1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/blkdev.h> 32 #include <linux/spinlock.h> 33 #include <linux/kthread.h> 34 #include <linux/in.h> 35 #include <linux/cdrom.h> 36 #include <linux/module.h> 37 #include <linux/ratelimit.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_tcq.h> 44 45 #include <target/target_core_base.h> 46 #include <target/target_core_backend.h> 47 #include <target/target_core_fabric.h> 48 #include <target/target_core_configfs.h> 49 50 #include "target_core_internal.h" 51 #include "target_core_alua.h" 52 #include "target_core_pr.h" 53 #include "target_core_ua.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/target.h> 57 58 static struct workqueue_struct *target_completion_wq; 59 static struct kmem_cache *se_sess_cache; 60 struct kmem_cache *se_ua_cache; 61 struct kmem_cache *t10_pr_reg_cache; 62 struct kmem_cache *t10_alua_lu_gp_cache; 63 struct kmem_cache *t10_alua_lu_gp_mem_cache; 64 struct kmem_cache *t10_alua_tg_pt_gp_cache; 65 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 66 67 static void transport_complete_task_attr(struct se_cmd *cmd); 68 static void transport_handle_queue_full(struct se_cmd *cmd, 69 struct se_device *dev); 70 static int transport_put_cmd(struct se_cmd *cmd); 71 static void target_complete_ok_work(struct work_struct *work); 72 73 int init_se_kmem_caches(void) 74 { 75 se_sess_cache = kmem_cache_create("se_sess_cache", 76 sizeof(struct se_session), __alignof__(struct se_session), 77 0, NULL); 78 if (!se_sess_cache) { 79 pr_err("kmem_cache_create() for struct se_session" 80 " failed\n"); 81 goto out; 82 } 83 se_ua_cache = kmem_cache_create("se_ua_cache", 84 sizeof(struct se_ua), __alignof__(struct se_ua), 85 0, NULL); 86 if (!se_ua_cache) { 87 pr_err("kmem_cache_create() for struct se_ua failed\n"); 88 goto out_free_sess_cache; 89 } 90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 91 sizeof(struct t10_pr_registration), 92 __alignof__(struct t10_pr_registration), 0, NULL); 93 if (!t10_pr_reg_cache) { 94 pr_err("kmem_cache_create() for struct t10_pr_registration" 95 " failed\n"); 96 goto out_free_ua_cache; 97 } 98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 100 0, NULL); 101 if (!t10_alua_lu_gp_cache) { 102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 103 " failed\n"); 104 goto out_free_pr_reg_cache; 105 } 106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 107 sizeof(struct t10_alua_lu_gp_member), 108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 109 if (!t10_alua_lu_gp_mem_cache) { 110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 111 "cache failed\n"); 112 goto out_free_lu_gp_cache; 113 } 114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 115 sizeof(struct t10_alua_tg_pt_gp), 116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 117 if (!t10_alua_tg_pt_gp_cache) { 118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 119 "cache failed\n"); 120 goto out_free_lu_gp_mem_cache; 121 } 122 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 123 "t10_alua_tg_pt_gp_mem_cache", 124 sizeof(struct t10_alua_tg_pt_gp_member), 125 __alignof__(struct t10_alua_tg_pt_gp_member), 126 0, NULL); 127 if (!t10_alua_tg_pt_gp_mem_cache) { 128 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 129 "mem_t failed\n"); 130 goto out_free_tg_pt_gp_cache; 131 } 132 133 target_completion_wq = alloc_workqueue("target_completion", 134 WQ_MEM_RECLAIM, 0); 135 if (!target_completion_wq) 136 goto out_free_tg_pt_gp_mem_cache; 137 138 return 0; 139 140 out_free_tg_pt_gp_mem_cache: 141 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 142 out_free_tg_pt_gp_cache: 143 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 144 out_free_lu_gp_mem_cache: 145 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 146 out_free_lu_gp_cache: 147 kmem_cache_destroy(t10_alua_lu_gp_cache); 148 out_free_pr_reg_cache: 149 kmem_cache_destroy(t10_pr_reg_cache); 150 out_free_ua_cache: 151 kmem_cache_destroy(se_ua_cache); 152 out_free_sess_cache: 153 kmem_cache_destroy(se_sess_cache); 154 out: 155 return -ENOMEM; 156 } 157 158 void release_se_kmem_caches(void) 159 { 160 destroy_workqueue(target_completion_wq); 161 kmem_cache_destroy(se_sess_cache); 162 kmem_cache_destroy(se_ua_cache); 163 kmem_cache_destroy(t10_pr_reg_cache); 164 kmem_cache_destroy(t10_alua_lu_gp_cache); 165 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 167 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 168 } 169 170 /* This code ensures unique mib indexes are handed out. */ 171 static DEFINE_SPINLOCK(scsi_mib_index_lock); 172 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 173 174 /* 175 * Allocate a new row index for the entry type specified 176 */ 177 u32 scsi_get_new_index(scsi_index_t type) 178 { 179 u32 new_index; 180 181 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 182 183 spin_lock(&scsi_mib_index_lock); 184 new_index = ++scsi_mib_index[type]; 185 spin_unlock(&scsi_mib_index_lock); 186 187 return new_index; 188 } 189 190 void transport_subsystem_check_init(void) 191 { 192 int ret; 193 static int sub_api_initialized; 194 195 if (sub_api_initialized) 196 return; 197 198 ret = request_module("target_core_iblock"); 199 if (ret != 0) 200 pr_err("Unable to load target_core_iblock\n"); 201 202 ret = request_module("target_core_file"); 203 if (ret != 0) 204 pr_err("Unable to load target_core_file\n"); 205 206 ret = request_module("target_core_pscsi"); 207 if (ret != 0) 208 pr_err("Unable to load target_core_pscsi\n"); 209 210 sub_api_initialized = 1; 211 } 212 213 struct se_session *transport_init_session(void) 214 { 215 struct se_session *se_sess; 216 217 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 218 if (!se_sess) { 219 pr_err("Unable to allocate struct se_session from" 220 " se_sess_cache\n"); 221 return ERR_PTR(-ENOMEM); 222 } 223 INIT_LIST_HEAD(&se_sess->sess_list); 224 INIT_LIST_HEAD(&se_sess->sess_acl_list); 225 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 226 INIT_LIST_HEAD(&se_sess->sess_wait_list); 227 spin_lock_init(&se_sess->sess_cmd_lock); 228 kref_init(&se_sess->sess_kref); 229 230 return se_sess; 231 } 232 EXPORT_SYMBOL(transport_init_session); 233 234 int transport_alloc_session_tags(struct se_session *se_sess, 235 unsigned int tag_num, unsigned int tag_size) 236 { 237 int rc; 238 239 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 240 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 241 if (!se_sess->sess_cmd_map) { 242 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 243 if (!se_sess->sess_cmd_map) { 244 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 245 return -ENOMEM; 246 } 247 } 248 249 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 250 if (rc < 0) { 251 pr_err("Unable to init se_sess->sess_tag_pool," 252 " tag_num: %u\n", tag_num); 253 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 254 vfree(se_sess->sess_cmd_map); 255 else 256 kfree(se_sess->sess_cmd_map); 257 se_sess->sess_cmd_map = NULL; 258 return -ENOMEM; 259 } 260 261 return 0; 262 } 263 EXPORT_SYMBOL(transport_alloc_session_tags); 264 265 struct se_session *transport_init_session_tags(unsigned int tag_num, 266 unsigned int tag_size) 267 { 268 struct se_session *se_sess; 269 int rc; 270 271 se_sess = transport_init_session(); 272 if (IS_ERR(se_sess)) 273 return se_sess; 274 275 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 276 if (rc < 0) { 277 transport_free_session(se_sess); 278 return ERR_PTR(-ENOMEM); 279 } 280 281 return se_sess; 282 } 283 EXPORT_SYMBOL(transport_init_session_tags); 284 285 /* 286 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 287 */ 288 void __transport_register_session( 289 struct se_portal_group *se_tpg, 290 struct se_node_acl *se_nacl, 291 struct se_session *se_sess, 292 void *fabric_sess_ptr) 293 { 294 unsigned char buf[PR_REG_ISID_LEN]; 295 296 se_sess->se_tpg = se_tpg; 297 se_sess->fabric_sess_ptr = fabric_sess_ptr; 298 /* 299 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 300 * 301 * Only set for struct se_session's that will actually be moving I/O. 302 * eg: *NOT* discovery sessions. 