1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <asm/unaligned.h> 38 #include <net/sock.h> 39 #include <net/tcp.h> 40 #include <scsi/scsi.h> 41 #include <scsi/scsi_cmnd.h> 42 #include <scsi/scsi_tcq.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 #include <target/target_core_configfs.h> 48 49 #include "target_core_internal.h" 50 #include "target_core_alua.h" 51 #include "target_core_pr.h" 52 #include "target_core_ua.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/target.h> 56 57 static struct workqueue_struct *target_completion_wq; 58 static struct kmem_cache *se_sess_cache; 59 struct kmem_cache *se_ua_cache; 60 struct kmem_cache *t10_pr_reg_cache; 61 struct kmem_cache *t10_alua_lu_gp_cache; 62 struct kmem_cache *t10_alua_lu_gp_mem_cache; 63 struct kmem_cache *t10_alua_tg_pt_gp_cache; 64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 65 struct kmem_cache *t10_alua_lba_map_cache; 66 struct kmem_cache *t10_alua_lba_map_mem_cache; 67 68 static void transport_complete_task_attr(struct se_cmd *cmd); 69 static void transport_handle_queue_full(struct se_cmd *cmd, 70 struct se_device *dev); 71 static int transport_put_cmd(struct se_cmd *cmd); 72 static void target_complete_ok_work(struct work_struct *work); 73 74 int init_se_kmem_caches(void) 75 { 76 se_sess_cache = kmem_cache_create("se_sess_cache", 77 sizeof(struct se_session), __alignof__(struct se_session), 78 0, NULL); 79 if (!se_sess_cache) { 80 pr_err("kmem_cache_create() for struct se_session" 81 " failed\n"); 82 goto out; 83 } 84 se_ua_cache = kmem_cache_create("se_ua_cache", 85 sizeof(struct se_ua), __alignof__(struct se_ua), 86 0, NULL); 87 if (!se_ua_cache) { 88 pr_err("kmem_cache_create() for struct se_ua failed\n"); 89 goto out_free_sess_cache; 90 } 91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 92 sizeof(struct t10_pr_registration), 93 __alignof__(struct t10_pr_registration), 0, NULL); 94 if (!t10_pr_reg_cache) { 95 pr_err("kmem_cache_create() for struct t10_pr_registration" 96 " failed\n"); 97 goto out_free_ua_cache; 98 } 99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 101 0, NULL); 102 if (!t10_alua_lu_gp_cache) { 103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 104 " failed\n"); 105 goto out_free_pr_reg_cache; 106 } 107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 108 sizeof(struct t10_alua_lu_gp_member), 109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 110 if (!t10_alua_lu_gp_mem_cache) { 111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 112 "cache failed\n"); 113 goto out_free_lu_gp_cache; 114 } 115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 116 sizeof(struct t10_alua_tg_pt_gp), 117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 118 if (!t10_alua_tg_pt_gp_cache) { 119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 120 "cache failed\n"); 121 goto out_free_lu_gp_mem_cache; 122 } 123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 124 "t10_alua_tg_pt_gp_mem_cache", 125 sizeof(struct t10_alua_tg_pt_gp_member), 126 __alignof__(struct t10_alua_tg_pt_gp_member), 127 0, NULL); 128 if (!t10_alua_tg_pt_gp_mem_cache) { 129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 130 "mem_t failed\n"); 131 goto out_free_tg_pt_gp_cache; 132 } 133 t10_alua_lba_map_cache = kmem_cache_create( 134 "t10_alua_lba_map_cache", 135 sizeof(struct t10_alua_lba_map), 136 __alignof__(struct t10_alua_lba_map), 0, NULL); 137 if (!t10_alua_lba_map_cache) { 138 pr_err("kmem_cache_create() for t10_alua_lba_map_" 139 "cache failed\n"); 140 goto out_free_tg_pt_gp_mem_cache; 141 } 142 t10_alua_lba_map_mem_cache = kmem_cache_create( 143 "t10_alua_lba_map_mem_cache", 144 sizeof(struct t10_alua_lba_map_member), 145 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 146 if (!t10_alua_lba_map_mem_cache) { 147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 148 "cache failed\n"); 149 goto out_free_lba_map_cache; 150 } 151 152 target_completion_wq = alloc_workqueue("target_completion", 153 WQ_MEM_RECLAIM, 0); 154 if (!target_completion_wq) 155 goto out_free_lba_map_mem_cache; 156 157 return 0; 158 159 out_free_lba_map_mem_cache: 160 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 161 out_free_lba_map_cache: 162 kmem_cache_destroy(t10_alua_lba_map_cache); 163 out_free_tg_pt_gp_mem_cache: 164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 165 out_free_tg_pt_gp_cache: 166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 167 out_free_lu_gp_mem_cache: 168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 169 out_free_lu_gp_cache: 170 kmem_cache_destroy(t10_alua_lu_gp_cache); 171 out_free_pr_reg_cache: 172 kmem_cache_destroy(t10_pr_reg_cache); 173 out_free_ua_cache: 174 kmem_cache_destroy(se_ua_cache); 175 out_free_sess_cache: 176 kmem_cache_destroy(se_sess_cache); 177 out: 178 return -ENOMEM; 179 } 180 181 void release_se_kmem_caches(void) 182 { 183 destroy_workqueue(target_completion_wq); 184 kmem_cache_destroy(se_sess_cache); 185 kmem_cache_destroy(se_ua_cache); 186 kmem_cache_destroy(t10_pr_reg_cache); 187 kmem_cache_destroy(t10_alua_lu_gp_cache); 188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 191 kmem_cache_destroy(t10_alua_lba_map_cache); 192 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 193 } 194 195 /* This code ensures unique mib indexes are handed out. */ 196 static DEFINE_SPINLOCK(scsi_mib_index_lock); 197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 198 199 /* 200 * Allocate a new row index for the entry type specified 201 */ 202 u32 scsi_get_new_index(scsi_index_t type) 203 { 204 u32 new_index; 205 206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 207 208 spin_lock(&scsi_mib_index_lock); 209 new_index = ++scsi_mib_index[type]; 210 spin_unlock(&scsi_mib_index_lock); 211 212 return new_index; 213 } 214 215 void transport_subsystem_check_init(void) 216 { 217 int ret; 218 static int sub_api_initialized; 219 220 if (sub_api_initialized) 221 return; 222 223 ret = request_module("target_core_iblock"); 224 if (ret != 0) 225 pr_err("Unable to load target_core_iblock\n"); 226 227 ret = request_module("target_core_file"); 228 if (ret != 0) 229 pr_err("Unable to load target_core_file\n"); 230 231 ret = request_module("target_core_pscsi"); 232 if (ret != 0) 233 pr_err("Unable to load target_core_pscsi\n"); 234 235 ret = request_module("target_core_user"); 236 if (ret != 0) 237 pr_err("Unable to load target_core_user\n"); 238 239 sub_api_initialized = 1; 240 } 241 242 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 243 { 244 struct se_session *se_sess; 245 246 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 247 if (!se_sess) { 248 pr_err("Unable to allocate struct se_session from" 249 " se_sess_cache\n"); 250 return ERR_PTR(-ENOMEM); 251 } 252 INIT_LIST_HEAD(&se_sess->sess_list); 253 INIT_LIST_HEAD(&se_sess->sess_acl_list); 254 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 255 INIT_LIST_HEAD(&se_sess->sess_wait_list); 256 spin_lock_init(&se_sess->sess_cmd_lock); 257 kref_init(&se_sess->sess_kref); 258 se_sess->sup_prot_ops = sup_prot_ops; 259 260 return se_sess; 261 } 262 EXPORT_SYMBOL(transport_init_session); 263 264 int transport_alloc_session_tags(struct se_session *se_sess, 265 unsigned int tag_num, unsigned int tag_size) 266 { 267 int rc; 268 269 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 270 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 271 if (!se_sess->sess_cmd_map) { 272 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 273 if (!se_sess->sess_cmd_map) { 274 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 275 return -ENOMEM; 276 } 277 } 278 279 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 280 if (rc < 0) { 281 pr_err("Unable to init se_sess->sess_tag_pool," 282 " tag_num: %u\n", tag_num); 283 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 284 vfree(se_sess->sess_cmd_map); 285 else 286 kfree(se_sess->sess_cmd_map); 287 se_sess->sess_cmd_map = NULL; 288 return -ENOMEM; 289 } 290 291 return 0; 292 } 293 EXPORT_SYMBOL(transport_alloc_session_tags); 294 295 struct se_session *transport_init_session_tags(unsigned int tag_num, 296 unsigned int tag_size, 297 enum target_prot_op sup_prot_ops) 298 { 299 struct se_session *se_sess; 300 int rc; 301 302 se_sess = transport_init_session(sup_prot_ops); 303 if (IS_ERR(se_sess)) 304 return se_sess; 305 306 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 307 if (rc < 0) { 308 transport_free_session(se_sess); 309 return ERR_PTR(-ENOMEM); 310 } 311 312 return se_sess; 313 } 314 EXPORT_SYMBOL(transport_init_session_tags); 315 316 /* 317 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 318 */ 319 void __transport_register_session( 320 struct se_portal_group *se_tpg, 321 struct se_node_acl *se_nacl, 322 struct se_session *se_sess, 323 void *fabric_sess_ptr) 324 { 325 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 326 unsigned char buf[PR_REG_ISID_LEN]; 327 328 se_sess->se_tpg = se_tpg; 329 se_sess->fabric_sess_ptr = fabric_sess_ptr; 330 /* 331 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 332 * 333 * Only set for struct se_session's that will actually be moving I/O. 334 * eg: *NOT* discovery sessions. 335 */ 336 if (se_nacl) { 337 /* 338 * 339 * Determine if fabric allows for T10-PI feature bits exposed to 340 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 341 * 342 * If so, then always save prot_type on a per se_node_acl node 343 * basis and re-instate the previous sess_prot_type to avoid 344 * disabling PI from below any previously initiator side 345 * registered LUNs. 346 */ 347 if (se_nacl->saved_prot_type) 348 se_sess->sess_prot_type = se_nacl->saved_prot_type; 349 else if (tfo->tpg_check_prot_fabric_only) 350 se_sess->sess_prot_type = se_nacl->saved_prot_type = 351 tfo->tpg_check_prot_fabric_only(se_tpg); 352 /* 353 * If the fabric module supports an ISID based TransportID, 354 * save this value in binary from the fabric I_T Nexus now. 355 */ 356 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 357 memset(&buf[0], 0, PR_REG_ISID_LEN); 358 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 359 &buf[0], PR_REG_ISID_LEN); 360 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 361 } 362 kref_get(&se_nacl->acl_kref); 363 364 spin_lock_irq(&se_nacl->nacl_sess_lock); 365 /* 366 * The se_nacl->nacl_sess pointer will be set to the 367 * last active I_T Nexus for each struct se_node_acl. 368 */ 369 se_nacl->nacl_sess = se_sess; 370 371 list_add_tail(&se_sess->sess_acl_list, 372 &se_nacl->acl_sess_list); 373 spin_unlock_irq(&se_nacl->nacl_sess_lock); 374 } 375 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 376 377 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 378 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 379 } 380 EXPORT_SYMBOL(__transport_register_session); 381 382 void transport_register_session( 383 struct se_portal_group *se_tpg, 384 struct se_node_acl *se_nacl, 385 struct se_session *se_sess, 386 void *fabric_sess_ptr) 387 { 388 unsigned long flags; 389 390 spin_lock_irqsave(&se_tpg->session_lock, flags); 391 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 392 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 393 } 394 EXPORT_SYMBOL(transport_register_session); 395 396 static void target_release_session(struct kref *kref) 397 { 398 struct se_session *se_sess = container_of(kref, 399 struct se_session, sess_kref); 400 struct se_portal_group *se_tpg = se_sess->se_tpg; 401 402 se_tpg->se_tpg_tfo->close_session(se_sess); 403 } 404 405 void target_get_session(struct se_session *se_sess) 406 { 407 kref_get(&se_sess->sess_kref); 