1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2012 RisingTide Systems LLC. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/blkdev.h> 32 #include <linux/spinlock.h> 33 #include <linux/kthread.h> 34 #include <linux/in.h> 35 #include <linux/cdrom.h> 36 #include <linux/module.h> 37 #include <linux/ratelimit.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_tcq.h> 44 45 #include <target/target_core_base.h> 46 #include <target/target_core_backend.h> 47 #include <target/target_core_fabric.h> 48 #include <target/target_core_configfs.h> 49 50 #include "target_core_internal.h" 51 #include "target_core_alua.h" 52 #include "target_core_pr.h" 53 #include "target_core_ua.h" 54 55 static struct workqueue_struct *target_completion_wq; 56 static struct kmem_cache *se_sess_cache; 57 struct kmem_cache *se_ua_cache; 58 struct kmem_cache *t10_pr_reg_cache; 59 struct kmem_cache *t10_alua_lu_gp_cache; 60 struct kmem_cache *t10_alua_lu_gp_mem_cache; 61 struct kmem_cache *t10_alua_tg_pt_gp_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 63 64 static void transport_complete_task_attr(struct se_cmd *cmd); 65 static void transport_handle_queue_full(struct se_cmd *cmd, 66 struct se_device *dev); 67 static int transport_generic_get_mem(struct se_cmd *cmd); 68 static void transport_put_cmd(struct se_cmd *cmd); 69 static void target_complete_ok_work(struct work_struct *work); 70 71 int init_se_kmem_caches(void) 72 { 73 se_sess_cache = kmem_cache_create("se_sess_cache", 74 sizeof(struct se_session), __alignof__(struct se_session), 75 0, NULL); 76 if (!se_sess_cache) { 77 pr_err("kmem_cache_create() for struct se_session" 78 " failed\n"); 79 goto out; 80 } 81 se_ua_cache = kmem_cache_create("se_ua_cache", 82 sizeof(struct se_ua), __alignof__(struct se_ua), 83 0, NULL); 84 if (!se_ua_cache) { 85 pr_err("kmem_cache_create() for struct se_ua failed\n"); 86 goto out_free_sess_cache; 87 } 88 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 89 sizeof(struct t10_pr_registration), 90 __alignof__(struct t10_pr_registration), 0, NULL); 91 if (!t10_pr_reg_cache) { 92 pr_err("kmem_cache_create() for struct t10_pr_registration" 93 " failed\n"); 94 goto out_free_ua_cache; 95 } 96 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 97 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 98 0, NULL); 99 if (!t10_alua_lu_gp_cache) { 100 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 101 " failed\n"); 102 goto out_free_pr_reg_cache; 103 } 104 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 105 sizeof(struct t10_alua_lu_gp_member), 106 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 107 if (!t10_alua_lu_gp_mem_cache) { 108 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 109 "cache failed\n"); 110 goto out_free_lu_gp_cache; 111 } 112 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 113 sizeof(struct t10_alua_tg_pt_gp), 114 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 115 if (!t10_alua_tg_pt_gp_cache) { 116 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 117 "cache failed\n"); 118 goto out_free_lu_gp_mem_cache; 119 } 120 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 121 "t10_alua_tg_pt_gp_mem_cache", 122 sizeof(struct t10_alua_tg_pt_gp_member), 123 __alignof__(struct t10_alua_tg_pt_gp_member), 124 0, NULL); 125 if (!t10_alua_tg_pt_gp_mem_cache) { 126 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 127 "mem_t failed\n"); 128 goto out_free_tg_pt_gp_cache; 129 } 130 131 target_completion_wq = alloc_workqueue("target_completion", 132 WQ_MEM_RECLAIM, 0); 133 if (!target_completion_wq) 134 goto out_free_tg_pt_gp_mem_cache; 135 136 return 0; 137 138 out_free_tg_pt_gp_mem_cache: 139 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 140 out_free_tg_pt_gp_cache: 141 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 142 out_free_lu_gp_mem_cache: 143 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 144 out_free_lu_gp_cache: 145 kmem_cache_destroy(t10_alua_lu_gp_cache); 146 out_free_pr_reg_cache: 147 kmem_cache_destroy(t10_pr_reg_cache); 148 out_free_ua_cache: 149 kmem_cache_destroy(se_ua_cache); 150 out_free_sess_cache: 151 kmem_cache_destroy(se_sess_cache); 152 out: 153 return -ENOMEM; 154 } 155 156 void release_se_kmem_caches(void) 157 { 158 destroy_workqueue(target_completion_wq); 159 kmem_cache_destroy(se_sess_cache); 160 kmem_cache_destroy(se_ua_cache); 161 kmem_cache_destroy(t10_pr_reg_cache); 162 kmem_cache_destroy(t10_alua_lu_gp_cache); 163 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 164 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 165 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 166 } 167 168 /* This code ensures unique mib indexes are handed out. */ 169 static DEFINE_SPINLOCK(scsi_mib_index_lock); 170 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 171 172 /* 173 * Allocate a new row index for the entry type specified 174 */ 175 u32 scsi_get_new_index(scsi_index_t type) 176 { 177 u32 new_index; 178 179 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 180 181 spin_lock(&scsi_mib_index_lock); 182 new_index = ++scsi_mib_index[type]; 183 spin_unlock(&scsi_mib_index_lock); 184 185 return new_index; 186 } 187 188 void transport_subsystem_check_init(void) 189 { 190 int ret; 191 static int sub_api_initialized; 192 193 if (sub_api_initialized) 194 return; 195 196 ret = request_module("target_core_iblock"); 197 if (ret != 0) 198 pr_err("Unable to load target_core_iblock\n"); 199 200 ret = request_module("target_core_file"); 201 if (ret != 0) 202 pr_err("Unable to load target_core_file\n"); 203 204 ret = request_module("target_core_pscsi"); 205 if (ret != 0) 206 pr_err("Unable to load target_core_pscsi\n"); 207 208 sub_api_initialized = 1; 209 } 210 211 struct se_session *transport_init_session(void) 212 { 213 struct se_session *se_sess; 214 215 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 216 if (!se_sess) { 217 pr_err("Unable to allocate struct se_session from" 218 " se_sess_cache\n"); 219 return ERR_PTR(-ENOMEM); 220 } 221 INIT_LIST_HEAD(&se_sess->sess_list); 222 INIT_LIST_HEAD(&se_sess->sess_acl_list); 223 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 224 spin_lock_init(&se_sess->sess_cmd_lock); 225 kref_init(&se_sess->sess_kref); 226 227 return se_sess; 228 } 229 EXPORT_SYMBOL(transport_init_session); 230 231 /* 232 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 233 */ 234 void __transport_register_session( 235 struct se_portal_group *se_tpg, 236 struct se_node_acl *se_nacl, 237 struct se_session *se_sess, 238 void *fabric_sess_ptr) 239 { 240 unsigned char buf[PR_REG_ISID_LEN]; 241 242 se_sess->se_tpg = se_tpg; 243 se_sess->fabric_sess_ptr = fabric_sess_ptr; 244 /* 245 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 246 * 247 * Only set for struct se_session's that will actually be moving I/O. 248 * eg: *NOT* discovery sessions. 249 */ 250 if (se_nacl) { 251 /* 252 * If the fabric module supports an ISID based TransportID, 253 * save this value in binary from the fabric I_T Nexus now. 254 */ 255 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 256 memset(&buf[0], 0, PR_REG_ISID_LEN); 257 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 258 &buf[0], PR_REG_ISID_LEN); 259 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 260 } 261 kref_get(&se_nacl->acl_kref); 262 263 spin_lock_irq(&se_nacl->nacl_sess_lock); 264 /* 265 * The se_nacl->nacl_sess pointer will be set to the 266 * last active I_T Nexus for each struct se_node_acl. 267 */ 268 se_nacl->nacl_sess = se_sess; 269 270 list_add_tail(&se_sess->sess_acl_list, 271 &se_nacl->acl_sess_list); 272 spin_unlock_irq(&se_nacl->nacl_sess_lock); 273 } 274 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 275 276 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 277 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 278 } 279 EXPORT_SYMBOL(__transport_register_session); 280 281 void transport_register_session( 282 struct se_portal_group *se_tpg, 283 struct se_node_acl *se_nacl, 284 struct se_session *se_sess, 285 void *fabric_sess_ptr) 286 { 287 unsigned long flags; 288 289 spin_lock_irqsave(&se_tpg->session_lock, flags); 290 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 291 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 292 } 293 EXPORT_SYMBOL(transport_register_session); 294 295 static void target_release_session(struct kref *kref) 296 { 297 struct se_session *se_sess = container_of(kref, 298 struct se_session, sess_kref); 299 struct se_portal_group *se_tpg = se_sess->se_tpg; 300 301 se_tpg->se_tpg_tfo->close_session(se_sess); 302 } 303 304 void target_get_session(struct se_session *se_sess) 305 { 306 kref_get(&se_sess->sess_kref); 307 } 308 EXPORT_SYMBOL(target_get_session); 309 310 void target_put_session(struct se_session *se_sess) 311 { 312 struct se_portal_group *tpg = se_sess->se_tpg; 313 314 if (tpg->se_tpg_tfo->put_session != NULL) { 315 tpg->se_tpg_tfo->put_session(se_sess); 316 return; 317 } 318 kref_put(&se_sess->sess_kref, target_release_session); 319 } 320 EXPORT_SYMBOL(target_put_session); 321 322 static void target_complete_nacl(struct kref *kref) 323 { 324 struct se_node_acl *nacl = container_of(kref, 325 struct se_node_acl, acl_kref); 326 327 complete(&nacl->acl_free_comp); 328 } 329 330 void target_put_nacl(struct se_node_acl *nacl) 331 { 332 kref_put(&nacl->acl_kref, target_complete_nacl); 333 } 334 335 void transport_deregister_session_configfs(struct se_session *se_sess) 336 { 337 struct se_node_acl *se_nacl; 338 unsigned long flags; 339 /* 340 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 341 */ 342 se_nacl = se_sess->se_node_acl; 343 if (se_nacl) { 344 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 345 if (se_nacl->acl_stop == 0) 346 list_del(&se_sess->sess_acl_list); 347 /* 348 * If the session list is empty, then clear the pointer. 349 * Otherwise, set the struct se_session pointer from the tail 350 * element of the per struct se_node_acl active session list. 351 */ 352 if (list_empty(&se_nacl->acl_sess_list)) 353 se_nacl->nacl_sess = NULL; 354 else { 355 se_nacl->nacl_sess = container_of( 356 se_nacl->acl_sess_list.prev, 357 struct se_session, sess_acl_list); 358 } 359 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 360 } 361 } 362 EXPORT_SYMBOL(transport_deregister_session_configfs); 363 364 void transport_free_session(struct se_session *se_sess) 365 { 366 kmem_cache_free(se_sess_cache, se_sess); 367 } 368 EXPORT_SYMBOL(transport_free_session); 369 370 void transport_deregister_session(struct se_session *se_sess) 371 { 372 struct se_portal_group *se_tpg = se_sess->se_tpg; 373 struct target_core_fabric_ops *se_tfo; 374 struct se_node_acl *se_nacl; 375 unsigned long flags; 376 bool comp_nacl = true; 377 378 if (!se_tpg) { 379 transport_free_session(se_sess); 380 return; 381 } 382 se_tfo = se_tpg->se_tpg_tfo; 383 384 spin_lock_irqsave(&se_tpg->session_lock, flags); 385 list_del(&se_sess->sess_list); 386 se_sess->se_tpg = NULL; 387 se_sess->fabric_sess_ptr = NULL; 388 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 389 390 /* 391 * Determine if we need to do extra work for this initiator node's 392 * struct se_node_acl if it had been previously dynamically generated. 