303 */ 304 if (se_nacl) { 305 /* 306 * If the fabric module supports an ISID based TransportID, 307 * save this value in binary from the fabric I_T Nexus now. 308 */ 309 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 310 memset(&buf[0], 0, PR_REG_ISID_LEN); 311 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 312 &buf[0], PR_REG_ISID_LEN); 313 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 314 } 315 kref_get(&se_nacl->acl_kref); 316 317 spin_lock_irq(&se_nacl->nacl_sess_lock); 318 /* 319 * The se_nacl->nacl_sess pointer will be set to the 320 * last active I_T Nexus for each struct se_node_acl. 321 */ 322 se_nacl->nacl_sess = se_sess; 323 324 list_add_tail(&se_sess->sess_acl_list, 325 &se_nacl->acl_sess_list); 326 spin_unlock_irq(&se_nacl->nacl_sess_lock); 327 } 328 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 329 330 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 331 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 332 } 333 EXPORT_SYMBOL(__transport_register_session); 334 335 void transport_register_session( 336 struct se_portal_group *se_tpg, 337 struct se_node_acl *se_nacl, 338 struct se_session *se_sess, 339 void *fabric_sess_ptr) 340 { 341 unsigned long flags; 342 343 spin_lock_irqsave(&se_tpg->session_lock, flags); 344 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 345 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 346 } 347 EXPORT_SYMBOL(transport_register_session); 348 349 static void target_release_session(struct kref *kref) 350 { 351 struct se_session *se_sess = container_of(kref, 352 struct se_session, sess_kref); 353 struct se_portal_group *se_tpg = se_sess->se_tpg; 354 355 se_tpg->se_tpg_tfo->close_session(se_sess); 356 } 357 358 void target_get_session(struct se_session *se_sess) 359 { 360 kref_get(&se_sess->sess_kref); 361 } 362 EXPORT_SYMBOL(target_get_session); 363 364 void target_put_session(struct se_session *se_sess) 365 { 366 struct se_portal_group *tpg = se_sess->se_tpg; 367 368 if (tpg->se_tpg_tfo->put_session != NULL) { 369 tpg->se_tpg_tfo->put_session(se_sess); 370 return; 371 } 372 kref_put(&se_sess->sess_kref, target_release_session); 373 } 374 EXPORT_SYMBOL(target_put_session); 375 376 static void target_complete_nacl(struct kref *kref) 377 { 378 struct se_node_acl *nacl = container_of(kref, 379 struct se_node_acl, acl_kref); 380 381 complete(&nacl->acl_free_comp); 382 } 383 384 void target_put_nacl(struct se_node_acl *nacl) 385 { 386 kref_put(&nacl->acl_kref, target_complete_nacl); 387 } 388 389 void transport_deregister_session_configfs(struct se_session *se_sess) 390 { 391 struct se_node_acl *se_nacl; 392 unsigned long flags; 393 /* 394 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 395 */ 396 se_nacl = se_sess->se_node_acl; 397 if (se_nacl) { 398 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 399 if (se_nacl->acl_stop == 0) 400 list_del(&se_sess->sess_acl_list); 401 /* 402 * If the session list is empty, then clear the pointer. 403 * Otherwise, set the struct se_session pointer from the tail 404 * element of the per struct se_node_acl active session list. 405 */ 406 if (list_empty(&se_nacl->acl_sess_list)) 407 se_nacl->nacl_sess = NULL; 408 else { 409 se_nacl->nacl_sess = container_of( 410 se_nacl->acl_sess_list.prev, 411 struct se_session, sess_acl_list); 412 } 413 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 414 } 415 } 416 EXPORT_SYMBOL(transport_deregister_session_configfs); 417 418 void transport_free_session(struct se_session *se_sess) 419 { 420 if (se_sess->sess_cmd_map) { 421 percpu_ida_destroy(&se_sess->sess_tag_pool); 422 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 423 vfree(se_sess->sess_cmd_map); 424 else 425 kfree(se_sess->sess_cmd_map); 426 } 427 kmem_cache_free(se_sess_cache, se_sess); 428 } 429 EXPORT_SYMBOL(transport_free_session); 430 431 void transport_deregister_session(struct se_session *se_sess) 432 { 433 struct se_portal_group *se_tpg = se_sess->se_tpg; 434 struct target_core_fabric_ops *se_tfo; 435 struct se_node_acl *se_nacl; 436 unsigned long flags; 437 bool comp_nacl = true; 438 439 if (!se_tpg) { 440 transport_free_session(se_sess); 441 return; 442 } 443 se_tfo = se_tpg->se_tpg_tfo; 444 445 spin_lock_irqsave(&se_tpg->session_lock, flags); 446 list_del(&se_sess->sess_list); 447 se_sess->se_tpg = NULL; 448 se_sess->fabric_sess_ptr = NULL; 449 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 450 451 /* 452 * Determine if we need to do extra work for this initiator node's 453 * struct se_node_acl if it had been previously dynamically generated. 454 */ 455 se_nacl = se_sess->se_node_acl; 456 457 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 458 if (se_nacl && se_nacl->dynamic_node_acl) { 459 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 460 list_del(&se_nacl->acl_list); 461 se_tpg->num_node_acls--; 462 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 463 core_tpg_wait_for_nacl_pr_ref(se_nacl); 464 core_free_device_list_for_node(se_nacl, se_tpg); 465 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 466 467 comp_nacl = false; 468 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 469 } 470 } 471 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 472 473 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 474 se_tpg->se_tpg_tfo->get_fabric_name()); 475 /* 476 * If last kref is dropping now for an explict NodeACL, awake sleeping 477 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 478 * removal context. 479 */ 480 if (se_nacl && comp_nacl == true) 481 target_put_nacl(se_nacl); 482 483 transport_free_session(se_sess); 484 } 485 EXPORT_SYMBOL(transport_deregister_session); 486 487 /* 488 * Called with cmd->t_state_lock held. 489 */ 490 static void target_remove_from_state_list(struct se_cmd *cmd) 491 { 492 struct se_device *dev = cmd->se_dev; 493 unsigned long flags; 494 495 if (!dev) 496 return; 497 498 if (cmd->transport_state & CMD_T_BUSY) 499 return; 500 501 spin_lock_irqsave(&dev->execute_task_lock, flags); 502 if (cmd->state_active) { 503 list_del(&cmd->state_list); 504 cmd->state_active = false; 505 } 506 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 507 } 508 509 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 510 bool write_pending) 511 { 512 unsigned long flags; 513 514 spin_lock_irqsave(&cmd->t_state_lock, flags); 515 if (write_pending) 516 cmd->t_state = TRANSPORT_WRITE_PENDING; 517 518 /* 519 * Determine if IOCTL context caller in requesting the stopping of this 520 * command for LUN shutdown purposes. 521 */ 522 if (cmd->transport_state & CMD_T_LUN_STOP) { 523 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 524 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 525 526 cmd->transport_state &= ~CMD_T_ACTIVE; 527 if (remove_from_lists) 528 target_remove_from_state_list(cmd); 529 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 530 531 complete(&cmd->transport_lun_stop_comp); 532 return 1; 533 } 534 535 if (remove_from_lists) { 536 target_remove_from_state_list(cmd); 537 538 /* 539 * Clear struct se_cmd->se_lun before the handoff to FE. 540 */ 541 cmd->se_lun = NULL; 542 } 543 544 /* 545 * Determine if frontend context caller is requesting the stopping of 546 * this command for frontend exceptions. 