1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /******************************************************************************* 3 * Filename: target_core_transport.c 4 * 5 * This file contains the Generic Target Engine Core. 6 * 7 * (c) Copyright 2002-2013 Datera, Inc. 8 * 9 * Nicholas A. Bellinger <nab@kernel.org> 10 * 11 ******************************************************************************/ 12 13 #include <linux/net.h> 14 #include <linux/delay.h> 15 #include <linux/string.h> 16 #include <linux/timer.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/kthread.h> 20 #include <linux/in.h> 21 #include <linux/cdrom.h> 22 #include <linux/module.h> 23 #include <linux/ratelimit.h> 24 #include <linux/vmalloc.h> 25 #include <asm/unaligned.h> 26 #include <net/sock.h> 27 #include <net/tcp.h> 28 #include <scsi/scsi_proto.h> 29 #include <scsi/scsi_common.h> 30 31 #include <target/target_core_base.h> 32 #include <target/target_core_backend.h> 33 #include <target/target_core_fabric.h> 34 35 #include "target_core_internal.h" 36 #include "target_core_alua.h" 37 #include "target_core_pr.h" 38 #include "target_core_ua.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/target.h> 42 43 static struct workqueue_struct *target_completion_wq; 44 static struct kmem_cache *se_sess_cache; 45 struct kmem_cache *se_ua_cache; 46 struct kmem_cache *t10_pr_reg_cache; 47 struct kmem_cache *t10_alua_lu_gp_cache; 48 struct kmem_cache *t10_alua_lu_gp_mem_cache; 49 struct kmem_cache *t10_alua_tg_pt_gp_cache; 50 struct kmem_cache *t10_alua_lba_map_cache; 51 struct kmem_cache *t10_alua_lba_map_mem_cache; 52 53 static void transport_complete_task_attr(struct se_cmd *cmd); 54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 55 static void transport_handle_queue_full(struct se_cmd *cmd, 56 struct se_device *dev, int err, bool write_pending); 57 static void target_complete_ok_work(struct work_struct *work); 58 59 int init_se_kmem_caches(void) 60 { 61 se_sess_cache = kmem_cache_create("se_sess_cache", 62 sizeof(struct se_session), __alignof__(struct se_session), 63 0, NULL); 64 if (!se_sess_cache) { 65 pr_err("kmem_cache_create() for struct se_session" 66 " failed\n"); 67 goto out; 68 } 69 se_ua_cache = kmem_cache_create("se_ua_cache", 70 sizeof(struct se_ua), __alignof__(struct se_ua), 71 0, NULL); 72 if (!se_ua_cache) { 73 pr_err("kmem_cache_create() for struct se_ua failed\n"); 74 goto out_free_sess_cache; 75 } 76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 77 sizeof(struct t10_pr_registration), 78 __alignof__(struct t10_pr_registration), 0, NULL); 79 if (!t10_pr_reg_cache) { 80 pr_err("kmem_cache_create() for struct t10_pr_registration" 81 " failed\n"); 82 goto out_free_ua_cache; 83 } 84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 86 0, NULL); 87 if (!t10_alua_lu_gp_cache) { 88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 89 " failed\n"); 90 goto out_free_pr_reg_cache; 91 } 92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 93 sizeof(struct t10_alua_lu_gp_member), 94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 95 if (!t10_alua_lu_gp_mem_cache) { 96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 97 "cache failed\n"); 98 goto out_free_lu_gp_cache; 99 } 100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 101 sizeof(struct t10_alua_tg_pt_gp), 102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 103 if (!t10_alua_tg_pt_gp_cache) { 104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 105 "cache failed\n"); 106 goto out_free_lu_gp_mem_cache; 107 } 108 t10_alua_lba_map_cache = kmem_cache_create( 109 "t10_alua_lba_map_cache", 110 sizeof(struct t10_alua_lba_map), 111 __alignof__(struct t10_alua_lba_map), 0, NULL); 112 if (!t10_alua_lba_map_cache) { 113 pr_err("kmem_cache_create() for t10_alua_lba_map_" 114 "cache failed\n"); 115 goto out_free_tg_pt_gp_cache; 116 } 117 t10_alua_lba_map_mem_cache = kmem_cache_create( 118 "t10_alua_lba_map_mem_cache", 119 sizeof(struct t10_alua_lba_map_member), 120 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 121 if (!t10_alua_lba_map_mem_cache) { 122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 123 "cache failed\n"); 124 goto out_free_lba_map_cache; 125 } 126 127 target_completion_wq = alloc_workqueue("target_completion", 128 WQ_MEM_RECLAIM, 0); 129 if (!target_completion_wq) 130 goto out_free_lba_map_mem_cache; 131 132 return 0; 133 134 out_free_lba_map_mem_cache: 135 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 136 out_free_lba_map_cache: 137 kmem_cache_destroy(t10_alua_lba_map_cache); 138 out_free_tg_pt_gp_cache: 139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 140 out_free_lu_gp_mem_cache: 141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 142 out_free_lu_gp_cache: 143 kmem_cache_destroy(t10_alua_lu_gp_cache); 144 out_free_pr_reg_cache: 145 kmem_cache_destroy(t10_pr_reg_cache); 146 out_free_ua_cache: 147 kmem_cache_destroy(se_ua_cache); 148 out_free_sess_cache: 149 kmem_cache_destroy(se_sess_cache); 150 out: 151 return -ENOMEM; 152 } 153 154 void release_se_kmem_caches(void) 155 { 156 destroy_workqueue(target_completion_wq); 157 kmem_cache_destroy(se_sess_cache); 158 kmem_cache_destroy(se_ua_cache); 159 kmem_cache_destroy(t10_pr_reg_cache); 160 kmem_cache_destroy(t10_alua_lu_gp_cache); 161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 163 kmem_cache_destroy(t10_alua_lba_map_cache); 164 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 165 } 166 167 /* This code ensures unique mib indexes are handed out. */ 168 static DEFINE_SPINLOCK(scsi_mib_index_lock); 169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 170 171 /* 172 * Allocate a new row index for the entry type specified 173 */ 174 u32 scsi_get_new_index(scsi_index_t type) 175 { 176 u32 new_index; 177 178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 179 180 spin_lock(&scsi_mib_index_lock); 181 new_index = ++scsi_mib_index[type]; 182 spin_unlock(&scsi_mib_index_lock); 183 184 return new_index; 185 } 186 187 void transport_subsystem_check_init(void) 188 { 189 int ret; 190 static int sub_api_initialized; 191 192 if (sub_api_initialized) 193 return; 194 195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock"); 196 if (ret != 0) 197 pr_err("Unable to load target_core_iblock\n"); 198 199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file"); 200 if (ret != 0) 201 pr_err("Unable to load target_core_file\n"); 202 203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi"); 204 if (ret != 0) 205 pr_err("Unable to load target_core_pscsi\n"); 206 207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user"); 208 if (ret != 0) 209 pr_err("Unable to load target_core_user\n"); 210 211 sub_api_initialized = 1; 212 } 213 214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref) 215 { 216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count); 217 218 wake_up(&sess->cmd_count_wq); 219 } 220 221 /** 222 * transport_init_session - initialize a session object 223 * @se_sess: Session object pointer. 224 * 225 * The caller must have zero-initialized @se_sess before calling this function. 226 */ 227 int transport_init_session(struct se_session *se_sess) 228 { 229 INIT_LIST_HEAD(&se_sess->sess_list); 230 INIT_LIST_HEAD(&se_sess->sess_acl_list); 231 spin_lock_init(&se_sess->sess_cmd_lock); 232 init_waitqueue_head(&se_sess->cmd_count_wq); 233 init_completion(&se_sess->stop_done); 234 atomic_set(&se_sess->stopped, 0); 235 return percpu_ref_init(&se_sess->cmd_count, 236 target_release_sess_cmd_refcnt, 0, GFP_KERNEL); 237 } 238 EXPORT_SYMBOL(transport_init_session); 239 240 void transport_uninit_session(struct se_session *se_sess) 241 { 242 /* 243 * Drivers like iscsi and loop do not call target_stop_session 244 * during session shutdown so we have to drop the ref taken at init 245 * time here. 246 */ 247 if (!atomic_read(&se_sess->stopped)) 248 percpu_ref_put(&se_sess->cmd_count); 249 250 percpu_ref_exit(&se_sess->cmd_count); 251 } 252 253 /** 254 * transport_alloc_session - allocate a session object and initialize it 255 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 256 */ 257 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops) 258 { 259 struct se_session *se_sess; 260 int ret; 261 262 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 263 if (!se_sess) { 264 pr_err("Unable to allocate struct se_session from" 265 " se_sess_cache\n"); 266 return ERR_PTR(-ENOMEM); 267 } 268 ret = transport_init_session(se_sess); 269 if (ret < 0) { 270 kmem_cache_free(se_sess_cache, se_sess); 271 return ERR_PTR(ret); 272 } 273 se_sess->sup_prot_ops = sup_prot_ops; 274 275 return se_sess; 276 } 277 EXPORT_SYMBOL(transport_alloc_session); 278 279 /** 280 * transport_alloc_session_tags - allocate target driver private data 281 * @se_sess: Session pointer. 282 * @tag_num: Maximum number of in-flight commands between initiator and target. 283 * @tag_size: Size in bytes of the private data a target driver associates with 284 * each command. 285 */ 286 int transport_alloc_session_tags(struct se_session *se_sess, 287 unsigned int tag_num, unsigned int tag_size) 288 { 289 int rc; 290 291 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num, 292 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 293 if (!se_sess->sess_cmd_map) { 294 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 295 return -ENOMEM; 296 } 297 298 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1, 299 false, GFP_KERNEL, NUMA_NO_NODE); 300 if (rc < 0) { 301 pr_err("Unable to init se_sess->sess_tag_pool," 302 " tag_num: %u\n", tag_num); 303 kvfree(se_sess->sess_cmd_map); 304 se_sess->sess_cmd_map = NULL; 305 return -ENOMEM; 306 } 307 308 return 0; 309 } 310 EXPORT_SYMBOL(transport_alloc_session_tags); 311 312 /** 313 * transport_init_session_tags - allocate a session and target driver private data 314 * @tag_num: Maximum number of in-flight commands between initiator and target. 315 * @tag_size: Size in bytes of the private data a target driver associates with 316 * each command. 317 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 318 */ 319 static struct se_session * 320 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size, 321 enum target_prot_op sup_prot_ops) 322 { 323 struct se_session *se_sess; 324 int rc; 325 326 if (tag_num != 0 && !tag_size) { 327 pr_err("init_session_tags called with percpu-ida tag_num:" 328 " %u, but zero tag_size\n", tag_num); 329 return ERR_PTR(-EINVAL); 330 } 331 if (!tag_num && tag_size) { 332 pr_err("init_session_tags called with percpu-ida tag_size:" 333 " %u, but zero tag_num\n", tag_size); 334 return ERR_PTR(-EINVAL); 335 } 336 337 se_sess = transport_alloc_session(sup_prot_ops); 338 if (IS_ERR(se_sess)) 339 return se_sess; 340 341 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 342 if (rc < 0) { 343 transport_free_session(se_sess); 344 return ERR_PTR(-ENOMEM); 345 } 346 347 return se_sess; 348 } 349 350 /* 351 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 352 */ 353 void __transport_register_session( 354 struct se_portal_group *se_tpg, 355 struct se_node_acl *se_nacl, 356 struct se_session *se_sess, 357 void *fabric_sess_ptr) 358 { 359 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 360 unsigned char buf[PR_REG_ISID_LEN]; 361 unsigned long flags; 362 363 se_sess->se_tpg = se_tpg; 364 se_sess->fabric_sess_ptr = fabric_sess_ptr; 365 /* 366 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 367 * 368 * Only set for struct se_session's that will actually be moving I/O. 369 * eg: *NOT* discovery sessions. 