tfo->queue_status(cmd);
2220 		break;
2221 	default:
2222 		break;
2223 	}
2224 
2225 	if (ret < 0) {
2226 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2227 		return;
2228 	}
2229 	transport_lun_remove_cmd(cmd);
2230 	transport_cmd_check_stop_to_fabric(cmd);
2231 }
2232 
2233 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2234 					int err, bool write_pending)
2235 {
2236 	/*
2237 	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2238 	 * ->queue_data_in() callbacks from new process context.
2239 	 *
2240 	 * Otherwise for other errors, transport_complete_qf() will send
2241 	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2242 	 * retry associated fabric driver data-transfer callbacks.
2243 	 */
2244 	if (err == -EAGAIN || err == -ENOMEM) {
2245 		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2246 						 TRANSPORT_COMPLETE_QF_OK;
2247 	} else {
2248 		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2249 		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2250 	}
2251 
2252 	spin_lock_irq(&dev->qf_cmd_lock);
2253 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2254 	atomic_inc_mb(&dev->dev_qf_count);
2255 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2256 
2257 	schedule_work(&cmd->se_dev->qf_work_queue);
2258 }
2259 
2260 static bool target_read_prot_action(struct se_cmd *cmd)
2261 {
2262 	switch (cmd->prot_op) {
2263 	case TARGET_PROT_DIN_STRIP:
2264 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2265 			u32 sectors = cmd->data_length >>
2266 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2267 
2268 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2269 						     sectors, 0, cmd->t_prot_sg,
2270 						     0);
2271 			if (cmd->pi_err)
2272 				return true;
2273 		}
2274 		break;
2275 	case TARGET_PROT_DIN_INSERT:
2276 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2277 			break;
2278 
2279 		sbc_dif_generate(cmd);
2280 		break;
2281 	default:
2282 		break;
2283 	}
2284 
2285 	return false;
2286 }
2287 
2288 static void target_complete_ok_work(struct work_struct *work)
2289 {
2290 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2291 	int ret;
2292 
2293 	/*
2294 	 * Check if we need to move delayed/dormant tasks from cmds on the
2295 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2296 	 * Attribute.
2297 	 */
2298 	transport_complete_task_attr(cmd);
2299 
2300 	/*
2301 	 * Check to schedule QUEUE_FULL work, or execute an existing
2302 	 * cmd->transport_qf_callback()
2303 	 */
2304 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2305 		schedule_work(&cmd->se_dev->qf_work_queue);
2306 
2307 	/*
2308 	 * Check if we need to send a sense buffer from
2309 	 * the struct se_cmd in question. We do NOT want
2310 	 * to take this path of the IO has been marked as
2311 	 * needing to be treated like a "normal read". This
2312 	 * is the case if it's a tape read, and either the
2313 	 * FM, EOM, or ILI bits are set, but there is no
2314 	 * sense data.
2315 	 */
2316 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2317 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2318 		WARN_ON(!cmd->scsi_status);
2319 		ret = transport_send_check_condition_and_sense(
2320 					cmd, 0, 1);
2321 		if (ret)
2322 			goto queue_full;
2323 
2324 		transport_lun_remove_cmd(cmd);
2325 		transport_cmd_check_stop_to_fabric(cmd);
2326 		return;
2327 	}
2328 	/*
2329 	 * Check for a callback, used by amongst other things
2330 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2331 	 */
2332 	if (cmd->transport_complete_callback) {
2333 		sense_reason_t rc;
2334 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2335 		bool zero_dl = !(cmd->data_length);
2336 		int post_ret = 0;
2337 
2338 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2339 		if (!rc && !post_ret) {
2340 			if (caw && zero_dl)
2341 				goto queue_rsp;
2342 
2343 			return;
2344 		} else if (rc) {
2345 			ret = transport_send_check_condition_and_sense(cmd,
2346 						rc, 0);
2347 			if (ret)
2348 				goto queue_full;
2349 
2350 			transport_lun_remove_cmd(cmd);
2351 			transport_cmd_check_stop_to_fabric(cmd);
2352 			return;
2353 		}
2354 	}
2355 
2356 queue_rsp:
2357 	switch (cmd->data_direction) {
2358 	case DMA_FROM_DEVICE:
2359 		/*
2360 		 * if this is a READ-type IO, but SCSI status
2361 		 * is set, then skip returning data and just
2362 		 * return the status -- unless this IO is marked
2363 		 * as needing to be treated as a normal read,
2364 		 * in which case we want to go ahead and return
2365 		 * the data. This happens, for example, for tape
2366 		 * reads with the FM, EOM, or ILI bits set, with
2367 		 * no sense data.