408 } 409 EXPORT_SYMBOL(target_get_session); 410 411 void target_put_session(struct se_session *se_sess) 412 { 413 struct se_portal_group *tpg = se_sess->se_tpg; 414 415 if (tpg->se_tpg_tfo->put_session != NULL) { 416 tpg->se_tpg_tfo->put_session(se_sess); 417 return; 418 } 419 kref_put(&se_sess->sess_kref, target_release_session); 420 } 421 EXPORT_SYMBOL(target_put_session); 422 423 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 424 { 425 struct se_session *se_sess; 426 ssize_t len = 0; 427 428 spin_lock_bh(&se_tpg->session_lock); 429 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 430 if (!se_sess->se_node_acl) 431 continue; 432 if (!se_sess->se_node_acl->dynamic_node_acl) 433 continue; 434 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 435 break; 436 437 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 438 se_sess->se_node_acl->initiatorname); 439 len += 1; /* Include NULL terminator */ 440 } 441 spin_unlock_bh(&se_tpg->session_lock); 442 443 return len; 444 } 445 EXPORT_SYMBOL(target_show_dynamic_sessions); 446 447 static void target_complete_nacl(struct kref *kref) 448 { 449 struct se_node_acl *nacl = container_of(kref, 450 struct se_node_acl, acl_kref); 451 452 complete(&nacl->acl_free_comp); 453 } 454 455 void target_put_nacl(struct se_node_acl *nacl) 456 { 457 kref_put(&nacl->acl_kref, target_complete_nacl); 458 } 459 460 void transport_deregister_session_configfs(struct se_session *se_sess) 461 { 462 struct se_node_acl *se_nacl; 463 unsigned long flags; 464 /* 465 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 466 */ 467 se_nacl = se_sess->se_node_acl; 468 if (se_nacl) { 469 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 470 if (se_nacl->acl_stop == 0) 471 list_del(&se_sess->sess_acl_list); 472 /* 473 * If the session list is empty, then clear the pointer. 474 * Otherwise, set the struct se_session pointer from the tail 475 * element of the per struct se_node_acl active session list. 476 */ 477 if (list_empty(&se_nacl->acl_sess_list)) 478 se_nacl->nacl_sess = NULL; 479 else { 480 se_nacl->nacl_sess = container_of( 481 se_nacl->acl_sess_list.prev, 482 struct se_session, sess_acl_list); 483 } 484 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 485 } 486 } 487 EXPORT_SYMBOL(transport_deregister_session_configfs); 488 489 void transport_free_session(struct se_session *se_sess) 490 { 491 if (se_sess->sess_cmd_map) { 492 percpu_ida_destroy(&se_sess->sess_tag_pool); 493 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 494 vfree(se_sess->sess_cmd_map); 495 else 496 kfree(se_sess->sess_cmd_map); 497 } 498 kmem_cache_free(se_sess_cache, se_sess); 499 } 500 EXPORT_SYMBOL(transport_free_session); 501 502 void transport_deregister_session(struct se_session *se_sess) 503 { 504 struct se_portal_group *se_tpg = se_sess->se_tpg; 505 const struct target_core_fabric_ops *se_tfo; 506 struct se_node_acl *se_nacl; 507 unsigned long flags; 508 bool comp_nacl = true; 509 510 if (!se_tpg) { 511 transport_free_session(se_sess); 512 return; 513 } 514 se_tfo = se_tpg->se_tpg_tfo; 515 516 spin_lock_irqsave(&se_tpg->session_lock, flags); 517 list_del(&se_sess->sess_list); 518 se_sess->se_tpg = NULL; 519 se_sess->fabric_sess_ptr = NULL; 520 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 521 522 /* 523 * Determine if we need to do extra work for this initiator node's 524 * struct se_node_acl if it had been previously dynamically generated. 525 */ 526 se_nacl = se_sess->se_node_acl; 527 528 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 529 if (se_nacl && se_nacl->dynamic_node_acl) { 530 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 531 list_del(&se_nacl->acl_list); 532 se_tpg->num_node_acls--; 533 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 534 core_tpg_wait_for_nacl_pr_ref(se_nacl); 535 core_free_device_list_for_node(se_nacl, se_tpg); 536 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 537 538 comp_nacl = false; 539 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 540 } 541 } 542 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 543 544 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 545 se_tpg->se_tpg_tfo->get_fabric_name()); 546 /* 547 * If last kref is dropping now for an explicit NodeACL, awake sleeping 548 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 549 * removal context. 550 */ 551 if (se_nacl && comp_nacl) 552 target_put_nacl(se_nacl); 553 554 transport_free_session(se_sess); 555 } 556 EXPORT_SYMBOL(transport_deregister_session); 557 558 /* 559 * Called with cmd->t_state_lock held. 560 */ 561 static void target_remove_from_state_list(struct se_cmd *cmd) 562 { 563 struct se_device *dev = cmd->se_dev; 564 unsigned long flags; 565 566 if (!dev) 567 return; 568 569 if (cmd->transport_state & CMD_T_BUSY) 570 return; 571 572 spin_lock_irqsave(&dev->execute_task_lock, flags); 573 if (cmd->state_active) { 574 list_del(&cmd->state_list); 575 cmd->state_active = false; 576 } 577 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 578 } 579 580 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 581 bool write_pending) 582 { 583 unsigned long flags; 584 585 spin_lock_irqsave(&cmd->t_state_lock, flags); 586 if (write_pending) 587 cmd->t_state = TRANSPORT_WRITE_PENDING; 588 589 if (remove_from_lists) { 590 target_remove_from_state_list(cmd); 591 592 /* 593 * Clear struct se_cmd->se_lun before the handoff to FE. 594 */ 595 cmd->se_lun = NULL; 596 } 597 598 /* 599 * Determine if frontend context caller is requesting the stopping of 600 * this command for frontend exceptions. 601 */ 602 if (cmd->transport_state & CMD_T_STOP) { 603 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 604 __func__, __LINE__, 605 cmd->se_tfo->get_task_tag(cmd)); 606 607 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 608 609 complete_all(&cmd->t_transport_stop_comp); 610 return 1; 611 } 612 613 cmd->transport_state &= ~CMD_T_ACTIVE; 614 if (remove_from_lists) { 615 /* 616 * Some fabric modules like tcm_loop can release 617 * their internally allocated I/O reference now and 618 * struct se_cmd now. 619 * 620 * Fabric modules are expected to return '1' here if the 621 * se_cmd being passed is released at this point, 622 * or zero if not being released. 623 */ 624 if (cmd->se_tfo->check_stop_free != NULL) { 625 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 626 return cmd->se_tfo->check_stop_free(cmd); 627 } 628 } 629 630 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 631 return 0; 632 } 633 634 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 635 { 636 return transport_cmd_check_stop(cmd, true, false); 637 } 638 639 static void transport_lun_remove_cmd(struct se_cmd *cmd) 640 { 641 struct se_lun *lun = cmd->se_lun; 642 643 if (!lun) 644 return; 645 646 if (cmpxchg(&cmd->lun_ref_active, true, false)) 647 percpu_ref_put(&lun->lun_ref); 648 } 649 650 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 651 { 652 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 653 transport_lun_remove_cmd(cmd); 654 /* 655 * Allow the fabric driver to unmap any resources before 656 * releasing the descriptor via TFO->release_cmd() 657 */ 658 if (remove) 659 cmd->se_tfo->aborted_task(cmd); 660 661 if (transport_cmd_check_stop_to_fabric(cmd)) 662 return; 663 if (remove) 664 transport_put_cmd(cmd); 665 } 666 667 static void target_complete_failure_work(struct work_struct *work) 668 { 669 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 670 671 transport_generic_request_failure(cmd, 672 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 673 } 674 675 /* 676 * Used when asking transport to copy Sense Data from the underlying 677 * Linux/SCSI struct scsi_cmnd 678 */ 679 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 680 { 681 struct se_device *dev = cmd->se_dev; 682 683 WARN_ON(!cmd->se_lun); 684 685 if (!dev) 686 return NULL; 687 688 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 689 return NULL; 690 691 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 692 693 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 694 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 695 return cmd->sense_buffer; 696 } 697 698 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 699 { 700 struct se_device *dev = cmd->se_dev; 701 int success = scsi_status == GOOD; 702 unsigned long flags; 703 704 cmd->scsi_status = scsi_status; 705 706 707 spin_lock_irqsave(&cmd->t_state_lock, flags); 708 cmd->transport_state &= ~CMD_T_BUSY; 709 710 if (dev && dev->transport->transport_complete) { 711 dev->transport->transport_complete(cmd, 712 cmd->t_data_sg, 713 transport_get_sense_buffer(cmd)); 714 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 715 success = 1; 716 } 717 718 /* 719 * See if we are waiting to complete for an exception condition. 720 */ 721 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 722 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 723 complete(&cmd->task_stop_comp); 724 return; 725 } 726 727 /* 728 * Check for case where an explicit ABORT_TASK has been received 729 * and transport_wait_for_tasks() will be waiting for completion.. 730 */ 731 if (cmd->transport_state & CMD_T_ABORTED && 732 cmd->transport_state & CMD_T_STOP) { 733 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 734 complete_all(&cmd->t_transport_stop_comp); 735 return; 736 } else if (!success) { 737 INIT_WORK(&cmd->work, target_complete_failure_work); 738 } else { 739 INIT_WORK(&cmd->work, target_complete_ok_work); 740 } 741 742 cmd->t_state = TRANSPORT_COMPLETE; 743 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 744 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 745 746 queue_work(target_completion_wq, &cmd->work); 747 } 748 EXPORT_SYMBOL(target_complete_cmd); 749 750 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 751 { 752 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 753 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 754 cmd->residual_count += cmd->data_length - length; 755 } else { 756 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 757 cmd->residual_count = cmd->data_length - length; 758 } 759 760 cmd->data_length = length; 761 } 762 763 target_complete_cmd(cmd, scsi_status); 764 } 765 EXPORT_SYMBOL(target_complete_cmd_with_length); 766 767 static void target_add_to_state_list(struct se_cmd *cmd) 768 { 769 struct se_device *dev = cmd->se_dev; 770 unsigned long flags; 771 772 spin_lock_irqsave(&dev->execute_task_lock, flags); 773 if (!cmd->state_active) { 774 list_add_tail(&cmd->state_list, &dev->state_list); 775 cmd->state_active = true; 776 } 777 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 778 } 779 780 /* 781 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 782 */ 783 static void transport_write_pending_qf(struct se_cmd *cmd); 784 static void transport_complete_qf(struct se_cmd *cmd); 785 786 void target_qf_do_work(struct work_struct *work) 787 { 788 struct se_device *dev = container_of(work, struct se_device, 789 qf_work_queue); 790 LIST_HEAD(qf_cmd_list); 791 struct se_cmd *cmd, *cmd_tmp; 792 793 spin_lock_irq(&dev->qf_cmd_lock); 794 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 795 spin_unlock_irq(&dev->qf_cmd_lock); 796 797 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 798 list_del(&cmd->se_qf_node); 799 atomic_dec_mb(&dev->dev_qf_count); 800 801 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 802 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 803 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 804 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 805 : "UNKNOWN"); 806 807 