370 */ 371 if (se_nacl) { 372 /* 373 * 374 * Determine if fabric allows for T10-PI feature bits exposed to 375 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 376 * 377 * If so, then always save prot_type on a per se_node_acl node 378 * basis and re-instate the previous sess_prot_type to avoid 379 * disabling PI from below any previously initiator side 380 * registered LUNs. 381 */ 382 if (se_nacl->saved_prot_type) 383 se_sess->sess_prot_type = se_nacl->saved_prot_type; 384 else if (tfo->tpg_check_prot_fabric_only) 385 se_sess->sess_prot_type = se_nacl->saved_prot_type = 386 tfo->tpg_check_prot_fabric_only(se_tpg); 387 /* 388 * If the fabric module supports an ISID based TransportID, 389 * save this value in binary from the fabric I_T Nexus now. 390 */ 391 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 392 memset(&buf[0], 0, PR_REG_ISID_LEN); 393 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 394 &buf[0], PR_REG_ISID_LEN); 395 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 396 } 397 398 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 399 /* 400 * The se_nacl->nacl_sess pointer will be set to the 401 * last active I_T Nexus for each struct se_node_acl. 402 */ 403 se_nacl->nacl_sess = se_sess; 404 405 list_add_tail(&se_sess->sess_acl_list, 406 &se_nacl->acl_sess_list); 407 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 408 } 409 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 410 411 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 412 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr); 413 } 414 EXPORT_SYMBOL(__transport_register_session); 415 416 void transport_register_session( 417 struct se_portal_group *se_tpg, 418 struct se_node_acl *se_nacl, 419 struct se_session *se_sess, 420 void *fabric_sess_ptr) 421 { 422 unsigned long flags; 423 424 spin_lock_irqsave(&se_tpg->session_lock, flags); 425 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 426 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 427 } 428 EXPORT_SYMBOL(transport_register_session); 429 430 struct se_session * 431 target_setup_session(struct se_portal_group *tpg, 432 unsigned int tag_num, unsigned int tag_size, 433 enum target_prot_op prot_op, 434 const char *initiatorname, void *private, 435 int (*callback)(struct se_portal_group *, 436 struct se_session *, void *)) 437 { 438 struct se_session *sess; 439 440 /* 441 * If the fabric driver is using percpu-ida based pre allocation 442 * of I/O descriptor tags, go ahead and perform that setup now.. 443 */ 444 if (tag_num != 0) 445 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 446 else 447 sess = transport_alloc_session(prot_op); 448 449 if (IS_ERR(sess)) 450 return sess; 451 452 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 453 (unsigned char *)initiatorname); 454 if (!sess->se_node_acl) { 455 transport_free_session(sess); 456 return ERR_PTR(-EACCES); 457 } 458 /* 459 * Go ahead and perform any remaining fabric setup that is 460 * required before transport_register_session(). 461 */ 462 if (callback != NULL) { 463 int rc = callback(tpg, sess, private); 464 if (rc) { 465 transport_free_session(sess); 466 return ERR_PTR(rc); 467 } 468 } 469 470 transport_register_session(tpg, sess->se_node_acl, sess, private); 471 return sess; 472 } 473 EXPORT_SYMBOL(target_setup_session); 474 475 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 476 { 477 struct se_session *se_sess; 478 ssize_t len = 0; 479 480 spin_lock_bh(&se_tpg->session_lock); 481 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 482 if (!se_sess->se_node_acl) 483 continue; 484 if (!se_sess->se_node_acl->dynamic_node_acl) 485 continue; 486 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 487 break; 488 489 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 490 se_sess->se_node_acl->initiatorname); 491 len += 1; /* Include NULL terminator */ 492 } 493 spin_unlock_bh(&se_tpg->session_lock); 494 495 return len; 496 } 497 EXPORT_SYMBOL(target_show_dynamic_sessions); 498 499 static void target_complete_nacl(struct kref *kref) 500 { 501 struct se_node_acl *nacl = container_of(kref, 502 struct se_node_acl, acl_kref); 503 struct se_portal_group *se_tpg = nacl->se_tpg; 504 505 if (!nacl->dynamic_stop) { 506 complete(&nacl->acl_free_comp); 507 return; 508 } 509 510 mutex_lock(&se_tpg->acl_node_mutex); 511 list_del_init(&nacl->acl_list); 512 mutex_unlock(&se_tpg->acl_node_mutex); 513 514 core_tpg_wait_for_nacl_pr_ref(nacl); 515 core_free_device_list_for_node(nacl, se_tpg); 516 kfree(nacl); 517 } 518 519 void target_put_nacl(struct se_node_acl *nacl) 520 { 521 kref_put(&nacl->acl_kref, target_complete_nacl); 522 } 523 EXPORT_SYMBOL(target_put_nacl); 524 525 void transport_deregister_session_configfs(struct se_session *se_sess) 526 { 527 struct se_node_acl *se_nacl; 528 unsigned long flags; 529 /* 530 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 531 */ 532 se_nacl = se_sess->se_node_acl; 533 if (se_nacl) { 534 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 535 if (!list_empty(&se_sess->sess_acl_list)) 536 list_del_init(&se_sess->sess_acl_list); 537 /* 538 * If the session list is empty, then clear the pointer. 539 * Otherwise, set the struct se_session pointer from the tail 540 * element of the per struct se_node_acl active session list. 541 */ 542 if (list_empty(&se_nacl->acl_sess_list)) 543 se_nacl->nacl_sess = NULL; 544 else { 545 se_nacl->nacl_sess = container_of( 546 se_nacl->acl_sess_list.prev, 547 struct se_session, sess_acl_list); 548 } 549 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 550 } 551 } 552 EXPORT_SYMBOL(transport_deregister_session_configfs); 553 554 void transport_free_session(struct se_session *se_sess) 555 { 556 struct se_node_acl *se_nacl = se_sess->se_node_acl; 557 558 /* 559 * Drop the se_node_acl->nacl_kref obtained from within 560 * core_tpg_get_initiator_node_acl(). 561 */ 562 if (se_nacl) { 563 struct se_portal_group *se_tpg = se_nacl->se_tpg; 564 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 565 unsigned long flags; 566 567 se_sess->se_node_acl = NULL; 568 569 /* 570 * Also determine if we need to drop the extra ->cmd_kref if 571 * it had been previously dynamically generated, and 572 * the endpoint is not caching dynamic ACLs. 573 */ 574 mutex_lock(&se_tpg->acl_node_mutex); 575 if (se_nacl->dynamic_node_acl && 576 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 577 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 578 if (list_empty(&se_nacl->acl_sess_list)) 579 se_nacl->dynamic_stop = true; 580 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 581 582 if (se_nacl->dynamic_stop) 583 list_del_init(&se_nacl->acl_list); 584 } 585 mutex_unlock(&se_tpg->acl_node_mutex); 586 587 if (se_nacl->dynamic_stop) 588 target_put_nacl(se_nacl); 589 590 target_put_nacl(se_nacl); 591 } 592 if (se_sess->sess_cmd_map) { 593 sbitmap_queue_free(&se_sess->sess_tag_pool); 594 kvfree(se_sess->sess_cmd_map); 595 } 596 transport_uninit_session(se_sess); 597 kmem_cache_free(se_sess_cache, se_sess); 598 } 599 EXPORT_SYMBOL(transport_free_session); 600 601 static int target_release_res(struct se_device *dev, void *data) 602 { 603 struct se_session *sess = data; 604 605 if (dev->reservation_holder == sess) 606 target_release_reservation(dev); 607 return 0; 608 } 609 610 void transport_deregister_session(struct se_session *se_sess) 611 { 612 struct se_portal_group *se_tpg = se_sess->se_tpg; 613 unsigned long flags; 614 615 if (!se_tpg) { 616 transport_free_session(se_sess); 617 return; 618 } 619 620 spin_lock_irqsave(&se_tpg->session_lock, flags); 621 list_del(&se_sess->sess_list); 622 se_sess->se_tpg = NULL; 623 se_sess->fabric_sess_ptr = NULL; 624 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 625 626 /* 627 * Since the session is being removed, release SPC-2 628 * reservations held by the session that is disappearing. 629 */ 630 target_for_each_device(target_release_res, se_sess); 631 632 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 633 se_tpg->se_tpg_tfo->fabric_name); 634 /* 635 * If last kref is dropping now for an explicit NodeACL, awake sleeping 636 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 637 * removal context from within transport_free_session() code. 638 * 639 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 640 * to release all remaining generate_node_acl=1 created ACL resources. 641 */ 642 643 transport_free_session(se_sess); 644 } 645 EXPORT_SYMBOL(transport_deregister_session); 646 647 void target_remove_session(struct se_session *se_sess) 648 { 649 transport_deregister_session_configfs(se_sess); 650 transport_deregister_session(se_sess); 651 } 652 EXPORT_SYMBOL(target_remove_session); 653 654 static void target_remove_from_state_list(struct se_cmd *cmd) 655 { 656 struct se_device *dev = cmd->se_dev; 657 unsigned long flags; 658 659 if (!dev) 660 return; 661 662 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags); 663 if (cmd->state_active) { 664 list_del(&cmd->state_list); 665 cmd->state_active = false; 666 } 667 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags); 668 } 669 670 /* 671 * This function is called by the target core after the target core has 672 * finished processing a SCSI command or SCSI TMF. Both the regular command 673 * processing code and the code for aborting commands can call this 674 * function. CMD_T_STOP is set if and only if another thread is waiting 675 * inside transport_wait_for_tasks() for t_transport_stop_comp. 676 */ 677 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 678 { 679 unsigned long flags; 680 681 target_remove_from_state_list(cmd); 682 683 /* 684 * Clear struct se_cmd->se_lun before the handoff to FE. 685 */ 686 cmd->se_lun = NULL; 687 688 spin_lock_irqsave(&cmd->t_state_lock, flags); 689 /* 690 * Determine if frontend context caller is requesting the stopping of 691 * this command for frontend exceptions. 692 */ 693 if (cmd->transport_state & CMD_T_STOP) { 694 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 695 __func__, __LINE__, cmd->tag); 696 697 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 698 699 complete_all(&cmd->t_transport_stop_comp); 700 return 1; 701 } 702 cmd->transport_state &= ~CMD_T_ACTIVE; 703 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 704 705 /* 706 * Some fabric modules like tcm_loop can release their internally 707 * allocated I/O reference and struct se_cmd now. 708 * 709 * Fabric modules are expected to return '1' here if the se_cmd being 710 * passed is released at this point, or zero if not being released. 711 */ 712 return cmd->se_tfo->check_stop_free(cmd); 713 } 714 715 static void transport_lun_remove_cmd(struct se_cmd *cmd) 716 { 717 struct se_lun *lun = cmd->se_lun; 718 719 if (!lun) 720 return; 721 722 if (cmpxchg(&cmd->lun_ref_active, true, false)) 723 percpu_ref_put(&lun->lun_ref); 724 } 725 726 static void target_complete_failure_work(struct work_struct *work) 727 { 728 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 729 730 transport_generic_request_failure(cmd, 731 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 732 } 733 734 /* 735 * Used when asking transport to copy Sense Data from the underlying 736 * Linux/SCSI struct scsi_cmnd 737 */ 738 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 739 { 740 struct se_device *dev = cmd->se_dev; 741 742 WARN_ON(!cmd->se_lun); 743 744 if (!dev) 745 return NULL; 746 747 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 748 return NULL; 749 750 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 751 752 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 753 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 754 return cmd->sense_buffer; 755 } 756 757 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense) 758 { 759 unsigned char *cmd_sense_buf; 760 unsigned long flags; 761 762 spin_lock_irqsave(&cmd->t_state_lock, flags); 763 cmd_sense_buf = transport_get_sense_buffer(cmd); 764 if (!cmd_sense_buf) { 765 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 766 return; 767 } 768 769 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 770 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length); 771 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 772 } 773 EXPORT_SYMBOL(transport_copy_sense_to_cmd); 774 775 static void target_handle_abort(struct se_cmd *cmd) 776 { 777 bool tas = cmd->transport_state & CMD_T_TAS; 778 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF; 779 int ret; 780 781 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas); 782 783 if (tas) { 784 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 785 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 786 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 787 cmd->t_task_cdb[0], cmd->tag); 788 trace_target_cmd_complete(cmd); 789 ret = cmd->se_tfo->queue_status(cmd); 790 if (ret) { 791 transport_handle_queue_full(cmd, cmd->se_dev, 792 ret, false); 793 return; 794 } 795 } else { 796 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED; 797 cmd->se_tfo->queue_tm_rsp(cmd); 798 } 799 } else { 800 /* 801 * Allow the fabric driver to unmap any resources before 802 * releasing the descriptor via TFO->release_cmd(). 