393 */ 394 se_nacl = se_sess->se_node_acl; 395 396 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 397 if (se_nacl && se_nacl->dynamic_node_acl) { 398 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 399 list_del(&se_nacl->acl_list); 400 se_tpg->num_node_acls--; 401 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 402 core_tpg_wait_for_nacl_pr_ref(se_nacl); 403 core_free_device_list_for_node(se_nacl, se_tpg); 404 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 405 406 comp_nacl = false; 407 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 408 } 409 } 410 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 411 412 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 413 se_tpg->se_tpg_tfo->get_fabric_name()); 414 /* 415 * If last kref is dropping now for an explict NodeACL, awake sleeping 416 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 417 * removal context. 418 */ 419 if (se_nacl && comp_nacl == true) 420 target_put_nacl(se_nacl); 421 422 transport_free_session(se_sess); 423 } 424 EXPORT_SYMBOL(transport_deregister_session); 425 426 /* 427 * Called with cmd->t_state_lock held. 428 */ 429 static void target_remove_from_state_list(struct se_cmd *cmd) 430 { 431 struct se_device *dev = cmd->se_dev; 432 unsigned long flags; 433 434 if (!dev) 435 return; 436 437 if (cmd->transport_state & CMD_T_BUSY) 438 return; 439 440 spin_lock_irqsave(&dev->execute_task_lock, flags); 441 if (cmd->state_active) { 442 list_del(&cmd->state_list); 443 cmd->state_active = false; 444 } 445 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 446 } 447 448 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists) 449 { 450 unsigned long flags; 451 452 spin_lock_irqsave(&cmd->t_state_lock, flags); 453 /* 454 * Determine if IOCTL context caller in requesting the stopping of this 455 * command for LUN shutdown purposes. 456 */ 457 if (cmd->transport_state & CMD_T_LUN_STOP) { 458 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 459 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 460 461 cmd->transport_state &= ~CMD_T_ACTIVE; 462 if (remove_from_lists) 463 target_remove_from_state_list(cmd); 464 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 465 466 complete(&cmd->transport_lun_stop_comp); 467 return 1; 468 } 469 470 if (remove_from_lists) { 471 target_remove_from_state_list(cmd); 472 473 /* 474 * Clear struct se_cmd->se_lun before the handoff to FE. 475 */ 476 cmd->se_lun = NULL; 477 } 478 479 /* 480 * Determine if frontend context caller is requesting the stopping of 481 * this command for frontend exceptions. 482 */ 483 if (cmd->transport_state & CMD_T_STOP) { 484 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 485 __func__, __LINE__, 486 cmd->se_tfo->get_task_tag(cmd)); 487 488 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 489 490 complete(&cmd->t_transport_stop_comp); 491 return 1; 492 } 493 494 cmd->transport_state &= ~CMD_T_ACTIVE; 495 if (remove_from_lists) { 496 /* 497 * Some fabric modules like tcm_loop can release 498 * their internally allocated I/O reference now and 499 * struct se_cmd now. 500 * 501 * Fabric modules are expected to return '1' here if the 502 * se_cmd being passed is released at this point, 503 * or zero if not being released. 504 */ 505 if (cmd->se_tfo->check_stop_free != NULL) { 506 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 507 return cmd->se_tfo->check_stop_free(cmd); 508 } 509 } 510 511 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 512 return 0; 513 } 514 515 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 516 { 517 return transport_cmd_check_stop(cmd, true); 518 } 519 520 static void transport_lun_remove_cmd(struct se_cmd *cmd) 521 { 522 struct se_lun *lun = cmd->se_lun; 523 unsigned long flags; 524 525 if (!lun) 526 return; 527 528 spin_lock_irqsave(&cmd->t_state_lock, flags); 529 if (cmd->transport_state & CMD_T_DEV_ACTIVE) { 530 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 531 target_remove_from_state_list(cmd); 532 } 533 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 534 535 spin_lock_irqsave(&lun->lun_cmd_lock, flags); 536 if (!list_empty(&cmd->se_lun_node)) 537 list_del_init(&cmd->se_lun_node); 538 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); 539 } 540 541 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 542 { 543 if (transport_cmd_check_stop_to_fabric(cmd)) 544 return; 545 if (remove) 546 transport_put_cmd(cmd); 547 } 548 549 static void target_complete_failure_work(struct work_struct *work) 550 { 551 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 552 553 transport_generic_request_failure(cmd, 554 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 555 } 556 557 /* 558 * Used when asking transport to copy Sense Data from the underlying 559 * Linux/SCSI struct scsi_cmnd 560 */ 561 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 562 { 563 struct se_device *dev = cmd->se_dev; 564 565 WARN_ON(!cmd->se_lun); 566 567 if (!dev) 568 return NULL; 569 570 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 571 return NULL; 572 573 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 574 575 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 576 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 577 return cmd->sense_buffer; 578 } 579 580 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 581 { 582 struct se_device *dev = cmd->se_dev; 583 int success = scsi_status == GOOD; 584 unsigned long flags; 585 586 cmd->scsi_status = scsi_status; 587 588 589 spin_lock_irqsave(&cmd->t_state_lock, flags); 590 cmd->transport_state &= ~CMD_T_BUSY; 591 592 if (dev && dev->transport->transport_complete) { 593 dev->transport->transport_complete(cmd, 594 cmd->t_data_sg, 595 transport_get_sense_buffer(cmd)); 596 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 597 success = 1; 598 } 599 600 /* 601 * See if we are waiting to complete for an exception condition. 602 */ 603 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 604 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 605 complete(&cmd->task_stop_comp); 606 return; 607 } 608 609 if (!success) 610 cmd->transport_state |= CMD_T_FAILED; 611 612 /* 613 * Check for case where an explict ABORT_TASK has been received 614 * and transport_wait_for_tasks() will be waiting for completion.. 615 */ 616 if (cmd->transport_state & CMD_T_ABORTED && 617 cmd->transport_state & CMD_T_STOP) { 618 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 619 complete(&cmd->t_transport_stop_comp); 620 return; 621 } else if (cmd->transport_state & CMD_T_FAILED) { 622 INIT_WORK(&cmd->work, target_complete_failure_work); 623 } else { 624 INIT_WORK(&cmd->work, target_complete_ok_work); 625 } 626 627 cmd->t_state = TRANSPORT_COMPLETE; 628 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 629 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 630 631 queue_work(target_completion_wq, &cmd->work); 632 } 633 EXPORT_SYMBOL(target_complete_cmd); 634 635 static void target_add_to_state_list(struct se_cmd *cmd) 636 { 637 struct se_device *dev = cmd->se_dev; 638 unsigned long flags; 639 640 spin_lock_irqsave(&dev->execute_task_lock, flags); 641 if (!cmd->state_active) { 642 list_add_tail(&cmd->state_list, &dev->state_list); 643 cmd->state_active = true; 644 } 645 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 646 } 647 648 /* 649 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 650 */ 651 static void transport_write_pending_qf(struct se_cmd *cmd); 652 static void transport_complete_qf(struct se_cmd *cmd); 653 654 void target_qf_do_work(struct work_struct *work) 655 { 656 struct se_device *dev = container_of(work, struct se_device, 657 qf_work_queue); 658 LIST_HEAD(qf_cmd_list); 659 struct se_cmd *cmd, *cmd_tmp; 660 661 spin_lock_irq(&dev->qf_cmd_lock); 662 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 663 spin_unlock_irq(&dev->qf_cmd_lock); 664 665 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 666 list_del(&cmd->se_qf_node); 667 atomic_dec(&dev->dev_qf_count); 668 smp_mb__after_atomic_dec(); 669 670 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 671 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 672 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 673 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 674 : "UNKNOWN"); 675 676 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 677 transport_write_pending_qf(cmd); 678 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 679 transport_complete_qf(cmd); 680 } 681 } 682 683 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 684 { 685 switch (cmd->data_direction) { 686 case DMA_NONE: 687 return "NONE"; 688 case DMA_FROM_DEVICE: 689 return "READ"; 690 case DMA_TO_DEVICE: 691 return "WRITE"; 692 case DMA_BIDIRECTIONAL: 693 return "BIDI"; 694 default: 695 break; 696 } 697 698 return "UNKNOWN"; 699 } 700 701 void transport_dump_dev_state( 702 struct se_device *dev, 703 char *b, 704 int *bl) 705 { 706 *bl += sprintf(b + *bl, "Status: "); 707 if (dev->export_count) 708 *bl += sprintf(b + *bl, "ACTIVATED"); 709 else 710 *bl += sprintf(b + *bl, "DEACTIVATED"); 711 712 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 713 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 714 dev->dev_attrib.block_size, 715 dev->dev_attrib.hw_max_sectors); 716 *bl += sprintf(b + *bl, " "); 717 } 718 719 void transport_dump_vpd_proto_id( 720 struct t10_vpd *vpd, 721 unsigned char *p_buf, 722 int p_buf_len) 723 { 724 unsigned char buf[VPD_TMP_BUF_SIZE]; 725 int len; 726 727 memset(buf, 0, VPD_TMP_BUF_SIZE); 728 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 729 730 switch (vpd->protocol_identifier) { 731 case 0x00: 732 sprintf(buf+len, "Fibre Channel\n"); 733 break; 734 case 0x10: 735 sprintf(buf+len, "Parallel SCSI\n"); 736 break; 737 case 0x20: 738 sprintf(buf+len, "SSA\n"); 739 break; 740 case 0x30: 741 sprintf(buf+len, "IEEE 1394\n"); 742 break; 743 case 0x40: 744 sprintf(buf+len, "SCSI Remote Direct Memory Access" 745 " Protocol\n"); 746 break; 747 case 0x50: 748 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 749 break; 750 case 0x60: 751 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 752 break; 753 case 0x70: 754 sprintf(buf+len, "Automation/Drive Interface Transport" 755 " Protocol\n"); 756 break; 757 case 0x80: 758 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 759 break; 760 default: 761 sprintf(buf+len, "Unknown 0x%02x\n", 762 vpd->protocol_identifier); 763 break; 764 } 765 766 if (p_buf) 767 strncpy(p_buf, buf, p_buf_len); 768 else 769 pr_debug("%s", buf); 770 } 771 772 void 773 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 774 { 775 /* 776 * Check if the Protocol Identifier Valid (PIV) bit is set.. 777 * 778 * from spc3r23.pdf section 7.5.1 779 */ 780 if (page_83[1] & 0x80) { 781 vpd->protocol_identifier = (page_83[0] & 0xf0); 782 vpd->protocol_identifier_set = 1; 783 transport_dump_vpd_proto_id(vpd, NULL, 0); 784 } 785 } 786 EXPORT_SYMBOL(transport_set_vpd_proto_id); 787 788 int transport_dump_vpd_assoc( 789 struct t10_vpd *vpd, 790 unsigned char *p_buf, 791 int p_buf_len) 792 { 793 unsigned char buf[VPD_TMP_BUF_SIZE]; 794 int ret = 0; 795 int len; 796 797 memset(buf, 0, VPD_TMP_BUF_SIZE); 798 len = sprintf(buf, "T10 VPD Identifier Association: "); 799 800 switch (vpd->association) { 801 case 0x00: 802 sprintf(buf+len, "addressed logical unit\n"); 803 break; 804 case 0x10: 805 sprintf(buf+len, "target port\n"); 806 break; 807 case 0x20: 808 sprintf(buf+len, "SCSI target device\n"); 809 break; 810 default: 811 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 812 ret = -EINVAL; 813 break; 814 } 815 816 if (p_buf) 817 strncpy(p_buf, buf, p_buf_len); 818 else 819 pr_debug("%s", buf); 820 821 return ret; 822 } 823 824 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 825 { 826 /* 827 * The VPD identification association.. 