547 */ 548 if (cmd->transport_state & CMD_T_STOP) { 549 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 550 __func__, __LINE__, 551 cmd->se_tfo->get_task_tag(cmd)); 552 553 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 554 555 complete(&cmd->t_transport_stop_comp); 556 return 1; 557 } 558 559 cmd->transport_state &= ~CMD_T_ACTIVE; 560 if (remove_from_lists) { 561 /* 562 * Some fabric modules like tcm_loop can release 563 * their internally allocated I/O reference now and 564 * struct se_cmd now. 565 * 566 * Fabric modules are expected to return '1' here if the 567 * se_cmd being passed is released at this point, 568 * or zero if not being released. 569 */ 570 if (cmd->se_tfo->check_stop_free != NULL) { 571 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 572 return cmd->se_tfo->check_stop_free(cmd); 573 } 574 } 575 576 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 577 return 0; 578 } 579 580 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 581 { 582 return transport_cmd_check_stop(cmd, true, false); 583 } 584 585 static void transport_lun_remove_cmd(struct se_cmd *cmd) 586 { 587 struct se_lun *lun = cmd->se_lun; 588 unsigned long flags; 589 590 if (!lun) 591 return; 592 593 spin_lock_irqsave(&lun->lun_cmd_lock, flags); 594 if (!list_empty(&cmd->se_lun_node)) 595 list_del_init(&cmd->se_lun_node); 596 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); 597 } 598 599 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 600 { 601 if (transport_cmd_check_stop_to_fabric(cmd)) 602 return; 603 if (remove) 604 transport_put_cmd(cmd); 605 } 606 607 static void target_complete_failure_work(struct work_struct *work) 608 { 609 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 610 611 transport_generic_request_failure(cmd, 612 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 613 } 614 615 /* 616 * Used when asking transport to copy Sense Data from the underlying 617 * Linux/SCSI struct scsi_cmnd 618 */ 619 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 620 { 621 struct se_device *dev = cmd->se_dev; 622 623 WARN_ON(!cmd->se_lun); 624 625 if (!dev) 626 return NULL; 627 628 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 629 return NULL; 630 631 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 632 633 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 634 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 635 return cmd->sense_buffer; 636 } 637 638 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 639 { 640 struct se_device *dev = cmd->se_dev; 641 int success = scsi_status == GOOD; 642 unsigned long flags; 643 644 cmd->scsi_status = scsi_status; 645 646 647 spin_lock_irqsave(&cmd->t_state_lock, flags); 648 cmd->transport_state &= ~CMD_T_BUSY; 649 650 if (dev && dev->transport->transport_complete) { 651 dev->transport->transport_complete(cmd, 652 cmd->t_data_sg, 653 transport_get_sense_buffer(cmd)); 654 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 655 success = 1; 656 } 657 658 /* 659 * See if we are waiting to complete for an exception condition. 660 */ 661 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 662 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 663 complete(&cmd->task_stop_comp); 664 return; 665 } 666 667 if (!success) 668 cmd->transport_state |= CMD_T_FAILED; 669 670 /* 671 * Check for case where an explict ABORT_TASK has been received 672 * and transport_wait_for_tasks() will be waiting for completion.. 673 */ 674 if (cmd->transport_state & CMD_T_ABORTED && 675 cmd->transport_state & CMD_T_STOP) { 676 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 677 complete(&cmd->t_transport_stop_comp); 678 return; 679 } else if (cmd->transport_state & CMD_T_FAILED) { 680 INIT_WORK(&cmd->work, target_complete_failure_work); 681 } else { 682 INIT_WORK(&cmd->work, target_complete_ok_work); 683 } 684 685 cmd->t_state = TRANSPORT_COMPLETE; 686 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 687 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 688 689 queue_work(target_completion_wq, &cmd->work); 690 } 691 EXPORT_SYMBOL(target_complete_cmd); 692 693 static void target_add_to_state_list(struct se_cmd *cmd) 694 { 695 struct se_device *dev = cmd->se_dev; 696 unsigned long flags; 697 698 spin_lock_irqsave(&dev->execute_task_lock, flags); 699 if (!cmd->state_active) { 700 list_add_tail(&cmd->state_list, &dev->state_list); 701 cmd->state_active = true; 702 } 703 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 704 } 705 706 /* 707 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 708 */ 709 static void transport_write_pending_qf(struct se_cmd *cmd); 710 static void transport_complete_qf(struct se_cmd *cmd); 711 712 void target_qf_do_work(struct work_struct *work) 713 { 714 struct se_device *dev = container_of(work, struct se_device, 715 qf_work_queue); 716 LIST_HEAD(qf_cmd_list); 717 struct se_cmd *cmd, *cmd_tmp; 718 719 spin_lock_irq(&dev->qf_cmd_lock); 720 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 721 spin_unlock_irq(&dev->qf_cmd_lock); 722 723 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 724 list_del(&cmd->se_qf_node); 725 atomic_dec(&dev->dev_qf_count); 726 smp_mb__after_atomic_dec(); 727 728 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 729 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 730 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 731 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 732 : "UNKNOWN"); 733 734 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 735 transport_write_pending_qf(cmd); 736 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 737 transport_complete_qf(cmd); 738 } 739 } 740 741 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 742 { 743 switch (cmd->data_direction) { 744 case DMA_NONE: 745 return "NONE"; 746 case DMA_FROM_DEVICE: 747 return "READ"; 748 case DMA_TO_DEVICE: 749 return "WRITE"; 750 case DMA_BIDIRECTIONAL: 751 return "BIDI"; 752 default: 753 break; 754 } 755 756 return "UNKNOWN"; 757 } 758 759 void transport_dump_dev_state( 760 struct se_device *dev, 761 char *b, 762 int *bl) 763 { 764 *bl += sprintf(b + *bl, "Status: "); 765 if (dev->export_count) 766 *bl += sprintf(b + *bl, "ACTIVATED"); 767 else 768 *bl += sprintf(b + *bl, "DEACTIVATED"); 769 770 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 771 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 772 dev->dev_attrib.block_size, 773 dev->dev_attrib.hw_max_sectors); 774 *bl += sprintf(b + *bl, " "); 775 } 776 777 void transport_dump_vpd_proto_id( 778 struct t10_vpd *vpd, 779 unsigned char *p_buf, 780 int p_buf_len) 781 { 782 unsigned char buf[VPD_TMP_BUF_SIZE]; 783 int len; 784 785 memset(buf, 0, VPD_TMP_BUF_SIZE); 786 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 787 788 switch (vpd->protocol_identifier) { 789 case 0x00: 790 sprintf(buf+len, "Fibre Channel\n"); 791 break; 792 case 0x10: 793 sprintf(buf+len, "Parallel SCSI\n"); 794 break; 795 case 0x20: 796 sprintf(buf+len, "SSA\n"); 797 break; 798 case 0x30: 799 sprintf(buf+len, "IEEE 1394\n"); 800 break; 801 case 0x40: 802 sprintf(buf+len, "SCSI Remote Direct Memory Access" 803 " Protocol\n"); 804 break; 805 case 0x50: 806 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 807 break; 808 case 0x60: 809 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 810 break; 811 case 0x70: 812 sprintf(buf+len, "Automation/Drive Interface Transport" 813 " Protocol\n"); 814 break; 815 case 0x80: 816 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 817 break; 818 default: 819 sprintf(buf+len, "Unknown 0x%02x\n", 820 vpd->protocol_identifier); 821 break; 822 } 823 824 if (p_buf) 825 strncpy(p_buf, buf, p_buf_len); 826 else 827 pr_debug("%s", buf); 828 } 829 830 void 831 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 832 { 833 /* 834 * Check if the Protocol Identifier Valid (PIV) bit is set.. 835 * 836 * from spc3r23.pdf section 7.5.1 837 */ 838 if (page_83[1] & 0x80) { 839 vpd->protocol_identifier = (page_83[0] & 0xf0); 840 vpd->protocol_identifier_set = 1; 841 transport_dump_vpd_proto_id(vpd, NULL, 0); 842 } 843 } 844 EXPORT_SYMBOL(transport_set_vpd_proto_id); 845 846 int transport_dump_vpd_assoc( 847 struct t10_vpd *vpd, 848 unsigned char *p_buf, 849 int p_buf_len) 850 { 851 unsigned char buf[VPD_TMP_BUF_SIZE]; 852 int ret = 0; 853 int len; 854 855 memset(buf, 0, VPD_TMP_BUF_SIZE); 856 len = sprintf(buf, "T10 VPD Identifier Association: "); 857 858 switch (vpd->association) { 859 case 0x00: 860 sprintf(buf+len, "addressed logical unit\n"); 861 break; 862 case 0x10: 863 sprintf(buf+len, "target port\n"); 864 break; 865 case 0x20: 866 sprintf(buf+len, "SCSI target device\n"); 867 break; 868 default: 869 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 870 ret = -EINVAL; 871 break; 872 } 873 874 if (p_buf) 875 strncpy(p_buf, buf, p_buf_len); 876 else 877 pr_debug("%s", buf); 878 879 return ret; 880 } 881 882 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 883 { 884 /* 885 * The VPD identification association.. 