2368 		 */
2369 		if (cmd->scsi_status &&
2370 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2371 			goto queue_status;
2372 
2373 		atomic_long_add(cmd->data_length,
2374 				&cmd->se_lun->lun_stats.tx_data_octets);
2375 		/*
2376 		 * Perform READ_STRIP of PI using software emulation when
2377 		 * backend had PI enabled, if the transport will not be
2378 		 * performing hardware READ_STRIP offload.
2379 		 */
2380 		if (target_read_prot_action(cmd)) {
2381 			ret = transport_send_check_condition_and_sense(cmd,
2382 						cmd->pi_err, 0);
2383 			if (ret)
2384 				goto queue_full;
2385 
2386 			transport_lun_remove_cmd(cmd);
2387 			transport_cmd_check_stop_to_fabric(cmd);
2388 			return;
2389 		}
2390 
2391 		trace_target_cmd_complete(cmd);
2392 		ret = cmd->se_tfo->queue_data_in(cmd);
2393 		if (ret)
2394 			goto queue_full;
2395 		break;
2396 	case DMA_TO_DEVICE:
2397 		atomic_long_add(cmd->data_length,
2398 				&cmd->se_lun->lun_stats.rx_data_octets);
2399 		/*
2400 		 * Check if we need to send READ payload for BIDI-COMMAND
2401 		 */
2402 		if (cmd->se_cmd_flags & SCF_BIDI) {
2403 			atomic_long_add(cmd->data_length,
2404 					&cmd->se_lun->lun_stats.tx_data_octets);
2405 			ret = cmd->se_tfo->queue_data_in(cmd);
2406 			if (ret)
2407 				goto queue_full;
2408 			break;
2409 		}
2410 		fallthrough;
2411 	case DMA_NONE:
2412 queue_status:
2413 		trace_target_cmd_complete(cmd);
2414 		ret = cmd->se_tfo->queue_status(cmd);
2415 		if (ret)
2416 			goto queue_full;
2417 		break;
2418 	default:
2419 		break;
2420 	}
2421 
2422 	transport_lun_remove_cmd(cmd);
2423 	transport_cmd_check_stop_to_fabric(cmd);
2424 	return;
2425 
2426 queue_full:
2427 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2428 		" data_direction: %d\n", cmd, cmd->data_direction);
2429 
2430 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2431 }
2432 
2433 void target_free_sgl(struct scatterlist *sgl, int nents)
2434 {
2435 	sgl_free_n_order(sgl, nents, 0);
2436 }
2437 EXPORT_SYMBOL(target_free_sgl);
2438 
2439 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2440 {
2441 	/*
2442 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2443 	 * emulation, and free + reset pointers if necessary..
2444 	 */
2445 	if (!cmd->t_data_sg_orig)
2446 		return;
2447 
2448 	kfree(cmd->t_data_sg);
2449 	cmd->t_data_sg = cmd->t_data_sg_orig;
2450 	cmd->t_data_sg_orig = NULL;
2451 	cmd->t_data_nents = cmd->t_data_nents_orig;
2452 	cmd->t_data_nents_orig = 0;
2453 }
2454 
2455 static inline void transport_free_pages(struct se_cmd *cmd)
2456 {
2457 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2458 		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2459 		cmd->t_prot_sg = NULL;
2460 		cmd->t_prot_nents = 0;
2461 	}
2462 
2463 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2464 		/*
2465 		 * Release special case READ buffer payload required for
2466 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2467 		 */
2468 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2469 			target_free_sgl(cmd->t_bidi_data_sg,
2470 					   cmd->t_bidi_data_nents);
2471 			cmd->t_bidi_data_sg = NULL;
2472 			cmd->t_bidi_data_nents = 0;
2473 		}
2474 		transport_reset_sgl_orig(cmd);
2475 		return;
2476 	}
2477 	transport_reset_sgl_orig(cmd);
2478 
2479 	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2480 	cmd->t_data_sg = NULL;
2481 	cmd->t_data_nents = 0;
2482 
2483 	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2484 	cmd->t_bidi_data_sg = NULL;
2485 	cmd->t_bidi_data_nents = 0;
2486 }
2487 
2488 void *transport_kmap_data_sg(struct se_cmd *cmd)
2489 {
2490 	struct scatterlist *sg = cmd->t_data_sg;
2491 	struct page **pages;
2492 	int i;
2493 
2494 	/*
2495 	 * We need to take into account a possible offset here for fabrics like
2496 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2497 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2498 	 */
2499 	if (!cmd->t_data_nents)
2500 		return NULL;
2501 
2502 	BUG_ON(!sg);
2503 	if (cmd->t_data_nents == 1)
2504 		return kmap(sg_page(sg)) + sg->offset;
2505 
2506 	/* >1 page. use vmap */
2507 	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2508 	if (!pages)
2509 		return NULL;
2510 
2511 	/* convert sg[] to pages[] */
2512 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2513 		pages[i] = sg_page(sg);
2514 	}
2515 
2516 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2517 	kfree(pages);
2518 	if (!cmd->t_data_vmap)
2519 		return NULL;
2520 
2521 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2522 }
2523 EXPORT_SYMBOL(transport_kmap_data_sg);
2524 
2525 void transport_kunmap_data_sg(struct se_cmd *cmd)
2526 {
2527 	if (!cmd->t_data_nents) {
2528 		return;
2529 	} else if (cmd->t_data_nents == 1) {
2530 		kunmap(sg_page(cmd->t_data_sg));
2531 		return;
2532 	}
2533 
2534 	vunmap(cmd->t_data_vmap);
2535 	cmd->t_data_vmap = NULL;
2536 }
2537 EXPORT_SYMBOL(transport_kunmap_data_sg);
2538 
2539 int
2540 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2541 		 bool zero_page, bool chainable)
2542 {
2543 	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2544 