828 * 829 * from spc3r23.pdf Section 7.6.3.1 Table 297 830 */ 831 vpd->association = (page_83[1] & 0x30); 832 return transport_dump_vpd_assoc(vpd, NULL, 0); 833 } 834 EXPORT_SYMBOL(transport_set_vpd_assoc); 835 836 int transport_dump_vpd_ident_type( 837 struct t10_vpd *vpd, 838 unsigned char *p_buf, 839 int p_buf_len) 840 { 841 unsigned char buf[VPD_TMP_BUF_SIZE]; 842 int ret = 0; 843 int len; 844 845 memset(buf, 0, VPD_TMP_BUF_SIZE); 846 len = sprintf(buf, "T10 VPD Identifier Type: "); 847 848 switch (vpd->device_identifier_type) { 849 case 0x00: 850 sprintf(buf+len, "Vendor specific\n"); 851 break; 852 case 0x01: 853 sprintf(buf+len, "T10 Vendor ID based\n"); 854 break; 855 case 0x02: 856 sprintf(buf+len, "EUI-64 based\n"); 857 break; 858 case 0x03: 859 sprintf(buf+len, "NAA\n"); 860 break; 861 case 0x04: 862 sprintf(buf+len, "Relative target port identifier\n"); 863 break; 864 case 0x08: 865 sprintf(buf+len, "SCSI name string\n"); 866 break; 867 default: 868 sprintf(buf+len, "Unsupported: 0x%02x\n", 869 vpd->device_identifier_type); 870 ret = -EINVAL; 871 break; 872 } 873 874 if (p_buf) { 875 if (p_buf_len < strlen(buf)+1) 876 return -EINVAL; 877 strncpy(p_buf, buf, p_buf_len); 878 } else { 879 pr_debug("%s", buf); 880 } 881 882 return ret; 883 } 884 885 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 886 { 887 /* 888 * The VPD identifier type.. 889 * 890 * from spc3r23.pdf Section 7.6.3.1 Table 298 891 */ 892 vpd->device_identifier_type = (page_83[1] & 0x0f); 893 return transport_dump_vpd_ident_type(vpd, NULL, 0); 894 } 895 EXPORT_SYMBOL(transport_set_vpd_ident_type); 896 897 int transport_dump_vpd_ident( 898 struct t10_vpd *vpd, 899 unsigned char *p_buf, 900 int p_buf_len) 901 { 902 unsigned char buf[VPD_TMP_BUF_SIZE]; 903 int ret = 0; 904 905 memset(buf, 0, VPD_TMP_BUF_SIZE); 906 907 switch (vpd->device_identifier_code_set) { 908 case 0x01: /* Binary */ 909 snprintf(buf, sizeof(buf), 910 "T10 VPD Binary Device Identifier: %s\n", 911 &vpd->device_identifier[0]); 912 break; 913 case 0x02: /* ASCII */ 914 snprintf(buf, sizeof(buf), 915 "T10 VPD ASCII Device Identifier: %s\n", 916 &vpd->device_identifier[0]); 917 break; 918 case 0x03: /* UTF-8 */ 919 snprintf(buf, sizeof(buf), 920 "T10 VPD UTF-8 Device Identifier: %s\n", 921 &vpd->device_identifier[0]); 922 break; 923 default: 924 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 925 " 0x%02x", vpd->device_identifier_code_set); 926 ret = -EINVAL; 927 break; 928 } 929 930 if (p_buf) 931 strncpy(p_buf, buf, p_buf_len); 932 else 933 pr_debug("%s", buf); 934 935 return ret; 936 } 937 938 int 939 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 940 { 941 static const char hex_str[] = "0123456789abcdef"; 942 int j = 0, i = 4; /* offset to start of the identifier */ 943 944 /* 945 * The VPD Code Set (encoding) 946 * 947 * from spc3r23.pdf Section 7.6.3.1 Table 296 948 */ 949 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 950 switch (vpd->device_identifier_code_set) { 951 case 0x01: /* Binary */ 952 vpd->device_identifier[j++] = 953 hex_str[vpd->device_identifier_type]; 954 while (i < (4 + page_83[3])) { 955 vpd->device_identifier[j++] = 956 hex_str[(page_83[i] & 0xf0) >> 4]; 957 vpd->device_identifier[j++] = 958 hex_str[page_83[i] & 0x0f]; 959 i++; 960 } 961 break; 962 case 0x02: /* ASCII */ 963 case 0x03: /* UTF-8 */ 964 while (i < (4 + page_83[3])) 965 vpd->device_identifier[j++] = page_83[i++]; 966 break; 967 default: 968 break; 969 } 970 971 return transport_dump_vpd_ident(vpd, NULL, 0); 972 } 973 EXPORT_SYMBOL(transport_set_vpd_ident); 974 975 sense_reason_t 976 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 977 { 978 struct se_device *dev = cmd->se_dev; 979 980 if (cmd->unknown_data_length) { 981 cmd->data_length = size; 982 } else if (size != cmd->data_length) { 983 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 984 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 985 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 986 cmd->data_length, size, cmd->t_task_cdb[0]); 987 988 if (cmd->data_direction == DMA_TO_DEVICE) { 989 pr_err("Rejecting underflow/overflow" 990 " WRITE data\n"); 991 return TCM_INVALID_CDB_FIELD; 992 } 993 /* 994 * Reject READ_* or WRITE_* with overflow/underflow for 995 * type SCF_SCSI_DATA_CDB. 996 */ 997 if (dev->dev_attrib.block_size != 512) { 998 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 999 " CDB on non 512-byte sector setup subsystem" 1000 " plugin: %s\n", dev->transport->name); 1001 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1002 return TCM_INVALID_CDB_FIELD; 1003 } 1004 /* 1005 * For the overflow case keep the existing fabric provided 1006 * ->data_length. Otherwise for the underflow case, reset 1007 * ->data_length to the smaller SCSI expected data transfer 1008 * length. 1009 */ 1010 if (size > cmd->data_length) { 1011 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1012 cmd->residual_count = (size - cmd->data_length); 1013 } else { 1014 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1015 cmd->residual_count = (cmd->data_length - size); 1016 cmd->data_length = size; 1017 } 1018 } 1019 1020 return 0; 1021 1022 } 1023 1024 /* 1025 * Used by fabric modules containing a local struct se_cmd within their 1026 * fabric dependent per I/O descriptor. 1027 */ 1028 void transport_init_se_cmd( 1029 struct se_cmd *cmd, 1030 struct target_core_fabric_ops *tfo, 1031 struct se_session *se_sess, 1032 u32 data_length, 1033 int data_direction, 1034 int task_attr, 1035 unsigned char *sense_buffer) 1036 { 1037 INIT_LIST_HEAD(&cmd->se_lun_node); 1038 INIT_LIST_HEAD(&cmd->se_delayed_node); 1039 INIT_LIST_HEAD(&cmd->se_qf_node); 1040 INIT_LIST_HEAD(&cmd->se_cmd_list); 1041 INIT_LIST_HEAD(&cmd->state_list); 1042 init_completion(&cmd->transport_lun_fe_stop_comp); 1043 init_completion(&cmd->transport_lun_stop_comp); 1044 init_completion(&cmd->t_transport_stop_comp); 1045 init_completion(&cmd->cmd_wait_comp); 1046 init_completion(&cmd->task_stop_comp); 1047 spin_lock_init(&cmd->t_state_lock); 1048 cmd->transport_state = CMD_T_DEV_ACTIVE; 1049 1050 cmd->se_tfo = tfo; 1051 cmd->se_sess = se_sess; 1052 cmd->data_length = data_length; 1053 cmd->data_direction = data_direction; 1054 cmd->sam_task_attr = task_attr; 1055 cmd->sense_buffer = sense_buffer; 1056 1057 cmd->state_active = false; 1058 } 1059 EXPORT_SYMBOL(transport_init_se_cmd); 1060 1061 static sense_reason_t 1062 transport_check_alloc_task_attr(struct se_cmd *cmd) 1063 { 1064 struct se_device *dev = cmd->se_dev; 1065 1066 /* 1067 * Check if SAM Task Attribute emulation is enabled for this 1068 * struct se_device storage object 1069 */ 1070 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1071 return 0; 1072 1073 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1074 pr_debug("SAM Task Attribute ACA" 1075 " emulation is not supported\n"); 1076 return TCM_INVALID_CDB_FIELD; 1077 } 1078 /* 1079 * Used to determine when ORDERED commands should go from 1080 * Dormant to Active status. 1081 */ 1082 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1083 smp_mb__after_atomic_inc(); 1084 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1085 cmd->se_ordered_id, cmd->sam_task_attr, 1086 dev->transport->name); 1087 return 0; 1088 } 1089 1090 sense_reason_t 1091 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1092 { 1093 struct se_device *dev = cmd->se_dev; 1094 unsigned long flags; 1095 sense_reason_t ret; 1096 1097 /* 1098 * Ensure that the received CDB is less than the max (252 + 8) bytes 1099 * for VARIABLE_LENGTH_CMD 1100 */ 1101 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1102 pr_err("Received SCSI CDB with command_size: %d that" 1103 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1104 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1105 return TCM_INVALID_CDB_FIELD; 1106 } 1107 /* 1108 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1109 * allocate the additional extended CDB buffer now.. Otherwise 1110 * setup the pointer from __t_task_cdb to t_task_cdb. 1111 */ 1112 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1113 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1114 GFP_KERNEL); 1115 if (!cmd->t_task_cdb) { 1116 pr_err("Unable to allocate cmd->t_task_cdb" 1117 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1118 scsi_command_size(cdb), 1119 (unsigned long)sizeof(cmd->__t_task_cdb)); 1120 return TCM_OUT_OF_RESOURCES; 1121 } 1122 } else 1123 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1124 /* 1125 * Copy the original CDB into cmd-> 1126 */ 1127 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1128 1129 /* 1130 * Check for an existing UNIT ATTENTION condition 1131 */ 1132 ret = target_scsi3_ua_check(cmd); 1133 if (ret) 1134 return ret; 1135 1136 ret = target_alua_state_check(cmd); 1137 if (ret) 1138 return ret; 1139 1140 ret = target_check_reservation(cmd); 1141 if (ret) { 1142 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1143 return ret; 1144 } 1145 1146 ret = dev->transport->parse_cdb(cmd); 1147 if (ret) 1148 return ret; 1149 1150 ret = transport_check_alloc_task_attr(cmd); 1151 if (ret) 1152 return ret; 1153 1154 spin_lock_irqsave(&cmd->t_state_lock, flags); 1155 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1156 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1157 1158 spin_lock(&cmd->se_lun->lun_sep_lock); 1159 if (cmd->se_lun->lun_sep) 1160 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1161 spin_unlock(&cmd->se_lun->lun_sep_lock); 1162 return 0; 1163 } 1164 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1165 1166 /* 1167 * Used by fabric module frontends to queue tasks directly. 