803 */ 804 cmd->se_tfo->aborted_task(cmd); 805 if (ack_kref) 806 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0); 807 /* 808 * To do: establish a unit attention condition on the I_T 809 * nexus associated with cmd. See also the paragraph "Aborting 810 * commands" in SAM. 811 */ 812 } 813 814 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0); 815 816 transport_lun_remove_cmd(cmd); 817 818 transport_cmd_check_stop_to_fabric(cmd); 819 } 820 821 static void target_abort_work(struct work_struct *work) 822 { 823 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 824 825 target_handle_abort(cmd); 826 } 827 828 static bool target_cmd_interrupted(struct se_cmd *cmd) 829 { 830 int post_ret; 831 832 if (cmd->transport_state & CMD_T_ABORTED) { 833 if (cmd->transport_complete_callback) 834 cmd->transport_complete_callback(cmd, false, &post_ret); 835 INIT_WORK(&cmd->work, target_abort_work); 836 queue_work(target_completion_wq, &cmd->work); 837 return true; 838 } else if (cmd->transport_state & CMD_T_STOP) { 839 if (cmd->transport_complete_callback) 840 cmd->transport_complete_callback(cmd, false, &post_ret); 841 complete_all(&cmd->t_transport_stop_comp); 842 return true; 843 } 844 845 return false; 846 } 847 848 /* May be called from interrupt context so must not sleep. */ 849 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 850 { 851 int success; 852 unsigned long flags; 853 854 if (target_cmd_interrupted(cmd)) 855 return; 856 857 cmd->scsi_status = scsi_status; 858 859 spin_lock_irqsave(&cmd->t_state_lock, flags); 860 switch (cmd->scsi_status) { 861 case SAM_STAT_CHECK_CONDITION: 862 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 863 success = 1; 864 else 865 success = 0; 866 break; 867 default: 868 success = 1; 869 break; 870 } 871 872 cmd->t_state = TRANSPORT_COMPLETE; 873 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 874 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 875 876 INIT_WORK(&cmd->work, success ? target_complete_ok_work : 877 target_complete_failure_work); 878 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 879 } 880 EXPORT_SYMBOL(target_complete_cmd); 881 882 void target_set_cmd_data_length(struct se_cmd *cmd, int length) 883 { 884 if (length < cmd->data_length) { 885 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 886 cmd->residual_count += cmd->data_length - length; 887 } else { 888 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 889 cmd->residual_count = cmd->data_length - length; 890 } 891 892 cmd->data_length = length; 893 } 894 } 895 EXPORT_SYMBOL(target_set_cmd_data_length); 896 897 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 898 { 899 if (scsi_status == SAM_STAT_GOOD || 900 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) { 901 target_set_cmd_data_length(cmd, length); 902 } 903 904 target_complete_cmd(cmd, scsi_status); 905 } 906 EXPORT_SYMBOL(target_complete_cmd_with_length); 907 908 static void target_add_to_state_list(struct se_cmd *cmd) 909 { 910 struct se_device *dev = cmd->se_dev; 911 unsigned long flags; 912 913 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags); 914 if (!cmd->state_active) { 915 list_add_tail(&cmd->state_list, 916 &dev->queues[cmd->cpuid].state_list); 917 cmd->state_active = true; 918 } 919 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags); 920 } 921 922 /* 923 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 924 */ 925 static void transport_write_pending_qf(struct se_cmd *cmd); 926 static void transport_complete_qf(struct se_cmd *cmd); 927 928 void target_qf_do_work(struct work_struct *work) 929 { 930 struct se_device *dev = container_of(work, struct se_device, 931 qf_work_queue); 932 LIST_HEAD(qf_cmd_list); 933 struct se_cmd *cmd, *cmd_tmp; 934 935 spin_lock_irq(&dev->qf_cmd_lock); 936 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 937 spin_unlock_irq(&dev->qf_cmd_lock); 938 939 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 940 list_del(&cmd->se_qf_node); 941 atomic_dec_mb(&dev->dev_qf_count); 942 943 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 944 " context: %s\n", cmd->se_tfo->fabric_name, cmd, 945 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 946 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 947 : "UNKNOWN"); 948 949 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 950 transport_write_pending_qf(cmd); 951 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 952 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 953 transport_complete_qf(cmd); 954 } 955 } 956 957 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 958 { 959 switch (cmd->data_direction) { 960 case DMA_NONE: 961 return "NONE"; 962 case DMA_FROM_DEVICE: 963 return "READ"; 964 case DMA_TO_DEVICE: 965 return "WRITE"; 966 case DMA_BIDIRECTIONAL: 967 return "BIDI"; 968 default: 969 break; 970 } 971 972 return "UNKNOWN"; 973 } 974 975 void transport_dump_dev_state( 976 struct se_device *dev, 977 char *b, 978 int *bl) 979 { 980 *bl += sprintf(b + *bl, "Status: "); 981 if (dev->export_count) 982 *bl += sprintf(b + *bl, "ACTIVATED"); 983 else 984 *bl += sprintf(b + *bl, "DEACTIVATED"); 985 986 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 987 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 988 dev->dev_attrib.block_size, 989 dev->dev_attrib.hw_max_sectors); 990 *bl += sprintf(b + *bl, " "); 991 } 992 993 void transport_dump_vpd_proto_id( 994 struct t10_vpd *vpd, 995 unsigned char *p_buf, 996 int p_buf_len) 997 { 998 unsigned char buf[VPD_TMP_BUF_SIZE]; 999 int len; 1000 1001 memset(buf, 0, VPD_TMP_BUF_SIZE); 1002 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 1003 1004 switch (vpd->protocol_identifier) { 1005 case 0x00: 1006 sprintf(buf+len, "Fibre Channel\n"); 1007 break; 1008 case 0x10: 1009 sprintf(buf+len, "Parallel SCSI\n"); 1010 break; 1011 case 0x20: 1012 sprintf(buf+len, "SSA\n"); 1013 break; 1014 case 0x30: 1015 sprintf(buf+len, "IEEE 1394\n"); 1016 break; 1017 case 0x40: 1018 sprintf(buf+len, "SCSI Remote Direct Memory Access" 1019 " Protocol\n"); 1020 break; 1021 case 0x50: 1022 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 1023 break; 1024 case 0x60: 1025 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 1026 break; 1027 case 0x70: 1028 sprintf(buf+len, "Automation/Drive Interface Transport" 1029 " Protocol\n"); 1030 break; 1031 case 0x80: 1032 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 1033 break; 1034 default: 1035 sprintf(buf+len, "Unknown 0x%02x\n", 1036 vpd->protocol_identifier); 1037 break; 1038 } 1039 1040 if (p_buf) 1041 strncpy(p_buf, buf, p_buf_len); 1042 else 1043 pr_debug("%s", buf); 1044 } 1045 1046 void 1047 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 1048 { 1049 /* 1050 * Check if the Protocol Identifier Valid (PIV) bit is set.. 1051 * 1052 * from spc3r23.pdf section 7.5.1 1053 */ 1054 if (page_83[1] & 0x80) { 1055 vpd->protocol_identifier = (page_83[0] & 0xf0); 1056 vpd->protocol_identifier_set = 1; 1057 transport_dump_vpd_proto_id(vpd, NULL, 0); 1058 } 1059 } 1060 EXPORT_SYMBOL(transport_set_vpd_proto_id); 1061 1062 int transport_dump_vpd_assoc( 1063 struct t10_vpd *vpd, 1064 unsigned char *p_buf, 1065 int p_buf_len) 1066 { 1067 unsigned char buf[VPD_TMP_BUF_SIZE]; 1068 int ret = 0; 1069 int len; 1070 1071 memset(buf, 0, VPD_TMP_BUF_SIZE); 1072 len = sprintf(buf, "T10 VPD Identifier Association: "); 1073 1074 switch (vpd->association) { 1075 case 0x00: 1076 sprintf(buf+len, "addressed logical unit\n"); 1077 break; 1078 case 0x10: 1079 sprintf(buf+len, "target port\n"); 1080 break; 1081 case 0x20: 1082 sprintf(buf+len, "SCSI target device\n"); 1083 break; 1084 default: 1085 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 1086 ret = -EINVAL; 1087 break; 1088 } 1089 1090 if (p_buf) 1091 strncpy(p_buf, buf, p_buf_len); 1092 else 1093 pr_debug("%s", buf); 1094 1095 return ret; 1096 } 1097 1098 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 1099 { 1100 /* 1101 * The VPD identification association.. 1102 * 1103 * from spc3r23.pdf Section 7.6.3.1 Table 297 1104 */ 1105 vpd->association = (page_83[1] & 0x30); 1106 return transport_dump_vpd_assoc(vpd, NULL, 0); 1107 } 1108 EXPORT_SYMBOL(transport_set_vpd_assoc); 1109 1110 int transport_dump_vpd_ident_type( 1111 struct t10_vpd *vpd, 1112 unsigned char *p_buf, 1113 int p_buf_len) 1114 { 1115 unsigned char buf[VPD_TMP_BUF_SIZE]; 1116 int ret = 0; 1117 int len; 1118 1119 memset(buf, 0, VPD_TMP_BUF_SIZE); 1120 len = sprintf(buf, "T10 VPD Identifier Type: "); 1121 1122 switch (vpd->device_identifier_type) { 1123 case 0x00: 1124 sprintf(buf+len, "Vendor specific\n"); 1125 break; 1126 case 0x01: 1127 sprintf(buf+len, "T10 Vendor ID based\n"); 1128 break; 1129 case 0x02: 1130 sprintf(buf+len, "EUI-64 based\n"); 1131 break; 1132 case 0x03: 1133 sprintf(buf+len, "NAA\n"); 1134 break; 1135 case 0x04: 1136 sprintf(buf+len, "Relative target port identifier\n"); 1137 break; 1138 case 0x08: 1139 sprintf(buf+len, "SCSI name string\n"); 1140 break; 1141 default: 1142 sprintf(buf+len, "Unsupported: 0x%02x\n", 1143 vpd->device_identifier_type); 1144 ret = -EINVAL; 1145 break; 1146 } 1147 1148 if (p_buf) { 1149 if (p_buf_len < strlen(buf)+1) 1150 return -EINVAL; 1151 strncpy(p_buf, buf, p_buf_len); 1152 } else { 1153 pr_debug("%s", buf); 1154 } 1155 1156 return ret; 1157 } 1158 1159 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1160 { 1161 /* 1162 * The VPD identifier type.. 1163 * 1164 * from spc3r23.pdf Section 7.6.3.1 Table 298 1165 */ 1166 vpd->device_identifier_type = (page_83[1] & 0x0f); 1167 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1168 } 1169 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1170 1171 int transport_dump_vpd_ident( 1172 struct t10_vpd *vpd, 1173 unsigned char *p_buf, 1174 int p_buf_len) 1175 { 1176 unsigned char buf[VPD_TMP_BUF_SIZE]; 1177 int ret = 0; 1178 1179 memset(buf, 0, VPD_TMP_BUF_SIZE); 1180 1181 switch (vpd->device_identifier_code_set) { 1182 case 0x01: /* Binary */ 1183 snprintf(buf, sizeof(buf), 1184 "T10 VPD Binary Device Identifier: %s\n", 1185 &vpd->device_identifier[0]); 1186 break; 1187 case 0x02: /* ASCII */ 1188 snprintf(buf, sizeof(buf), 1189 "T10 VPD ASCII Device Identifier: %s\n", 1190 &vpd->device_identifier[0]); 1191 break; 1192 case 0x03: /* UTF-8 */ 1193 snprintf(buf, sizeof(buf), 1194 "T10 VPD UTF-8 Device Identifier: %s\n", 1195 &vpd->device_identifier[0]); 1196 break; 1197 default: 1198 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1199 " 0x%02x", vpd->device_identifier_code_set); 1200 ret = -EINVAL; 1201 break; 1202 } 1203 1204 if (p_buf) 1205 strncpy(p_buf, buf, p_buf_len); 1206 else 1207 pr_debug("%s", buf); 1208 1209 return ret; 1210 } 1211 1212 int 1213 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1214 { 1215 static const char hex_str[] = "0123456789abcdef"; 1216 int j = 0, i = 4; /* offset to start of the identifier */ 1217 1218 /* 1219 * The VPD Code Set (encoding) 1220 * 1221 * from spc3r23.pdf Section 7.6.3.1 Table 296 1222 */ 1223 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1224 switch (vpd->device_identifier_code_set) { 1225 case 0x01: /* Binary */ 1226 vpd->device_identifier[j++] = 1227 hex_str[vpd->device_identifier_type]; 1228 while (i < (4 + page_83[3])) { 1229 vpd->device_identifier[j++] = 1230 hex_str[(page_83[i] & 0xf0) >> 4]; 1231 vpd->device_identifier[j++] = 1232 hex_str[page_83[i] & 0x0f]; 1233 i++; 1234 } 1235 break; 1236 case 0x02: /* ASCII */ 1237 case 0x03: /* UTF-8 */ 1238 while (i < (4 + page_83[3])) 1239 vpd->device_identifier[j++] = page_83[i++]; 1240 break; 1241 default: 1242 break; 1243 } 1244 1245 return transport_dump_vpd_ident(vpd, NULL, 0); 1246 } 1247 EXPORT_SYMBOL(transport_set_vpd_ident); 1248 1249 static sense_reason_t 1250 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1251 unsigned int size) 1252 { 1253 u32 mtl; 1254 1255 if (!cmd->se_tfo->max_data_sg_nents) 1256 return TCM_NO_SENSE; 1257 /* 1258 * Check if fabric enforced maximum SGL entries per I/O descriptor 1259 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1260 * residual_count and reduce original cmd->data_length to maximum 1261 * length based on single PAGE_SIZE entry scatter-lists. 1262 */ 1263 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1264 if (cmd->data_length > mtl) { 1265 /* 1266 * If an existing CDB overflow is present, calculate new residual 1267 * based on CDB size minus fabric maximum transfer length. 1268 * 1269 * If an existing CDB underflow is present, calculate new residual 1270 * based on original cmd->data_length minus fabric maximum transfer 1271 * length. 1272 * 1273 * Otherwise, set the underflow residual based on cmd->data_length 1274 * minus fabric maximum transfer length. 1275 */ 1276 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1277 cmd->residual_count = (size - mtl); 1278 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1279 u32 orig_dl = size + cmd->residual_count; 1280 cmd->residual_count = (orig_dl - mtl); 1281 } else { 1282 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1283 cmd->residual_count = (cmd->data_length - mtl); 1284 } 1285 cmd->data_length = mtl; 1286 /* 1287 * Reset sbc_check_prot() calculated protection payload 1288 * length based upon the new smaller MTL. 1289 */ 1290 if (cmd->prot_length) { 1291 u32 sectors = (mtl / dev->dev_attrib.block_size); 1292 cmd->prot_length = dev->prot_length * sectors; 1293 } 1294 } 1295 return TCM_NO_SENSE; 1296 } 1297 1298 /** 1299 * target_cmd_size_check - Check whether there will be a residual. 1300 * @cmd: SCSI command. 1301 * @size: Data buffer size derived from CDB. The data buffer size provided by 1302 * the SCSI transport driver is available in @cmd->data_length. 1303 * 1304 * Compare the data buffer size from the CDB with the data buffer limit from the transport 1305 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary. 1306 * 1307 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd(). 