886 * 887 * from spc3r23.pdf Section 7.6.3.1 Table 297 888 */ 889 vpd->association = (page_83[1] & 0x30); 890 return transport_dump_vpd_assoc(vpd, NULL, 0); 891 } 892 EXPORT_SYMBOL(transport_set_vpd_assoc); 893 894 int transport_dump_vpd_ident_type( 895 struct t10_vpd *vpd, 896 unsigned char *p_buf, 897 int p_buf_len) 898 { 899 unsigned char buf[VPD_TMP_BUF_SIZE]; 900 int ret = 0; 901 int len; 902 903 memset(buf, 0, VPD_TMP_BUF_SIZE); 904 len = sprintf(buf, "T10 VPD Identifier Type: "); 905 906 switch (vpd->device_identifier_type) { 907 case 0x00: 908 sprintf(buf+len, "Vendor specific\n"); 909 break; 910 case 0x01: 911 sprintf(buf+len, "T10 Vendor ID based\n"); 912 break; 913 case 0x02: 914 sprintf(buf+len, "EUI-64 based\n"); 915 break; 916 case 0x03: 917 sprintf(buf+len, "NAA\n"); 918 break; 919 case 0x04: 920 sprintf(buf+len, "Relative target port identifier\n"); 921 break; 922 case 0x08: 923 sprintf(buf+len, "SCSI name string\n"); 924 break; 925 default: 926 sprintf(buf+len, "Unsupported: 0x%02x\n", 927 vpd->device_identifier_type); 928 ret = -EINVAL; 929 break; 930 } 931 932 if (p_buf) { 933 if (p_buf_len < strlen(buf)+1) 934 return -EINVAL; 935 strncpy(p_buf, buf, p_buf_len); 936 } else { 937 pr_debug("%s", buf); 938 } 939 940 return ret; 941 } 942 943 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 944 { 945 /* 946 * The VPD identifier type.. 947 * 948 * from spc3r23.pdf Section 7.6.3.1 Table 298 949 */ 950 vpd->device_identifier_type = (page_83[1] & 0x0f); 951 return transport_dump_vpd_ident_type(vpd, NULL, 0); 952 } 953 EXPORT_SYMBOL(transport_set_vpd_ident_type); 954 955 int transport_dump_vpd_ident( 956 struct t10_vpd *vpd, 957 unsigned char *p_buf, 958 int p_buf_len) 959 { 960 unsigned char buf[VPD_TMP_BUF_SIZE]; 961 int ret = 0; 962 963 memset(buf, 0, VPD_TMP_BUF_SIZE); 964 965 switch (vpd->device_identifier_code_set) { 966 case 0x01: /* Binary */ 967 snprintf(buf, sizeof(buf), 968 "T10 VPD Binary Device Identifier: %s\n", 969 &vpd->device_identifier[0]); 970 break; 971 case 0x02: /* ASCII */ 972 snprintf(buf, sizeof(buf), 973 "T10 VPD ASCII Device Identifier: %s\n", 974 &vpd->device_identifier[0]); 975 break; 976 case 0x03: /* UTF-8 */ 977 snprintf(buf, sizeof(buf), 978 "T10 VPD UTF-8 Device Identifier: %s\n", 979 &vpd->device_identifier[0]); 980 break; 981 default: 982 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 983 " 0x%02x", vpd->device_identifier_code_set); 984 ret = -EINVAL; 985 break; 986 } 987 988 if (p_buf) 989 strncpy(p_buf, buf, p_buf_len); 990 else 991 pr_debug("%s", buf); 992 993 return ret; 994 } 995 996 int 997 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 998 { 999 static const char hex_str[] = "0123456789abcdef"; 1000 int j = 0, i = 4; /* offset to start of the identifier */ 1001 1002 /* 1003 * The VPD Code Set (encoding) 1004 * 1005 * from spc3r23.pdf Section 7.6.3.1 Table 296 1006 */ 1007 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1008 switch (vpd->device_identifier_code_set) { 1009 case 0x01: /* Binary */ 1010 vpd->device_identifier[j++] = 1011 hex_str[vpd->device_identifier_type]; 1012 while (i < (4 + page_83[3])) { 1013 vpd->device_identifier[j++] = 1014 hex_str[(page_83[i] & 0xf0) >> 4]; 1015 vpd->device_identifier[j++] = 1016 hex_str[page_83[i] & 0x0f]; 1017 i++; 1018 } 1019 break; 1020 case 0x02: /* ASCII */ 1021 case 0x03: /* UTF-8 */ 1022 while (i < (4 + page_83[3])) 1023 vpd->device_identifier[j++] = page_83[i++]; 1024 break; 1025 default: 1026 break; 1027 } 1028 1029 return transport_dump_vpd_ident(vpd, NULL, 0); 1030 } 1031 EXPORT_SYMBOL(transport_set_vpd_ident); 1032 1033 sense_reason_t 1034 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1035 { 1036 struct se_device *dev = cmd->se_dev; 1037 1038 if (cmd->unknown_data_length) { 1039 cmd->data_length = size; 1040 } else if (size != cmd->data_length) { 1041 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1042 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1043 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1044 cmd->data_length, size, cmd->t_task_cdb[0]); 1045 1046 if (cmd->data_direction == DMA_TO_DEVICE) { 1047 pr_err("Rejecting underflow/overflow" 1048 " WRITE data\n"); 1049 return TCM_INVALID_CDB_FIELD; 1050 } 1051 /* 1052 * Reject READ_* or WRITE_* with overflow/underflow for 1053 * type SCF_SCSI_DATA_CDB. 1054 */ 1055 if (dev->dev_attrib.block_size != 512) { 1056 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1057 " CDB on non 512-byte sector setup subsystem" 1058 " plugin: %s\n", dev->transport->name); 1059 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1060 return TCM_INVALID_CDB_FIELD; 1061 } 1062 /* 1063 * For the overflow case keep the existing fabric provided 1064 * ->data_length. Otherwise for the underflow case, reset 1065 * ->data_length to the smaller SCSI expected data transfer 1066 * length. 1067 */ 1068 if (size > cmd->data_length) { 1069 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1070 cmd->residual_count = (size - cmd->data_length); 1071 } else { 1072 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1073 cmd->residual_count = (cmd->data_length - size); 1074 cmd->data_length = size; 1075 } 1076 } 1077 1078 return 0; 1079 1080 } 1081 1082 /* 1083 * Used by fabric modules containing a local struct se_cmd within their 1084 * fabric dependent per I/O descriptor. 1085 */ 1086 void transport_init_se_cmd( 1087 struct se_cmd *cmd, 1088 struct target_core_fabric_ops *tfo, 1089 struct se_session *se_sess, 1090 u32 data_length, 1091 int data_direction, 1092 int task_attr, 1093 unsigned char *sense_buffer) 1094 { 1095 INIT_LIST_HEAD(&cmd->se_lun_node); 1096 INIT_LIST_HEAD(&cmd->se_delayed_node); 1097 INIT_LIST_HEAD(&cmd->se_qf_node); 1098 INIT_LIST_HEAD(&cmd->se_cmd_list); 1099 INIT_LIST_HEAD(&cmd->state_list); 1100 init_completion(&cmd->transport_lun_fe_stop_comp); 1101 init_completion(&cmd->transport_lun_stop_comp); 1102 init_completion(&cmd->t_transport_stop_comp); 1103 init_completion(&cmd->cmd_wait_comp); 1104 init_completion(&cmd->task_stop_comp); 1105 spin_lock_init(&cmd->t_state_lock); 1106 cmd->transport_state = CMD_T_DEV_ACTIVE; 1107 1108 cmd->se_tfo = tfo; 1109 cmd->se_sess = se_sess; 1110 cmd->data_length = data_length; 1111 cmd->data_direction = data_direction; 1112 cmd->sam_task_attr = task_attr; 1113 cmd->sense_buffer = sense_buffer; 1114 1115 cmd->state_active = false; 1116 } 1117 EXPORT_SYMBOL(transport_init_se_cmd); 1118 1119 static sense_reason_t 1120 transport_check_alloc_task_attr(struct se_cmd *cmd) 1121 { 1122 struct se_device *dev = cmd->se_dev; 1123 1124 /* 1125 * Check if SAM Task Attribute emulation is enabled for this 1126 * struct se_device storage object 1127 */ 1128 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1129 return 0; 1130 1131 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1132 pr_debug("SAM Task Attribute ACA" 1133 " emulation is not supported\n"); 1134 return TCM_INVALID_CDB_FIELD; 1135 } 1136 /* 1137 * Used to determine when ORDERED commands should go from 1138 * Dormant to Active status. 