1168 * Many only be used from process context only 1169 */ 1170 int transport_handle_cdb_direct( 1171 struct se_cmd *cmd) 1172 { 1173 sense_reason_t ret; 1174 1175 if (!cmd->se_lun) { 1176 dump_stack(); 1177 pr_err("cmd->se_lun is NULL\n"); 1178 return -EINVAL; 1179 } 1180 if (in_interrupt()) { 1181 dump_stack(); 1182 pr_err("transport_generic_handle_cdb cannot be called" 1183 " from interrupt context\n"); 1184 return -EINVAL; 1185 } 1186 /* 1187 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1188 * outstanding descriptors are handled correctly during shutdown via 1189 * transport_wait_for_tasks() 1190 * 1191 * Also, we don't take cmd->t_state_lock here as we only expect 1192 * this to be called for initial descriptor submission. 1193 */ 1194 cmd->t_state = TRANSPORT_NEW_CMD; 1195 cmd->transport_state |= CMD_T_ACTIVE; 1196 1197 /* 1198 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1199 * so follow TRANSPORT_NEW_CMD processing thread context usage 1200 * and call transport_generic_request_failure() if necessary.. 1201 */ 1202 ret = transport_generic_new_cmd(cmd); 1203 if (ret) 1204 transport_generic_request_failure(cmd, ret); 1205 return 0; 1206 } 1207 EXPORT_SYMBOL(transport_handle_cdb_direct); 1208 1209 static sense_reason_t 1210 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1211 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1212 { 1213 if (!sgl || !sgl_count) 1214 return 0; 1215 1216 /* 1217 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1218 * scatterlists already have been set to follow what the fabric 1219 * passes for the original expected data transfer length. 1220 */ 1221 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1222 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1223 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1224 return TCM_INVALID_CDB_FIELD; 1225 } 1226 1227 cmd->t_data_sg = sgl; 1228 cmd->t_data_nents = sgl_count; 1229 1230 if (sgl_bidi && sgl_bidi_count) { 1231 cmd->t_bidi_data_sg = sgl_bidi; 1232 cmd->t_bidi_data_nents = sgl_bidi_count; 1233 } 1234 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1235 return 0; 1236 } 1237 1238 /* 1239 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1240 * se_cmd + use pre-allocated SGL memory. 1241 * 1242 * @se_cmd: command descriptor to submit 1243 * @se_sess: associated se_sess for endpoint 1244 * @cdb: pointer to SCSI CDB 1245 * @sense: pointer to SCSI sense buffer 1246 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1247 * @data_length: fabric expected data transfer length 1248 * @task_addr: SAM task attribute 1249 * @data_dir: DMA data direction 1250 * @flags: flags for command submission from target_sc_flags_tables 1251 * @sgl: struct scatterlist memory for unidirectional mapping 1252 * @sgl_count: scatterlist count for unidirectional mapping 1253 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1254 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1255 * 1256 * Returns non zero to signal active I/O shutdown failure. All other 1257 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1258 * but still return zero here. 1259 * 1260 * This may only be called from process context, and also currently 1261 * assumes internal allocation of fabric payload buffer by target-core. 1262 */ 1263 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1264 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1265 u32 data_length, int task_attr, int data_dir, int flags, 1266 struct scatterlist *sgl, u32 sgl_count, 1267 struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1268 { 1269 struct se_portal_group *se_tpg; 1270 sense_reason_t rc; 1271 int ret; 1272 1273 se_tpg = se_sess->se_tpg; 1274 BUG_ON(!se_tpg); 1275 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1276 BUG_ON(in_interrupt()); 1277 /* 1278 * Initialize se_cmd for target operation. From this point 1279 * exceptions are handled by sending exception status via 1280 * target_core_fabric_ops->queue_status() callback 1281 */ 1282 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1283 data_length, data_dir, task_attr, sense); 1284 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1285 se_cmd->unknown_data_length = 1; 1286 /* 1287 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1288 * se_sess->sess_cmd_list. A second kref_get here is necessary 1289 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1290 * kref_put() to happen during fabric packet acknowledgement. 1291 */ 1292 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1293 if (ret) 1294 return ret; 1295 /* 1296 * Signal bidirectional data payloads to target-core 1297 */ 1298 if (flags & TARGET_SCF_BIDI_OP) 1299 se_cmd->se_cmd_flags |= SCF_BIDI; 1300 /* 1301 * Locate se_lun pointer and attach it to struct se_cmd 1302 */ 1303 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1304 if (rc) { 1305 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1306 target_put_sess_cmd(se_sess, se_cmd); 1307 return 0; 1308 } 1309 1310 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1311 if (rc != 0) { 1312 transport_generic_request_failure(se_cmd, rc); 1313 return 0; 1314 } 1315 /* 1316 * When a non zero sgl_count has been passed perform SGL passthrough 1317 * mapping for pre-allocated fabric memory instead of having target 1318 * core perform an internal SGL allocation.. 1319 */ 1320 if (sgl_count != 0) { 1321 BUG_ON(!sgl); 1322 1323 /* 1324 * A work-around for tcm_loop as some userspace code via 1325 * scsi-generic do not memset their associated read buffers, 1326 * so go ahead and do that here for type non-data CDBs. Also 1327 * note that this is currently guaranteed to be a single SGL 1328 * for this case by target core in target_setup_cmd_from_cdb() 1329 * -> transport_generic_cmd_sequencer(). 1330 */ 1331 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1332 se_cmd->data_direction == DMA_FROM_DEVICE) { 1333 unsigned char *buf = NULL; 1334 1335 if (sgl) 1336 buf = kmap(sg_page(sgl)) + sgl->offset; 1337 1338 if (buf) { 1339 memset(buf, 0, sgl->length); 1340 kunmap(sg_page(sgl)); 1341 } 1342 } 1343 1344 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1345 sgl_bidi, sgl_bidi_count); 1346 if (rc != 0) { 1347 transport_generic_request_failure(se_cmd, rc); 1348 return 0; 1349 } 1350 } 1351 /* 1352 * Check if we need to delay processing because of ALUA 1353 * Active/NonOptimized primary access state.. 1354 */ 1355 core_alua_check_nonop_delay(se_cmd); 1356 1357 transport_handle_cdb_direct(se_cmd); 1358 return 0; 1359 } 1360 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1361 1362 /* 1363 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1364 * 1365 * @se_cmd: command descriptor to submit 1366 * @se_sess: associated se_sess for endpoint 1367 * @cdb: pointer to SCSI CDB 1368 * @sense: pointer to SCSI sense buffer 1369 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1370 * @data_length: fabric expected data transfer length 1371 * @task_addr: SAM task attribute 1372 * @data_dir: DMA data direction 1373 * @flags: flags for command submission from target_sc_flags_tables 1374 * 1375 * Returns non zero to signal active I/O shutdown failure. All other 1376 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1377 * but still return zero here. 1378 * 1379 * This may only be called from process context, and also currently 1380 * assumes internal allocation of fabric payload buffer by target-core. 1381 * 1382 * It also assumes interal target core SGL memory allocation. 1383 */ 1384 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1385 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1386 u32 data_length, int task_attr, int data_dir, int flags) 1387 { 1388 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1389 unpacked_lun, data_length, task_attr, data_dir, 1390 flags, NULL, 0, NULL, 0); 1391 } 1392 EXPORT_SYMBOL(target_submit_cmd); 1393 1394 static void target_complete_tmr_failure(struct work_struct *work) 1395 { 1396 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1397 1398 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1399 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1400 1401 transport_cmd_check_stop_to_fabric(se_cmd); 1402 } 1403 1404 /** 1405 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1406 * for TMR CDBs 1407 * 1408 * @se_cmd: command descriptor to submit 1409 * @se_sess: associated se_sess for endpoint 1410 * @sense: pointer to SCSI sense buffer 1411 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1412 * @fabric_context: fabric context for TMR req 1413 * @tm_type: Type of TM request 1414 * @gfp: gfp type for caller 1415 * @tag: referenced task tag for TMR_ABORT_TASK 1416 * @flags: submit cmd flags 1417 * 1418 * Callable from all contexts. 1419 **/ 1420 1421 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1422 unsigned char *sense, u32 unpacked_lun, 1423 void *fabric_tmr_ptr, unsigned char tm_type, 1424 gfp_t gfp, unsigned int tag, int flags) 1425 { 1426 struct se_portal_group *se_tpg; 1427 int ret; 1428 1429 se_tpg = se_sess->se_tpg; 1430 BUG_ON(!se_tpg); 1431 1432 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1433 0, DMA_NONE, MSG_SIMPLE_TAG, sense); 1434 /* 1435 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1436 * allocation failure. 1437 */ 1438 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1439 if (ret < 0) 1440 return -ENOMEM; 1441 1442 if (tm_type == TMR_ABORT_TASK) 1443 se_cmd->se_tmr_req->ref_task_tag = tag; 1444 1445 /* See target_submit_cmd for commentary */ 1446 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1447 if (ret) { 1448 core_tmr_release_req(se_cmd->se_tmr_req); 1449 return ret; 1450 } 1451 1452 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1453 if (ret) { 1454 /* 1455 * For callback during failure handling, push this work off 1456 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1457 */ 1458 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1459 schedule_work(&se_cmd->work); 1460 return 0; 1461 } 1462 transport_generic_handle_tmr(se_cmd); 1463 return 0; 1464 } 1465 EXPORT_SYMBOL(target_submit_tmr); 1466 1467 /* 1468 * If the cmd is active, request it to be stopped and sleep until it 1469 * has completed. 1470 */ 1471 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1472 { 1473 bool was_active = false; 1474 1475 if (cmd->transport_state & CMD_T_BUSY) { 1476 cmd->transport_state |= CMD_T_REQUEST_STOP; 1477 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1478 1479 pr_debug("cmd %p waiting to complete\n", cmd); 1480 wait_for_completion(&cmd->task_stop_comp); 1481 pr_debug("cmd %p stopped successfully\n", cmd); 1482 1483 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1484 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1485 cmd->transport_state &= ~CMD_T_BUSY; 1486 was_active = true; 1487 } 1488 1489 return was_active; 1490 } 1491 1492 /* 1493 * Handle SAM-esque emulation for generic transport request failures. 