2545 	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2546 	return *sgl ? 0 : -ENOMEM;
2547 }
2548 EXPORT_SYMBOL(target_alloc_sgl);
2549 
2550 /*
2551  * Allocate any required resources to execute the command.  For writes we
2552  * might not have the payload yet, so notify the fabric via a call to
2553  * ->write_pending instead. Otherwise place it on the execution queue.
2554  */
2555 sense_reason_t
2556 transport_generic_new_cmd(struct se_cmd *cmd)
2557 {
2558 	unsigned long flags;
2559 	int ret = 0;
2560 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2561 
2562 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2563 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2564 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2565 				       cmd->prot_length, true, false);
2566 		if (ret < 0)
2567 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2568 	}
2569 
2570 	/*
2571 	 * Determine if the TCM fabric module has already allocated physical
2572 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2573 	 * beforehand.
2574 	 */
2575 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2576 	    cmd->data_length) {
2577 
2578 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2579 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2580 			u32 bidi_length;
2581 
2582 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2583 				bidi_length = cmd->t_task_nolb *
2584 					      cmd->se_dev->dev_attrib.block_size;
2585 			else
2586 				bidi_length = cmd->data_length;
2587 
2588 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2589 					       &cmd->t_bidi_data_nents,
2590 					       bidi_length, zero_flag, false);
2591 			if (ret < 0)
2592 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2593 		}
2594 
2595 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2596 				       cmd->data_length, zero_flag, false);
2597 		if (ret < 0)
2598 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2599 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2600 		    cmd->data_length) {
2601 		/*
2602 		 * Special case for COMPARE_AND_WRITE with fabrics
2603 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2604 		 */
2605 		u32 caw_length = cmd->t_task_nolb *
2606 				 cmd->se_dev->dev_attrib.block_size;
2607 
2608 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2609 				       &cmd->t_bidi_data_nents,
2610 				       caw_length, zero_flag, false);
2611 		if (ret < 0)
2612 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2613 	}
2614 	/*
2615 	 * If this command is not a write we can execute it right here,
2616 	 * for write buffers we need to notify the fabric driver first
2617 	 * and let it call back once the write buffers are ready.
2618 	 */
2619 	target_add_to_state_list(cmd);
2620 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2621 		target_execute_cmd(cmd);
2622 		return 0;
2623 	}
2624 
2625 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2626 	cmd->t_state = TRANSPORT_WRITE_PENDING;
2627 	/*
2628 	 * Determine if frontend context caller is requesting the stopping of
2629 	 * this command for frontend exceptions.
2630 	 */
2631 	if (cmd->transport_state & CMD_T_STOP &&
2632 	    !cmd->se_tfo->write_pending_must_be_called) {
2633 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2634 			 __func__, __LINE__, cmd->tag);
2635 
2636 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2637 
2638 		complete_all(&cmd->t_transport_stop_comp);
2639 		return 0;
2640 	}
2641 	cmd->transport_state &= ~CMD_T_ACTIVE;
2642 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2643 
2644 	ret = cmd->se_tfo->write_pending(cmd);
2645 	if (ret)
2646 		goto queue_full;
2647 
2648 	return 0;
2649 
2650 queue_full:
2651 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2652 	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2653 	return 0;
2654 }
2655 EXPORT_SYMBOL(transport_generic_new_cmd);
2656 
2657 static void transport_write_pending_qf(struct se_cmd *cmd)
2658 {
2659 	unsigned long flags;
2660 	int ret;
2661 	bool stop;
2662 
2663 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2664 	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2665 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2666 
2667 	if (stop) {
2668 		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2669 			__func__, __LINE__, cmd->tag);
2670 		complete_all(&cmd->t_transport_stop_comp);
2671 		return;
2672 	}
2673 
2674 	ret = cmd->se_tfo->write_pending(cmd);
2675 	if (ret) {
2676 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2677 			 cmd);
2678 		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2679 	}
2680 }
2681 
2682 static bool
2683 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2684 			   unsigned long *flags);
2685 
2686 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2687 {
2688 	unsigned long flags;
2689 
2690 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2691 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2692 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2693 }
2694 
2695 /*
2696  * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2697  * finished.