1139 */ 1140 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1141 smp_mb__after_atomic_inc(); 1142 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1143 cmd->se_ordered_id, cmd->sam_task_attr, 1144 dev->transport->name); 1145 return 0; 1146 } 1147 1148 sense_reason_t 1149 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1150 { 1151 struct se_device *dev = cmd->se_dev; 1152 sense_reason_t ret; 1153 1154 /* 1155 * Ensure that the received CDB is less than the max (252 + 8) bytes 1156 * for VARIABLE_LENGTH_CMD 1157 */ 1158 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1159 pr_err("Received SCSI CDB with command_size: %d that" 1160 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1161 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1162 return TCM_INVALID_CDB_FIELD; 1163 } 1164 /* 1165 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1166 * allocate the additional extended CDB buffer now.. Otherwise 1167 * setup the pointer from __t_task_cdb to t_task_cdb. 1168 */ 1169 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1170 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1171 GFP_KERNEL); 1172 if (!cmd->t_task_cdb) { 1173 pr_err("Unable to allocate cmd->t_task_cdb" 1174 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1175 scsi_command_size(cdb), 1176 (unsigned long)sizeof(cmd->__t_task_cdb)); 1177 return TCM_OUT_OF_RESOURCES; 1178 } 1179 } else 1180 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1181 /* 1182 * Copy the original CDB into cmd-> 1183 */ 1184 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1185 1186 trace_target_sequencer_start(cmd); 1187 1188 /* 1189 * Check for an existing UNIT ATTENTION condition 1190 */ 1191 ret = target_scsi3_ua_check(cmd); 1192 if (ret) 1193 return ret; 1194 1195 ret = target_alua_state_check(cmd); 1196 if (ret) 1197 return ret; 1198 1199 ret = target_check_reservation(cmd); 1200 if (ret) { 1201 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1202 return ret; 1203 } 1204 1205 ret = dev->transport->parse_cdb(cmd); 1206 if (ret) 1207 return ret; 1208 1209 ret = transport_check_alloc_task_attr(cmd); 1210 if (ret) 1211 return ret; 1212 1213 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1214 1215 spin_lock(&cmd->se_lun->lun_sep_lock); 1216 if (cmd->se_lun->lun_sep) 1217 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1218 spin_unlock(&cmd->se_lun->lun_sep_lock); 1219 return 0; 1220 } 1221 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1222 1223 /* 1224 * Used by fabric module frontends to queue tasks directly. 1225 * Many only be used from process context only 1226 */ 1227 int transport_handle_cdb_direct( 1228 struct se_cmd *cmd) 1229 { 1230 sense_reason_t ret; 1231 1232 if (!cmd->se_lun) { 1233 dump_stack(); 1234 pr_err("cmd->se_lun is NULL\n"); 1235 return -EINVAL; 1236 } 1237 if (in_interrupt()) { 1238 dump_stack(); 1239 pr_err("transport_generic_handle_cdb cannot be called" 1240 " from interrupt context\n"); 1241 return -EINVAL; 1242 } 1243 /* 1244 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1245 * outstanding descriptors are handled correctly during shutdown via 1246 * transport_wait_for_tasks() 1247 * 1248 * Also, we don't take cmd->t_state_lock here as we only expect 1249 * this to be called for initial descriptor submission. 1250 */ 1251 cmd->t_state = TRANSPORT_NEW_CMD; 1252 cmd->transport_state |= CMD_T_ACTIVE; 1253 1254 /* 1255 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1256 * so follow TRANSPORT_NEW_CMD processing thread context usage 1257 * and call transport_generic_request_failure() if necessary.. 1258 */ 1259 ret = transport_generic_new_cmd(cmd); 1260 if (ret) 1261 transport_generic_request_failure(cmd, ret); 1262 return 0; 1263 } 1264 EXPORT_SYMBOL(transport_handle_cdb_direct); 1265 1266 sense_reason_t 1267 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1268 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1269 { 1270 if (!sgl || !sgl_count) 1271 return 0; 1272 1273 /* 1274 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1275 * scatterlists already have been set to follow what the fabric 1276 * passes for the original expected data transfer length. 1277 */ 1278 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1279 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1280 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1281 return TCM_INVALID_CDB_FIELD; 1282 } 1283 1284 cmd->t_data_sg = sgl; 1285 cmd->t_data_nents = sgl_count; 1286 1287 if (sgl_bidi && sgl_bidi_count) { 1288 cmd->t_bidi_data_sg = sgl_bidi; 1289 cmd->t_bidi_data_nents = sgl_bidi_count; 1290 } 1291 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1292 return 0; 1293 } 1294 1295 /* 1296 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1297 * se_cmd + use pre-allocated SGL memory. 1298 * 1299 * @se_cmd: command descriptor to submit 1300 * @se_sess: associated se_sess for endpoint 1301 * @cdb: pointer to SCSI CDB 1302 * @sense: pointer to SCSI sense buffer 1303 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1304 * @data_length: fabric expected data transfer length 1305 * @task_addr: SAM task attribute 1306 * @data_dir: DMA data direction 1307 * @flags: flags for command submission from target_sc_flags_tables 1308 * @sgl: struct scatterlist memory for unidirectional mapping 1309 * @sgl_count: scatterlist count for unidirectional mapping 1310 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1311 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1312 * 1313 * Returns non zero to signal active I/O shutdown failure. All other 1314 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1315 * but still return zero here. 1316 * 1317 * This may only be called from process context, and also currently 1318 * assumes internal allocation of fabric payload buffer by target-core. 1319 */ 1320 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1321 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1322 u32 data_length, int task_attr, int data_dir, int flags, 1323 struct scatterlist *sgl, u32 sgl_count, 1324 struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1325 { 1326 struct se_portal_group *se_tpg; 1327 sense_reason_t rc; 1328 int ret; 1329 1330 se_tpg = se_sess->se_tpg; 1331 BUG_ON(!se_tpg); 1332 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1333 BUG_ON(in_interrupt()); 1334 /* 1335 * Initialize se_cmd for target operation. From this point 1336 * exceptions are handled by sending exception status via 1337 * target_core_fabric_ops->queue_status() callback 1338 */ 1339 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1340 data_length, data_dir, task_attr, sense); 1341 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1342 se_cmd->unknown_data_length = 1; 1343 /* 1344 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1345 * se_sess->sess_cmd_list. A second kref_get here is necessary 1346 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1347 * kref_put() to happen during fabric packet acknowledgement. 1348 */ 1349 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1350 if (ret) 1351 return ret; 1352 /* 1353 * Signal bidirectional data payloads to target-core 1354 */ 1355 if (flags & TARGET_SCF_BIDI_OP) 1356 se_cmd->se_cmd_flags |= SCF_BIDI; 1357 /* 1358 * Locate se_lun pointer and attach it to struct se_cmd 1359 */ 1360 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1361 if (rc) { 1362 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1363 target_put_sess_cmd(se_sess, se_cmd); 1364 return 0; 1365 } 1366 1367 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1368 if (rc != 0) { 1369 transport_generic_request_failure(se_cmd, rc); 1370 return 0; 1371 } 1372 /* 1373 * When a non zero sgl_count has been passed perform SGL passthrough 1374 * mapping for pre-allocated fabric memory instead of having target 1375 * core perform an internal SGL allocation.. 