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 808 transport_write_pending_qf(cmd); 809 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 810 transport_complete_qf(cmd); 811 } 812 } 813 814 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 815 { 816 switch (cmd->data_direction) { 817 case DMA_NONE: 818 return "NONE"; 819 case DMA_FROM_DEVICE: 820 return "READ"; 821 case DMA_TO_DEVICE: 822 return "WRITE"; 823 case DMA_BIDIRECTIONAL: 824 return "BIDI"; 825 default: 826 break; 827 } 828 829 return "UNKNOWN"; 830 } 831 832 void transport_dump_dev_state( 833 struct se_device *dev, 834 char *b, 835 int *bl) 836 { 837 *bl += sprintf(b + *bl, "Status: "); 838 if (dev->export_count) 839 *bl += sprintf(b + *bl, "ACTIVATED"); 840 else 841 *bl += sprintf(b + *bl, "DEACTIVATED"); 842 843 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 844 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 845 dev->dev_attrib.block_size, 846 dev->dev_attrib.hw_max_sectors); 847 *bl += sprintf(b + *bl, " "); 848 } 849 850 void transport_dump_vpd_proto_id( 851 struct t10_vpd *vpd, 852 unsigned char *p_buf, 853 int p_buf_len) 854 { 855 unsigned char buf[VPD_TMP_BUF_SIZE]; 856 int len; 857 858 memset(buf, 0, VPD_TMP_BUF_SIZE); 859 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 860 861 switch (vpd->protocol_identifier) { 862 case 0x00: 863 sprintf(buf+len, "Fibre Channel\n"); 864 break; 865 case 0x10: 866 sprintf(buf+len, "Parallel SCSI\n"); 867 break; 868 case 0x20: 869 sprintf(buf+len, "SSA\n"); 870 break; 871 case 0x30: 872 sprintf(buf+len, "IEEE 1394\n"); 873 break; 874 case 0x40: 875 sprintf(buf+len, "SCSI Remote Direct Memory Access" 876 " Protocol\n"); 877 break; 878 case 0x50: 879 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 880 break; 881 case 0x60: 882 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 883 break; 884 case 0x70: 885 sprintf(buf+len, "Automation/Drive Interface Transport" 886 " Protocol\n"); 887 break; 888 case 0x80: 889 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 890 break; 891 default: 892 sprintf(buf+len, "Unknown 0x%02x\n", 893 vpd->protocol_identifier); 894 break; 895 } 896 897 if (p_buf) 898 strncpy(p_buf, buf, p_buf_len); 899 else 900 pr_debug("%s", buf); 901 } 902 903 void 904 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 905 { 906 /* 907 * Check if the Protocol Identifier Valid (PIV) bit is set.. 908 * 909 * from spc3r23.pdf section 7.5.1 910 */ 911 if (page_83[1] & 0x80) { 912 vpd->protocol_identifier = (page_83[0] & 0xf0); 913 vpd->protocol_identifier_set = 1; 914 transport_dump_vpd_proto_id(vpd, NULL, 0); 915 } 916 } 917 EXPORT_SYMBOL(transport_set_vpd_proto_id); 918 919 int transport_dump_vpd_assoc( 920 struct t10_vpd *vpd, 921 unsigned char *p_buf, 922 int p_buf_len) 923 { 924 unsigned char buf[VPD_TMP_BUF_SIZE]; 925 int ret = 0; 926 int len; 927 928 memset(buf, 0, VPD_TMP_BUF_SIZE); 929 len = sprintf(buf, "T10 VPD Identifier Association: "); 930 931 switch (vpd->association) { 932 case 0x00: 933 sprintf(buf+len, "addressed logical unit\n"); 934 break; 935 case 0x10: 936 sprintf(buf+len, "target port\n"); 937 break; 938 case 0x20: 939 sprintf(buf+len, "SCSI target device\n"); 940 break; 941 default: 942 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 943 ret = -EINVAL; 944 break; 945 } 946 947 if (p_buf) 948 strncpy(p_buf, buf, p_buf_len); 949 else 950 pr_debug("%s", buf); 951 952 return ret; 953 } 954 955 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 956 { 957 /* 958 * The VPD identification association.. 959 * 960 * from spc3r23.pdf Section 7.6.3.1 Table 297 961 */ 962 vpd->association = (page_83[1] & 0x30); 963 return transport_dump_vpd_assoc(vpd, NULL, 0); 964 } 965 EXPORT_SYMBOL(transport_set_vpd_assoc); 966 967 int transport_dump_vpd_ident_type( 968 struct t10_vpd *vpd, 969 unsigned char *p_buf, 970 int p_buf_len) 971 { 972 unsigned char buf[VPD_TMP_BUF_SIZE]; 973 int ret = 0; 974 int len; 975 976 memset(buf, 0, VPD_TMP_BUF_SIZE); 977 len = sprintf(buf, "T10 VPD Identifier Type: "); 978 979 switch (vpd->device_identifier_type) { 980 case 0x00: 981 sprintf(buf+len, "Vendor specific\n"); 982 break; 983 case 0x01: 984 sprintf(buf+len, "T10 Vendor ID based\n"); 985 break; 986 case 0x02: 987 sprintf(buf+len, "EUI-64 based\n"); 988 break; 989 case 0x03: 990 sprintf(buf+len, "NAA\n"); 991 break; 992 case 0x04: 993 sprintf(buf+len, "Relative target port identifier\n"); 994 break; 995 case 0x08: 996 sprintf(buf+len, "SCSI name string\n"); 997 break; 998 default: 999 sprintf(buf+len, "Unsupported: 0x%02x\n", 1000 vpd->device_identifier_type); 1001 ret = -EINVAL; 1002 break; 1003 } 1004 1005 if (p_buf) { 1006 if (p_buf_len < strlen(buf)+1) 1007 return -EINVAL; 1008 strncpy(p_buf, buf, p_buf_len); 1009 } else { 1010 pr_debug("%s", buf); 1011 } 1012 1013 return ret; 1014 } 1015 1016 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1017 { 1018 /* 1019 * The VPD identifier type.. 1020 * 1021 * from spc3r23.pdf Section 7.6.3.1 Table 298 1022 */ 1023 vpd->device_identifier_type = (page_83[1] & 0x0f); 1024 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1025 } 1026 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1027 1028 int transport_dump_vpd_ident( 1029 struct t10_vpd *vpd, 1030 unsigned char *p_buf, 1031 int p_buf_len) 1032 { 1033 unsigned char buf[VPD_TMP_BUF_SIZE]; 1034 int ret = 0; 1035 1036 memset(buf, 0, VPD_TMP_BUF_SIZE); 1037 1038 switch (vpd->device_identifier_code_set) { 1039 case 0x01: /* Binary */ 1040 snprintf(buf, sizeof(buf), 1041 "T10 VPD Binary Device Identifier: %s\n", 1042 &vpd->device_identifier[0]); 1043 break; 1044 case 0x02: /* ASCII */ 1045 snprintf(buf, sizeof(buf), 1046 "T10 VPD ASCII Device Identifier: %s\n", 1047 &vpd->device_identifier[0]); 1048 break; 1049 case 0x03: /* UTF-8 */ 1050 snprintf(buf, sizeof(buf), 1051 "T10 VPD UTF-8 Device Identifier: %s\n", 1052 &vpd->device_identifier[0]); 1053 break; 1054 default: 1055 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1056 " 0x%02x", vpd->device_identifier_code_set); 1057 ret = -EINVAL; 1058 break; 1059 } 1060 1061 if (p_buf) 1062 strncpy(p_buf, buf, p_buf_len); 1063 else 1064 pr_debug("%s", buf); 1065 1066 return ret; 1067 } 1068 1069 int 1070 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1071 { 1072 static const char hex_str[] = "0123456789abcdef"; 1073 int j = 0, i = 4; /* offset to start of the identifier */ 1074 1075 /* 1076 * The VPD Code Set (encoding) 1077 * 1078 * from spc3r23.pdf Section 7.6.3.1 Table 296 1079 */ 1080 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1081 switch (vpd->device_identifier_code_set) { 1082 case 0x01: /* Binary */ 1083 vpd->device_identifier[j++] = 1084 hex_str[vpd->device_identifier_type]; 1085 while (i < (4 + page_83[3])) { 1086 vpd->device_identifier[j++] = 1087 hex_str[(page_83[i] & 0xf0) >> 4]; 1088 vpd->device_identifier[j++] = 1089 hex_str[page_83[i] & 0x0f]; 1090 i++; 1091 } 1092 break; 1093 case 0x02: /* ASCII */ 1094 case 0x03: /* UTF-8 */ 1095 while (i < (4 + page_83[3])) 1096 vpd->device_identifier[j++] = page_83[i++]; 1097 break; 1098 default: 1099 break; 1100 } 1101 1102 return transport_dump_vpd_ident(vpd, NULL, 0); 1103 } 1104 EXPORT_SYMBOL(transport_set_vpd_ident); 1105 1106 sense_reason_t 1107 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1108 { 1109 struct se_device *dev = cmd->se_dev; 1110 1111 if (cmd->unknown_data_length) { 1112 cmd->data_length = size; 1113 } else if (size != cmd->data_length) { 1114 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1115 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1116 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1117 cmd->data_length, size, cmd->t_task_cdb[0]); 1118 1119 if (cmd->data_direction == DMA_TO_DEVICE) { 1120 pr_err("Rejecting underflow/overflow" 1121 " WRITE data\n"); 1122 return TCM_INVALID_CDB_FIELD; 1123 } 1124 /* 1125 * Reject READ_* or WRITE_* with overflow/underflow for 1126 * type SCF_SCSI_DATA_CDB. 1127 */ 1128 if (dev->dev_attrib.block_size != 512) { 1129 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1130 " CDB on non 512-byte sector setup subsystem" 1131 " plugin: %s\n", dev->transport->name); 1132 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1133 return TCM_INVALID_CDB_FIELD; 1134 } 1135 /* 1136 * For the overflow case keep the existing fabric provided 1137 * ->data_length. Otherwise for the underflow case, reset 1138 * ->data_length to the smaller SCSI expected data transfer 1139 * length. 1140 */ 1141 if (size > cmd->data_length) { 1142 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1143 cmd->residual_count = (size - cmd->data_length); 1144 } else { 1145 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1146 cmd->residual_count = (cmd->data_length - size); 1147 cmd->data_length = size; 1148 } 1149 } 1150 1151 return 0; 1152 1153 } 1154 1155 /* 1156 * Used by fabric modules containing a local struct se_cmd within their 1157 * fabric dependent per I/O descriptor. 1158 */ 1159 void transport_init_se_cmd( 1160 struct se_cmd *cmd, 1161 const struct target_core_fabric_ops *tfo, 1162 struct se_session *se_sess, 1163 u32 data_length, 1164 int data_direction, 1165 int task_attr, 1166 unsigned char *sense_buffer) 1167 { 1168 INIT_LIST_HEAD(&cmd->se_delayed_node); 1169 INIT_LIST_HEAD(&cmd->se_qf_node); 1170 INIT_LIST_HEAD(&cmd->se_cmd_list); 1171 INIT_LIST_HEAD(&cmd->state_list); 1172 init_completion(&cmd->t_transport_stop_comp); 1173 init_completion(&cmd->cmd_wait_comp); 1174 init_completion(&cmd->task_stop_comp); 1175 spin_lock_init(&cmd->t_state_lock); 1176 kref_init(&cmd->cmd_kref); 1177 cmd->transport_state = CMD_T_DEV_ACTIVE; 1178 1179 cmd->se_tfo = tfo; 1180 cmd->se_sess = se_sess; 1181 cmd->data_length = data_length; 1182 cmd->data_direction = data_direction; 1183 cmd->sam_task_attr = task_attr; 1184 cmd->sense_buffer = sense_buffer; 1185 1186 cmd->state_active = false; 1187 } 1188 EXPORT_SYMBOL(transport_init_se_cmd); 1189 1190 static sense_reason_t 1191 transport_check_alloc_task_attr(struct se_cmd *cmd) 1192 { 1193 struct se_device *dev = cmd->se_dev; 1194 1195 /* 1196 * Check if SAM Task Attribute emulation is enabled for this 1197 * struct se_device storage object 1198 */ 1199 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1200 return 0; 1201 1202 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1203 pr_debug("SAM Task Attribute ACA" 1204 " emulation is not supported\n"); 1205 return TCM_INVALID_CDB_FIELD; 1206 } 1207 /* 1208 * Used to determine when ORDERED commands should go from 1209 * Dormant to Active status. 