1494 */ 1495 void transport_generic_request_failure(struct se_cmd *cmd, 1496 sense_reason_t sense_reason) 1497 { 1498 int ret = 0; 1499 1500 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1501 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1502 cmd->t_task_cdb[0]); 1503 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1504 cmd->se_tfo->get_cmd_state(cmd), 1505 cmd->t_state, sense_reason); 1506 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1507 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1508 (cmd->transport_state & CMD_T_STOP) != 0, 1509 (cmd->transport_state & CMD_T_SENT) != 0); 1510 1511 /* 1512 * For SAM Task Attribute emulation for failed struct se_cmd 1513 */ 1514 transport_complete_task_attr(cmd); 1515 1516 switch (sense_reason) { 1517 case TCM_NON_EXISTENT_LUN: 1518 case TCM_UNSUPPORTED_SCSI_OPCODE: 1519 case TCM_INVALID_CDB_FIELD: 1520 case TCM_INVALID_PARAMETER_LIST: 1521 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1522 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1523 case TCM_UNKNOWN_MODE_PAGE: 1524 case TCM_WRITE_PROTECTED: 1525 case TCM_ADDRESS_OUT_OF_RANGE: 1526 case TCM_CHECK_CONDITION_ABORT_CMD: 1527 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1528 case TCM_CHECK_CONDITION_NOT_READY: 1529 break; 1530 case TCM_OUT_OF_RESOURCES: 1531 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1532 break; 1533 case TCM_RESERVATION_CONFLICT: 1534 /* 1535 * No SENSE Data payload for this case, set SCSI Status 1536 * and queue the response to $FABRIC_MOD. 1537 * 1538 * Uses linux/include/scsi/scsi.h SAM status codes defs 1539 */ 1540 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1541 /* 1542 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1543 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1544 * CONFLICT STATUS. 1545 * 1546 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1547 */ 1548 if (cmd->se_sess && 1549 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1550 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1551 cmd->orig_fe_lun, 0x2C, 1552 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1553 1554 ret = cmd->se_tfo->queue_status(cmd); 1555 if (ret == -EAGAIN || ret == -ENOMEM) 1556 goto queue_full; 1557 goto check_stop; 1558 default: 1559 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1560 cmd->t_task_cdb[0], sense_reason); 1561 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1562 break; 1563 } 1564 1565 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1566 if (ret == -EAGAIN || ret == -ENOMEM) 1567 goto queue_full; 1568 1569 check_stop: 1570 transport_lun_remove_cmd(cmd); 1571 if (!transport_cmd_check_stop_to_fabric(cmd)) 1572 ; 1573 return; 1574 1575 queue_full: 1576 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1577 transport_handle_queue_full(cmd, cmd->se_dev); 1578 } 1579 EXPORT_SYMBOL(transport_generic_request_failure); 1580 1581 static void __target_execute_cmd(struct se_cmd *cmd) 1582 { 1583 sense_reason_t ret; 1584 1585 spin_lock_irq(&cmd->t_state_lock); 1586 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT); 1587 spin_unlock_irq(&cmd->t_state_lock); 1588 1589 if (cmd->execute_cmd) { 1590 ret = cmd->execute_cmd(cmd); 1591 if (ret) { 1592 spin_lock_irq(&cmd->t_state_lock); 1593 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1594 spin_unlock_irq(&cmd->t_state_lock); 1595 1596 transport_generic_request_failure(cmd, ret); 1597 } 1598 } 1599 } 1600 1601 static bool target_handle_task_attr(struct se_cmd *cmd) 1602 { 1603 struct se_device *dev = cmd->se_dev; 1604 1605 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1606 return false; 1607 1608 /* 1609 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1610 * to allow the passed struct se_cmd list of tasks to the front of the list. 1611 */ 1612 switch (cmd->sam_task_attr) { 1613 case MSG_HEAD_TAG: 1614 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1615 "se_ordered_id: %u\n", 1616 cmd->t_task_cdb[0], cmd->se_ordered_id); 1617 return false; 1618 case MSG_ORDERED_TAG: 1619 atomic_inc(&dev->dev_ordered_sync); 1620 smp_mb__after_atomic_inc(); 1621 1622 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1623 " se_ordered_id: %u\n", 1624 cmd->t_task_cdb[0], cmd->se_ordered_id); 1625 1626 /* 1627 * Execute an ORDERED command if no other older commands 1628 * exist that need to be completed first. 1629 */ 1630 if (!atomic_read(&dev->simple_cmds)) 1631 return false; 1632 break; 1633 default: 1634 /* 1635 * For SIMPLE and UNTAGGED Task Attribute commands 1636 */ 1637 atomic_inc(&dev->simple_cmds); 1638 smp_mb__after_atomic_inc(); 1639 break; 1640 } 1641 1642 if (atomic_read(&dev->dev_ordered_sync) == 0) 1643 return false; 1644 1645 spin_lock(&dev->delayed_cmd_lock); 1646 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1647 spin_unlock(&dev->delayed_cmd_lock); 1648 1649 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1650 " delayed CMD list, se_ordered_id: %u\n", 1651 cmd->t_task_cdb[0], cmd->sam_task_attr, 1652 cmd->se_ordered_id); 1653 return true; 1654 } 1655 1656 void target_execute_cmd(struct se_cmd *cmd) 1657 { 1658 /* 1659 * If the received CDB has aleady been aborted stop processing it here. 1660 */ 1661 if (transport_check_aborted_status(cmd, 1)) { 1662 complete(&cmd->transport_lun_stop_comp); 1663 return; 1664 } 1665 1666 /* 1667 * Determine if IOCTL context caller in requesting the stopping of this 1668 * command for LUN shutdown purposes. 1669 */ 1670 spin_lock_irq(&cmd->t_state_lock); 1671 if (cmd->transport_state & CMD_T_LUN_STOP) { 1672 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 1673 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 1674 1675 cmd->transport_state &= ~CMD_T_ACTIVE; 1676 spin_unlock_irq(&cmd->t_state_lock); 1677 complete(&cmd->transport_lun_stop_comp); 1678 return; 1679 } 1680 /* 1681 * Determine if frontend context caller is requesting the stopping of 1682 * this command for frontend exceptions. 1683 */ 1684 if (cmd->transport_state & CMD_T_STOP) { 1685 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1686 __func__, __LINE__, 1687 cmd->se_tfo->get_task_tag(cmd)); 1688 1689 spin_unlock_irq(&cmd->t_state_lock); 1690 complete(&cmd->t_transport_stop_comp); 1691 return; 1692 } 1693 1694 cmd->t_state = TRANSPORT_PROCESSING; 1695 cmd->transport_state |= CMD_T_ACTIVE; 1696 spin_unlock_irq(&cmd->t_state_lock); 1697 1698 if (!target_handle_task_attr(cmd)) 1699 __target_execute_cmd(cmd); 1700 } 1701 EXPORT_SYMBOL(target_execute_cmd); 1702 1703 /* 1704 * Process all commands up to the last received ORDERED task attribute which 1705 * requires another blocking boundary 1706 */ 1707 static void target_restart_delayed_cmds(struct se_device *dev) 1708 { 1709 for (;;) { 1710 struct se_cmd *cmd; 1711 1712 spin_lock(&dev->delayed_cmd_lock); 1713 if (list_empty(&dev->delayed_cmd_list)) { 1714 spin_unlock(&dev->delayed_cmd_lock); 1715 break; 1716 } 1717 1718 cmd = list_entry(dev->delayed_cmd_list.next, 1719 struct se_cmd, se_delayed_node); 1720 list_del(&cmd->se_delayed_node); 1721 spin_unlock(&dev->delayed_cmd_lock); 1722 1723 __target_execute_cmd(cmd); 1724 1725 if (cmd->sam_task_attr == MSG_ORDERED_TAG) 1726 break; 1727 } 1728 } 1729 1730 /* 1731 * Called from I/O completion to determine which dormant/delayed 1732 * and ordered cmds need to have their tasks added to the execution queue. 1733 */ 1734 static void transport_complete_task_attr(struct se_cmd *cmd) 1735 { 1736 struct se_device *dev = cmd->se_dev; 1737 1738 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1739 return; 1740 1741 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 1742 atomic_dec(&dev->simple_cmds); 1743 smp_mb__after_atomic_dec(); 1744 dev->dev_cur_ordered_id++; 1745 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1746 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1747 cmd->se_ordered_id); 1748 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 1749 dev->dev_cur_ordered_id++; 1750 pr_debug("Incremented dev_cur_ordered_id: %u for" 1751 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1752 cmd->se_ordered_id); 1753 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 1754 atomic_dec(&dev->dev_ordered_sync); 1755 smp_mb__after_atomic_dec(); 1756 1757 dev->dev_cur_ordered_id++; 1758 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1759 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1760 } 1761 1762 target_restart_delayed_cmds(dev); 1763 } 1764 1765 static void transport_complete_qf(struct se_cmd *cmd) 1766 { 1767 int ret = 0; 1768 1769 transport_complete_task_attr(cmd); 1770 1771 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1772 ret = cmd->se_tfo->queue_status(cmd); 1773 if (ret) 1774 goto out; 1775 } 1776 1777 switch (cmd->data_direction) { 1778 case DMA_FROM_DEVICE: 1779 ret = cmd->se_tfo->queue_data_in(cmd); 1780 break; 1781 case DMA_TO_DEVICE: 1782 if (cmd->t_bidi_data_sg) { 1783 ret = cmd->se_tfo->queue_data_in(cmd); 1784 if (ret < 0) 1785 break; 1786 } 1787 /* Fall through for DMA_TO_DEVICE */ 1788 case DMA_NONE: 1789 ret = cmd->se_tfo->queue_status(cmd); 1790 break; 1791 default: 1792 break; 1793 } 1794 1795 out: 1796 if (ret < 0) { 1797 transport_handle_queue_full(cmd, cmd->se_dev); 1798 return; 1799 } 1800 transport_lun_remove_cmd(cmd); 1801 transport_cmd_check_stop_to_fabric(cmd); 1802 } 1803 1804 static void transport_handle_queue_full( 1805 struct se_cmd *cmd, 1806 struct se_device *dev) 1807 { 1808 spin_lock_irq(&dev->qf_cmd_lock); 1809 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1810 atomic_inc(&dev->dev_qf_count); 1811 smp_mb__after_atomic_inc(); 1812 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1813 1814 schedule_work(&cmd->se_dev->qf_work_queue); 1815 } 1816 1817 static void target_complete_ok_work(struct work_struct *work) 1818 { 1819 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1820 int ret; 1821 1822 /* 1823 * Check if we need to move delayed/dormant tasks from cmds on the 1824 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1825 * Attribute. 1826 */ 1827 transport_complete_task_attr(cmd); 1828 1829 /* 1830 * Check to schedule QUEUE_FULL work, or execute an existing 1831 * cmd->transport_qf_callback() 1832 */ 1833 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 1834 schedule_work(&cmd->se_dev->qf_work_queue); 1835 1836 /* 1837 * Check if we need to send a sense buffer from 1838 * the struct se_cmd in question. 1839 */ 1840 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1841 WARN_ON(!cmd->scsi_status); 1842 ret = transport_send_check_condition_and_sense( 1843 cmd, 0, 1); 1844 if (ret == -EAGAIN || ret == -ENOMEM) 1845 goto queue_full; 1846 1847 transport_lun_remove_cmd(cmd); 1848 transport_cmd_check_stop_to_fabric(cmd); 1849 return; 1850 } 1851 /* 1852 * Check for a callback, used by amongst other things 1853 * XDWRITE_READ_10 emulation. 