2698  */
2699 void target_put_cmd_and_wait(struct se_cmd *cmd)
2700 {
2701 	DECLARE_COMPLETION_ONSTACK(compl);
2702 
2703 	WARN_ON_ONCE(cmd->abrt_compl);
2704 	cmd->abrt_compl = &compl;
2705 	target_put_sess_cmd(cmd);
2706 	wait_for_completion(&compl);
2707 }
2708 
2709 /*
2710  * This function is called by frontend drivers after processing of a command
2711  * has finished.
2712  *
2713  * The protocol for ensuring that either the regular frontend command
2714  * processing flow or target_handle_abort() code drops one reference is as
2715  * follows:
2716  * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2717  *   the frontend driver to call this function synchronously or asynchronously.
2718  *   That will cause one reference to be dropped.
2719  * - During regular command processing the target core sets CMD_T_COMPLETE
2720  *   before invoking one of the .queue_*() functions.
2721  * - The code that aborts commands skips commands and TMFs for which
2722  *   CMD_T_COMPLETE has been set.
2723  * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2724  *   commands that will be aborted.
2725  * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2726  *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2727  * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2728  *   be called and will drop a reference.
2729  * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2730  *   will be called. target_handle_abort() will drop the final reference.
2731  */
2732 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2733 {
2734 	DECLARE_COMPLETION_ONSTACK(compl);
2735 	int ret = 0;
2736 	bool aborted = false, tas = false;
2737 
2738 	if (wait_for_tasks)
2739 		target_wait_free_cmd(cmd, &aborted, &tas);
2740 
2741 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2742 		/*
2743 		 * Handle WRITE failure case where transport_generic_new_cmd()
2744 		 * has already added se_cmd to state_list, but fabric has
2745 		 * failed command before I/O submission.
2746 		 */
2747 		if (cmd->state_active)
2748 			target_remove_from_state_list(cmd);
2749 
2750 		if (cmd->se_lun)
2751 			transport_lun_remove_cmd(cmd);
2752 	}
2753 	if (aborted)
2754 		cmd->free_compl = &compl;
2755 	ret = target_put_sess_cmd(cmd);
2756 	if (aborted) {
2757 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2758 		wait_for_completion(&compl);
2759 		ret = 1;
2760 	}
2761 	return ret;
2762 }
2763 EXPORT_SYMBOL(transport_generic_free_cmd);
2764 
2765 /**
2766  * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2767  * @se_cmd:	command descriptor to add
2768  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2769  */
2770 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2771 {
2772 	struct se_session *se_sess = se_cmd->se_sess;
2773 	int ret = 0;
2774 
2775 	/*
2776 	 * Add a second kref if the fabric caller is expecting to handle
2777 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2778 	 * invocations before se_cmd descriptor release.
2779 	 */
2780 	if (ack_kref) {
2781 		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2782 			return -EINVAL;
2783 
2784 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2785 	}
2786 
2787 	if (!percpu_ref_tryget_live(&se_sess->cmd_count))
2788 		ret = -ESHUTDOWN;
2789 
2790 	if (ret && ack_kref)
2791 		target_put_sess_cmd(se_cmd);
2792 
2793 	return ret;
2794 }
2795 EXPORT_SYMBOL(target_get_sess_cmd);
2796 
2797 static void target_free_cmd_mem(struct se_cmd *cmd)
2798 {
2799 	transport_free_pages(cmd);
2800 
2801 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2802 		core_tmr_release_req(cmd->se_tmr_req);
2803 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2804 		kfree(cmd->t_task_cdb);
2805 }
2806 
2807 static void target_release_cmd_kref(struct kref *kref)
2808 {
2809 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2810 	struct se_session *se_sess = se_cmd->se_sess;
2811 	struct completion *free_compl = se_cmd->free_compl;
2812 	struct completion *abrt_compl = se_cmd->abrt_compl;
2813 
2814 	target_free_cmd_mem(se_cmd);
2815 	se_cmd->se_tfo->release_cmd(se_cmd);
2816 	if (free_compl)
2817 		complete(free_compl);
2818 	if (abrt_compl)
2819 		complete(abrt_compl);
2820 
2821 	percpu_ref_put(&se_sess->cmd_count);
2822 }
2823 
2824 /**
2825  * target_put_sess_cmd - decrease the command reference count
2826  * @se_cmd:	command to drop a reference from
2827  *
2828  * Returns 1 if and only if this target_put_sess_cmd() call caused the
2829  * refcount to drop to zero. Returns zero otherwise.