1210 */ 1211 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1212 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1213 cmd->se_ordered_id, cmd->sam_task_attr, 1214 dev->transport->name); 1215 return 0; 1216 } 1217 1218 sense_reason_t 1219 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1220 { 1221 struct se_device *dev = cmd->se_dev; 1222 sense_reason_t ret; 1223 1224 /* 1225 * Ensure that the received CDB is less than the max (252 + 8) bytes 1226 * for VARIABLE_LENGTH_CMD 1227 */ 1228 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1229 pr_err("Received SCSI CDB with command_size: %d that" 1230 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1231 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1232 return TCM_INVALID_CDB_FIELD; 1233 } 1234 /* 1235 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1236 * allocate the additional extended CDB buffer now.. Otherwise 1237 * setup the pointer from __t_task_cdb to t_task_cdb. 1238 */ 1239 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1240 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1241 GFP_KERNEL); 1242 if (!cmd->t_task_cdb) { 1243 pr_err("Unable to allocate cmd->t_task_cdb" 1244 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1245 scsi_command_size(cdb), 1246 (unsigned long)sizeof(cmd->__t_task_cdb)); 1247 return TCM_OUT_OF_RESOURCES; 1248 } 1249 } else 1250 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1251 /* 1252 * Copy the original CDB into cmd-> 1253 */ 1254 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1255 1256 trace_target_sequencer_start(cmd); 1257 1258 /* 1259 * Check for an existing UNIT ATTENTION condition 1260 */ 1261 ret = target_scsi3_ua_check(cmd); 1262 if (ret) 1263 return ret; 1264 1265 ret = target_alua_state_check(cmd); 1266 if (ret) 1267 return ret; 1268 1269 ret = target_check_reservation(cmd); 1270 if (ret) { 1271 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1272 return ret; 1273 } 1274 1275 ret = dev->transport->parse_cdb(cmd); 1276 if (ret) 1277 return ret; 1278 1279 ret = transport_check_alloc_task_attr(cmd); 1280 if (ret) 1281 return ret; 1282 1283 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1284 1285 spin_lock(&cmd->se_lun->lun_sep_lock); 1286 if (cmd->se_lun->lun_sep) 1287 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1288 spin_unlock(&cmd->se_lun->lun_sep_lock); 1289 return 0; 1290 } 1291 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1292 1293 /* 1294 * Used by fabric module frontends to queue tasks directly. 1295 * Many only be used from process context only 1296 */ 1297 int transport_handle_cdb_direct( 1298 struct se_cmd *cmd) 1299 { 1300 sense_reason_t ret; 1301 1302 if (!cmd->se_lun) { 1303 dump_stack(); 1304 pr_err("cmd->se_lun is NULL\n"); 1305 return -EINVAL; 1306 } 1307 if (in_interrupt()) { 1308 dump_stack(); 1309 pr_err("transport_generic_handle_cdb cannot be called" 1310 " from interrupt context\n"); 1311 return -EINVAL; 1312 } 1313 /* 1314 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1315 * outstanding descriptors are handled correctly during shutdown via 1316 * transport_wait_for_tasks() 1317 * 1318 * Also, we don't take cmd->t_state_lock here as we only expect 1319 * this to be called for initial descriptor submission. 1320 */ 1321 cmd->t_state = TRANSPORT_NEW_CMD; 1322 cmd->transport_state |= CMD_T_ACTIVE; 1323 1324 /* 1325 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1326 * so follow TRANSPORT_NEW_CMD processing thread context usage 1327 * and call transport_generic_request_failure() if necessary.. 1328 */ 1329 ret = transport_generic_new_cmd(cmd); 1330 if (ret) 1331 transport_generic_request_failure(cmd, ret); 1332 return 0; 1333 } 1334 EXPORT_SYMBOL(transport_handle_cdb_direct); 1335 1336 sense_reason_t 1337 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1338 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1339 { 1340 if (!sgl || !sgl_count) 1341 return 0; 1342 1343 /* 1344 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1345 * scatterlists already have been set to follow what the fabric 1346 * passes for the original expected data transfer length. 1347 */ 1348 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1349 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1350 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1351 return TCM_INVALID_CDB_FIELD; 1352 } 1353 1354 cmd->t_data_sg = sgl; 1355 cmd->t_data_nents = sgl_count; 1356 1357 if (sgl_bidi && sgl_bidi_count) { 1358 cmd->t_bidi_data_sg = sgl_bidi; 1359 cmd->t_bidi_data_nents = sgl_bidi_count; 1360 } 1361 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1362 return 0; 1363 } 1364 1365 /* 1366 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1367 * se_cmd + use pre-allocated SGL memory. 1368 * 1369 * @se_cmd: command descriptor to submit 1370 * @se_sess: associated se_sess for endpoint 1371 * @cdb: pointer to SCSI CDB 1372 * @sense: pointer to SCSI sense buffer 1373 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1374 * @data_length: fabric expected data transfer length 1375 * @task_addr: SAM task attribute 1376 * @data_dir: DMA data direction 1377 * @flags: flags for command submission from target_sc_flags_tables 1378 * @sgl: struct scatterlist memory for unidirectional mapping 1379 * @sgl_count: scatterlist count for unidirectional mapping 1380 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1381 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1382 * @sgl_prot: struct scatterlist memory protection information 1383 * @sgl_prot_count: scatterlist count for protection information 1384 * 1385 * Returns non zero to signal active I/O shutdown failure. All other 1386 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1387 * but still return zero here. 1388 * 1389 * This may only be called from process context, and also currently 1390 * assumes internal allocation of fabric payload buffer by target-core. 1391 */ 1392 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1393 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1394 u32 data_length, int task_attr, int data_dir, int flags, 1395 struct scatterlist *sgl, u32 sgl_count, 1396 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1397 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1398 { 1399 struct se_portal_group *se_tpg; 1400 sense_reason_t rc; 1401 int ret; 1402 1403 se_tpg = se_sess->se_tpg; 1404 BUG_ON(!se_tpg); 1405 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1406 BUG_ON(in_interrupt()); 1407 /* 1408 * Initialize se_cmd for target operation. From this point 1409 * exceptions are handled by sending exception status via 1410 * target_core_fabric_ops->queue_status() callback 1411 */ 1412 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1413 data_length, data_dir, task_attr, sense); 1414 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1415 se_cmd->unknown_data_length = 1; 1416 /* 1417 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1418 * se_sess->sess_cmd_list. A second kref_get here is necessary 1419 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1420 * kref_put() to happen during fabric packet acknowledgement. 1421 */ 1422 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1423 if (ret) 1424 return ret; 1425 /* 1426 * Signal bidirectional data payloads to target-core 1427 */ 1428 if (flags & TARGET_SCF_BIDI_OP) 1429 se_cmd->se_cmd_flags |= SCF_BIDI; 1430 /* 1431 * Locate se_lun pointer and attach it to struct se_cmd 1432 */ 1433 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1434 if (rc) { 1435 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1436 target_put_sess_cmd(se_sess, se_cmd); 1437 return 0; 1438 } 1439 1440 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1441 if (rc != 0) { 1442 transport_generic_request_failure(se_cmd, rc); 1443 return 0; 1444 } 1445 1446 /* 1447 * Save pointers for SGLs containing protection information, 1448 * if present. 1449 */ 1450 if (sgl_prot_count) { 1451 se_cmd->t_prot_sg = sgl_prot; 1452 se_cmd->t_prot_nents = sgl_prot_count; 1453 } 1454 1455 /* 1456 * When a non zero sgl_count has been passed perform SGL passthrough 1457 * mapping for pre-allocated fabric memory instead of having target 1458 * core perform an internal SGL allocation.. 1459 */ 1460 if (sgl_count != 0) { 1461 BUG_ON(!sgl); 1462 1463 /* 1464 * A work-around for tcm_loop as some userspace code via 1465 * scsi-generic do not memset their associated read buffers, 1466 * so go ahead and do that here for type non-data CDBs. Also 1467 * note that this is currently guaranteed to be a single SGL 1468 * for this case by target core in target_setup_cmd_from_cdb() 1469 * -> transport_generic_cmd_sequencer(). 1470 */ 1471 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1472 se_cmd->data_direction == DMA_FROM_DEVICE) { 1473 unsigned char *buf = NULL; 1474 1475 if (sgl) 1476 buf = kmap(sg_page(sgl)) + sgl->offset; 1477 1478 if (buf) { 1479 memset(buf, 0, sgl->length); 1480 kunmap(sg_page(sgl)); 1481 } 1482 } 1483 1484 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1485 sgl_bidi, sgl_bidi_count); 1486 if (rc != 0) { 1487 transport_generic_request_failure(se_cmd, rc); 1488 return 0; 1489 } 1490 } 1491 1492 /* 1493 * Check if we need to delay processing because of ALUA 1494 * Active/NonOptimized primary access state.. 1495 */ 1496 core_alua_check_nonop_delay(se_cmd); 1497 1498 transport_handle_cdb_direct(se_cmd); 1499 return 0; 1500 } 1501 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1502 1503 /* 1504 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1505 * 1506 * @se_cmd: command descriptor to submit 1507 * @se_sess: associated se_sess for endpoint 1508 * @cdb: pointer to SCSI CDB 1509 * @sense: pointer to SCSI sense buffer 1510 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1511 * @data_length: fabric expected data transfer length 1512 * @task_addr: SAM task attribute 1513 * @data_dir: DMA data direction 1514 * @flags: flags for command submission from target_sc_flags_tables 1515 * 1516 * Returns non zero to signal active I/O shutdown failure. All other 1517 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1518 * but still return zero here. 1519 * 1520 * This may only be called from process context, and also currently 1521 * assumes internal allocation of fabric payload buffer by target-core. 1522 * 1523 * It also assumes interal target core SGL memory allocation. 1524 */ 1525 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1526 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1527 u32 data_length, int task_attr, int data_dir, int flags) 1528 { 1529 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1530 unpacked_lun, data_length, task_attr, data_dir, 1531 flags, NULL, 0, NULL, 0, NULL, 0); 1532 } 1533 EXPORT_SYMBOL(target_submit_cmd); 1534 1535 static void target_complete_tmr_failure(struct work_struct *work) 1536 { 1537 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1538 1539 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1540 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1541 1542 transport_cmd_check_stop_to_fabric(se_cmd); 1543 } 1544 1545 /** 1546 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1547 * for TMR CDBs 1548 * 1549 * @se_cmd: command descriptor to submit 1550 * @se_sess: associated se_sess for endpoint 1551 * @sense: pointer to SCSI sense buffer 1552 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1553 * @fabric_context: fabric context for TMR req 1554 * @tm_type: Type of TM request 1555 * @gfp: gfp type for caller 1556 * @tag: referenced task tag for TMR_ABORT_TASK 1557 * @flags: submit cmd flags 1558 * 1559 * Callable from all contexts. 1560 **/ 1561 1562 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1563 unsigned char *sense, u32 unpacked_lun, 1564 void *fabric_tmr_ptr, unsigned char tm_type, 1565 gfp_t gfp, unsigned int tag, int flags) 1566 { 1567 struct se_portal_group *se_tpg; 1568 int ret; 1569 1570 se_tpg = se_sess->se_tpg; 1571 BUG_ON(!se_tpg); 1572 1573 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1574 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1575 /* 1576 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1577 * allocation failure. 