1854 */ 1855 if (cmd->transport_complete_callback) 1856 cmd->transport_complete_callback(cmd); 1857 1858 switch (cmd->data_direction) { 1859 case DMA_FROM_DEVICE: 1860 spin_lock(&cmd->se_lun->lun_sep_lock); 1861 if (cmd->se_lun->lun_sep) { 1862 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1863 cmd->data_length; 1864 } 1865 spin_unlock(&cmd->se_lun->lun_sep_lock); 1866 1867 ret = cmd->se_tfo->queue_data_in(cmd); 1868 if (ret == -EAGAIN || ret == -ENOMEM) 1869 goto queue_full; 1870 break; 1871 case DMA_TO_DEVICE: 1872 spin_lock(&cmd->se_lun->lun_sep_lock); 1873 if (cmd->se_lun->lun_sep) { 1874 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 1875 cmd->data_length; 1876 } 1877 spin_unlock(&cmd->se_lun->lun_sep_lock); 1878 /* 1879 * Check if we need to send READ payload for BIDI-COMMAND 1880 */ 1881 if (cmd->t_bidi_data_sg) { 1882 spin_lock(&cmd->se_lun->lun_sep_lock); 1883 if (cmd->se_lun->lun_sep) { 1884 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1885 cmd->data_length; 1886 } 1887 spin_unlock(&cmd->se_lun->lun_sep_lock); 1888 ret = cmd->se_tfo->queue_data_in(cmd); 1889 if (ret == -EAGAIN || ret == -ENOMEM) 1890 goto queue_full; 1891 break; 1892 } 1893 /* Fall through for DMA_TO_DEVICE */ 1894 case DMA_NONE: 1895 ret = cmd->se_tfo->queue_status(cmd); 1896 if (ret == -EAGAIN || ret == -ENOMEM) 1897 goto queue_full; 1898 break; 1899 default: 1900 break; 1901 } 1902 1903 transport_lun_remove_cmd(cmd); 1904 transport_cmd_check_stop_to_fabric(cmd); 1905 return; 1906 1907 queue_full: 1908 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 1909 " data_direction: %d\n", cmd, cmd->data_direction); 1910 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1911 transport_handle_queue_full(cmd, cmd->se_dev); 1912 } 1913 1914 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 1915 { 1916 struct scatterlist *sg; 1917 int count; 1918 1919 for_each_sg(sgl, sg, nents, count) 1920 __free_page(sg_page(sg)); 1921 1922 kfree(sgl); 1923 } 1924 1925 static inline void transport_free_pages(struct se_cmd *cmd) 1926 { 1927 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) 1928 return; 1929 1930 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 1931 cmd->t_data_sg = NULL; 1932 cmd->t_data_nents = 0; 1933 1934 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 1935 cmd->t_bidi_data_sg = NULL; 1936 cmd->t_bidi_data_nents = 0; 1937 } 1938 1939 /** 1940 * transport_release_cmd - free a command 1941 * @cmd: command to free 1942 * 1943 * This routine unconditionally frees a command, and reference counting 1944 * or list removal must be done in the caller. 1945 */ 1946 static void transport_release_cmd(struct se_cmd *cmd) 1947 { 1948 BUG_ON(!cmd->se_tfo); 1949 1950 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 1951 core_tmr_release_req(cmd->se_tmr_req); 1952 if (cmd->t_task_cdb != cmd->__t_task_cdb) 1953 kfree(cmd->t_task_cdb); 1954 /* 1955 * If this cmd has been setup with target_get_sess_cmd(), drop 1956 * the kref and call ->release_cmd() in kref callback. 1957 */ 1958 if (cmd->check_release != 0) { 1959 target_put_sess_cmd(cmd->se_sess, cmd); 1960 return; 1961 } 1962 cmd->se_tfo->release_cmd(cmd); 1963 } 1964 1965 /** 1966 * transport_put_cmd - release a reference to a command 1967 * @cmd: command to release 1968 * 1969 * This routine releases our reference to the command and frees it if possible. 1970 */ 1971 static void transport_put_cmd(struct se_cmd *cmd) 1972 { 1973 unsigned long flags; 1974 1975 spin_lock_irqsave(&cmd->t_state_lock, flags); 1976 if (atomic_read(&cmd->t_fe_count) && 1977 !atomic_dec_and_test(&cmd->t_fe_count)) { 1978 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1979 return; 1980 } 1981 1982 if (cmd->transport_state & CMD_T_DEV_ACTIVE) { 1983 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 1984 target_remove_from_state_list(cmd); 1985 } 1986 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1987 1988 transport_free_pages(cmd); 1989 transport_release_cmd(cmd); 1990 return; 1991 } 1992 1993 void *transport_kmap_data_sg(struct se_cmd *cmd) 1994 { 1995 struct scatterlist *sg = cmd->t_data_sg; 1996 struct page **pages; 1997 int i; 1998 1999 /* 2000 * We need to take into account a possible offset here for fabrics like 2001 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2002 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2003 */ 2004 if (!cmd->t_data_nents) 2005 return NULL; 2006 2007 BUG_ON(!sg); 2008 if (cmd->t_data_nents == 1) 2009 return kmap(sg_page(sg)) + sg->offset; 2010 2011 /* >1 page. use vmap */ 2012 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2013 if (!pages) 2014 return NULL; 2015 2016 /* convert sg[] to pages[] */ 2017 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2018 pages[i] = sg_page(sg); 2019 } 2020 2021 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2022 kfree(pages); 2023 if (!cmd->t_data_vmap) 2024 return NULL; 2025 2026 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2027 } 2028 EXPORT_SYMBOL(transport_kmap_data_sg); 2029 2030 void transport_kunmap_data_sg(struct se_cmd *cmd) 2031 { 2032 if (!cmd->t_data_nents) { 2033 return; 2034 } else if (cmd->t_data_nents == 1) { 2035 kunmap(sg_page(cmd->t_data_sg)); 2036 return; 2037 } 2038 2039 vunmap(cmd->t_data_vmap); 2040 cmd->t_data_vmap = NULL; 2041 } 2042 EXPORT_SYMBOL(transport_kunmap_data_sg); 2043 2044 static int 2045 transport_generic_get_mem(struct se_cmd *cmd) 2046 { 2047 u32 length = cmd->data_length; 2048 unsigned int nents; 2049 struct page *page; 2050 gfp_t zero_flag; 2051 int i = 0; 2052 2053 nents = DIV_ROUND_UP(length, PAGE_SIZE); 2054 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL); 2055 if (!cmd->t_data_sg) 2056 return -ENOMEM; 2057 2058 cmd->t_data_nents = nents; 2059 sg_init_table(cmd->t_data_sg, nents); 2060 2061 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO; 2062 2063 while (length) { 2064 u32 page_len = min_t(u32, length, PAGE_SIZE); 2065 page = alloc_page(GFP_KERNEL | zero_flag); 2066 if (!page) 2067 goto out; 2068 2069 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0); 2070 length -= page_len; 2071 i++; 2072 } 2073 return 0; 2074 2075 out: 2076 while (i > 0) { 2077 i--; 2078 __free_page(sg_page(&cmd->t_data_sg[i])); 2079 } 2080 kfree(cmd->t_data_sg); 2081 cmd->t_data_sg = NULL; 2082 return -ENOMEM; 2083 } 2084 2085 /* 2086 * Allocate any required resources to execute the command. For writes we 2087 * might not have the payload yet, so notify the fabric via a call to 2088 * ->write_pending instead. Otherwise place it on the execution queue. 2089 */ 2090 sense_reason_t 2091 transport_generic_new_cmd(struct se_cmd *cmd) 2092 { 2093 int ret = 0; 2094 2095 /* 2096 * Determine is the TCM fabric module has already allocated physical 2097 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2098 * beforehand. 2099 */ 2100 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2101 cmd->data_length) { 2102 ret = transport_generic_get_mem(cmd); 2103 if (ret < 0) 2104 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2105 } 2106 2107 atomic_inc(&cmd->t_fe_count); 2108 2109 /* 2110 * If this command is not a write we can execute it right here, 2111 * for write buffers we need to notify the fabric driver first 2112 * and let it call back once the write buffers are ready. 2113 */ 2114 target_add_to_state_list(cmd); 2115 if (cmd->data_direction != DMA_TO_DEVICE) { 2116 target_execute_cmd(cmd); 2117 return 0; 2118 } 2119 2120 spin_lock_irq(&cmd->t_state_lock); 2121 cmd->t_state = TRANSPORT_WRITE_PENDING; 2122 spin_unlock_irq(&cmd->t_state_lock); 2123 2124 transport_cmd_check_stop(cmd, false); 2125 2126 ret = cmd->se_tfo->write_pending(cmd); 2127 if (ret == -EAGAIN || ret == -ENOMEM) 2128 goto queue_full; 2129 2130 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2131 WARN_ON(ret); 2132 2133 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2134 2135 queue_full: 2136 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2137 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2138 transport_handle_queue_full(cmd, cmd->se_dev); 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(transport_generic_new_cmd); 2142 2143 static void transport_write_pending_qf(struct se_cmd *cmd) 2144 { 2145 int ret; 2146 2147 ret = cmd->se_tfo->write_pending(cmd); 2148 if (ret == -EAGAIN || ret == -ENOMEM) { 2149 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2150 cmd); 2151 transport_handle_queue_full(cmd, cmd->se_dev); 2152 } 2153 } 2154 2155 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2156 { 2157 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2158 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2159 transport_wait_for_tasks(cmd); 2160 2161 transport_release_cmd(cmd); 2162 } else { 2163 if (wait_for_tasks) 2164 transport_wait_for_tasks(cmd); 2165 2166 if (cmd->se_lun) 2167 transport_lun_remove_cmd(cmd); 2168 2169 transport_put_cmd(cmd); 2170 } 2171 } 2172 EXPORT_SYMBOL(transport_generic_free_cmd); 2173 2174 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2175 * @se_sess: session to reference 2176 * @se_cmd: command descriptor to add 2177 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2178 */ 2179 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2180 bool ack_kref) 2181 { 2182 unsigned long flags; 2183 int ret = 0; 2184 2185 kref_init(&se_cmd->cmd_kref); 2186 /* 2187 * Add a second kref if the fabric caller is expecting to handle 2188 * fabric acknowledgement that requires two target_put_sess_cmd() 2189 * invocations before se_cmd descriptor release. 2190 */ 2191 if (ack_kref == true) { 2192 kref_get(&se_cmd->cmd_kref); 2193 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2194 } 2195 2196 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2197 if (se_sess->sess_tearing_down) { 2198 ret = -ESHUTDOWN; 2199 goto out; 2200 } 2201 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2202 se_cmd->check_release = 1; 2203 2204 out: 2205 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2206 return ret; 2207 } 2208 EXPORT_SYMBOL(target_get_sess_cmd); 2209 2210 static void target_release_cmd_kref(struct kref *kref) 2211 { 2212 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2213 struct se_session *se_sess = se_cmd->se_sess; 2214 2215 if (list_empty(&se_cmd->se_cmd_list)) { 2216 spin_unlock(&se_sess->sess_cmd_lock); 2217 se_cmd->se_tfo->release_cmd(se_cmd); 2218 return; 2219 } 2220 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2221 spin_unlock(&se_sess->sess_cmd_lock); 2222 complete(&se_cmd->cmd_wait_comp); 2223 return; 2224 } 2225 list_del(&se_cmd->se_cmd_list); 2226 spin_unlock(&se_sess->sess_cmd_lock); 2227 2228 se_cmd->se_tfo->release_cmd(se_cmd); 2229 } 2230 2231 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2232 * @se_sess: session to reference 2233 * @se_cmd: command descriptor to drop 2234 */ 2235 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2236 { 2237 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2238 &se_sess->sess_cmd_lock); 2239 } 2240 EXPORT_SYMBOL(target_put_sess_cmd); 2241 2242 /* target_sess_cmd_list_set_waiting - Flag all commands in 2243 * sess_cmd_list to complete cmd_wait_comp. Set 2244 * sess_tearing_down so no more commands are queued. 