2830  */
2831 int target_put_sess_cmd(struct se_cmd *se_cmd)
2832 {
2833 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2834 }
2835 EXPORT_SYMBOL(target_put_sess_cmd);
2836 
2837 static const char *data_dir_name(enum dma_data_direction d)
2838 {
2839 	switch (d) {
2840 	case DMA_BIDIRECTIONAL:	return "BIDI";
2841 	case DMA_TO_DEVICE:	return "WRITE";
2842 	case DMA_FROM_DEVICE:	return "READ";
2843 	case DMA_NONE:		return "NONE";
2844 	}
2845 
2846 	return "(?)";
2847 }
2848 
2849 static const char *cmd_state_name(enum transport_state_table t)
2850 {
2851 	switch (t) {
2852 	case TRANSPORT_NO_STATE:	return "NO_STATE";
2853 	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
2854 	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
2855 	case TRANSPORT_PROCESSING:	return "PROCESSING";
2856 	case TRANSPORT_COMPLETE:	return "COMPLETE";
2857 	case TRANSPORT_ISTATE_PROCESSING:
2858 					return "ISTATE_PROCESSING";
2859 	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
2860 	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
2861 	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
2862 	}
2863 
2864 	return "(?)";
2865 }
2866 
2867 static void target_append_str(char **str, const char *txt)
2868 {
2869 	char *prev = *str;
2870 
2871 	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2872 		kstrdup(txt, GFP_ATOMIC);
2873 	kfree(prev);
2874 }
2875 
2876 /*
2877  * Convert a transport state bitmask into a string. The caller is
2878  * responsible for freeing the returned pointer.
2879  */
2880 static char *target_ts_to_str(u32 ts)
2881 {
2882 	char *str = NULL;
2883 
2884 	if (ts & CMD_T_ABORTED)
2885 		target_append_str(&str, "aborted");
2886 	if (ts & CMD_T_ACTIVE)
2887 		target_append_str(&str, "active");
2888 	if (ts & CMD_T_COMPLETE)
2889 		target_append_str(&str, "complete");
2890 	if (ts & CMD_T_SENT)
2891 		target_append_str(&str, "sent");
2892 	if (ts & CMD_T_STOP)
2893 		target_append_str(&str, "stop");
2894 	if (ts & CMD_T_FABRIC_STOP)
2895 		target_append_str(&str, "fabric_stop");
2896 
2897 	return str;
2898 }
2899 
2900 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2901 {
2902 	switch (tmf) {
2903 	case TMR_ABORT_TASK:		return "ABORT_TASK";
2904 	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
2905 	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
2906 	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
2907 	case TMR_LUN_RESET:		return "LUN_RESET";
2908 	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
2909 	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
2910 	case TMR_LUN_RESET_PRO:		return "LUN_RESET_PRO";
2911 	case TMR_UNKNOWN:		break;
2912 	}
2913 	return "(?)";
2914 }
2915 
2916 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2917 {
2918 	char *ts_str = target_ts_to_str(cmd->transport_state);
2919 	const u8 *cdb = cmd->t_task_cdb;
2920 	struct se_tmr_req *tmf = cmd->se_tmr_req;
2921 
2922 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2923 		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2924 			 pfx, cdb[0], cdb[1], cmd->tag,
2925 			 data_dir_name(cmd->data_direction),
2926 			 cmd->se_tfo->get_cmd_state(cmd),
2927 			 cmd_state_name(cmd->t_state), cmd->data_length,
2928 			 kref_read(&cmd->cmd_kref), ts_str);
2929 	} else {
2930 		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2931 			 pfx, target_tmf_name(tmf->function), cmd->tag,
2932 			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2933 			 cmd_state_name(cmd->t_state),
2934 			 kref_read(&cmd->cmd_kref), ts_str);
2935 	}
2936 	kfree(ts_str);
2937 }
2938 EXPORT_SYMBOL(target_show_cmd);
2939 
2940 static void target_stop_session_confirm(struct percpu_ref *ref)
2941 {
2942 	struct se_session *se_sess = container_of(ref, struct se_session,
2943 						  cmd_count);
2944 	complete_all(&se_sess->stop_done);
2945 }
2946 
2947 /**
2948  * target_stop_session - Stop new IO from being queued on the session.