1578 */ 1579 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1580 if (ret < 0) 1581 return -ENOMEM; 1582 1583 if (tm_type == TMR_ABORT_TASK) 1584 se_cmd->se_tmr_req->ref_task_tag = tag; 1585 1586 /* See target_submit_cmd for commentary */ 1587 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1588 if (ret) { 1589 core_tmr_release_req(se_cmd->se_tmr_req); 1590 return ret; 1591 } 1592 1593 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1594 if (ret) { 1595 /* 1596 * For callback during failure handling, push this work off 1597 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1598 */ 1599 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1600 schedule_work(&se_cmd->work); 1601 return 0; 1602 } 1603 transport_generic_handle_tmr(se_cmd); 1604 return 0; 1605 } 1606 EXPORT_SYMBOL(target_submit_tmr); 1607 1608 /* 1609 * If the cmd is active, request it to be stopped and sleep until it 1610 * has completed. 1611 */ 1612 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1613 __releases(&cmd->t_state_lock) 1614 __acquires(&cmd->t_state_lock) 1615 { 1616 bool was_active = false; 1617 1618 if (cmd->transport_state & CMD_T_BUSY) { 1619 cmd->transport_state |= CMD_T_REQUEST_STOP; 1620 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1621 1622 pr_debug("cmd %p waiting to complete\n", cmd); 1623 wait_for_completion(&cmd->task_stop_comp); 1624 pr_debug("cmd %p stopped successfully\n", cmd); 1625 1626 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1627 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1628 cmd->transport_state &= ~CMD_T_BUSY; 1629 was_active = true; 1630 } 1631 1632 return was_active; 1633 } 1634 1635 /* 1636 * Handle SAM-esque emulation for generic transport request failures. 1637 */ 1638 void transport_generic_request_failure(struct se_cmd *cmd, 1639 sense_reason_t sense_reason) 1640 { 1641 int ret = 0; 1642 1643 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1644 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1645 cmd->t_task_cdb[0]); 1646 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1647 cmd->se_tfo->get_cmd_state(cmd), 1648 cmd->t_state, sense_reason); 1649 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1650 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1651 (cmd->transport_state & CMD_T_STOP) != 0, 1652 (cmd->transport_state & CMD_T_SENT) != 0); 1653 1654 /* 1655 * For SAM Task Attribute emulation for failed struct se_cmd 1656 */ 1657 transport_complete_task_attr(cmd); 1658 /* 1659 * Handle special case for COMPARE_AND_WRITE failure, where the 1660 * callback is expected to drop the per device ->caw_sem. 1661 */ 1662 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1663 cmd->transport_complete_callback) 1664 cmd->transport_complete_callback(cmd, false); 1665 1666 switch (sense_reason) { 1667 case TCM_NON_EXISTENT_LUN: 1668 case TCM_UNSUPPORTED_SCSI_OPCODE: 1669 case TCM_INVALID_CDB_FIELD: 1670 case TCM_INVALID_PARAMETER_LIST: 1671 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1672 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1673 case TCM_UNKNOWN_MODE_PAGE: 1674 case TCM_WRITE_PROTECTED: 1675 case TCM_ADDRESS_OUT_OF_RANGE: 1676 case TCM_CHECK_CONDITION_ABORT_CMD: 1677 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1678 case TCM_CHECK_CONDITION_NOT_READY: 1679 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1680 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1681 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1682 break; 1683 case TCM_OUT_OF_RESOURCES: 1684 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1685 break; 1686 case TCM_RESERVATION_CONFLICT: 1687 /* 1688 * No SENSE Data payload for this case, set SCSI Status 1689 * and queue the response to $FABRIC_MOD. 1690 * 1691 * Uses linux/include/scsi/scsi.h SAM status codes defs 1692 */ 1693 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1694 /* 1695 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1696 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1697 * CONFLICT STATUS. 1698 * 1699 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1700 */ 1701 if (cmd->se_sess && 1702 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1703 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1704 cmd->orig_fe_lun, 0x2C, 1705 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1706 1707 trace_target_cmd_complete(cmd); 1708 ret = cmd->se_tfo-> queue_status(cmd); 1709 if (ret == -EAGAIN || ret == -ENOMEM) 1710 goto queue_full; 1711 goto check_stop; 1712 default: 1713 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1714 cmd->t_task_cdb[0], sense_reason); 1715 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1716 break; 1717 } 1718 1719 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1720 if (ret == -EAGAIN || ret == -ENOMEM) 1721 goto queue_full; 1722 1723 check_stop: 1724 transport_lun_remove_cmd(cmd); 1725 if (!transport_cmd_check_stop_to_fabric(cmd)) 1726 ; 1727 return; 1728 1729 queue_full: 1730 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1731 transport_handle_queue_full(cmd, cmd->se_dev); 1732 } 1733 EXPORT_SYMBOL(transport_generic_request_failure); 1734 1735 void __target_execute_cmd(struct se_cmd *cmd) 1736 { 1737 sense_reason_t ret; 1738 1739 if (cmd->execute_cmd) { 1740 ret = cmd->execute_cmd(cmd); 1741 if (ret) { 1742 spin_lock_irq(&cmd->t_state_lock); 1743 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1744 spin_unlock_irq(&cmd->t_state_lock); 1745 1746 transport_generic_request_failure(cmd, ret); 1747 } 1748 } 1749 } 1750 1751 static int target_write_prot_action(struct se_cmd *cmd) 1752 { 1753 u32 sectors; 1754 /* 1755 * Perform WRITE_INSERT of PI using software emulation when backend 1756 * device has PI enabled, if the transport has not already generated 1757 * PI using hardware WRITE_INSERT offload. 1758 */ 1759 switch (cmd->prot_op) { 1760 case TARGET_PROT_DOUT_INSERT: 1761 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1762 sbc_dif_generate(cmd); 1763 break; 1764 case TARGET_PROT_DOUT_STRIP: 1765 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1766 break; 1767 1768 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1769 cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba, 1770 sectors, 0, NULL, 0); 1771 if (unlikely(cmd->pi_err)) { 1772 spin_lock_irq(&cmd->t_state_lock); 1773 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT; 1774 spin_unlock_irq(&cmd->t_state_lock); 1775 transport_generic_request_failure(cmd, cmd->pi_err); 1776 return -1; 1777 } 1778 break; 1779 default: 1780 break; 1781 } 1782 1783 return 0; 1784 } 1785 1786 static bool target_handle_task_attr(struct se_cmd *cmd) 1787 { 1788 struct se_device *dev = cmd->se_dev; 1789 1790 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1791 return false; 1792 1793 /* 1794 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1795 * to allow the passed struct se_cmd list of tasks to the front of the list. 1796 */ 1797 switch (cmd->sam_task_attr) { 1798 case TCM_HEAD_TAG: 1799 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1800 "se_ordered_id: %u\n", 1801 cmd->t_task_cdb[0], cmd->se_ordered_id); 1802 return false; 1803 case TCM_ORDERED_TAG: 1804 atomic_inc_mb(&dev->dev_ordered_sync); 1805 1806 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1807 " se_ordered_id: %u\n", 1808 cmd->t_task_cdb[0], cmd->se_ordered_id); 1809 1810 /* 1811 * Execute an ORDERED command if no other older commands 1812 * exist that need to be completed first. 1813 */ 1814 if (!atomic_read(&dev->simple_cmds)) 1815 return false; 1816 break; 1817 default: 1818 /* 1819 * For SIMPLE and UNTAGGED Task Attribute commands 1820 */ 1821 atomic_inc_mb(&dev->simple_cmds); 1822 break; 1823 } 1824 1825 if (atomic_read(&dev->dev_ordered_sync) == 0) 1826 return false; 1827 1828 spin_lock(&dev->delayed_cmd_lock); 1829 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1830 spin_unlock(&dev->delayed_cmd_lock); 1831 1832 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1833 " delayed CMD list, se_ordered_id: %u\n", 1834 cmd->t_task_cdb[0], cmd->sam_task_attr, 1835 cmd->se_ordered_id); 1836 return true; 1837 } 1838 1839 void target_execute_cmd(struct se_cmd *cmd) 1840 { 1841 /* 1842 * If the received CDB has aleady been aborted stop processing it here. 1843 */ 1844 if (transport_check_aborted_status(cmd, 1)) 1845 return; 1846 1847 /* 1848 * Determine if frontend context caller is requesting the stopping of 1849 * this command for frontend exceptions. 1850 */ 1851 spin_lock_irq(&cmd->t_state_lock); 1852 if (cmd->transport_state & CMD_T_STOP) { 1853 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1854 __func__, __LINE__, 1855 cmd->se_tfo->get_task_tag(cmd)); 1856 1857 spin_unlock_irq(&cmd->t_state_lock); 1858 complete_all(&cmd->t_transport_stop_comp); 1859 return; 1860 } 1861 1862 cmd->t_state = TRANSPORT_PROCESSING; 1863 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1864 spin_unlock_irq(&cmd->t_state_lock); 1865 1866 if (target_write_prot_action(cmd)) 1867 return; 1868 1869 if (target_handle_task_attr(cmd)) { 1870 spin_lock_irq(&cmd->t_state_lock); 1871 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT; 1872 spin_unlock_irq(&cmd->t_state_lock); 1873 return; 1874 } 1875 1876 __target_execute_cmd(cmd); 1877 } 1878 EXPORT_SYMBOL(target_execute_cmd); 1879 1880 /* 1881 * Process all commands up to the last received ORDERED task attribute which 1882 * requires another blocking boundary 1883 */ 1884 static void target_restart_delayed_cmds(struct se_device *dev) 1885 { 1886 for (;;) { 1887 struct se_cmd *cmd; 1888 1889 spin_lock(&dev->delayed_cmd_lock); 1890 if (list_empty(&dev->delayed_cmd_list)) { 1891 spin_unlock(&dev->delayed_cmd_lock); 1892 break; 1893 } 1894 1895 cmd = list_entry(dev->delayed_cmd_list.next, 1896 struct se_cmd, se_delayed_node); 1897 list_del(&cmd->se_delayed_node); 1898 spin_unlock(&dev->delayed_cmd_lock); 1899 1900 __target_execute_cmd(cmd); 1901 1902 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1903 break; 1904 } 1905 } 1906 1907 /* 1908 * Called from I/O completion to determine which dormant/delayed 1909 * and ordered cmds need to have their tasks added to the execution queue. 1910 */ 1911 static void transport_complete_task_attr(struct se_cmd *cmd) 1912 { 1913 struct se_device *dev = cmd->se_dev; 1914 1915 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1916 return; 1917 1918 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1919 atomic_dec_mb(&dev->simple_cmds); 1920 dev->dev_cur_ordered_id++; 1921 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1922 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1923 cmd->se_ordered_id); 1924 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1925 dev->dev_cur_ordered_id++; 1926 pr_debug("Incremented dev_cur_ordered_id: %u for" 1927 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1928 cmd->se_ordered_id); 1929 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1930 atomic_dec_mb(&dev->dev_ordered_sync); 1931 1932 dev->dev_cur_ordered_id++; 1933 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1934 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1935 } 1936 1937 target_restart_delayed_cmds(dev); 1938 } 1939 1940 static void transport_complete_qf(struct se_cmd *cmd) 1941 { 1942 int ret = 0; 1943 1944 transport_complete_task_attr(cmd); 1945 1946 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1947 trace_target_cmd_complete(cmd); 1948 ret = cmd->se_tfo->queue_status(cmd); 1949 goto out; 1950 } 1951 1952 switch (cmd->data_direction) { 1953 case DMA_FROM_DEVICE: 1954 trace_target_cmd_complete(cmd); 1955 ret = cmd->se_tfo->queue_data_in(cmd); 1956 break; 1957 case DMA_TO_DEVICE: 1958 if (cmd->se_cmd_flags & SCF_BIDI) { 1959 ret = cmd->se_tfo->queue_data_in(cmd); 1960 if (ret < 0) 1961 break; 1962 } 1963 /* Fall through for DMA_TO_DEVICE */ 1964 case DMA_NONE: 1965 trace_target_cmd_complete(cmd); 1966 ret = cmd->se_tfo->queue_status(cmd); 1967 break; 1968 default: 1969 break; 1970 } 1971 1972 out: 1973 if (ret < 0) { 1974 transport_handle_queue_full(cmd, cmd->se_dev); 1975 return; 1976 } 1977 transport_lun_remove_cmd(cmd); 1978 transport_cmd_check_stop_to_fabric(cmd); 1979 } 1980 1981 static void transport_handle_queue_full( 1982 struct se_cmd *cmd, 1983 struct se_device *dev) 1984 { 1985 spin_lock_irq(&dev->qf_cmd_lock); 1986 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1987 atomic_inc_mb(&dev->dev_qf_count); 1988 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1989 1990 schedule_work(&cmd->se_dev->qf_work_queue); 1991 } 1992 1993 static bool target_read_prot_action(struct se_cmd *cmd) 1994 { 1995 sense_reason_t rc; 1996 1997 switch (cmd->prot_op) { 1998 case TARGET_PROT_DIN_STRIP: 1999 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2000 rc = sbc_dif_read_strip(cmd); 2001 if (rc) { 2002 cmd->pi_err = rc; 2003 return true; 2004 } 2005 } 2006 break; 2007 case TARGET_PROT_DIN_INSERT: 2008 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2009 break; 2010 2011 sbc_dif_generate(cmd); 2012 break; 2013 default: 2014 break; 2015 } 2016 2017 return false; 2018 } 2019 2020 static void target_complete_ok_work(struct work_struct *work) 2021 { 2022 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2023 int ret; 2024 2025 /* 2026 * Check if we need to move delayed/dormant tasks from cmds on the 2027 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2028 * Attribute. 