1376 */ 1377 if (sgl_count != 0) { 1378 BUG_ON(!sgl); 1379 1380 /* 1381 * A work-around for tcm_loop as some userspace code via 1382 * scsi-generic do not memset their associated read buffers, 1383 * so go ahead and do that here for type non-data CDBs. Also 1384 * note that this is currently guaranteed to be a single SGL 1385 * for this case by target core in target_setup_cmd_from_cdb() 1386 * -> transport_generic_cmd_sequencer(). 1387 */ 1388 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1389 se_cmd->data_direction == DMA_FROM_DEVICE) { 1390 unsigned char *buf = NULL; 1391 1392 if (sgl) 1393 buf = kmap(sg_page(sgl)) + sgl->offset; 1394 1395 if (buf) { 1396 memset(buf, 0, sgl->length); 1397 kunmap(sg_page(sgl)); 1398 } 1399 } 1400 1401 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1402 sgl_bidi, sgl_bidi_count); 1403 if (rc != 0) { 1404 transport_generic_request_failure(se_cmd, rc); 1405 return 0; 1406 } 1407 } 1408 /* 1409 * Check if we need to delay processing because of ALUA 1410 * Active/NonOptimized primary access state.. 1411 */ 1412 core_alua_check_nonop_delay(se_cmd); 1413 1414 transport_handle_cdb_direct(se_cmd); 1415 return 0; 1416 } 1417 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1418 1419 /* 1420 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1421 * 1422 * @se_cmd: command descriptor to submit 1423 * @se_sess: associated se_sess for endpoint 1424 * @cdb: pointer to SCSI CDB 1425 * @sense: pointer to SCSI sense buffer 1426 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1427 * @data_length: fabric expected data transfer length 1428 * @task_addr: SAM task attribute 1429 * @data_dir: DMA data direction 1430 * @flags: flags for command submission from target_sc_flags_tables 1431 * 1432 * Returns non zero to signal active I/O shutdown failure. All other 1433 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1434 * but still return zero here. 1435 * 1436 * This may only be called from process context, and also currently 1437 * assumes internal allocation of fabric payload buffer by target-core. 1438 * 1439 * It also assumes interal target core SGL memory allocation. 1440 */ 1441 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1442 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1443 u32 data_length, int task_attr, int data_dir, int flags) 1444 { 1445 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1446 unpacked_lun, data_length, task_attr, data_dir, 1447 flags, NULL, 0, NULL, 0); 1448 } 1449 EXPORT_SYMBOL(target_submit_cmd); 1450 1451 static void target_complete_tmr_failure(struct work_struct *work) 1452 { 1453 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1454 1455 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1456 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1457 1458 transport_cmd_check_stop_to_fabric(se_cmd); 1459 } 1460 1461 /** 1462 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1463 * for TMR CDBs 1464 * 1465 * @se_cmd: command descriptor to submit 1466 * @se_sess: associated se_sess for endpoint 1467 * @sense: pointer to SCSI sense buffer 1468 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1469 * @fabric_context: fabric context for TMR req 1470 * @tm_type: Type of TM request 1471 * @gfp: gfp type for caller 1472 * @tag: referenced task tag for TMR_ABORT_TASK 1473 * @flags: submit cmd flags 1474 * 1475 * Callable from all contexts. 1476 **/ 1477 1478 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1479 unsigned char *sense, u32 unpacked_lun, 1480 void *fabric_tmr_ptr, unsigned char tm_type, 1481 gfp_t gfp, unsigned int tag, int flags) 1482 { 1483 struct se_portal_group *se_tpg; 1484 int ret; 1485 1486 se_tpg = se_sess->se_tpg; 1487 BUG_ON(!se_tpg); 1488 1489 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1490 0, DMA_NONE, MSG_SIMPLE_TAG, sense); 1491 /* 1492 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1493 * allocation failure. 1494 */ 1495 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1496 if (ret < 0) 1497 return -ENOMEM; 1498 1499 if (tm_type == TMR_ABORT_TASK) 1500 se_cmd->se_tmr_req->ref_task_tag = tag; 1501 1502 /* See target_submit_cmd for commentary */ 1503 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1504 if (ret) { 1505 core_tmr_release_req(se_cmd->se_tmr_req); 1506 return ret; 1507 } 1508 1509 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1510 if (ret) { 1511 /* 1512 * For callback during failure handling, push this work off 1513 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1514 */ 1515 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1516 schedule_work(&se_cmd->work); 1517 return 0; 1518 } 1519 transport_generic_handle_tmr(se_cmd); 1520 return 0; 1521 } 1522 EXPORT_SYMBOL(target_submit_tmr); 1523 1524 /* 1525 * If the cmd is active, request it to be stopped and sleep until it 1526 * has completed. 1527 */ 1528 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1529 { 1530 bool was_active = false; 1531 1532 if (cmd->transport_state & CMD_T_BUSY) { 1533 cmd->transport_state |= CMD_T_REQUEST_STOP; 1534 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1535 1536 pr_debug("cmd %p waiting to complete\n", cmd); 1537 wait_for_completion(&cmd->task_stop_comp); 1538 pr_debug("cmd %p stopped successfully\n", cmd); 1539 1540 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1541 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1542 cmd->transport_state &= ~CMD_T_BUSY; 1543 was_active = true; 1544 } 1545 1546 return was_active; 1547 } 1548 1549 /* 1550 * Handle SAM-esque emulation for generic transport request failures. 1551 */ 1552 void transport_generic_request_failure(struct se_cmd *cmd, 1553 sense_reason_t sense_reason) 1554 { 1555 int ret = 0; 1556 1557 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1558 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1559 cmd->t_task_cdb[0]); 1560 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1561 cmd->se_tfo->get_cmd_state(cmd), 1562 cmd->t_state, sense_reason); 1563 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1564 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1565 (cmd->transport_state & CMD_T_STOP) != 0, 1566 (cmd->transport_state & CMD_T_SENT) != 0); 1567 1568 /* 1569 * For SAM Task Attribute emulation for failed struct se_cmd 1570 */ 1571 transport_complete_task_attr(cmd); 1572 /* 1573 * Handle special case for COMPARE_AND_WRITE failure, where the 1574 * callback is expected to drop the per device ->caw_mutex. 1575 */ 1576 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1577 cmd->transport_complete_callback) 1578 cmd->transport_complete_callback(cmd); 1579 1580 switch (sense_reason) { 1581 case TCM_NON_EXISTENT_LUN: 1582 case TCM_UNSUPPORTED_SCSI_OPCODE: 1583 case TCM_INVALID_CDB_FIELD: 1584 case TCM_INVALID_PARAMETER_LIST: 1585 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1586 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1587 case TCM_UNKNOWN_MODE_PAGE: 1588 case TCM_WRITE_PROTECTED: 1589 case TCM_ADDRESS_OUT_OF_RANGE: 1590 case TCM_CHECK_CONDITION_ABORT_CMD: 1591 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1592 case TCM_CHECK_CONDITION_NOT_READY: 1593 break; 1594 case TCM_OUT_OF_RESOURCES: 1595 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1596 break; 1597 case TCM_RESERVATION_CONFLICT: 1598 /* 1599 * No SENSE Data payload for this case, set SCSI Status 1600 * and queue the response to $FABRIC_MOD. 1601 * 1602 * Uses linux/include/scsi/scsi.h SAM status codes defs 1603 */ 1604 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1605 /* 1606 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1607 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1608 * CONFLICT STATUS. 