2949  * @se_sess:    session to stop
2950  */
2951 void target_stop_session(struct se_session *se_sess)
2952 {
2953 	pr_debug("Stopping session queue.\n");
2954 	if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
2955 		percpu_ref_kill_and_confirm(&se_sess->cmd_count,
2956 					    target_stop_session_confirm);
2957 }
2958 EXPORT_SYMBOL(target_stop_session);
2959 
2960 /**
2961  * target_wait_for_sess_cmds - Wait for outstanding commands
2962  * @se_sess:    session to wait for active I/O
2963  */
2964 void target_wait_for_sess_cmds(struct se_session *se_sess)
2965 {
2966 	int ret;
2967 
2968 	WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
2969 
2970 	do {
2971 		pr_debug("Waiting for running cmds to complete.\n");
2972 		ret = wait_event_timeout(se_sess->cmd_count_wq,
2973 				percpu_ref_is_zero(&se_sess->cmd_count),
2974 				180 * HZ);
2975 	} while (ret <= 0);
2976 
2977 	wait_for_completion(&se_sess->stop_done);
2978 	pr_debug("Waiting for cmds done.\n");
2979 }
2980 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2981 
2982 /*
2983  * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
2984  * all references to the LUN have been released. Called during LUN shutdown.
2985  */
2986 void transport_clear_lun_ref(struct se_lun *lun)
2987 {
2988 	percpu_ref_kill(&lun->lun_ref);
2989 	wait_for_completion(&lun->lun_shutdown_comp);
2990 }
2991 
2992 static bool
2993 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2994 			   bool *aborted, bool *tas, unsigned long *flags)
2995 	__releases(&cmd->t_state_lock)
2996 	__acquires(&cmd->t_state_lock)
2997 {
2998 
2999 	assert_spin_locked(&cmd->t_state_lock);
3000 	WARN_ON_ONCE(!irqs_disabled());
3001 
3002 	if (fabric_stop)
3003 		cmd->transport_state |= CMD_T_FABRIC_STOP;
3004 
3005 	if (cmd->transport_state & CMD_T_ABORTED)
3006 		*aborted = true;
3007 
3008 	if (cmd->transport_state & CMD_T_TAS)
3009 		*tas = true;
3010 
3011 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3012 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3013 		return false;
3014 
3015 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3016 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3017 		return false;
3018 
3019 	if (!(cmd->transport_state & CMD_T_ACTIVE))
3020 		return false;
3021 
3022 	if (fabric_stop && *aborted)
3023 		return false;
3024 
3025 	cmd->transport_state |= CMD_T_STOP;
3026 
3027 	target_show_cmd("wait_for_tasks: Stopping ", cmd);
3028 
3029 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3030 
3031 	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3032 					    180 * HZ))
3033 		target_show_cmd("wait for tasks: ", cmd);
3034 
3035 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3036 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3037 
3038 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3039 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3040 
3041 	return true;
3042 }
3043 
3044 /**
3045  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3046  * @cmd: command to wait on
3047  */
3048 bool transport_wait_for_tasks(struct se_cmd *cmd)
3049 {
3050 	unsigned long flags;
3051 	bool ret, aborted = false, tas = false;
3052 
3053 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3054 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3055 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3056 
3057 	return ret;
3058 }
3059 EXPORT_SYMBOL(transport_wait_for_tasks);
3060 
3061 struct sense_detail {
3062 	u8 key;
3063 	u8 asc;
3064 	u8 ascq;
3065 	bool add_sense_info;
3066 };
3067 
3068 static const struct sense_detail sense_detail_table[] = {
3069 	[TCM_NO_SENSE] = {
3070 		.key = NOT_READY
3071 	},
3072 	[TCM_NON_EXISTENT_LUN] = {
3073 		.key = ILLEGAL_REQUEST,
3074 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3075 	},
3076 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3077 		.key = ILLEGAL_REQUEST,
3078 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3079 	},
3080 	[TCM_SECTOR_COUNT_TOO_MANY] = {
3081 		.key = ILLEGAL_REQUEST,
3082 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3083 	},
3084 	[TCM_UNKNOWN_MODE_PAGE] = {
3085 		.key = ILLEGAL_REQUEST,
3086 		.asc = 0x24, /* INVALID FIELD IN CDB */
3087 	},
3088 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3089 		.key = ABORTED_COMMAND,
3090 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3091 		.ascq = 0x03,
3092 	},
3093 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3094 		.key = ABORTED_COMMAND,
3095 		.asc = 0x0c, /* WRITE ERROR */
3096 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3097 	},
3098 	[TCM_INVALID_CDB_FIELD] = {
3099 		.key = ILLEGAL_REQUEST,