1308 * 1309 * Return: TCM_NO_SENSE 1310 */ 1311 sense_reason_t 1312 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1313 { 1314 struct se_device *dev = cmd->se_dev; 1315 1316 if (cmd->unknown_data_length) { 1317 cmd->data_length = size; 1318 } else if (size != cmd->data_length) { 1319 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" 1320 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1321 " 0x%02x\n", cmd->se_tfo->fabric_name, 1322 cmd->data_length, size, cmd->t_task_cdb[0]); 1323 /* 1324 * For READ command for the overflow case keep the existing 1325 * fabric provided ->data_length. Otherwise for the underflow 1326 * case, reset ->data_length to the smaller SCSI expected data 1327 * transfer length. 1328 */ 1329 if (size > cmd->data_length) { 1330 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1331 cmd->residual_count = (size - cmd->data_length); 1332 } else { 1333 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1334 cmd->residual_count = (cmd->data_length - size); 1335 /* 1336 * Do not truncate ->data_length for WRITE command to 1337 * dump all payload 1338 */ 1339 if (cmd->data_direction == DMA_FROM_DEVICE) { 1340 cmd->data_length = size; 1341 } 1342 } 1343 1344 if (cmd->data_direction == DMA_TO_DEVICE) { 1345 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1346 pr_err_ratelimited("Rejecting underflow/overflow" 1347 " for WRITE data CDB\n"); 1348 return TCM_INVALID_FIELD_IN_COMMAND_IU; 1349 } 1350 /* 1351 * Some fabric drivers like iscsi-target still expect to 1352 * always reject overflow writes. Reject this case until 1353 * full fabric driver level support for overflow writes 1354 * is introduced tree-wide. 1355 */ 1356 if (size > cmd->data_length) { 1357 pr_err_ratelimited("Rejecting overflow for" 1358 " WRITE control CDB\n"); 1359 return TCM_INVALID_CDB_FIELD; 1360 } 1361 } 1362 } 1363 1364 return target_check_max_data_sg_nents(cmd, dev, size); 1365 1366 } 1367 1368 /* 1369 * Used by fabric modules containing a local struct se_cmd within their 1370 * fabric dependent per I/O descriptor. 1371 * 1372 * Preserves the value of @cmd->tag. 1373 */ 1374 void transport_init_se_cmd( 1375 struct se_cmd *cmd, 1376 const struct target_core_fabric_ops *tfo, 1377 struct se_session *se_sess, 1378 u32 data_length, 1379 int data_direction, 1380 int task_attr, 1381 unsigned char *sense_buffer, u64 unpacked_lun) 1382 { 1383 INIT_LIST_HEAD(&cmd->se_delayed_node); 1384 INIT_LIST_HEAD(&cmd->se_qf_node); 1385 INIT_LIST_HEAD(&cmd->se_cmd_list); 1386 INIT_LIST_HEAD(&cmd->state_list); 1387 init_completion(&cmd->t_transport_stop_comp); 1388 cmd->free_compl = NULL; 1389 cmd->abrt_compl = NULL; 1390 spin_lock_init(&cmd->t_state_lock); 1391 INIT_WORK(&cmd->work, NULL); 1392 kref_init(&cmd->cmd_kref); 1393 1394 cmd->se_tfo = tfo; 1395 cmd->se_sess = se_sess; 1396 cmd->data_length = data_length; 1397 cmd->data_direction = data_direction; 1398 cmd->sam_task_attr = task_attr; 1399 cmd->sense_buffer = sense_buffer; 1400 cmd->orig_fe_lun = unpacked_lun; 1401 1402 if (!(cmd->se_cmd_flags & SCF_USE_CPUID)) 1403 cmd->cpuid = smp_processor_id(); 1404 1405 cmd->state_active = false; 1406 } 1407 EXPORT_SYMBOL(transport_init_se_cmd); 1408 1409 static sense_reason_t 1410 transport_check_alloc_task_attr(struct se_cmd *cmd) 1411 { 1412 struct se_device *dev = cmd->se_dev; 1413 1414 /* 1415 * Check if SAM Task Attribute emulation is enabled for this 1416 * struct se_device storage object 1417 */ 1418 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1419 return 0; 1420 1421 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1422 pr_debug("SAM Task Attribute ACA" 1423 " emulation is not supported\n"); 1424 return TCM_INVALID_CDB_FIELD; 1425 } 1426 1427 return 0; 1428 } 1429 1430 sense_reason_t 1431 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb) 1432 { 1433 sense_reason_t ret; 1434 1435 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1436 /* 1437 * Ensure that the received CDB is less than the max (252 + 8) bytes 1438 * for VARIABLE_LENGTH_CMD 1439 */ 1440 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1441 pr_err("Received SCSI CDB with command_size: %d that" 1442 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1443 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1444 ret = TCM_INVALID_CDB_FIELD; 1445 goto err; 1446 } 1447 /* 1448 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1449 * allocate the additional extended CDB buffer now.. Otherwise 1450 * setup the pointer from __t_task_cdb to t_task_cdb. 1451 */ 1452 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1453 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1454 GFP_KERNEL); 1455 if (!cmd->t_task_cdb) { 1456 pr_err("Unable to allocate cmd->t_task_cdb" 1457 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1458 scsi_command_size(cdb), 1459 (unsigned long)sizeof(cmd->__t_task_cdb)); 1460 ret = TCM_OUT_OF_RESOURCES; 1461 goto err; 1462 } 1463 } 1464 /* 1465 * Copy the original CDB into cmd-> 1466 */ 1467 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1468 1469 trace_target_sequencer_start(cmd); 1470 return 0; 1471 1472 err: 1473 /* 1474 * Copy the CDB here to allow trace_target_cmd_complete() to 1475 * print the cdb to the trace buffers. 1476 */ 1477 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb), 1478 (unsigned int)TCM_MAX_COMMAND_SIZE)); 1479 return ret; 1480 } 1481 EXPORT_SYMBOL(target_cmd_init_cdb); 1482 1483 sense_reason_t 1484 target_cmd_parse_cdb(struct se_cmd *cmd) 1485 { 1486 struct se_device *dev = cmd->se_dev; 1487 sense_reason_t ret; 1488 1489 ret = dev->transport->parse_cdb(cmd); 1490 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1491 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1492 cmd->se_tfo->fabric_name, 1493 cmd->se_sess->se_node_acl->initiatorname, 1494 cmd->t_task_cdb[0]); 1495 if (ret) 1496 return ret; 1497 1498 ret = transport_check_alloc_task_attr(cmd); 1499 if (ret) 1500 return ret; 1501 1502 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1503 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1504 return 0; 1505 } 1506 EXPORT_SYMBOL(target_cmd_parse_cdb); 1507 1508 /* 1509 * Used by fabric module frontends to queue tasks directly. 1510 * May only be used from process context. 1511 */ 1512 int transport_handle_cdb_direct( 1513 struct se_cmd *cmd) 1514 { 1515 sense_reason_t ret; 1516 1517 might_sleep(); 1518 1519 if (!cmd->se_lun) { 1520 dump_stack(); 1521 pr_err("cmd->se_lun is NULL\n"); 1522 return -EINVAL; 1523 } 1524 1525 /* 1526 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1527 * outstanding descriptors are handled correctly during shutdown via 1528 * transport_wait_for_tasks() 1529 * 1530 * Also, we don't take cmd->t_state_lock here as we only expect 1531 * this to be called for initial descriptor submission. 1532 */ 1533 cmd->t_state = TRANSPORT_NEW_CMD; 1534 cmd->transport_state |= CMD_T_ACTIVE; 1535 1536 /* 1537 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1538 * so follow TRANSPORT_NEW_CMD processing thread context usage 1539 * and call transport_generic_request_failure() if necessary.. 1540 */ 1541 ret = transport_generic_new_cmd(cmd); 1542 if (ret) 1543 transport_generic_request_failure(cmd, ret); 1544 return 0; 1545 } 1546 EXPORT_SYMBOL(transport_handle_cdb_direct); 1547 1548 sense_reason_t 1549 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1550 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1551 { 1552 if (!sgl || !sgl_count) 1553 return 0; 1554 1555 /* 1556 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1557 * scatterlists already have been set to follow what the fabric 1558 * passes for the original expected data transfer length. 1559 */ 1560 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1561 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1562 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1563 return TCM_INVALID_CDB_FIELD; 1564 } 1565 1566 cmd->t_data_sg = sgl; 1567 cmd->t_data_nents = sgl_count; 1568 cmd->t_bidi_data_sg = sgl_bidi; 1569 cmd->t_bidi_data_nents = sgl_bidi_count; 1570 1571 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1572 return 0; 1573 } 1574 1575 /** 1576 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1577 * se_cmd + use pre-allocated SGL memory. 1578 * 1579 * @se_cmd: command descriptor to submit 1580 * @se_sess: associated se_sess for endpoint 1581 * @cdb: pointer to SCSI CDB 1582 * @sense: pointer to SCSI sense buffer 1583 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1584 * @data_length: fabric expected data transfer length 1585 * @task_attr: SAM task attribute 1586 * @data_dir: DMA data direction 1587 * @flags: flags for command submission from target_sc_flags_tables 1588 * @sgl: struct scatterlist memory for unidirectional mapping 1589 * @sgl_count: scatterlist count for unidirectional mapping 1590 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1591 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1592 * @sgl_prot: struct scatterlist memory protection information 1593 * @sgl_prot_count: scatterlist count for protection information 1594 * 1595 * Task tags are supported if the caller has set @se_cmd->tag. 1596 * 1597 * Returns non zero to signal active I/O shutdown failure. All other 1598 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1599 * but still return zero here. 1600 * 1601 * This may only be called from process context, and also currently 1602 * assumes internal allocation of fabric payload buffer by target-core. 1603 */ 1604 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1605 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1606 u32 data_length, int task_attr, int data_dir, int flags, 1607 struct scatterlist *sgl, u32 sgl_count, 1608 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1609 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1610 { 1611 struct se_portal_group *se_tpg; 1612 sense_reason_t rc; 1613 int ret; 1614 1615 might_sleep(); 1616 1617 se_tpg = se_sess->se_tpg; 1618 BUG_ON(!se_tpg); 1619 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1620 1621 if (flags & TARGET_SCF_USE_CPUID) 1622 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1623 /* 1624 * Initialize se_cmd for target operation. From this point 1625 * exceptions are handled by sending exception status via 1626 * target_core_fabric_ops->queue_status() callback 1627 */ 1628 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1629 data_length, data_dir, task_attr, sense, 1630 unpacked_lun); 1631 1632 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1633 se_cmd->unknown_data_length = 1; 1634 /* 1635 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is 1636 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second 1637 * kref_put() to happen during fabric packet acknowledgement. 1638 */ 1639 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1640 if (ret) 1641 return ret; 1642 /* 1643 * Signal bidirectional data payloads to target-core 1644 */ 1645 if (flags & TARGET_SCF_BIDI_OP) 1646 se_cmd->se_cmd_flags |= SCF_BIDI; 1647 1648 rc = target_cmd_init_cdb(se_cmd, cdb); 1649 if (rc) { 1650 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1651 target_put_sess_cmd(se_cmd); 1652 return 0; 1653 } 1654 1655 /* 1656 * Locate se_lun pointer and attach it to struct se_cmd 1657 */ 1658 rc = transport_lookup_cmd_lun(se_cmd); 1659 if (rc) { 1660 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1661 target_put_sess_cmd(se_cmd); 1662 return 0; 1663 } 1664 1665 rc = target_cmd_parse_cdb(se_cmd); 1666 if (rc != 0) { 1667 transport_generic_request_failure(se_cmd, rc); 1668 return 0; 1669 } 1670 1671 /* 1672 * Save pointers for SGLs containing protection information, 1673 * if present. 1674 */ 1675 if (sgl_prot_count) { 1676 se_cmd->t_prot_sg = sgl_prot; 1677 se_cmd->t_prot_nents = sgl_prot_count; 1678 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1679 } 1680 1681 /* 1682 * When a non zero sgl_count has been passed perform SGL passthrough 1683 * mapping for pre-allocated fabric memory instead of having target 1684 * core perform an internal SGL allocation.. 1685 */ 1686 if (sgl_count != 0) { 1687 BUG_ON(!sgl); 1688 1689 /* 1690 * A work-around for tcm_loop as some userspace code via 1691 * scsi-generic do not memset their associated read buffers, 1692 * so go ahead and do that here for type non-data CDBs. Also 1693 * note that this is currently guaranteed to be a single SGL 1694 * for this case by target core in target_setup_cmd_from_cdb() 1695 * -> transport_generic_cmd_sequencer(). 1696 */ 1697 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1698 se_cmd->data_direction == DMA_FROM_DEVICE) { 1699 unsigned char *buf = NULL; 1700 1701 if (sgl) 1702 buf = kmap(sg_page(sgl)) + sgl->offset; 1703 1704 if (buf) { 1705 memset(buf, 0, sgl->length); 1706 kunmap(sg_page(sgl)); 1707 } 1708 } 1709 1710 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1711 sgl_bidi, sgl_bidi_count); 1712 if (rc != 0) { 1713 transport_generic_request_failure(se_cmd, rc); 1714 return 0; 1715 } 1716 } 1717 1718 /* 1719 * Check if we need to delay processing because of ALUA 1720 * Active/NonOptimized primary access state.. 