2245 * @se_sess: session to flag 2246 */ 2247 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2248 { 2249 struct se_cmd *se_cmd; 2250 unsigned long flags; 2251 2252 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2253 2254 WARN_ON(se_sess->sess_tearing_down); 2255 se_sess->sess_tearing_down = 1; 2256 2257 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) 2258 se_cmd->cmd_wait_set = 1; 2259 2260 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2261 } 2262 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2263 2264 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2265 * @se_sess: session to wait for active I/O 2266 * @wait_for_tasks: Make extra transport_wait_for_tasks call 2267 */ 2268 void target_wait_for_sess_cmds( 2269 struct se_session *se_sess, 2270 int wait_for_tasks) 2271 { 2272 struct se_cmd *se_cmd, *tmp_cmd; 2273 bool rc = false; 2274 2275 list_for_each_entry_safe(se_cmd, tmp_cmd, 2276 &se_sess->sess_cmd_list, se_cmd_list) { 2277 list_del(&se_cmd->se_cmd_list); 2278 2279 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2280 " %d\n", se_cmd, se_cmd->t_state, 2281 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2282 2283 if (wait_for_tasks) { 2284 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d," 2285 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2286 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2287 2288 rc = transport_wait_for_tasks(se_cmd); 2289 2290 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d," 2291 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2292 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2293 } 2294 2295 if (!rc) { 2296 wait_for_completion(&se_cmd->cmd_wait_comp); 2297 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2298 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2299 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2300 } 2301 2302 se_cmd->se_tfo->release_cmd(se_cmd); 2303 } 2304 } 2305 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2306 2307 /* transport_lun_wait_for_tasks(): 2308 * 2309 * Called from ConfigFS context to stop the passed struct se_cmd to allow 2310 * an struct se_lun to be successfully shutdown. 2311 */ 2312 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) 2313 { 2314 unsigned long flags; 2315 int ret = 0; 2316 2317 /* 2318 * If the frontend has already requested this struct se_cmd to 2319 * be stopped, we can safely ignore this struct se_cmd. 2320 */ 2321 spin_lock_irqsave(&cmd->t_state_lock, flags); 2322 if (cmd->transport_state & CMD_T_STOP) { 2323 cmd->transport_state &= ~CMD_T_LUN_STOP; 2324 2325 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n", 2326 cmd->se_tfo->get_task_tag(cmd)); 2327 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2328 transport_cmd_check_stop(cmd, false); 2329 return -EPERM; 2330 } 2331 cmd->transport_state |= CMD_T_LUN_FE_STOP; 2332 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2333 2334 // XXX: audit task_flags checks. 2335 spin_lock_irqsave(&cmd->t_state_lock, flags); 2336 if ((cmd->transport_state & CMD_T_BUSY) && 2337 (cmd->transport_state & CMD_T_SENT)) { 2338 if (!target_stop_cmd(cmd, &flags)) 2339 ret++; 2340 } 2341 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2342 2343 pr_debug("ConfigFS: cmd: %p stop tasks ret:" 2344 " %d\n", cmd, ret); 2345 if (!ret) { 2346 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n", 2347 cmd->se_tfo->get_task_tag(cmd)); 2348 wait_for_completion(&cmd->transport_lun_stop_comp); 2349 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n", 2350 cmd->se_tfo->get_task_tag(cmd)); 2351 } 2352 2353 return 0; 2354 } 2355 2356 static void __transport_clear_lun_from_sessions(struct se_lun *lun) 2357 { 2358 struct se_cmd *cmd = NULL; 2359 unsigned long lun_flags, cmd_flags; 2360 /* 2361 * Do exception processing and return CHECK_CONDITION status to the 2362 * Initiator Port. 2363 */ 2364 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2365 while (!list_empty(&lun->lun_cmd_list)) { 2366 cmd = list_first_entry(&lun->lun_cmd_list, 2367 struct se_cmd, se_lun_node); 2368 list_del_init(&cmd->se_lun_node); 2369 2370 spin_lock(&cmd->t_state_lock); 2371 pr_debug("SE_LUN[%d] - Setting cmd->transport" 2372 "_lun_stop for ITT: 0x%08x\n", 2373 cmd->se_lun->unpacked_lun, 2374 cmd->se_tfo->get_task_tag(cmd)); 2375 cmd->transport_state |= CMD_T_LUN_STOP; 2376 spin_unlock(&cmd->t_state_lock); 2377 2378 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2379 2380 if (!cmd->se_lun) { 2381 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n", 2382 cmd->se_tfo->get_task_tag(cmd), 2383 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2384 BUG(); 2385 } 2386 /* 2387 * If the Storage engine still owns the iscsi_cmd_t, determine 2388 * and/or stop its context. 2389 */ 2390 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport" 2391 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun, 2392 cmd->se_tfo->get_task_tag(cmd)); 2393 2394 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) { 2395 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2396 continue; 2397 } 2398 2399 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun" 2400 "_wait_for_tasks(): SUCCESS\n", 2401 cmd->se_lun->unpacked_lun, 2402 cmd->se_tfo->get_task_tag(cmd)); 2403 2404 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2405 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) { 2406 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2407 goto check_cond; 2408 } 2409 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 2410 target_remove_from_state_list(cmd); 2411 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2412 2413 /* 2414 * The Storage engine stopped this struct se_cmd before it was 2415 * send to the fabric frontend for delivery back to the 2416 * Initiator Node. Return this SCSI CDB back with an 2417 * CHECK_CONDITION status. 2418 */ 2419 check_cond: 2420 transport_send_check_condition_and_sense(cmd, 2421 TCM_NON_EXISTENT_LUN, 0); 2422 /* 2423 * If the fabric frontend is waiting for this iscsi_cmd_t to 2424 * be released, notify the waiting thread now that LU has 2425 * finished accessing it. 2426 */ 2427 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2428 if (cmd->transport_state & CMD_T_LUN_FE_STOP) { 2429 pr_debug("SE_LUN[%d] - Detected FE stop for" 2430 " struct se_cmd: %p ITT: 0x%08x\n", 2431 lun->unpacked_lun, 2432 cmd, cmd->se_tfo->get_task_tag(cmd)); 2433 2434 spin_unlock_irqrestore(&cmd->t_state_lock, 2435 cmd_flags); 2436 transport_cmd_check_stop(cmd, false); 2437 complete(&cmd->transport_lun_fe_stop_comp); 2438 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2439 continue; 2440 } 2441 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n", 2442 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); 2443 2444 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2445 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2446 } 2447 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2448 } 2449 2450 static int transport_clear_lun_thread(void *p) 2451 { 2452 struct se_lun *lun = p; 2453 2454 __transport_clear_lun_from_sessions(lun); 2455 complete(&lun->lun_shutdown_comp); 2456 2457 return 0; 2458 } 2459 2460 int transport_clear_lun_from_sessions(struct se_lun *lun) 2461 { 2462 struct task_struct *kt; 2463 2464 kt = kthread_run(transport_clear_lun_thread, lun, 2465 "tcm_cl_%u", lun->unpacked_lun); 2466 if (IS_ERR(kt)) { 2467 pr_err("Unable to start clear_lun thread\n"); 2468 return PTR_ERR(kt); 2469 } 2470 wait_for_completion(&lun->lun_shutdown_comp); 2471 2472 return 0; 2473 } 2474 2475 /** 2476 * transport_wait_for_tasks - wait for completion to occur 2477 * @cmd: command to wait 2478 * 2479 * Called from frontend fabric context to wait for storage engine 2480 * to pause and/or release frontend generated struct se_cmd. 2481 */ 2482 bool transport_wait_for_tasks(struct se_cmd *cmd) 2483 { 2484 unsigned long flags; 2485 2486 spin_lock_irqsave(&cmd->t_state_lock, flags); 2487 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2488 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2489 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2490 return false; 2491 } 2492 2493 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2494 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2495 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2496 return false; 2497 } 2498 /* 2499 * If we are already stopped due to an external event (ie: LUN shutdown) 2500 * sleep until the connection can have the passed struct se_cmd back. 2501 * The cmd->transport_lun_stopped_sem will be upped by 2502 * transport_clear_lun_from_sessions() once the ConfigFS context caller 2503 * has completed its operation on the struct se_cmd. 2504 */ 2505 if (cmd->transport_state & CMD_T_LUN_STOP) { 2506 pr_debug("wait_for_tasks: Stopping" 2507 " wait_for_completion(&cmd->t_tasktransport_lun_fe" 2508 "_stop_comp); for ITT: 0x%08x\n", 2509 cmd->se_tfo->get_task_tag(cmd)); 2510 /* 2511 * There is a special case for WRITES where a FE exception + 2512 * LUN shutdown means ConfigFS context is still sleeping on 2513 * transport_lun_stop_comp in transport_lun_wait_for_tasks(). 2514 * We go ahead and up transport_lun_stop_comp just to be sure 2515 * here. 2516 */ 2517 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2518 complete(&cmd->transport_lun_stop_comp); 2519 wait_for_completion(&cmd->transport_lun_fe_stop_comp); 2520 spin_lock_irqsave(&cmd->t_state_lock, flags); 2521 2522 target_remove_from_state_list(cmd); 2523 /* 2524 * At this point, the frontend who was the originator of this 2525 * struct se_cmd, now owns the structure and can be released through 2526 * normal means below. 