3100 		.asc = 0x24, /* INVALID FIELD IN CDB */
3101 	},
3102 	[TCM_INVALID_PARAMETER_LIST] = {
3103 		.key = ILLEGAL_REQUEST,
3104 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3105 	},
3106 	[TCM_TOO_MANY_TARGET_DESCS] = {
3107 		.key = ILLEGAL_REQUEST,
3108 		.asc = 0x26,
3109 		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3110 	},
3111 	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3112 		.key = ILLEGAL_REQUEST,
3113 		.asc = 0x26,
3114 		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3115 	},
3116 	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3117 		.key = ILLEGAL_REQUEST,
3118 		.asc = 0x26,
3119 		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3120 	},
3121 	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3122 		.key = ILLEGAL_REQUEST,
3123 		.asc = 0x26,
3124 		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3125 	},
3126 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3127 		.key = ILLEGAL_REQUEST,
3128 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3129 	},
3130 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3131 		.key = ILLEGAL_REQUEST,
3132 		.asc = 0x0c, /* WRITE ERROR */
3133 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3134 	},
3135 	[TCM_SERVICE_CRC_ERROR] = {
3136 		.key = ABORTED_COMMAND,
3137 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3138 		.ascq = 0x05, /* N/A */
3139 	},
3140 	[TCM_SNACK_REJECTED] = {
3141 		.key = ABORTED_COMMAND,
3142 		.asc = 0x11, /* READ ERROR */
3143 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3144 	},
3145 	[TCM_WRITE_PROTECTED] = {
3146 		.key = DATA_PROTECT,
3147 		.asc = 0x27, /* WRITE PROTECTED */
3148 	},
3149 	[TCM_ADDRESS_OUT_OF_RANGE] = {
3150 		.key = ILLEGAL_REQUEST,
3151 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3152 	},
3153 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3154 		.key = UNIT_ATTENTION,
3155 	},
3156 	[TCM_CHECK_CONDITION_NOT_READY] = {
3157 		.key = NOT_READY,
3158 	},
3159 	[TCM_MISCOMPARE_VERIFY] = {
3160 		.key = MISCOMPARE,
3161 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3162 		.ascq = 0x00,
3163 		.add_sense_info = true,
3164 	},
3165 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3166 		.key = ABORTED_COMMAND,
3167 		.asc = 0x10,
3168 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3169 		.add_sense_info = true,
3170 	},
3171 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3172 		.key = ABORTED_COMMAND,
3173 		.asc = 0x10,
3174 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3175 		.add_sense_info = true,
3176 	},
3177 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3178 		.key = ABORTED_COMMAND,
3179 		.asc = 0x10,
3180 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3181 		.add_sense_info = true,
3182 	},
3183 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3184 		.key = COPY_ABORTED,
3185 		.asc = 0x0d,
3186 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3187 
3188 	},
3189 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3190 		/*
3191 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3192 		 * Solaris initiators.  Returning NOT READY instead means the
3193 		 * operations will be retried a finite number of times and we
3194 		 * can survive intermittent errors.
3195 		 */
3196 		.key = NOT_READY,
3197 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3198 	},
3199 	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3200 		/*
3201 		 * From spc4r22 section5.7.7,5.7.8
3202 		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3203 		 * or a REGISTER AND IGNORE EXISTING KEY service action or
3204 		 * REGISTER AND MOVE service actionis attempted,
3205 		 * but there are insufficient device server resources to complete the
3206 		 * operation, then the command shall be terminated with CHECK CONDITION
3207 		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3208 		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3209 		 */
3210 		.key = ILLEGAL_REQUEST,
3211 		.asc = 0x55,
3212 		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3213 	},
3214 	[TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3215 		.key = ILLEGAL_REQUEST,
3216 		.asc = 0x0e,
3217 		.ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3218 	},
3219 };
3220 
3221 /**
3222  * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3223  * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3224  *   be stored.
3225  * @reason: LIO sense reason code. If this argument has the value
3226  *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3227  *   dequeuing a unit attention fails due to multiple commands being processed
3228  *   concurrently, set the command status to BUSY.