1721 */ 1722 core_alua_check_nonop_delay(se_cmd); 1723 1724 transport_handle_cdb_direct(se_cmd); 1725 return 0; 1726 } 1727 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1728 1729 /** 1730 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1731 * 1732 * @se_cmd: command descriptor to submit 1733 * @se_sess: associated se_sess for endpoint 1734 * @cdb: pointer to SCSI CDB 1735 * @sense: pointer to SCSI sense buffer 1736 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1737 * @data_length: fabric expected data transfer length 1738 * @task_attr: SAM task attribute 1739 * @data_dir: DMA data direction 1740 * @flags: flags for command submission from target_sc_flags_tables 1741 * 1742 * Task tags are supported if the caller has set @se_cmd->tag. 1743 * 1744 * Returns non zero to signal active I/O shutdown failure. All other 1745 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1746 * but still return zero here. 1747 * 1748 * This may only be called from process context, and also currently 1749 * assumes internal allocation of fabric payload buffer by target-core. 1750 * 1751 * It also assumes interal target core SGL memory allocation. 1752 */ 1753 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1754 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1755 u32 data_length, int task_attr, int data_dir, int flags) 1756 { 1757 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1758 unpacked_lun, data_length, task_attr, data_dir, 1759 flags, NULL, 0, NULL, 0, NULL, 0); 1760 } 1761 EXPORT_SYMBOL(target_submit_cmd); 1762 1763 static void target_complete_tmr_failure(struct work_struct *work) 1764 { 1765 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1766 1767 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1768 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1769 1770 transport_lun_remove_cmd(se_cmd); 1771 transport_cmd_check_stop_to_fabric(se_cmd); 1772 } 1773 1774 /** 1775 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1776 * for TMR CDBs 1777 * 1778 * @se_cmd: command descriptor to submit 1779 * @se_sess: associated se_sess for endpoint 1780 * @sense: pointer to SCSI sense buffer 1781 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1782 * @fabric_tmr_ptr: fabric context for TMR req 1783 * @tm_type: Type of TM request 1784 * @gfp: gfp type for caller 1785 * @tag: referenced task tag for TMR_ABORT_TASK 1786 * @flags: submit cmd flags 1787 * 1788 * Callable from all contexts. 1789 **/ 1790 1791 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1792 unsigned char *sense, u64 unpacked_lun, 1793 void *fabric_tmr_ptr, unsigned char tm_type, 1794 gfp_t gfp, u64 tag, int flags) 1795 { 1796 struct se_portal_group *se_tpg; 1797 int ret; 1798 1799 se_tpg = se_sess->se_tpg; 1800 BUG_ON(!se_tpg); 1801 1802 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1803 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun); 1804 /* 1805 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1806 * allocation failure. 1807 */ 1808 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1809 if (ret < 0) 1810 return -ENOMEM; 1811 1812 if (tm_type == TMR_ABORT_TASK) 1813 se_cmd->se_tmr_req->ref_task_tag = tag; 1814 1815 /* See target_submit_cmd for commentary */ 1816 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1817 if (ret) { 1818 core_tmr_release_req(se_cmd->se_tmr_req); 1819 return ret; 1820 } 1821 1822 ret = transport_lookup_tmr_lun(se_cmd); 1823 if (ret) 1824 goto failure; 1825 1826 transport_generic_handle_tmr(se_cmd); 1827 return 0; 1828 1829 /* 1830 * For callback during failure handling, push this work off 1831 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1832 */ 1833 failure: 1834 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1835 schedule_work(&se_cmd->work); 1836 return 0; 1837 } 1838 EXPORT_SYMBOL(target_submit_tmr); 1839 1840 /* 1841 * Handle SAM-esque emulation for generic transport request failures. 1842 */ 1843 void transport_generic_request_failure(struct se_cmd *cmd, 1844 sense_reason_t sense_reason) 1845 { 1846 int ret = 0, post_ret; 1847 1848 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n", 1849 sense_reason); 1850 target_show_cmd("-----[ ", cmd); 1851 1852 /* 1853 * For SAM Task Attribute emulation for failed struct se_cmd 1854 */ 1855 transport_complete_task_attr(cmd); 1856 1857 if (cmd->transport_complete_callback) 1858 cmd->transport_complete_callback(cmd, false, &post_ret); 1859 1860 if (cmd->transport_state & CMD_T_ABORTED) { 1861 INIT_WORK(&cmd->work, target_abort_work); 1862 queue_work(target_completion_wq, &cmd->work); 1863 return; 1864 } 1865 1866 switch (sense_reason) { 1867 case TCM_NON_EXISTENT_LUN: 1868 case TCM_UNSUPPORTED_SCSI_OPCODE: 1869 case TCM_INVALID_CDB_FIELD: 1870 case TCM_INVALID_PARAMETER_LIST: 1871 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1872 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1873 case TCM_UNKNOWN_MODE_PAGE: 1874 case TCM_WRITE_PROTECTED: 1875 case TCM_ADDRESS_OUT_OF_RANGE: 1876 case TCM_CHECK_CONDITION_ABORT_CMD: 1877 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1878 case TCM_CHECK_CONDITION_NOT_READY: 1879 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1880 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1881 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1882 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1883 case TCM_TOO_MANY_TARGET_DESCS: 1884 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1885 case TCM_TOO_MANY_SEGMENT_DESCS: 1886 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1887 case TCM_INVALID_FIELD_IN_COMMAND_IU: 1888 break; 1889 case TCM_OUT_OF_RESOURCES: 1890 cmd->scsi_status = SAM_STAT_TASK_SET_FULL; 1891 goto queue_status; 1892 case TCM_LUN_BUSY: 1893 cmd->scsi_status = SAM_STAT_BUSY; 1894 goto queue_status; 1895 case TCM_RESERVATION_CONFLICT: 1896 /* 1897 * No SENSE Data payload for this case, set SCSI Status 1898 * and queue the response to $FABRIC_MOD. 1899 * 1900 * Uses linux/include/scsi/scsi.h SAM status codes defs 1901 */ 1902 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1903 /* 1904 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1905 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1906 * CONFLICT STATUS. 1907 * 1908 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1909 */ 1910 if (cmd->se_sess && 1911 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl 1912 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) { 1913 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1914 cmd->orig_fe_lun, 0x2C, 1915 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1916 } 1917 1918 goto queue_status; 1919 default: 1920 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1921 cmd->t_task_cdb[0], sense_reason); 1922 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1923 break; 1924 } 1925 1926 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1927 if (ret) 1928 goto queue_full; 1929 1930 check_stop: 1931 transport_lun_remove_cmd(cmd); 1932 transport_cmd_check_stop_to_fabric(cmd); 1933 return; 1934 1935 queue_status: 1936 trace_target_cmd_complete(cmd); 1937 ret = cmd->se_tfo->queue_status(cmd); 1938 if (!ret) 1939 goto check_stop; 1940 queue_full: 1941 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 1942 } 1943 EXPORT_SYMBOL(transport_generic_request_failure); 1944 1945 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1946 { 1947 sense_reason_t ret; 1948 1949 if (!cmd->execute_cmd) { 1950 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1951 goto err; 1952 } 1953 if (do_checks) { 1954 /* 1955 * Check for an existing UNIT ATTENTION condition after 1956 * target_handle_task_attr() has done SAM task attr 1957 * checking, and possibly have already defered execution 1958 * out to target_restart_delayed_cmds() context. 1959 */ 1960 ret = target_scsi3_ua_check(cmd); 1961 if (ret) 1962 goto err; 1963 1964 ret = target_alua_state_check(cmd); 1965 if (ret) 1966 goto err; 1967 1968 ret = target_check_reservation(cmd); 1969 if (ret) { 1970 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1971 goto err; 1972 } 1973 } 1974 1975 ret = cmd->execute_cmd(cmd); 1976 if (!ret) 1977 return; 1978 err: 1979 spin_lock_irq(&cmd->t_state_lock); 1980 cmd->transport_state &= ~CMD_T_SENT; 1981 spin_unlock_irq(&cmd->t_state_lock); 1982 1983 transport_generic_request_failure(cmd, ret); 1984 } 1985 1986 static int target_write_prot_action(struct se_cmd *cmd) 1987 { 1988 u32 sectors; 1989 /* 1990 * Perform WRITE_INSERT of PI using software emulation when backend 1991 * device has PI enabled, if the transport has not already generated 1992 * PI using hardware WRITE_INSERT offload. 1993 */ 1994 switch (cmd->prot_op) { 1995 case TARGET_PROT_DOUT_INSERT: 1996 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1997 sbc_dif_generate(cmd); 1998 break; 1999 case TARGET_PROT_DOUT_STRIP: 2000 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 2001 break; 2002 2003 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 2004 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2005 sectors, 0, cmd->t_prot_sg, 0); 2006 if (unlikely(cmd->pi_err)) { 2007 spin_lock_irq(&cmd->t_state_lock); 2008 cmd->transport_state &= ~CMD_T_SENT; 2009 spin_unlock_irq(&cmd->t_state_lock); 2010 transport_generic_request_failure(cmd, cmd->pi_err); 2011 return -1; 2012 } 2013 break; 2014 default: 2015 break; 2016 } 2017 2018 return 0; 2019 } 2020 2021 static bool target_handle_task_attr(struct se_cmd *cmd) 2022 { 2023 struct se_device *dev = cmd->se_dev; 2024 2025 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2026 return false; 2027 2028 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 2029 2030 /* 2031 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 2032 * to allow the passed struct se_cmd list of tasks to the front of the list. 2033 */ 2034 switch (cmd->sam_task_attr) { 2035 case TCM_HEAD_TAG: 2036 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 2037 cmd->t_task_cdb[0]); 2038 return false; 2039 case TCM_ORDERED_TAG: 2040 atomic_inc_mb(&dev->dev_ordered_sync); 2041 2042 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 2043 cmd->t_task_cdb[0]); 2044 2045 /* 2046 * Execute an ORDERED command if no other older commands 2047 * exist that need to be completed first. 2048 */ 2049 if (!atomic_read(&dev->simple_cmds)) 2050 return false; 2051 break; 2052 default: 2053 /* 2054 * For SIMPLE and UNTAGGED Task Attribute commands 2055 */ 2056 atomic_inc_mb(&dev->simple_cmds); 2057 break; 2058 } 2059 2060 if (atomic_read(&dev->dev_ordered_sync) == 0) 2061 return false; 2062 2063 spin_lock(&dev->delayed_cmd_lock); 2064 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 2065 spin_unlock(&dev->delayed_cmd_lock); 2066 2067 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 2068 cmd->t_task_cdb[0], cmd->sam_task_attr); 2069 return true; 2070 } 2071 2072 void target_execute_cmd(struct se_cmd *cmd) 2073 { 2074 /* 2075 * Determine if frontend context caller is requesting the stopping of 2076 * this command for frontend exceptions. 2077 * 2078 * If the received CDB has already been aborted stop processing it here. 2079 */ 2080 if (target_cmd_interrupted(cmd)) 2081 return; 2082 2083 spin_lock_irq(&cmd->t_state_lock); 2084 cmd->t_state = TRANSPORT_PROCESSING; 2085 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 2086 spin_unlock_irq(&cmd->t_state_lock); 2087 2088 if (target_write_prot_action(cmd)) 2089 return; 2090 2091 if (target_handle_task_attr(cmd)) { 2092 spin_lock_irq(&cmd->t_state_lock); 2093 cmd->transport_state &= ~CMD_T_SENT; 2094 spin_unlock_irq(&cmd->t_state_lock); 2095 return; 2096 } 2097 2098 __target_execute_cmd(cmd, true); 2099 } 2100 EXPORT_SYMBOL(target_execute_cmd); 2101 2102 /* 2103 * Process all commands up to the last received ORDERED task attribute which 2104 * requires another blocking boundary 2105 */ 2106 static void target_restart_delayed_cmds(struct se_device *dev) 2107 { 2108 for (;;) { 2109 struct se_cmd *cmd; 2110 2111 spin_lock(&dev->delayed_cmd_lock); 2112 if (list_empty(&dev->delayed_cmd_list)) { 2113 spin_unlock(&dev->delayed_cmd_lock); 2114 break; 2115 } 2116 2117 cmd = list_entry(dev->delayed_cmd_list.next, 2118 struct se_cmd, se_delayed_node); 2119 list_del(&cmd->se_delayed_node); 2120 spin_unlock(&dev->delayed_cmd_lock); 2121 2122 cmd->transport_state |= CMD_T_SENT; 2123 2124 __target_execute_cmd(cmd, true); 2125 2126 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 2127 break; 2128 } 2129 } 2130 2131 /* 2132 * Called from I/O completion to determine which dormant/delayed 2133 * and ordered cmds need to have their tasks added to the execution queue. 