2029 */ 2030 transport_complete_task_attr(cmd); 2031 2032 /* 2033 * Check to schedule QUEUE_FULL work, or execute an existing 2034 * cmd->transport_qf_callback() 2035 */ 2036 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2037 schedule_work(&cmd->se_dev->qf_work_queue); 2038 2039 /* 2040 * Check if we need to send a sense buffer from 2041 * the struct se_cmd in question. 2042 */ 2043 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2044 WARN_ON(!cmd->scsi_status); 2045 ret = transport_send_check_condition_and_sense( 2046 cmd, 0, 1); 2047 if (ret == -EAGAIN || ret == -ENOMEM) 2048 goto queue_full; 2049 2050 transport_lun_remove_cmd(cmd); 2051 transport_cmd_check_stop_to_fabric(cmd); 2052 return; 2053 } 2054 /* 2055 * Check for a callback, used by amongst other things 2056 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2057 */ 2058 if (cmd->transport_complete_callback) { 2059 sense_reason_t rc; 2060 2061 rc = cmd->transport_complete_callback(cmd, true); 2062 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) { 2063 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2064 !cmd->data_length) 2065 goto queue_rsp; 2066 2067 return; 2068 } else if (rc) { 2069 ret = transport_send_check_condition_and_sense(cmd, 2070 rc, 0); 2071 if (ret == -EAGAIN || ret == -ENOMEM) 2072 goto queue_full; 2073 2074 transport_lun_remove_cmd(cmd); 2075 transport_cmd_check_stop_to_fabric(cmd); 2076 return; 2077 } 2078 } 2079 2080 queue_rsp: 2081 switch (cmd->data_direction) { 2082 case DMA_FROM_DEVICE: 2083 spin_lock(&cmd->se_lun->lun_sep_lock); 2084 if (cmd->se_lun->lun_sep) { 2085 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 2086 cmd->data_length; 2087 } 2088 spin_unlock(&cmd->se_lun->lun_sep_lock); 2089 /* 2090 * Perform READ_STRIP of PI using software emulation when 2091 * backend had PI enabled, if the transport will not be 2092 * performing hardware READ_STRIP offload. 2093 */ 2094 if (target_read_prot_action(cmd)) { 2095 ret = transport_send_check_condition_and_sense(cmd, 2096 cmd->pi_err, 0); 2097 if (ret == -EAGAIN || ret == -ENOMEM) 2098 goto queue_full; 2099 2100 transport_lun_remove_cmd(cmd); 2101 transport_cmd_check_stop_to_fabric(cmd); 2102 return; 2103 } 2104 2105 trace_target_cmd_complete(cmd); 2106 ret = cmd->se_tfo->queue_data_in(cmd); 2107 if (ret == -EAGAIN || ret == -ENOMEM) 2108 goto queue_full; 2109 break; 2110 case DMA_TO_DEVICE: 2111 spin_lock(&cmd->se_lun->lun_sep_lock); 2112 if (cmd->se_lun->lun_sep) { 2113 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 2114 cmd->data_length; 2115 } 2116 spin_unlock(&cmd->se_lun->lun_sep_lock); 2117 /* 2118 * Check if we need to send READ payload for BIDI-COMMAND 2119 */ 2120 if (cmd->se_cmd_flags & SCF_BIDI) { 2121 spin_lock(&cmd->se_lun->lun_sep_lock); 2122 if (cmd->se_lun->lun_sep) { 2123 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 2124 cmd->data_length; 2125 } 2126 spin_unlock(&cmd->se_lun->lun_sep_lock); 2127 ret = cmd->se_tfo->queue_data_in(cmd); 2128 if (ret == -EAGAIN || ret == -ENOMEM) 2129 goto queue_full; 2130 break; 2131 } 2132 /* Fall through for DMA_TO_DEVICE */ 2133 case DMA_NONE: 2134 trace_target_cmd_complete(cmd); 2135 ret = cmd->se_tfo->queue_status(cmd); 2136 if (ret == -EAGAIN || ret == -ENOMEM) 2137 goto queue_full; 2138 break; 2139 default: 2140 break; 2141 } 2142 2143 transport_lun_remove_cmd(cmd); 2144 transport_cmd_check_stop_to_fabric(cmd); 2145 return; 2146 2147 queue_full: 2148 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2149 " data_direction: %d\n", cmd, cmd->data_direction); 2150 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2151 transport_handle_queue_full(cmd, cmd->se_dev); 2152 } 2153 2154 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 2155 { 2156 struct scatterlist *sg; 2157 int count; 2158 2159 for_each_sg(sgl, sg, nents, count) 2160 __free_page(sg_page(sg)); 2161 2162 kfree(sgl); 2163 } 2164 2165 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2166 { 2167 /* 2168 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2169 * emulation, and free + reset pointers if necessary.. 2170 */ 2171 if (!cmd->t_data_sg_orig) 2172 return; 2173 2174 kfree(cmd->t_data_sg); 2175 cmd->t_data_sg = cmd->t_data_sg_orig; 2176 cmd->t_data_sg_orig = NULL; 2177 cmd->t_data_nents = cmd->t_data_nents_orig; 2178 cmd->t_data_nents_orig = 0; 2179 } 2180 2181 static inline void transport_free_pages(struct se_cmd *cmd) 2182 { 2183 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2184 /* 2185 * Release special case READ buffer payload required for 2186 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2187 */ 2188 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2189 transport_free_sgl(cmd->t_bidi_data_sg, 2190 cmd->t_bidi_data_nents); 2191 cmd->t_bidi_data_sg = NULL; 2192 cmd->t_bidi_data_nents = 0; 2193 } 2194 transport_reset_sgl_orig(cmd); 2195 return; 2196 } 2197 transport_reset_sgl_orig(cmd); 2198 2199 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2200 cmd->t_data_sg = NULL; 2201 cmd->t_data_nents = 0; 2202 2203 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2204 cmd->t_bidi_data_sg = NULL; 2205 cmd->t_bidi_data_nents = 0; 2206 2207 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2208 cmd->t_prot_sg = NULL; 2209 cmd->t_prot_nents = 0; 2210 } 2211 2212 /** 2213 * transport_release_cmd - free a command 2214 * @cmd: command to free 2215 * 2216 * This routine unconditionally frees a command, and reference counting 2217 * or list removal must be done in the caller. 2218 */ 2219 static int transport_release_cmd(struct se_cmd *cmd) 2220 { 2221 BUG_ON(!cmd->se_tfo); 2222 2223 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2224 core_tmr_release_req(cmd->se_tmr_req); 2225 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2226 kfree(cmd->t_task_cdb); 2227 /* 2228 * If this cmd has been setup with target_get_sess_cmd(), drop 2229 * the kref and call ->release_cmd() in kref callback. 2230 */ 2231 return target_put_sess_cmd(cmd->se_sess, cmd); 2232 } 2233 2234 /** 2235 * transport_put_cmd - release a reference to a command 2236 * @cmd: command to release 2237 * 2238 * This routine releases our reference to the command and frees it if possible. 2239 */ 2240 static int transport_put_cmd(struct se_cmd *cmd) 2241 { 2242 transport_free_pages(cmd); 2243 return transport_release_cmd(cmd); 2244 } 2245 2246 void *transport_kmap_data_sg(struct se_cmd *cmd) 2247 { 2248 struct scatterlist *sg = cmd->t_data_sg; 2249 struct page **pages; 2250 int i; 2251 2252 /* 2253 * We need to take into account a possible offset here for fabrics like 2254 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2255 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2256 */ 2257 if (!cmd->t_data_nents) 2258 return NULL; 2259 2260 BUG_ON(!sg); 2261 if (cmd->t_data_nents == 1) 2262 return kmap(sg_page(sg)) + sg->offset; 2263 2264 /* >1 page. use vmap */ 2265 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2266 if (!pages) 2267 return NULL; 2268 2269 /* convert sg[] to pages[] */ 2270 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2271 pages[i] = sg_page(sg); 2272 } 2273 2274 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2275 kfree(pages); 2276 if (!cmd->t_data_vmap) 2277 return NULL; 2278 2279 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2280 } 2281 EXPORT_SYMBOL(transport_kmap_data_sg); 2282 2283 void transport_kunmap_data_sg(struct se_cmd *cmd) 2284 { 2285 if (!cmd->t_data_nents) { 2286 return; 2287 } else if (cmd->t_data_nents == 1) { 2288 kunmap(sg_page(cmd->t_data_sg)); 2289 return; 2290 } 2291 2292 vunmap(cmd->t_data_vmap); 2293 cmd->t_data_vmap = NULL; 2294 } 2295 EXPORT_SYMBOL(transport_kunmap_data_sg); 2296 2297 int 2298 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2299 bool zero_page) 2300 { 2301 struct scatterlist *sg; 2302 struct page *page; 2303 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2304 unsigned int nent; 2305 int i = 0; 2306 2307 nent = DIV_ROUND_UP(length, PAGE_SIZE); 2308 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL); 2309 if (!sg) 2310 return -ENOMEM; 2311 2312 sg_init_table(sg, nent); 2313 2314 while (length) { 2315 u32 page_len = min_t(u32, length, PAGE_SIZE); 2316 page = alloc_page(GFP_KERNEL | zero_flag); 2317 if (!page) 2318 goto out; 2319 2320 sg_set_page(&sg[i], page, page_len, 0); 2321 length -= page_len; 2322 i++; 2323 } 2324 *sgl = sg; 2325 *nents = nent; 2326 return 0; 2327 2328 out: 2329 while (i > 0) { 2330 i--; 2331 __free_page(sg_page(&sg[i])); 2332 } 2333 kfree(sg); 2334 return -ENOMEM; 2335 } 2336 2337 /* 2338 * Allocate any required resources to execute the command. For writes we 2339 * might not have the payload yet, so notify the fabric via a call to 2340 * ->write_pending instead. Otherwise place it on the execution queue. 2341 */ 2342 sense_reason_t 2343 transport_generic_new_cmd(struct se_cmd *cmd) 2344 { 2345 int ret = 0; 2346 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2347 2348 /* 2349 * Determine is the TCM fabric module has already allocated physical 2350 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2351 * beforehand. 2352 */ 2353 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2354 cmd->data_length) { 2355 2356 if ((cmd->se_cmd_flags & SCF_BIDI) || 2357 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2358 u32 bidi_length; 2359 2360 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2361 bidi_length = cmd->t_task_nolb * 2362 cmd->se_dev->dev_attrib.block_size; 2363 else 2364 bidi_length = cmd->data_length; 2365 2366 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2367 &cmd->t_bidi_data_nents, 2368 bidi_length, zero_flag); 2369 if (ret < 0) 2370 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2371 } 2372 2373 if (cmd->prot_op != TARGET_PROT_NORMAL) { 2374 ret = target_alloc_sgl(&cmd->t_prot_sg, 2375 &cmd->t_prot_nents, 2376 cmd->prot_length, true); 2377 if (ret < 0) 2378 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2379 } 2380 2381 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2382 cmd->data_length, zero_flag); 2383 if (ret < 0) 2384 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2385 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2386 cmd->data_length) { 2387 /* 2388 * Special case for COMPARE_AND_WRITE with fabrics 2389 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2390 */ 2391 u32 caw_length = cmd->t_task_nolb * 2392 cmd->se_dev->dev_attrib.block_size; 2393 2394 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2395 &cmd->t_bidi_data_nents, 2396 caw_length, zero_flag); 2397 if (ret < 0) 2398 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2399 } 2400 /* 2401 * If this command is not a write we can execute it right here, 2402 * for write buffers we need to notify the fabric driver first 2403 * and let it call back once the write buffers are ready. 