1609 * 1610 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1611 */ 1612 if (cmd->se_sess && 1613 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1614 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1615 cmd->orig_fe_lun, 0x2C, 1616 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1617 1618 trace_target_cmd_complete(cmd); 1619 ret = cmd->se_tfo-> queue_status(cmd); 1620 if (ret == -EAGAIN || ret == -ENOMEM) 1621 goto queue_full; 1622 goto check_stop; 1623 default: 1624 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1625 cmd->t_task_cdb[0], sense_reason); 1626 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1627 break; 1628 } 1629 1630 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1631 if (ret == -EAGAIN || ret == -ENOMEM) 1632 goto queue_full; 1633 1634 check_stop: 1635 transport_lun_remove_cmd(cmd); 1636 if (!transport_cmd_check_stop_to_fabric(cmd)) 1637 ; 1638 return; 1639 1640 queue_full: 1641 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1642 transport_handle_queue_full(cmd, cmd->se_dev); 1643 } 1644 EXPORT_SYMBOL(transport_generic_request_failure); 1645 1646 void __target_execute_cmd(struct se_cmd *cmd) 1647 { 1648 sense_reason_t ret; 1649 1650 if (cmd->execute_cmd) { 1651 ret = cmd->execute_cmd(cmd); 1652 if (ret) { 1653 spin_lock_irq(&cmd->t_state_lock); 1654 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1655 spin_unlock_irq(&cmd->t_state_lock); 1656 1657 transport_generic_request_failure(cmd, ret); 1658 } 1659 } 1660 } 1661 1662 static bool target_handle_task_attr(struct se_cmd *cmd) 1663 { 1664 struct se_device *dev = cmd->se_dev; 1665 1666 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1667 return false; 1668 1669 /* 1670 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1671 * to allow the passed struct se_cmd list of tasks to the front of the list. 1672 */ 1673 switch (cmd->sam_task_attr) { 1674 case MSG_HEAD_TAG: 1675 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1676 "se_ordered_id: %u\n", 1677 cmd->t_task_cdb[0], cmd->se_ordered_id); 1678 return false; 1679 case MSG_ORDERED_TAG: 1680 atomic_inc(&dev->dev_ordered_sync); 1681 smp_mb__after_atomic_inc(); 1682 1683 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1684 " se_ordered_id: %u\n", 1685 cmd->t_task_cdb[0], cmd->se_ordered_id); 1686 1687 /* 1688 * Execute an ORDERED command if no other older commands 1689 * exist that need to be completed first. 1690 */ 1691 if (!atomic_read(&dev->simple_cmds)) 1692 return false; 1693 break; 1694 default: 1695 /* 1696 * For SIMPLE and UNTAGGED Task Attribute commands 1697 */ 1698 atomic_inc(&dev->simple_cmds); 1699 smp_mb__after_atomic_inc(); 1700 break; 1701 } 1702 1703 if (atomic_read(&dev->dev_ordered_sync) == 0) 1704 return false; 1705 1706 spin_lock(&dev->delayed_cmd_lock); 1707 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1708 spin_unlock(&dev->delayed_cmd_lock); 1709 1710 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1711 " delayed CMD list, se_ordered_id: %u\n", 1712 cmd->t_task_cdb[0], cmd->sam_task_attr, 1713 cmd->se_ordered_id); 1714 return true; 1715 } 1716 1717 void target_execute_cmd(struct se_cmd *cmd) 1718 { 1719 /* 1720 * If the received CDB has aleady been aborted stop processing it here. 1721 */ 1722 if (transport_check_aborted_status(cmd, 1)) { 1723 complete(&cmd->transport_lun_stop_comp); 1724 return; 1725 } 1726 1727 /* 1728 * Determine if IOCTL context caller in requesting the stopping of this 1729 * command for LUN shutdown purposes. 1730 */ 1731 spin_lock_irq(&cmd->t_state_lock); 1732 if (cmd->transport_state & CMD_T_LUN_STOP) { 1733 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 1734 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 1735 1736 cmd->transport_state &= ~CMD_T_ACTIVE; 1737 spin_unlock_irq(&cmd->t_state_lock); 1738 complete(&cmd->transport_lun_stop_comp); 1739 return; 1740 } 1741 /* 1742 * Determine if frontend context caller is requesting the stopping of 1743 * this command for frontend exceptions. 1744 */ 1745 if (cmd->transport_state & CMD_T_STOP) { 1746 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1747 __func__, __LINE__, 1748 cmd->se_tfo->get_task_tag(cmd)); 1749 1750 spin_unlock_irq(&cmd->t_state_lock); 1751 complete(&cmd->t_transport_stop_comp); 1752 return; 1753 } 1754 1755 cmd->t_state = TRANSPORT_PROCESSING; 1756 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1757 spin_unlock_irq(&cmd->t_state_lock); 1758 1759 if (target_handle_task_attr(cmd)) { 1760 spin_lock_irq(&cmd->t_state_lock); 1761 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT; 1762 spin_unlock_irq(&cmd->t_state_lock); 1763 return; 1764 } 1765 1766 __target_execute_cmd(cmd); 1767 } 1768 EXPORT_SYMBOL(target_execute_cmd); 1769 1770 /* 1771 * Process all commands up to the last received ORDERED task attribute which 1772 * requires another blocking boundary 1773 */ 1774 static void target_restart_delayed_cmds(struct se_device *dev) 1775 { 1776 for (;;) { 1777 struct se_cmd *cmd; 1778 1779 spin_lock(&dev->delayed_cmd_lock); 1780 if (list_empty(&dev->delayed_cmd_list)) { 1781 spin_unlock(&dev->delayed_cmd_lock); 1782 break; 1783 } 1784 1785 cmd = list_entry(dev->delayed_cmd_list.next, 1786 struct se_cmd, se_delayed_node); 1787 list_del(&cmd->se_delayed_node); 1788 spin_unlock(&dev->delayed_cmd_lock); 1789 1790 __target_execute_cmd(cmd); 1791 1792 if (cmd->sam_task_attr == MSG_ORDERED_TAG) 1793 break; 1794 } 1795 } 1796 1797 /* 1798 * Called from I/O completion to determine which dormant/delayed 1799 * and ordered cmds need to have their tasks added to the execution queue. 1800 */ 1801 static void transport_complete_task_attr(struct se_cmd *cmd) 1802 { 1803 struct se_device *dev = cmd->se_dev; 1804 1805 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1806 return; 1807 1808 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 1809 atomic_dec(&dev->simple_cmds); 1810 smp_mb__after_atomic_dec(); 1811 dev->dev_cur_ordered_id++; 1812 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1813 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1814 cmd->se_ordered_id); 1815 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 1816 dev->dev_cur_ordered_id++; 1817 pr_debug("Incremented dev_cur_ordered_id: %u for" 1818 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1819 cmd->se_ordered_id); 1820 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 1821 atomic_dec(&dev->dev_ordered_sync); 1822 smp_mb__after_atomic_dec(); 1823 1824 dev->dev_cur_ordered_id++; 1825 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1826 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1827 } 1828 1829 target_restart_delayed_cmds(dev); 1830 } 1831 1832 static void transport_complete_qf(struct se_cmd *cmd) 1833 { 1834 int ret = 0; 1835 1836 transport_complete_task_attr(cmd); 1837 1838 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1839 trace_target_cmd_complete(cmd); 1840 ret = cmd->se_tfo->queue_status(cmd); 1841 if (ret) 1842 goto out; 1843 } 1844 1845 switch (cmd->data_direction) { 1846 case DMA_FROM_DEVICE: 1847 trace_target_cmd_complete(cmd); 1848 ret = cmd->se_tfo->queue_data_in(cmd); 1849 break; 1850 case DMA_TO_DEVICE: 1851 if (cmd->se_cmd_flags & SCF_BIDI) { 1852 ret = cmd->se_tfo->queue_data_in(cmd); 1853 if (ret < 0) 1854 break; 1855 } 1856 /* Fall through for DMA_TO_DEVICE */ 1857 case DMA_NONE: 1858 trace_target_cmd_complete(cmd); 1859 ret = cmd->se_tfo->queue_status(cmd); 1860 break; 1861 default: 1862 break; 1863 } 1864 1865 out: 1866 if (ret < 0) { 1867 transport_handle_queue_full(cmd, cmd->se_dev); 1868 return; 1869 } 1870 transport_lun_remove_cmd(cmd); 1871 transport_cmd_check_stop_to_fabric(cmd); 1872 } 1873 1874 static void transport_handle_queue_full( 1875 struct se_cmd *cmd, 1876 struct se_device *dev) 1877 { 1878 spin_lock_irq(&dev->qf_cmd_lock); 1879 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1880 atomic_inc(&dev->dev_qf_count); 1881 smp_mb__after_atomic_inc(); 1882 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1883 1884 schedule_work(&cmd->se_dev->qf_work_queue); 1885 } 1886 1887 static void target_complete_ok_work(struct work_struct *work) 1888 { 1889 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1890 int ret; 1891 1892 /* 1893 * Check if we need to move delayed/dormant tasks from cmds on the 1894 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1895 * Attribute. 