2134 */ 2135 static void transport_complete_task_attr(struct se_cmd *cmd) 2136 { 2137 struct se_device *dev = cmd->se_dev; 2138 2139 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2140 return; 2141 2142 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 2143 goto restart; 2144 2145 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 2146 atomic_dec_mb(&dev->simple_cmds); 2147 dev->dev_cur_ordered_id++; 2148 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 2149 dev->dev_cur_ordered_id++; 2150 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 2151 dev->dev_cur_ordered_id); 2152 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 2153 atomic_dec_mb(&dev->dev_ordered_sync); 2154 2155 dev->dev_cur_ordered_id++; 2156 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 2157 dev->dev_cur_ordered_id); 2158 } 2159 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET; 2160 2161 restart: 2162 target_restart_delayed_cmds(dev); 2163 } 2164 2165 static void transport_complete_qf(struct se_cmd *cmd) 2166 { 2167 int ret = 0; 2168 2169 transport_complete_task_attr(cmd); 2170 /* 2171 * If a fabric driver ->write_pending() or ->queue_data_in() callback 2172 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 2173 * the same callbacks should not be retried. Return CHECK_CONDITION 2174 * if a scsi_status is not already set. 2175 * 2176 * If a fabric driver ->queue_status() has returned non zero, always 2177 * keep retrying no matter what.. 2178 */ 2179 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 2180 if (cmd->scsi_status) 2181 goto queue_status; 2182 2183 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 2184 goto queue_status; 2185 } 2186 2187 /* 2188 * Check if we need to send a sense buffer from 2189 * the struct se_cmd in question. We do NOT want 2190 * to take this path of the IO has been marked as 2191 * needing to be treated like a "normal read". This 2192 * is the case if it's a tape read, and either the 2193 * FM, EOM, or ILI bits are set, but there is no 2194 * sense data. 2195 */ 2196 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2197 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2198 goto queue_status; 2199 2200 switch (cmd->data_direction) { 2201 case DMA_FROM_DEVICE: 2202 /* queue status if not treating this as a normal read */ 2203 if (cmd->scsi_status && 2204 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2205 goto queue_status; 2206 2207 trace_target_cmd_complete(cmd); 2208 ret = cmd->se_tfo->queue_data_in(cmd); 2209 break; 2210 case DMA_TO_DEVICE: 2211 if (cmd->se_cmd_flags & SCF_BIDI) { 2212 ret = cmd->se_tfo->queue_data_in(cmd); 2213 break; 2214 } 2215 fallthrough; 2216 case DMA_NONE: 2217 queue_status: 2218 trace_target_cmd_complete(cmd); 2219 ret = cmd->se_tfo->queue_status(cmd); 2220 break; 2221 default: 2222 break; 2223 } 2224 2225 if (ret < 0) { 2226 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2227 return; 2228 } 2229 transport_lun_remove_cmd(cmd); 2230 transport_cmd_check_stop_to_fabric(cmd); 2231 } 2232 2233 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2234 int err, bool write_pending) 2235 { 2236 /* 2237 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2238 * ->queue_data_in() callbacks from new process context. 2239 * 2240 * Otherwise for other errors, transport_complete_qf() will send 2241 * CHECK_CONDITION via ->queue_status() instead of attempting to 2242 * retry associated fabric driver data-transfer callbacks. 2243 */ 2244 if (err == -EAGAIN || err == -ENOMEM) { 2245 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2246 TRANSPORT_COMPLETE_QF_OK; 2247 } else { 2248 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2249 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2250 } 2251 2252 spin_lock_irq(&dev->qf_cmd_lock); 2253 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2254 atomic_inc_mb(&dev->dev_qf_count); 2255 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2256 2257 schedule_work(&cmd->se_dev->qf_work_queue); 2258 } 2259 2260 static bool target_read_prot_action(struct se_cmd *cmd) 2261 { 2262 switch (cmd->prot_op) { 2263 case TARGET_PROT_DIN_STRIP: 2264 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2265 u32 sectors = cmd->data_length >> 2266 ilog2(cmd->se_dev->dev_attrib.block_size); 2267 2268 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2269 sectors, 0, cmd->t_prot_sg, 2270 0); 2271 if (cmd->pi_err) 2272 return true; 2273 } 2274 break; 2275 case TARGET_PROT_DIN_INSERT: 2276 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2277 break; 2278 2279 sbc_dif_generate(cmd); 2280 break; 2281 default: 2282 break; 2283 } 2284 2285 return false; 2286 } 2287 2288 static void target_complete_ok_work(struct work_struct *work) 2289 { 2290 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2291 int ret; 2292 2293 /* 2294 * Check if we need to move delayed/dormant tasks from cmds on the 2295 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2296 * Attribute. 2297 */ 2298 transport_complete_task_attr(cmd); 2299 2300 /* 2301 * Check to schedule QUEUE_FULL work, or execute an existing 2302 * cmd->transport_qf_callback() 2303 */ 2304 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2305 schedule_work(&cmd->se_dev->qf_work_queue); 2306 2307 /* 2308 * Check if we need to send a sense buffer from 2309 * the struct se_cmd in question. We do NOT want 2310 * to take this path of the IO has been marked as 2311 * needing to be treated like a "normal read". This 2312 * is the case if it's a tape read, and either the 2313 * FM, EOM, or ILI bits are set, but there is no 2314 * sense data. 2315 */ 2316 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2317 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2318 WARN_ON(!cmd->scsi_status); 2319 ret = transport_send_check_condition_and_sense( 2320 cmd, 0, 1); 2321 if (ret) 2322 goto queue_full; 2323 2324 transport_lun_remove_cmd(cmd); 2325 transport_cmd_check_stop_to_fabric(cmd); 2326 return; 2327 } 2328 /* 2329 * Check for a callback, used by amongst other things 2330 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2331 */ 2332 if (cmd->transport_complete_callback) { 2333 sense_reason_t rc; 2334 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2335 bool zero_dl = !(cmd->data_length); 2336 int post_ret = 0; 2337 2338 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2339 if (!rc && !post_ret) { 2340 if (caw && zero_dl) 2341 goto queue_rsp; 2342 2343 return; 2344 } else if (rc) { 2345 ret = transport_send_check_condition_and_sense(cmd, 2346 rc, 0); 2347 if (ret) 2348 goto queue_full; 2349 2350 transport_lun_remove_cmd(cmd); 2351 transport_cmd_check_stop_to_fabric(cmd); 2352 return; 2353 } 2354 } 2355 2356 queue_rsp: 2357 switch (cmd->data_direction) { 2358 case DMA_FROM_DEVICE: 2359 /* 2360 * if this is a READ-type IO, but SCSI status 2361 * is set, then skip returning data and just 2362 * return the status -- unless this IO is marked 2363 * as needing to be treated as a normal read, 2364 * in which case we want to go ahead and return 2365 * the data. This happens, for example, for tape 2366 * reads with the FM, EOM, or ILI bits set, with 2367 * no sense data. 2368 */ 2369 if (cmd->scsi_status && 2370 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2371 goto queue_status; 2372 2373 atomic_long_add(cmd->data_length, 2374 &cmd->se_lun->lun_stats.tx_data_octets); 2375 /* 2376 * Perform READ_STRIP of PI using software emulation when 2377 * backend had PI enabled, if the transport will not be 2378 * performing hardware READ_STRIP offload. 2379 */ 2380 if (target_read_prot_action(cmd)) { 2381 ret = transport_send_check_condition_and_sense(cmd, 2382 cmd->pi_err, 0); 2383 if (ret) 2384 goto queue_full; 2385 2386 transport_lun_remove_cmd(cmd); 2387 transport_cmd_check_stop_to_fabric(cmd); 2388 return; 2389 } 2390 2391 trace_target_cmd_complete(cmd); 2392 ret = cmd->se_tfo->queue_data_in(cmd); 2393 if (ret) 2394 goto queue_full; 2395 break; 2396 case DMA_TO_DEVICE: 2397 atomic_long_add(cmd->data_length, 2398 &cmd->se_lun->lun_stats.rx_data_octets); 2399 /* 2400 * Check if we need to send READ payload for BIDI-COMMAND 2401 */ 2402 if (cmd->se_cmd_flags & SCF_BIDI) { 2403 atomic_long_add(cmd->data_length, 2404 &cmd->se_lun->lun_stats.tx_data_octets); 2405 ret = cmd->se_tfo->queue_data_in(cmd); 2406 if (ret) 2407 goto queue_full; 2408 break; 2409 } 2410 fallthrough; 2411 case DMA_NONE: 2412 queue_status: 2413 trace_target_cmd_complete(cmd); 2414 ret = cmd->se_tfo->queue_status(cmd); 2415 if (ret) 2416 goto queue_full; 2417 break; 2418 default: 2419 break; 2420 } 2421 2422 transport_lun_remove_cmd(cmd); 2423 transport_cmd_check_stop_to_fabric(cmd); 2424 return; 2425 2426 queue_full: 2427 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2428 " data_direction: %d\n", cmd, cmd->data_direction); 2429 2430 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2431 } 2432 2433 void target_free_sgl(struct scatterlist *sgl, int nents) 2434 { 2435 sgl_free_n_order(sgl, nents, 0); 2436 } 2437 EXPORT_SYMBOL(target_free_sgl); 2438 2439 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2440 { 2441 /* 2442 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2443 * emulation, and free + reset pointers if necessary.. 2444 */ 2445 if (!cmd->t_data_sg_orig) 2446 return; 2447 2448 kfree(cmd->t_data_sg); 2449 cmd->t_data_sg = cmd->t_data_sg_orig; 2450 cmd->t_data_sg_orig = NULL; 2451 cmd->t_data_nents = cmd->t_data_nents_orig; 2452 cmd->t_data_nents_orig = 0; 2453 } 2454 2455 static inline void transport_free_pages(struct se_cmd *cmd) 2456 { 2457 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2458 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2459 cmd->t_prot_sg = NULL; 2460 cmd->t_prot_nents = 0; 2461 } 2462 2463 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2464 /* 2465 * Release special case READ buffer payload required for 2466 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2467 */ 2468 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2469 target_free_sgl(cmd->t_bidi_data_sg, 2470 cmd->t_bidi_data_nents); 2471 cmd->t_bidi_data_sg = NULL; 2472 cmd->t_bidi_data_nents = 0; 2473 } 2474 transport_reset_sgl_orig(cmd); 2475 return; 2476 } 2477 transport_reset_sgl_orig(cmd); 2478 2479 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2480 cmd->t_data_sg = NULL; 2481 cmd->t_data_nents = 0; 2482 2483 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2484 cmd->t_bidi_data_sg = NULL; 2485 cmd->t_bidi_data_nents = 0; 2486 } 2487 2488 void *transport_kmap_data_sg(struct se_cmd *cmd) 2489 { 2490 struct scatterlist *sg = cmd->t_data_sg; 2491 struct page **pages; 2492 int i; 2493 2494 /* 2495 * We need to take into account a possible offset here for fabrics like 2496 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2497 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2498 */ 2499 if (!cmd->t_data_nents) 2500 return NULL; 2501 2502 BUG_ON(!sg); 2503 if (cmd->t_data_nents == 1) 2504 return kmap(sg_page(sg)) + sg->offset; 2505 2506 /* >1 page. use vmap */ 2507 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); 2508 if (!pages) 2509 return NULL; 2510 2511 /* convert sg[] to pages[] */ 2512 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2513 pages[i] = sg_page(sg); 2514 } 2515 2516 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2517 kfree(pages); 2518 if (!cmd->t_data_vmap) 2519 return NULL; 2520 2521 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2522 } 2523 EXPORT_SYMBOL(transport_kmap_data_sg); 2524 2525 void transport_kunmap_data_sg(struct se_cmd *cmd) 2526 { 2527 if (!cmd->t_data_nents) { 2528 return; 2529 } else if (cmd->t_data_nents == 1) { 2530 kunmap(sg_page(cmd->t_data_sg)); 2531 return; 2532 } 2533 2534 vunmap(cmd->t_data_vmap); 2535 cmd->t_data_vmap = NULL; 2536 } 2537 EXPORT_SYMBOL(transport_kunmap_data_sg); 2538 2539 int 2540 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2541 bool zero_page, bool chainable) 2542 { 2543 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0); 2544 2545 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents); 2546 return *sgl ? 0 : -ENOMEM; 2547 } 2548 EXPORT_SYMBOL(target_alloc_sgl); 2549 2550 /* 2551 * Allocate any required resources to execute the command. For writes we 2552 * might not have the payload yet, so notify the fabric via a call to 2553 * ->write_pending instead. Otherwise place it on the execution queue. 2554 */ 2555 sense_reason_t 2556 transport_generic_new_cmd(struct se_cmd *cmd) 2557 { 2558 unsigned long flags; 2559 int ret = 0; 2560 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2561 2562 if (cmd->prot_op != TARGET_PROT_NORMAL && 2563 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2564 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2565 cmd->prot_length, true, false); 2566 if (ret < 0) 2567 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2568 } 2569 2570 /* 2571 * Determine if the TCM fabric module has already allocated physical 2572 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2573 * beforehand. 