2527 */ 2528 pr_debug("wait_for_tasks: Stopped" 2529 " wait_for_completion(&cmd->t_tasktransport_lun_fe_" 2530 "stop_comp); for ITT: 0x%08x\n", 2531 cmd->se_tfo->get_task_tag(cmd)); 2532 2533 cmd->transport_state &= ~CMD_T_LUN_STOP; 2534 } 2535 2536 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2537 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2538 return false; 2539 } 2540 2541 cmd->transport_state |= CMD_T_STOP; 2542 2543 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2544 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2545 cmd, cmd->se_tfo->get_task_tag(cmd), 2546 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2547 2548 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2549 2550 wait_for_completion(&cmd->t_transport_stop_comp); 2551 2552 spin_lock_irqsave(&cmd->t_state_lock, flags); 2553 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2554 2555 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2556 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2557 cmd->se_tfo->get_task_tag(cmd)); 2558 2559 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2560 2561 return true; 2562 } 2563 EXPORT_SYMBOL(transport_wait_for_tasks); 2564 2565 static int transport_get_sense_codes( 2566 struct se_cmd *cmd, 2567 u8 *asc, 2568 u8 *ascq) 2569 { 2570 *asc = cmd->scsi_asc; 2571 *ascq = cmd->scsi_ascq; 2572 2573 return 0; 2574 } 2575 2576 int 2577 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2578 sense_reason_t reason, int from_transport) 2579 { 2580 unsigned char *buffer = cmd->sense_buffer; 2581 unsigned long flags; 2582 u8 asc = 0, ascq = 0; 2583 2584 spin_lock_irqsave(&cmd->t_state_lock, flags); 2585 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2586 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2587 return 0; 2588 } 2589 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2590 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2591 2592 if (!reason && from_transport) 2593 goto after_reason; 2594 2595 if (!from_transport) 2596 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2597 2598 /* 2599 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2600 * SENSE KEY values from include/scsi/scsi.h 2601 */ 2602 switch (reason) { 2603 case TCM_NO_SENSE: 2604 /* CURRENT ERROR */ 2605 buffer[0] = 0x70; 2606 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2607 /* Not Ready */ 2608 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2609 /* NO ADDITIONAL SENSE INFORMATION */ 2610 buffer[SPC_ASC_KEY_OFFSET] = 0; 2611 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2612 break; 2613 case TCM_NON_EXISTENT_LUN: 2614 /* CURRENT ERROR */ 2615 buffer[0] = 0x70; 2616 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2617 /* ILLEGAL REQUEST */ 2618 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2619 /* LOGICAL UNIT NOT SUPPORTED */ 2620 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2621 break; 2622 case TCM_UNSUPPORTED_SCSI_OPCODE: 2623 case TCM_SECTOR_COUNT_TOO_MANY: 2624 /* CURRENT ERROR */ 2625 buffer[0] = 0x70; 2626 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2627 /* ILLEGAL REQUEST */ 2628 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2629 /* INVALID COMMAND OPERATION CODE */ 2630 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2631 break; 2632 case TCM_UNKNOWN_MODE_PAGE: 2633 /* CURRENT ERROR */ 2634 buffer[0] = 0x70; 2635 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2636 /* ILLEGAL REQUEST */ 2637 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2638 /* INVALID FIELD IN CDB */ 2639 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2640 break; 2641 case TCM_CHECK_CONDITION_ABORT_CMD: 2642 /* CURRENT ERROR */ 2643 buffer[0] = 0x70; 2644 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2645 /* ABORTED COMMAND */ 2646 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2647 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2648 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2649 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2650 break; 2651 case TCM_INCORRECT_AMOUNT_OF_DATA: 2652 /* CURRENT ERROR */ 2653 buffer[0] = 0x70; 2654 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2655 /* ABORTED COMMAND */ 2656 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2657 /* WRITE ERROR */ 2658 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2659 /* NOT ENOUGH UNSOLICITED DATA */ 2660 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2661 break; 2662 case TCM_INVALID_CDB_FIELD: 2663 /* CURRENT ERROR */ 2664 buffer[0] = 0x70; 2665 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2666 /* ILLEGAL REQUEST */ 2667 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2668 /* INVALID FIELD IN CDB */ 2669 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2670 break; 2671 case TCM_INVALID_PARAMETER_LIST: 2672 /* CURRENT ERROR */ 2673 buffer[0] = 0x70; 2674 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2675 /* ILLEGAL REQUEST */ 2676 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2677 /* INVALID FIELD IN PARAMETER LIST */ 2678 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2679 break; 2680 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2681 /* CURRENT ERROR */ 2682 buffer[0] = 0x70; 2683 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2684 /* ILLEGAL REQUEST */ 2685 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2686 /* PARAMETER LIST LENGTH ERROR */ 2687 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2688 break; 2689 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2690 /* CURRENT ERROR */ 2691 buffer[0] = 0x70; 2692 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2693 /* ABORTED COMMAND */ 2694 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2695 /* WRITE ERROR */ 2696 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2697 /* UNEXPECTED_UNSOLICITED_DATA */ 2698 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2699 break; 2700 case TCM_SERVICE_CRC_ERROR: 2701 /* CURRENT ERROR */ 2702 buffer[0] = 0x70; 2703 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2704 /* ABORTED COMMAND */ 2705 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2706 /* PROTOCOL SERVICE CRC ERROR */ 2707 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2708 /* N/A */ 2709 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2710 break; 2711 case TCM_SNACK_REJECTED: 2712 /* CURRENT ERROR */ 2713 buffer[0] = 0x70; 2714 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2715 /* ABORTED COMMAND */ 2716 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2717 /* READ ERROR */ 2718 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2719 /* FAILED RETRANSMISSION REQUEST */ 2720 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2721 break; 2722 case TCM_WRITE_PROTECTED: 2723 /* CURRENT ERROR */ 2724 buffer[0] = 0x70; 2725 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2726 /* DATA PROTECT */ 2727 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2728 /* WRITE PROTECTED */ 2729 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2730 break; 2731 case TCM_ADDRESS_OUT_OF_RANGE: 2732 /* CURRENT ERROR */ 2733 buffer[0] = 0x70; 2734 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2735 /* ILLEGAL REQUEST */ 2736 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2737 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2738 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2739 break; 2740 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2741 /* CURRENT ERROR */ 2742 buffer[0] = 0x70; 2743 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2744 /* UNIT ATTENTION */ 2745 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2746 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2747 buffer[SPC_ASC_KEY_OFFSET] = asc; 2748 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2749 break; 2750 case TCM_CHECK_CONDITION_NOT_READY: 2751 /* CURRENT ERROR */ 2752 buffer[0] = 0x70; 2753 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2754 /* Not Ready */ 2755 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2756 transport_get_sense_codes(cmd, &asc, &ascq); 2757 buffer[SPC_ASC_KEY_OFFSET] = asc; 2758 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2759 break; 2760 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2761 default: 2762 /* CURRENT ERROR */ 2763 buffer[0] = 0x70; 2764 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2765 /* 2766 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2767 * Solaris initiators. Returning NOT READY instead means the 2768 * operations will be retried a finite number of times and we 2769 * can survive intermittent errors. 2770 */ 2771 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2772 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2773 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2774 break; 2775 } 2776 /* 2777 * This code uses linux/include/scsi/scsi.h SAM status codes! 2778 */ 2779 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2780 /* 2781 * Automatically padded, this value is encoded in the fabric's 2782 * data_length response PDU containing the SCSI defined sense data. 2783 */ 2784 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2785 2786 after_reason: 2787 return cmd->se_tfo->queue_status(cmd); 2788 } 2789 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2790 2791 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2792 { 2793 if (!(cmd->transport_state & CMD_T_ABORTED)) 2794 return 0; 2795 2796 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 2797 return 1; 2798 2799 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2800 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2801 2802 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 2803 cmd->se_tfo->queue_status(cmd); 2804 2805 return 1; 2806 } 2807 EXPORT_SYMBOL(transport_check_aborted_status); 2808 2809 void transport_send_task_abort(struct se_cmd *cmd) 2810 { 2811 unsigned long flags; 2812 2813 spin_lock_irqsave(&cmd->t_state_lock, flags); 2814 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) { 2815 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2816 return; 2817 } 2818 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2819 2820 /* 2821 * If there are still expected incoming fabric WRITEs, we wait 2822 * until until they have completed before sending a TASK_ABORTED 2823 * response. This response with TASK_ABORTED status will be 2824 * queued back to fabric module by transport_check_aborted_status(). 2825 */ 2826 if (cmd->data_direction == DMA_TO_DEVICE) { 2827 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2828 cmd->transport_state |= CMD_T_ABORTED; 2829 smp_mb__after_atomic_inc(); 2830 } 2831 } 2832 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2833 2834 transport_lun_remove_cmd(cmd); 2835 2836 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 2837 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 2838 cmd->se_tfo->get_task_tag(cmd)); 2839 2840 cmd->se_tfo->queue_status(cmd); 2841 } 2842 2843 static void target_tmr_work(struct work_struct *work) 2844 { 2845 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2846 struct se_device *dev = cmd->se_dev; 2847 struct se_tmr_req *tmr = cmd->se_tmr_req; 2848 int ret; 2849 2850 switch (tmr->function) { 2851 case TMR_ABORT_TASK: 2852 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2853 break; 2854 case TMR_ABORT_TASK_SET: 2855 case TMR_CLEAR_ACA: 2856 case TMR_CLEAR_TASK_SET: 2857 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2858 break; 2859 case TMR_LUN_RESET: 2860 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2861 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2862 TMR_FUNCTION_REJECTED; 2863 break; 2864 case TMR_TARGET_WARM_RESET: 2865 tmr->response = TMR_FUNCTION_REJECTED; 2866 break; 2867 case TMR_TARGET_COLD_RESET: 2868 tmr->response = TMR_FUNCTION_REJECTED; 2869 break; 2870 default: 2871 pr_err("Uknown TMR function: 0x%02x.\n", 2872 tmr->function); 2873 tmr->response = TMR_FUNCTION_REJECTED; 2874 break; 2875 } 2876 2877 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2878 cmd->se_tfo->queue_tm_rsp(cmd); 2879 2880 transport_cmd_check_stop_to_fabric(cmd); 2881 } 2882 2883 int transport_generic_handle_tmr( 2884 struct se_cmd *cmd) 2885 { 2886 INIT_WORK(&cmd->work, target_tmr_work); 2887 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 2888 return 0; 2889 } 2890 EXPORT_SYMBOL(transport_generic_handle_tmr); 2891