3229  *
3230  * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3231  */
3232 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3233 {
3234 	const struct sense_detail *sd;
3235 	u8 *buffer = cmd->sense_buffer;
3236 	int r = (__force int)reason;
3237 	u8 key, asc, ascq;
3238 	bool desc_format = target_sense_desc_format(cmd->se_dev);
3239 
3240 	if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3241 		sd = &sense_detail_table[r];
3242 	else
3243 		sd = &sense_detail_table[(__force int)
3244 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3245 
3246 	key = sd->key;
3247 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3248 		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3249 						       &ascq)) {
3250 			cmd->scsi_status = SAM_STAT_BUSY;
3251 			return;
3252 		}
3253 	} else if (sd->asc == 0) {
3254 		WARN_ON_ONCE(cmd->scsi_asc == 0);
3255 		asc = cmd->scsi_asc;
3256 		ascq = cmd->scsi_ascq;
3257 	} else {
3258 		asc = sd->asc;
3259 		ascq = sd->ascq;
3260 	}
3261 
3262 	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3263 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3264 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3265 	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3266 	if (sd->add_sense_info)
3267 		WARN_ON_ONCE(scsi_set_sense_information(buffer,
3268 							cmd->scsi_sense_length,
3269 							cmd->sense_info) < 0);
3270 }
3271 
3272 int
3273 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3274 		sense_reason_t reason, int from_transport)
3275 {
3276 	unsigned long flags;
3277 
3278 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3279 
3280 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3281 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3282 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3283 		return 0;
3284 	}
3285 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3286 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3287 
3288 	if (!from_transport)
3289 		translate_sense_reason(cmd, reason);
3290 
3291 	trace_target_cmd_complete(cmd);
3292 	return cmd->se_tfo->queue_status(cmd);
3293 }
3294 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3295 
3296 /**
3297  * target_send_busy - Send SCSI BUSY status back to the initiator
3298  * @cmd: SCSI command for which to send a BUSY reply.
3299  *
3300  * Note: Only call this function if target_submit_cmd*() failed.
3301  */
3302 int target_send_busy(struct se_cmd *cmd)
3303 {
3304 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3305 
3306 	cmd->scsi_status = SAM_STAT_BUSY;
3307 	trace_target_cmd_complete(cmd);
3308 	return cmd->se_tfo->queue_status(cmd);
3309 }
3310 EXPORT_SYMBOL(target_send_busy);
3311 
3312 static void target_tmr_work(struct work_struct *work)
3313 {
3314 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3315 	struct se_device *dev = cmd->se_dev;
3316 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3317 	int ret;
3318 
3319 	if (cmd->transport_state & CMD_T_ABORTED)
3320 		goto aborted;
3321 
3322 	switch (tmr->function) {
3323 	case TMR_ABORT_TASK:
3324 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3325 		break;
3326 	case TMR_ABORT_TASK_SET:
3327 	case TMR_CLEAR_ACA:
3328 	case TMR_CLEAR_TASK_SET:
3329 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3330 		break;
3331 	case TMR_LUN_RESET:
3332 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3333 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3334 					 TMR_FUNCTION_REJECTED;
3335 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3336 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3337 					       cmd->orig_fe_lun, 0x29,
3338 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3339 		}
3340 		break;
3341 	case TMR_TARGET_WARM_RESET:
3342 		tmr->response = TMR_FUNCTION_REJECTED;
3343 		break;
3344 	case TMR_TARGET_COLD_RESET:
3345 		tmr->response = TMR_FUNCTION_REJECTED;
3346 		break;
3347 	default:
3348 		pr_err("Unknown TMR function: 0x%02x.\n",
3349 				tmr->function);
3350 		tmr->response = TMR_FUNCTION_REJECTED;
3351 		break;
3352 	}
3353 
3354 	if (cmd->transport_state & CMD_T_ABORTED)
3355 		goto aborted;
3356 
3357 	cmd->se_tfo->queue_tm_rsp(cmd);
3358 
3359 	transport_lun_remove_cmd(cmd);
3360 	transport_cmd_check_stop_to_fabric(cmd);
3361 	return;
3362 
3363 aborted:
3364 	target_handle_abort(cmd);
3365 }
3366 
3367 int transport_generic_handle_tmr(
3368 	struct se_cmd *cmd)
3369 {
3370 	unsigned long flags;
3371 	bool aborted = false;
3372 
3373 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3374 	if (cmd->transport_state & CMD_T_ABORTED) {
3375 		aborted = true;
3376 	} else {
3377 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3378 		cmd->transport_state |= CMD_T_ACTIVE;
3379 	}
3380 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3381 
3382 	if (aborted) {
3383 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3384 				    cmd->se_tmr_req->function,
3385 				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3386 		target_handle_abort(cmd);
3387 		return 0;
3388 	}
3389 
3390 	INIT_WORK(&cmd->work, target_tmr_work);
3391 	schedule_work(&cmd->work);
3392 	return 0;
3393 }
3394 EXPORT_SYMBOL(transport_generic_handle_tmr);
3395 
3396 bool
3397 target_check_wce(struct se_device *dev)
3398 {
3399 	bool wce = false;
3400 
3401 	if (dev->transport->get_write_cache)
3402 		wce = dev->transport->get_write_cache(dev);
3403 	else if (dev->dev_attrib.emulate_write_cache > 0)
3404 		wce = true;
3405 
3406 	return wce;
3407 }
3408 
3409 bool
3410 target_check_fua(struct se_device *dev)
3411 {
3412 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3413 }
3414