2574 */ 2575 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2576 cmd->data_length) { 2577 2578 if ((cmd->se_cmd_flags & SCF_BIDI) || 2579 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2580 u32 bidi_length; 2581 2582 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2583 bidi_length = cmd->t_task_nolb * 2584 cmd->se_dev->dev_attrib.block_size; 2585 else 2586 bidi_length = cmd->data_length; 2587 2588 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2589 &cmd->t_bidi_data_nents, 2590 bidi_length, zero_flag, false); 2591 if (ret < 0) 2592 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2593 } 2594 2595 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2596 cmd->data_length, zero_flag, false); 2597 if (ret < 0) 2598 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2599 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2600 cmd->data_length) { 2601 /* 2602 * Special case for COMPARE_AND_WRITE with fabrics 2603 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2604 */ 2605 u32 caw_length = cmd->t_task_nolb * 2606 cmd->se_dev->dev_attrib.block_size; 2607 2608 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2609 &cmd->t_bidi_data_nents, 2610 caw_length, zero_flag, false); 2611 if (ret < 0) 2612 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2613 } 2614 /* 2615 * If this command is not a write we can execute it right here, 2616 * for write buffers we need to notify the fabric driver first 2617 * and let it call back once the write buffers are ready. 2618 */ 2619 target_add_to_state_list(cmd); 2620 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2621 target_execute_cmd(cmd); 2622 return 0; 2623 } 2624 2625 spin_lock_irqsave(&cmd->t_state_lock, flags); 2626 cmd->t_state = TRANSPORT_WRITE_PENDING; 2627 /* 2628 * Determine if frontend context caller is requesting the stopping of 2629 * this command for frontend exceptions. 2630 */ 2631 if (cmd->transport_state & CMD_T_STOP && 2632 !cmd->se_tfo->write_pending_must_be_called) { 2633 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2634 __func__, __LINE__, cmd->tag); 2635 2636 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2637 2638 complete_all(&cmd->t_transport_stop_comp); 2639 return 0; 2640 } 2641 cmd->transport_state &= ~CMD_T_ACTIVE; 2642 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2643 2644 ret = cmd->se_tfo->write_pending(cmd); 2645 if (ret) 2646 goto queue_full; 2647 2648 return 0; 2649 2650 queue_full: 2651 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2652 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2653 return 0; 2654 } 2655 EXPORT_SYMBOL(transport_generic_new_cmd); 2656 2657 static void transport_write_pending_qf(struct se_cmd *cmd) 2658 { 2659 unsigned long flags; 2660 int ret; 2661 bool stop; 2662 2663 spin_lock_irqsave(&cmd->t_state_lock, flags); 2664 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED)); 2665 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2666 2667 if (stop) { 2668 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n", 2669 __func__, __LINE__, cmd->tag); 2670 complete_all(&cmd->t_transport_stop_comp); 2671 return; 2672 } 2673 2674 ret = cmd->se_tfo->write_pending(cmd); 2675 if (ret) { 2676 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2677 cmd); 2678 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2679 } 2680 } 2681 2682 static bool 2683 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2684 unsigned long *flags); 2685 2686 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2687 { 2688 unsigned long flags; 2689 2690 spin_lock_irqsave(&cmd->t_state_lock, flags); 2691 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2692 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2693 } 2694 2695 /* 2696 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has 2697 * finished. 2698 */ 2699 void target_put_cmd_and_wait(struct se_cmd *cmd) 2700 { 2701 DECLARE_COMPLETION_ONSTACK(compl); 2702 2703 WARN_ON_ONCE(cmd->abrt_compl); 2704 cmd->abrt_compl = &compl; 2705 target_put_sess_cmd(cmd); 2706 wait_for_completion(&compl); 2707 } 2708 2709 /* 2710 * This function is called by frontend drivers after processing of a command 2711 * has finished. 2712 * 2713 * The protocol for ensuring that either the regular frontend command 2714 * processing flow or target_handle_abort() code drops one reference is as 2715 * follows: 2716 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause 2717 * the frontend driver to call this function synchronously or asynchronously. 2718 * That will cause one reference to be dropped. 2719 * - During regular command processing the target core sets CMD_T_COMPLETE 2720 * before invoking one of the .queue_*() functions. 2721 * - The code that aborts commands skips commands and TMFs for which 2722 * CMD_T_COMPLETE has been set. 2723 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for 2724 * commands that will be aborted. 2725 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set 2726 * transport_generic_free_cmd() skips its call to target_put_sess_cmd(). 2727 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will 2728 * be called and will drop a reference. 2729 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task() 2730 * will be called. target_handle_abort() will drop the final reference. 2731 */ 2732 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2733 { 2734 DECLARE_COMPLETION_ONSTACK(compl); 2735 int ret = 0; 2736 bool aborted = false, tas = false; 2737 2738 if (wait_for_tasks) 2739 target_wait_free_cmd(cmd, &aborted, &tas); 2740 2741 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) { 2742 /* 2743 * Handle WRITE failure case where transport_generic_new_cmd() 2744 * has already added se_cmd to state_list, but fabric has 2745 * failed command before I/O submission. 2746 */ 2747 if (cmd->state_active) 2748 target_remove_from_state_list(cmd); 2749 2750 if (cmd->se_lun) 2751 transport_lun_remove_cmd(cmd); 2752 } 2753 if (aborted) 2754 cmd->free_compl = &compl; 2755 ret = target_put_sess_cmd(cmd); 2756 if (aborted) { 2757 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2758 wait_for_completion(&compl); 2759 ret = 1; 2760 } 2761 return ret; 2762 } 2763 EXPORT_SYMBOL(transport_generic_free_cmd); 2764 2765 /** 2766 * target_get_sess_cmd - Verify the session is accepting cmds and take ref 2767 * @se_cmd: command descriptor to add 2768 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2769 */ 2770 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2771 { 2772 struct se_session *se_sess = se_cmd->se_sess; 2773 int ret = 0; 2774 2775 /* 2776 * Add a second kref if the fabric caller is expecting to handle 2777 * fabric acknowledgement that requires two target_put_sess_cmd() 2778 * invocations before se_cmd descriptor release. 2779 */ 2780 if (ack_kref) { 2781 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2782 return -EINVAL; 2783 2784 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2785 } 2786 2787 if (!percpu_ref_tryget_live(&se_sess->cmd_count)) 2788 ret = -ESHUTDOWN; 2789 2790 if (ret && ack_kref) 2791 target_put_sess_cmd(se_cmd); 2792 2793 return ret; 2794 } 2795 EXPORT_SYMBOL(target_get_sess_cmd); 2796 2797 static void target_free_cmd_mem(struct se_cmd *cmd) 2798 { 2799 transport_free_pages(cmd); 2800 2801 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2802 core_tmr_release_req(cmd->se_tmr_req); 2803 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2804 kfree(cmd->t_task_cdb); 2805 } 2806 2807 static void target_release_cmd_kref(struct kref *kref) 2808 { 2809 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2810 struct se_session *se_sess = se_cmd->se_sess; 2811 struct completion *free_compl = se_cmd->free_compl; 2812 struct completion *abrt_compl = se_cmd->abrt_compl; 2813 2814 target_free_cmd_mem(se_cmd); 2815 se_cmd->se_tfo->release_cmd(se_cmd); 2816 if (free_compl) 2817 complete(free_compl); 2818 if (abrt_compl) 2819 complete(abrt_compl); 2820 2821 percpu_ref_put(&se_sess->cmd_count); 2822 } 2823 2824 /** 2825 * target_put_sess_cmd - decrease the command reference count 2826 * @se_cmd: command to drop a reference from 2827 * 2828 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2829 * refcount to drop to zero. Returns zero otherwise. 2830 */ 2831 int target_put_sess_cmd(struct se_cmd *se_cmd) 2832 { 2833 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2834 } 2835 EXPORT_SYMBOL(target_put_sess_cmd); 2836 2837 static const char *data_dir_name(enum dma_data_direction d) 2838 { 2839 switch (d) { 2840 case DMA_BIDIRECTIONAL: return "BIDI"; 2841 case DMA_TO_DEVICE: return "WRITE"; 2842 case DMA_FROM_DEVICE: return "READ"; 2843 case DMA_NONE: return "NONE"; 2844 } 2845 2846 return "(?)"; 2847 } 2848 2849 static const char *cmd_state_name(enum transport_state_table t) 2850 { 2851 switch (t) { 2852 case TRANSPORT_NO_STATE: return "NO_STATE"; 2853 case TRANSPORT_NEW_CMD: return "NEW_CMD"; 2854 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING"; 2855 case TRANSPORT_PROCESSING: return "PROCESSING"; 2856 case TRANSPORT_COMPLETE: return "COMPLETE"; 2857 case TRANSPORT_ISTATE_PROCESSING: 2858 return "ISTATE_PROCESSING"; 2859 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP"; 2860 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK"; 2861 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR"; 2862 } 2863 2864 return "(?)"; 2865 } 2866 2867 static void target_append_str(char **str, const char *txt) 2868 { 2869 char *prev = *str; 2870 2871 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) : 2872 kstrdup(txt, GFP_ATOMIC); 2873 kfree(prev); 2874 } 2875 2876 /* 2877 * Convert a transport state bitmask into a string. The caller is 2878 * responsible for freeing the returned pointer. 2879 */ 2880 static char *target_ts_to_str(u32 ts) 2881 { 2882 char *str = NULL; 2883 2884 if (ts & CMD_T_ABORTED) 2885 target_append_str(&str, "aborted"); 2886 if (ts & CMD_T_ACTIVE) 2887 target_append_str(&str, "active"); 2888 if (ts & CMD_T_COMPLETE) 2889 target_append_str(&str, "complete"); 2890 if (ts & CMD_T_SENT) 2891 target_append_str(&str, "sent"); 2892 if (ts & CMD_T_STOP) 2893 target_append_str(&str, "stop"); 2894 if (ts & CMD_T_FABRIC_STOP) 2895 target_append_str(&str, "fabric_stop"); 2896 2897 return str; 2898 } 2899 2900 static const char *target_tmf_name(enum tcm_tmreq_table tmf) 2901 { 2902 switch (tmf) { 2903 case TMR_ABORT_TASK: return "ABORT_TASK"; 2904 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET"; 2905 case TMR_CLEAR_ACA: return "CLEAR_ACA"; 2906 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET"; 2907 case TMR_LUN_RESET: return "LUN_RESET"; 2908 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET"; 2909 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET"; 2910 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO"; 2911 case TMR_UNKNOWN: break; 2912 } 2913 return "(?)"; 2914 } 2915 2916 void target_show_cmd(const char *pfx, struct se_cmd *cmd) 2917 { 2918 char *ts_str = target_ts_to_str(cmd->transport_state); 2919 const u8 *cdb = cmd->t_task_cdb; 2920 struct se_tmr_req *tmf = cmd->se_tmr_req; 2921 2922 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2923 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n", 2924 pfx, cdb[0], cdb[1], cmd->tag, 2925 data_dir_name(cmd->data_direction), 2926 cmd->se_tfo->get_cmd_state(cmd), 2927 cmd_state_name(cmd->t_state), cmd->data_length, 2928 kref_read(&cmd->cmd_kref), ts_str); 2929 } else { 2930 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n", 2931 pfx, target_tmf_name(tmf->function), cmd->tag, 2932 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd), 2933 cmd_state_name(cmd->t_state), 2934 kref_read(&cmd->cmd_kref), ts_str); 2935 } 2936 kfree(ts_str); 2937 } 2938 EXPORT_SYMBOL(target_show_cmd); 2939 2940 static void target_stop_session_confirm(struct percpu_ref *ref) 2941 { 2942 struct se_session *se_sess = container_of(ref, struct se_session, 2943 cmd_count); 2944 complete_all(&se_sess->stop_done); 2945 } 2946 2947 /** 2948 * target_stop_session - Stop new IO from being queued on the session. 2949 * @se_sess: session to stop 2950 */ 2951 void target_stop_session(struct se_session *se_sess) 2952 { 2953 pr_debug("Stopping session queue.\n"); 2954 if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0) 2955 percpu_ref_kill_and_confirm(&se_sess->cmd_count, 2956 target_stop_session_confirm); 2957 } 2958 EXPORT_SYMBOL(target_stop_session); 2959 2960 /** 2961 * target_wait_for_sess_cmds - Wait for outstanding commands 2962 * @se_sess: session to wait for active I/O 2963 */ 2964 void target_wait_for_sess_cmds(struct se_session *se_sess) 2965 { 2966 int ret; 2967 2968 WARN_ON_ONCE(!atomic_read(&se_sess->stopped)); 2969 2970 do { 2971 pr_debug("Waiting for running cmds to complete.\n"); 2972 ret = wait_event_timeout(se_sess->cmd_count_wq, 2973 percpu_ref_is_zero(&se_sess->cmd_count), 2974 180 * HZ); 2975 } while (ret <= 0); 2976 2977 wait_for_completion(&se_sess->stop_done); 2978 pr_debug("Waiting for cmds done.\n"); 2979 } 2980 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2981 2982 /* 2983 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until 2984 * all references to the LUN have been released. Called during LUN shutdown. 