2404 */ 2405 target_add_to_state_list(cmd); 2406 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2407 target_execute_cmd(cmd); 2408 return 0; 2409 } 2410 transport_cmd_check_stop(cmd, false, true); 2411 2412 ret = cmd->se_tfo->write_pending(cmd); 2413 if (ret == -EAGAIN || ret == -ENOMEM) 2414 goto queue_full; 2415 2416 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2417 WARN_ON(ret); 2418 2419 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2420 2421 queue_full: 2422 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2423 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2424 transport_handle_queue_full(cmd, cmd->se_dev); 2425 return 0; 2426 } 2427 EXPORT_SYMBOL(transport_generic_new_cmd); 2428 2429 static void transport_write_pending_qf(struct se_cmd *cmd) 2430 { 2431 int ret; 2432 2433 ret = cmd->se_tfo->write_pending(cmd); 2434 if (ret == -EAGAIN || ret == -ENOMEM) { 2435 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2436 cmd); 2437 transport_handle_queue_full(cmd, cmd->se_dev); 2438 } 2439 } 2440 2441 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2442 { 2443 unsigned long flags; 2444 int ret = 0; 2445 2446 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2447 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2448 transport_wait_for_tasks(cmd); 2449 2450 ret = transport_release_cmd(cmd); 2451 } else { 2452 if (wait_for_tasks) 2453 transport_wait_for_tasks(cmd); 2454 /* 2455 * Handle WRITE failure case where transport_generic_new_cmd() 2456 * has already added se_cmd to state_list, but fabric has 2457 * failed command before I/O submission. 2458 */ 2459 if (cmd->state_active) { 2460 spin_lock_irqsave(&cmd->t_state_lock, flags); 2461 target_remove_from_state_list(cmd); 2462 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2463 } 2464 2465 if (cmd->se_lun) 2466 transport_lun_remove_cmd(cmd); 2467 2468 ret = transport_put_cmd(cmd); 2469 } 2470 return ret; 2471 } 2472 EXPORT_SYMBOL(transport_generic_free_cmd); 2473 2474 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2475 * @se_sess: session to reference 2476 * @se_cmd: command descriptor to add 2477 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2478 */ 2479 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2480 bool ack_kref) 2481 { 2482 unsigned long flags; 2483 int ret = 0; 2484 2485 /* 2486 * Add a second kref if the fabric caller is expecting to handle 2487 * fabric acknowledgement that requires two target_put_sess_cmd() 2488 * invocations before se_cmd descriptor release. 2489 */ 2490 if (ack_kref) 2491 kref_get(&se_cmd->cmd_kref); 2492 2493 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2494 if (se_sess->sess_tearing_down) { 2495 ret = -ESHUTDOWN; 2496 goto out; 2497 } 2498 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2499 out: 2500 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2501 2502 if (ret && ack_kref) 2503 target_put_sess_cmd(se_sess, se_cmd); 2504 2505 return ret; 2506 } 2507 EXPORT_SYMBOL(target_get_sess_cmd); 2508 2509 static void target_release_cmd_kref(struct kref *kref) 2510 __releases(&se_cmd->se_sess->sess_cmd_lock) 2511 { 2512 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2513 struct se_session *se_sess = se_cmd->se_sess; 2514 2515 if (list_empty(&se_cmd->se_cmd_list)) { 2516 spin_unlock(&se_sess->sess_cmd_lock); 2517 se_cmd->se_tfo->release_cmd(se_cmd); 2518 return; 2519 } 2520 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2521 spin_unlock(&se_sess->sess_cmd_lock); 2522 complete(&se_cmd->cmd_wait_comp); 2523 return; 2524 } 2525 list_del(&se_cmd->se_cmd_list); 2526 spin_unlock(&se_sess->sess_cmd_lock); 2527 2528 se_cmd->se_tfo->release_cmd(se_cmd); 2529 } 2530 2531 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2532 * @se_sess: session to reference 2533 * @se_cmd: command descriptor to drop 2534 */ 2535 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2536 { 2537 if (!se_sess) { 2538 se_cmd->se_tfo->release_cmd(se_cmd); 2539 return 1; 2540 } 2541 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2542 &se_sess->sess_cmd_lock); 2543 } 2544 EXPORT_SYMBOL(target_put_sess_cmd); 2545 2546 /* target_sess_cmd_list_set_waiting - Flag all commands in 2547 * sess_cmd_list to complete cmd_wait_comp. Set 2548 * sess_tearing_down so no more commands are queued. 2549 * @se_sess: session to flag 2550 */ 2551 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2552 { 2553 struct se_cmd *se_cmd; 2554 unsigned long flags; 2555 2556 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2557 if (se_sess->sess_tearing_down) { 2558 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2559 return; 2560 } 2561 se_sess->sess_tearing_down = 1; 2562 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2563 2564 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2565 se_cmd->cmd_wait_set = 1; 2566 2567 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2568 } 2569 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2570 2571 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2572 * @se_sess: session to wait for active I/O 2573 */ 2574 void target_wait_for_sess_cmds(struct se_session *se_sess) 2575 { 2576 struct se_cmd *se_cmd, *tmp_cmd; 2577 unsigned long flags; 2578 2579 list_for_each_entry_safe(se_cmd, tmp_cmd, 2580 &se_sess->sess_wait_list, se_cmd_list) { 2581 list_del(&se_cmd->se_cmd_list); 2582 2583 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2584 " %d\n", se_cmd, se_cmd->t_state, 2585 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2586 2587 wait_for_completion(&se_cmd->cmd_wait_comp); 2588 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2589 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2590 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2591 2592 se_cmd->se_tfo->release_cmd(se_cmd); 2593 } 2594 2595 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2596 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2597 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2598 2599 } 2600 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2601 2602 static int transport_clear_lun_ref_thread(void *p) 2603 { 2604 struct se_lun *lun = p; 2605 2606 percpu_ref_kill(&lun->lun_ref); 2607 2608 wait_for_completion(&lun->lun_ref_comp); 2609 complete(&lun->lun_shutdown_comp); 2610 2611 return 0; 2612 } 2613 2614 int transport_clear_lun_ref(struct se_lun *lun) 2615 { 2616 struct task_struct *kt; 2617 2618 kt = kthread_run(transport_clear_lun_ref_thread, lun, 2619 "tcm_cl_%u", lun->unpacked_lun); 2620 if (IS_ERR(kt)) { 2621 pr_err("Unable to start clear_lun thread\n"); 2622 return PTR_ERR(kt); 2623 } 2624 wait_for_completion(&lun->lun_shutdown_comp); 2625 2626 return 0; 2627 } 2628 2629 /** 2630 * transport_wait_for_tasks - wait for completion to occur 2631 * @cmd: command to wait 2632 * 2633 * Called from frontend fabric context to wait for storage engine 2634 * to pause and/or release frontend generated struct se_cmd. 2635 */ 2636 bool transport_wait_for_tasks(struct se_cmd *cmd) 2637 { 2638 unsigned long flags; 2639 2640 spin_lock_irqsave(&cmd->t_state_lock, flags); 2641 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2642 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2643 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2644 return false; 2645 } 2646 2647 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2648 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2649 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2650 return false; 2651 } 2652 2653 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2654 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2655 return false; 2656 } 2657 2658 cmd->transport_state |= CMD_T_STOP; 2659 2660 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2661 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2662 cmd, cmd->se_tfo->get_task_tag(cmd), 2663 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2664 2665 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2666 2667 wait_for_completion(&cmd->t_transport_stop_comp); 2668 2669 spin_lock_irqsave(&cmd->t_state_lock, flags); 2670 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2671 2672 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2673 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2674 cmd->se_tfo->get_task_tag(cmd)); 2675 2676 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2677 2678 return true; 2679 } 2680 EXPORT_SYMBOL(transport_wait_for_tasks); 2681 2682 static int transport_get_sense_codes( 2683 struct se_cmd *cmd, 2684 u8 *asc, 2685 u8 *ascq) 2686 { 2687 *asc = cmd->scsi_asc; 2688 *ascq = cmd->scsi_ascq; 2689 2690 return 0; 2691 } 2692 2693 static 2694 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector) 2695 { 2696 /* Place failed LBA in sense data information descriptor 0. */ 2697 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc; 2698 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */ 2699 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa; 2700 buffer[SPC_VALIDITY_OFFSET] = 0x80; 2701 2702 /* Descriptor Information: failing sector */ 2703 put_unaligned_be64(bad_sector, &buffer[12]); 2704 } 2705 2706 int 2707 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2708 sense_reason_t reason, int from_transport) 2709 { 2710 unsigned char *buffer = cmd->sense_buffer; 2711 unsigned long flags; 2712 u8 asc = 0, ascq = 0; 2713 2714 spin_lock_irqsave(&cmd->t_state_lock, flags); 2715 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2716 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2717 return 0; 2718 } 2719 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2720 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2721 2722 if (!reason && from_transport) 2723 goto after_reason; 2724 2725 if (!from_transport) 2726 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2727 2728 /* 2729 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2730 * SENSE KEY values from include/scsi/scsi.h 2731 */ 2732 switch (reason) { 2733 case TCM_NO_SENSE: 2734 /* CURRENT ERROR */ 2735 buffer[0] = 0x70; 2736 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2737 /* Not Ready */ 2738 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2739 /* NO ADDITIONAL SENSE INFORMATION */ 2740 buffer[SPC_ASC_KEY_OFFSET] = 0; 2741 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2742 break; 2743 case TCM_NON_EXISTENT_LUN: 2744 /* CURRENT ERROR */ 2745 buffer[0] = 0x70; 2746 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2747 /* ILLEGAL REQUEST */ 2748 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2749 /* LOGICAL UNIT NOT SUPPORTED */ 2750 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2751 break; 2752 case TCM_UNSUPPORTED_SCSI_OPCODE: 2753 case TCM_SECTOR_COUNT_TOO_MANY: 2754 /* CURRENT ERROR */ 2755 buffer[0] = 0x70; 2756 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2757 /* ILLEGAL REQUEST */ 2758 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2759 /* INVALID COMMAND OPERATION CODE */ 2760 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2761 break; 2762 case TCM_UNKNOWN_MODE_PAGE: 2763 /* CURRENT ERROR */ 2764 buffer[0] = 0x70; 2765 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2766 /* ILLEGAL REQUEST */ 2767 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2768 /* INVALID FIELD IN CDB */ 2769 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2770 break; 2771 case TCM_CHECK_CONDITION_ABORT_CMD: 2772 /* CURRENT ERROR */ 2773 buffer[0] = 0x70; 2774 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2775 /* ABORTED COMMAND */ 2776 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2777 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2778 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2779 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2780 break; 2781 case TCM_INCORRECT_AMOUNT_OF_DATA: 2782 /* CURRENT ERROR */ 2783 buffer[0] = 0x70; 2784 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2785 /* ABORTED COMMAND */ 2786 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2787 /* WRITE ERROR */ 2788 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2789 /* NOT ENOUGH UNSOLICITED DATA */ 2790 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2791 break; 2792 case TCM_INVALID_CDB_FIELD: 2793 /* CURRENT ERROR */ 2794 buffer[0] = 0x70; 2795 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2796 /* ILLEGAL REQUEST */ 2797 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2798 /* INVALID FIELD IN CDB */ 2799 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2800 break; 2801 case TCM_INVALID_PARAMETER_LIST: 2802 /* CURRENT ERROR */ 2803 buffer[0] = 0x70; 2804 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2805 /* ILLEGAL REQUEST */ 2806 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2807 /* INVALID FIELD IN PARAMETER LIST */ 2808 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2809 break; 2810 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2811 /* CURRENT ERROR */ 2812 buffer[0] = 0x70; 2813 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2814 /* ILLEGAL REQUEST */ 2815 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2816 /* PARAMETER LIST LENGTH ERROR */ 2817 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2818 break; 2819 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2820 /* CURRENT ERROR */ 2821 buffer[0] = 0x70; 2822 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2823 /* ABORTED COMMAND */ 2824 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2825 /* WRITE ERROR */ 2826 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2827 /* UNEXPECTED_UNSOLICITED_DATA */ 2828 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2829 break; 2830 case TCM_SERVICE_CRC_ERROR: 2831 /* CURRENT ERROR */ 2832 buffer[0] = 0x70; 2833 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2834 /* ABORTED COMMAND */ 2835 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2836 /* PROTOCOL SERVICE CRC ERROR */ 2837 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2838 /* N/A */ 2839 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2840 break; 2841 case TCM_SNACK_REJECTED: 2842 /* CURRENT ERROR */ 2843 buffer[0] = 0x70; 2844 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2845 /* ABORTED COMMAND */ 2846 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2847 /* READ ERROR */ 2848 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2849 /* FAILED RETRANSMISSION REQUEST */ 2850 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2851 break; 2852 case TCM_WRITE_PROTECTED: 2853 /* CURRENT ERROR */ 2854 buffer[0] = 0x70; 2855 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2856 /* DATA PROTECT */ 2857 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2858 /* WRITE PROTECTED */ 2859 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2860 break; 2861 case TCM_ADDRESS_OUT_OF_RANGE: 2862 /* CURRENT ERROR */ 2863 buffer[0] = 0x70; 2864 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2865 /* ILLEGAL REQUEST */ 2866 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2867 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2868 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2869 break; 2870 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2871 /* CURRENT ERROR */ 2872 buffer[0] = 0x70; 2873 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2874 /* UNIT ATTENTION */ 2875 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2876 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2877 buffer[SPC_ASC_KEY_OFFSET] = asc; 2878 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2879 break; 2880 case TCM_CHECK_CONDITION_NOT_READY: 2881 /* CURRENT ERROR */ 2882 buffer[0] = 0x70; 2883 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2884 /* Not Ready */ 2885 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2886 transport_get_sense_codes(cmd, &asc, &ascq); 2887 buffer[SPC_ASC_KEY_OFFSET] = asc; 2888 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2889 break; 2890 case TCM_MISCOMPARE_VERIFY: 2891 /* CURRENT ERROR */ 2892 buffer[0] = 0x70; 2893 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2894 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE; 2895 /* MISCOMPARE DURING VERIFY OPERATION */ 2896 buffer[SPC_ASC_KEY_OFFSET] = 0x1d; 2897 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00; 2898 break; 2899 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 2900 /* CURRENT ERROR */ 2901 buffer[0] = 0x70; 2902 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2903 /* ILLEGAL REQUEST */ 2904 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2905 /* LOGICAL BLOCK GUARD CHECK FAILED */ 2906 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2907 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01; 2908 transport_err_sector_info(buffer, cmd->bad_sector); 2909 break; 2910 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 2911 /* CURRENT ERROR */ 2912 buffer[0] = 0x70; 2913 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2914 /* ILLEGAL REQUEST */ 2915 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2916 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2917 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2918 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02; 2919 transport_err_sector_info(buffer, cmd->bad_sector); 2920 break; 2921 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 2922 /* CURRENT ERROR */ 2923 buffer[0] = 0x70; 2924 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2925 /* ILLEGAL REQUEST */ 2926 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2927 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2928 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2929 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2930 transport_err_sector_info(buffer, cmd->bad_sector); 2931 break; 2932 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2933 default: 2934 /* CURRENT ERROR */ 2935 buffer[0] = 0x70; 2936 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2937 /* 2938 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2939 * Solaris initiators. Returning NOT READY instead means the 2940 * operations will be retried a finite number of times and we 2941 * can survive intermittent errors. 2942 */ 2943 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2944 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2945 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2946 break; 2947 } 2948 /* 2949 * This code uses linux/include/scsi/scsi.h SAM status codes! 2950 */ 2951 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2952 /* 2953 * Automatically padded, this value is encoded in the fabric's 2954 * data_length response PDU containing the SCSI defined sense data. 2955 */ 2956 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2957 2958 after_reason: 2959 trace_target_cmd_complete(cmd); 2960 return cmd->se_tfo->queue_status(cmd); 2961 } 2962 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2963 2964 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2965 { 2966 if (!(cmd->transport_state & CMD_T_ABORTED)) 2967 return 0; 2968 2969 /* 2970 * If cmd has been aborted but either no status is to be sent or it has 2971 * already been sent, just return 2972 */ 2973 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) 2974 return 1; 2975 2976 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2977 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2978 2979 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 2980 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2981 trace_target_cmd_complete(cmd); 2982 cmd->se_tfo->queue_status(cmd); 2983 2984 return 1; 2985 } 2986 EXPORT_SYMBOL(transport_check_aborted_status); 2987 2988 void transport_send_task_abort(struct se_cmd *cmd) 2989 { 2990 unsigned long flags; 2991 2992 spin_lock_irqsave(&cmd->t_state_lock, flags); 2993 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 2994 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2995 return; 2996 } 2997 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2998 2999 /* 3000 * If there are still expected incoming fabric WRITEs, we wait 3001 * until until they have completed before sending a TASK_ABORTED 3002 * response. This response with TASK_ABORTED status will be 3003 * queued back to fabric module by transport_check_aborted_status(). 3004 */ 3005 if (cmd->data_direction == DMA_TO_DEVICE) { 3006 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3007 cmd->transport_state |= CMD_T_ABORTED; 3008 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3009 return; 3010 } 3011 } 3012 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3013 3014 transport_lun_remove_cmd(cmd); 3015 3016 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 3017 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 3018 cmd->se_tfo->get_task_tag(cmd)); 3019 3020 trace_target_cmd_complete(cmd); 3021 cmd->se_tfo->queue_status(cmd); 3022 } 3023 3024 static void target_tmr_work(struct work_struct *work) 3025 { 3026 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3027 struct se_device *dev = cmd->se_dev; 3028 struct se_tmr_req *tmr = cmd->se_tmr_req; 3029 int ret; 3030 3031 switch (tmr->function) { 3032 case TMR_ABORT_TASK: 3033 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3034 break; 3035 case TMR_ABORT_TASK_SET: 3036 case TMR_CLEAR_ACA: 3037 case TMR_CLEAR_TASK_SET: 3038 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3039 break; 3040 case TMR_LUN_RESET: 3041 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3042 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3043 TMR_FUNCTION_REJECTED; 3044 break; 3045 case TMR_TARGET_WARM_RESET: 3046 tmr->response = TMR_FUNCTION_REJECTED; 3047 break; 3048 case TMR_TARGET_COLD_RESET: 3049 tmr->response = TMR_FUNCTION_REJECTED; 3050 break; 3051 default: 3052 pr_err("Uknown TMR function: 0x%02x.\n", 3053 tmr->function); 3054 tmr->response = TMR_FUNCTION_REJECTED; 3055 break; 3056 } 3057 3058 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3059 cmd->se_tfo->queue_tm_rsp(cmd); 3060 3061 transport_cmd_check_stop_to_fabric(cmd); 3062 } 3063 3064 int transport_generic_handle_tmr( 3065 struct se_cmd *cmd) 3066 { 3067 unsigned long flags; 3068 3069 spin_lock_irqsave(&cmd->t_state_lock, flags); 3070 cmd->transport_state |= CMD_T_ACTIVE; 3071 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3072 3073 INIT_WORK(&cmd->work, target_tmr_work); 3074 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3075 return 0; 3076 } 3077 EXPORT_SYMBOL(transport_generic_handle_tmr); 3078