2985 */ 2986 void transport_clear_lun_ref(struct se_lun *lun) 2987 { 2988 percpu_ref_kill(&lun->lun_ref); 2989 wait_for_completion(&lun->lun_shutdown_comp); 2990 } 2991 2992 static bool 2993 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2994 bool *aborted, bool *tas, unsigned long *flags) 2995 __releases(&cmd->t_state_lock) 2996 __acquires(&cmd->t_state_lock) 2997 { 2998 2999 assert_spin_locked(&cmd->t_state_lock); 3000 WARN_ON_ONCE(!irqs_disabled()); 3001 3002 if (fabric_stop) 3003 cmd->transport_state |= CMD_T_FABRIC_STOP; 3004 3005 if (cmd->transport_state & CMD_T_ABORTED) 3006 *aborted = true; 3007 3008 if (cmd->transport_state & CMD_T_TAS) 3009 *tas = true; 3010 3011 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 3012 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3013 return false; 3014 3015 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 3016 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3017 return false; 3018 3019 if (!(cmd->transport_state & CMD_T_ACTIVE)) 3020 return false; 3021 3022 if (fabric_stop && *aborted) 3023 return false; 3024 3025 cmd->transport_state |= CMD_T_STOP; 3026 3027 target_show_cmd("wait_for_tasks: Stopping ", cmd); 3028 3029 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 3030 3031 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp, 3032 180 * HZ)) 3033 target_show_cmd("wait for tasks: ", cmd); 3034 3035 spin_lock_irqsave(&cmd->t_state_lock, *flags); 3036 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 3037 3038 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 3039 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 3040 3041 return true; 3042 } 3043 3044 /** 3045 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 3046 * @cmd: command to wait on 3047 */ 3048 bool transport_wait_for_tasks(struct se_cmd *cmd) 3049 { 3050 unsigned long flags; 3051 bool ret, aborted = false, tas = false; 3052 3053 spin_lock_irqsave(&cmd->t_state_lock, flags); 3054 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 3055 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3056 3057 return ret; 3058 } 3059 EXPORT_SYMBOL(transport_wait_for_tasks); 3060 3061 struct sense_detail { 3062 u8 key; 3063 u8 asc; 3064 u8 ascq; 3065 bool add_sense_info; 3066 }; 3067 3068 static const struct sense_detail sense_detail_table[] = { 3069 [TCM_NO_SENSE] = { 3070 .key = NOT_READY 3071 }, 3072 [TCM_NON_EXISTENT_LUN] = { 3073 .key = ILLEGAL_REQUEST, 3074 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 3075 }, 3076 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 3077 .key = ILLEGAL_REQUEST, 3078 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3079 }, 3080 [TCM_SECTOR_COUNT_TOO_MANY] = { 3081 .key = ILLEGAL_REQUEST, 3082 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3083 }, 3084 [TCM_UNKNOWN_MODE_PAGE] = { 3085 .key = ILLEGAL_REQUEST, 3086 .asc = 0x24, /* INVALID FIELD IN CDB */ 3087 }, 3088 [TCM_CHECK_CONDITION_ABORT_CMD] = { 3089 .key = ABORTED_COMMAND, 3090 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 3091 .ascq = 0x03, 3092 }, 3093 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 3094 .key = ABORTED_COMMAND, 3095 .asc = 0x0c, /* WRITE ERROR */ 3096 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 3097 }, 3098 [TCM_INVALID_CDB_FIELD] = { 3099 .key = ILLEGAL_REQUEST, 3100 .asc = 0x24, /* INVALID FIELD IN CDB */ 3101 }, 3102 [TCM_INVALID_PARAMETER_LIST] = { 3103 .key = ILLEGAL_REQUEST, 3104 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 3105 }, 3106 [TCM_TOO_MANY_TARGET_DESCS] = { 3107 .key = ILLEGAL_REQUEST, 3108 .asc = 0x26, 3109 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 3110 }, 3111 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 3112 .key = ILLEGAL_REQUEST, 3113 .asc = 0x26, 3114 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 3115 }, 3116 [TCM_TOO_MANY_SEGMENT_DESCS] = { 3117 .key = ILLEGAL_REQUEST, 3118 .asc = 0x26, 3119 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 3120 }, 3121 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 3122 .key = ILLEGAL_REQUEST, 3123 .asc = 0x26, 3124 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 3125 }, 3126 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 3127 .key = ILLEGAL_REQUEST, 3128 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 3129 }, 3130 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 3131 .key = ILLEGAL_REQUEST, 3132 .asc = 0x0c, /* WRITE ERROR */ 3133 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 3134 }, 3135 [TCM_SERVICE_CRC_ERROR] = { 3136 .key = ABORTED_COMMAND, 3137 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 3138 .ascq = 0x05, /* N/A */ 3139 }, 3140 [TCM_SNACK_REJECTED] = { 3141 .key = ABORTED_COMMAND, 3142 .asc = 0x11, /* READ ERROR */ 3143 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 3144 }, 3145 [TCM_WRITE_PROTECTED] = { 3146 .key = DATA_PROTECT, 3147 .asc = 0x27, /* WRITE PROTECTED */ 3148 }, 3149 [TCM_ADDRESS_OUT_OF_RANGE] = { 3150 .key = ILLEGAL_REQUEST, 3151 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 3152 }, 3153 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 3154 .key = UNIT_ATTENTION, 3155 }, 3156 [TCM_CHECK_CONDITION_NOT_READY] = { 3157 .key = NOT_READY, 3158 }, 3159 [TCM_MISCOMPARE_VERIFY] = { 3160 .key = MISCOMPARE, 3161 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 3162 .ascq = 0x00, 3163 .add_sense_info = true, 3164 }, 3165 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 3166 .key = ABORTED_COMMAND, 3167 .asc = 0x10, 3168 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 3169 .add_sense_info = true, 3170 }, 3171 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 3172 .key = ABORTED_COMMAND, 3173 .asc = 0x10, 3174 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 3175 .add_sense_info = true, 3176 }, 3177 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 3178 .key = ABORTED_COMMAND, 3179 .asc = 0x10, 3180 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 3181 .add_sense_info = true, 3182 }, 3183 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 3184 .key = COPY_ABORTED, 3185 .asc = 0x0d, 3186 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 3187 3188 }, 3189 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 3190 /* 3191 * Returning ILLEGAL REQUEST would cause immediate IO errors on 3192 * Solaris initiators. Returning NOT READY instead means the 3193 * operations will be retried a finite number of times and we 3194 * can survive intermittent errors. 3195 */ 3196 .key = NOT_READY, 3197 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 3198 }, 3199 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = { 3200 /* 3201 * From spc4r22 section5.7.7,5.7.8 3202 * If a PERSISTENT RESERVE OUT command with a REGISTER service action 3203 * or a REGISTER AND IGNORE EXISTING KEY service action or 3204 * REGISTER AND MOVE service actionis attempted, 3205 * but there are insufficient device server resources to complete the 3206 * operation, then the command shall be terminated with CHECK CONDITION 3207 * status, with the sense key set to ILLEGAL REQUEST,and the additonal 3208 * sense code set to INSUFFICIENT REGISTRATION RESOURCES. 3209 */ 3210 .key = ILLEGAL_REQUEST, 3211 .asc = 0x55, 3212 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */ 3213 }, 3214 [TCM_INVALID_FIELD_IN_COMMAND_IU] = { 3215 .key = ILLEGAL_REQUEST, 3216 .asc = 0x0e, 3217 .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */ 3218 }, 3219 }; 3220 3221 /** 3222 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq 3223 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will 3224 * be stored. 3225 * @reason: LIO sense reason code. If this argument has the value 3226 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If 3227 * dequeuing a unit attention fails due to multiple commands being processed 3228 * concurrently, set the command status to BUSY. 3229 * 3230 * Return: 0 upon success or -EINVAL if the sense buffer is too small. 3231 */ 3232 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 3233 { 3234 const struct sense_detail *sd; 3235 u8 *buffer = cmd->sense_buffer; 3236 int r = (__force int)reason; 3237 u8 key, asc, ascq; 3238 bool desc_format = target_sense_desc_format(cmd->se_dev); 3239 3240 if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key) 3241 sd = &sense_detail_table[r]; 3242 else 3243 sd = &sense_detail_table[(__force int) 3244 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 3245 3246 key = sd->key; 3247 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 3248 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc, 3249 &ascq)) { 3250 cmd->scsi_status = SAM_STAT_BUSY; 3251 return; 3252 } 3253 } else if (sd->asc == 0) { 3254 WARN_ON_ONCE(cmd->scsi_asc == 0); 3255 asc = cmd->scsi_asc; 3256 ascq = cmd->scsi_ascq; 3257 } else { 3258 asc = sd->asc; 3259 ascq = sd->ascq; 3260 } 3261 3262 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3263 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3264 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3265 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq); 3266 if (sd->add_sense_info) 3267 WARN_ON_ONCE(scsi_set_sense_information(buffer, 3268 cmd->scsi_sense_length, 3269 cmd->sense_info) < 0); 3270 } 3271 3272 int 3273 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3274 sense_reason_t reason, int from_transport) 3275 { 3276 unsigned long flags; 3277 3278 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3279 3280 spin_lock_irqsave(&cmd->t_state_lock, flags); 3281 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3282 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3283 return 0; 3284 } 3285 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3286 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3287 3288 if (!from_transport) 3289 translate_sense_reason(cmd, reason); 3290 3291 trace_target_cmd_complete(cmd); 3292 return cmd->se_tfo->queue_status(cmd); 3293 } 3294 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3295 3296 /** 3297 * target_send_busy - Send SCSI BUSY status back to the initiator 3298 * @cmd: SCSI command for which to send a BUSY reply. 3299 * 3300 * Note: Only call this function if target_submit_cmd*() failed. 3301 */ 3302 int target_send_busy(struct se_cmd *cmd) 3303 { 3304 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3305 3306 cmd->scsi_status = SAM_STAT_BUSY; 3307 trace_target_cmd_complete(cmd); 3308 return cmd->se_tfo->queue_status(cmd); 3309 } 3310 EXPORT_SYMBOL(target_send_busy); 3311 3312 static void target_tmr_work(struct work_struct *work) 3313 { 3314 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3315 struct se_device *dev = cmd->se_dev; 3316 struct se_tmr_req *tmr = cmd->se_tmr_req; 3317 int ret; 3318 3319 if (cmd->transport_state & CMD_T_ABORTED) 3320 goto aborted; 3321 3322 switch (tmr->function) { 3323 case TMR_ABORT_TASK: 3324 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3325 break; 3326 case TMR_ABORT_TASK_SET: 3327 case TMR_CLEAR_ACA: 3328 case TMR_CLEAR_TASK_SET: 3329 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3330 break; 3331 case TMR_LUN_RESET: 3332 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3333 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3334 TMR_FUNCTION_REJECTED; 3335 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3336 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3337 cmd->orig_fe_lun, 0x29, 3338 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3339 } 3340 break; 3341 case TMR_TARGET_WARM_RESET: 3342 tmr->response = TMR_FUNCTION_REJECTED; 3343 break; 3344 case TMR_TARGET_COLD_RESET: 3345 tmr->response = TMR_FUNCTION_REJECTED; 3346 break; 3347 default: 3348 pr_err("Unknown TMR function: 0x%02x.\n", 3349 tmr->function); 3350 tmr->response = TMR_FUNCTION_REJECTED; 3351 break; 3352 } 3353 3354 if (cmd->transport_state & CMD_T_ABORTED) 3355 goto aborted; 3356 3357 cmd->se_tfo->queue_tm_rsp(cmd); 3358 3359 transport_lun_remove_cmd(cmd); 3360 transport_cmd_check_stop_to_fabric(cmd); 3361 return; 3362 3363 aborted: 3364 target_handle_abort(cmd); 3365 } 3366 3367 int transport_generic_handle_tmr( 3368 struct se_cmd *cmd) 3369 { 3370 unsigned long flags; 3371 bool aborted = false; 3372 3373 spin_lock_irqsave(&cmd->t_state_lock, flags); 3374 if (cmd->transport_state & CMD_T_ABORTED) { 3375 aborted = true; 3376 } else { 3377 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3378 cmd->transport_state |= CMD_T_ACTIVE; 3379 } 3380 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3381 3382 if (aborted) { 3383 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n", 3384 cmd->se_tmr_req->function, 3385 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3386 target_handle_abort(cmd); 3387 return 0; 3388 } 3389 3390 INIT_WORK(&cmd->work, target_tmr_work); 3391 schedule_work(&cmd->work); 3392 return 0; 3393 } 3394 EXPORT_SYMBOL(transport_generic_handle_tmr); 3395 3396 bool 3397 target_check_wce(struct se_device *dev) 3398 { 3399 bool wce = false; 3400 3401 if (dev->transport->get_write_cache) 3402 wce = dev->transport->get_write_cache(dev); 3403 else if (dev->dev_attrib.emulate_write_cache > 0) 3404 wce = true; 3405 3406 return wce; 3407 } 3408 3409 bool 3410 target_check_fua(struct se_device *dev) 3411 { 3412 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3413 } 3414