1896 */ 1897 transport_complete_task_attr(cmd); 1898 1899 /* 1900 * Check to schedule QUEUE_FULL work, or execute an existing 1901 * cmd->transport_qf_callback() 1902 */ 1903 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 1904 schedule_work(&cmd->se_dev->qf_work_queue); 1905 1906 /* 1907 * Check if we need to send a sense buffer from 1908 * the struct se_cmd in question. 1909 */ 1910 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1911 WARN_ON(!cmd->scsi_status); 1912 ret = transport_send_check_condition_and_sense( 1913 cmd, 0, 1); 1914 if (ret == -EAGAIN || ret == -ENOMEM) 1915 goto queue_full; 1916 1917 transport_lun_remove_cmd(cmd); 1918 transport_cmd_check_stop_to_fabric(cmd); 1919 return; 1920 } 1921 /* 1922 * Check for a callback, used by amongst other things 1923 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 1924 */ 1925 if (cmd->transport_complete_callback) { 1926 sense_reason_t rc; 1927 1928 rc = cmd->transport_complete_callback(cmd); 1929 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) { 1930 return; 1931 } else if (rc) { 1932 ret = transport_send_check_condition_and_sense(cmd, 1933 rc, 0); 1934 if (ret == -EAGAIN || ret == -ENOMEM) 1935 goto queue_full; 1936 1937 transport_lun_remove_cmd(cmd); 1938 transport_cmd_check_stop_to_fabric(cmd); 1939 return; 1940 } 1941 } 1942 1943 switch (cmd->data_direction) { 1944 case DMA_FROM_DEVICE: 1945 spin_lock(&cmd->se_lun->lun_sep_lock); 1946 if (cmd->se_lun->lun_sep) { 1947 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1948 cmd->data_length; 1949 } 1950 spin_unlock(&cmd->se_lun->lun_sep_lock); 1951 1952 trace_target_cmd_complete(cmd); 1953 ret = cmd->se_tfo->queue_data_in(cmd); 1954 if (ret == -EAGAIN || ret == -ENOMEM) 1955 goto queue_full; 1956 break; 1957 case DMA_TO_DEVICE: 1958 spin_lock(&cmd->se_lun->lun_sep_lock); 1959 if (cmd->se_lun->lun_sep) { 1960 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 1961 cmd->data_length; 1962 } 1963 spin_unlock(&cmd->se_lun->lun_sep_lock); 1964 /* 1965 * Check if we need to send READ payload for BIDI-COMMAND 1966 */ 1967 if (cmd->se_cmd_flags & SCF_BIDI) { 1968 spin_lock(&cmd->se_lun->lun_sep_lock); 1969 if (cmd->se_lun->lun_sep) { 1970 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1971 cmd->data_length; 1972 } 1973 spin_unlock(&cmd->se_lun->lun_sep_lock); 1974 ret = cmd->se_tfo->queue_data_in(cmd); 1975 if (ret == -EAGAIN || ret == -ENOMEM) 1976 goto queue_full; 1977 break; 1978 } 1979 /* Fall through for DMA_TO_DEVICE */ 1980 case DMA_NONE: 1981 trace_target_cmd_complete(cmd); 1982 ret = cmd->se_tfo->queue_status(cmd); 1983 if (ret == -EAGAIN || ret == -ENOMEM) 1984 goto queue_full; 1985 break; 1986 default: 1987 break; 1988 } 1989 1990 transport_lun_remove_cmd(cmd); 1991 transport_cmd_check_stop_to_fabric(cmd); 1992 return; 1993 1994 queue_full: 1995 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 1996 " data_direction: %d\n", cmd, cmd->data_direction); 1997 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1998 transport_handle_queue_full(cmd, cmd->se_dev); 1999 } 2000 2001 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 2002 { 2003 struct scatterlist *sg; 2004 int count; 2005 2006 for_each_sg(sgl, sg, nents, count) 2007 __free_page(sg_page(sg)); 2008 2009 kfree(sgl); 2010 } 2011 2012 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2013 { 2014 /* 2015 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2016 * emulation, and free + reset pointers if necessary.. 2017 */ 2018 if (!cmd->t_data_sg_orig) 2019 return; 2020 2021 kfree(cmd->t_data_sg); 2022 cmd->t_data_sg = cmd->t_data_sg_orig; 2023 cmd->t_data_sg_orig = NULL; 2024 cmd->t_data_nents = cmd->t_data_nents_orig; 2025 cmd->t_data_nents_orig = 0; 2026 } 2027 2028 static inline void transport_free_pages(struct se_cmd *cmd) 2029 { 2030 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2031 transport_reset_sgl_orig(cmd); 2032 return; 2033 } 2034 transport_reset_sgl_orig(cmd); 2035 2036 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2037 cmd->t_data_sg = NULL; 2038 cmd->t_data_nents = 0; 2039 2040 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2041 cmd->t_bidi_data_sg = NULL; 2042 cmd->t_bidi_data_nents = 0; 2043 } 2044 2045 /** 2046 * transport_release_cmd - free a command 2047 * @cmd: command to free 2048 * 2049 * This routine unconditionally frees a command, and reference counting 2050 * or list removal must be done in the caller. 2051 */ 2052 static int transport_release_cmd(struct se_cmd *cmd) 2053 { 2054 BUG_ON(!cmd->se_tfo); 2055 2056 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2057 core_tmr_release_req(cmd->se_tmr_req); 2058 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2059 kfree(cmd->t_task_cdb); 2060 /* 2061 * If this cmd has been setup with target_get_sess_cmd(), drop 2062 * the kref and call ->release_cmd() in kref callback. 2063 */ 2064 return target_put_sess_cmd(cmd->se_sess, cmd); 2065 } 2066 2067 /** 2068 * transport_put_cmd - release a reference to a command 2069 * @cmd: command to release 2070 * 2071 * This routine releases our reference to the command and frees it if possible. 2072 */ 2073 static int transport_put_cmd(struct se_cmd *cmd) 2074 { 2075 transport_free_pages(cmd); 2076 return transport_release_cmd(cmd); 2077 } 2078 2079 void *transport_kmap_data_sg(struct se_cmd *cmd) 2080 { 2081 struct scatterlist *sg = cmd->t_data_sg; 2082 struct page **pages; 2083 int i; 2084 2085 /* 2086 * We need to take into account a possible offset here for fabrics like 2087 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2088 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2089 */ 2090 if (!cmd->t_data_nents) 2091 return NULL; 2092 2093 BUG_ON(!sg); 2094 if (cmd->t_data_nents == 1) 2095 return kmap(sg_page(sg)) + sg->offset; 2096 2097 /* >1 page. use vmap */ 2098 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2099 if (!pages) 2100 return NULL; 2101 2102 /* convert sg[] to pages[] */ 2103 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2104 pages[i] = sg_page(sg); 2105 } 2106 2107 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2108 kfree(pages); 2109 if (!cmd->t_data_vmap) 2110 return NULL; 2111 2112 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2113 } 2114 EXPORT_SYMBOL(transport_kmap_data_sg); 2115 2116 void transport_kunmap_data_sg(struct se_cmd *cmd) 2117 { 2118 if (!cmd->t_data_nents) { 2119 return; 2120 } else if (cmd->t_data_nents == 1) { 2121 kunmap(sg_page(cmd->t_data_sg)); 2122 return; 2123 } 2124 2125 vunmap(cmd->t_data_vmap); 2126 cmd->t_data_vmap = NULL; 2127 } 2128 EXPORT_SYMBOL(transport_kunmap_data_sg); 2129 2130 int 2131 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2132 bool zero_page) 2133 { 2134 struct scatterlist *sg; 2135 struct page *page; 2136 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2137 unsigned int nent; 2138 int i = 0; 2139 2140 nent = DIV_ROUND_UP(length, PAGE_SIZE); 2141 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL); 2142 if (!sg) 2143 return -ENOMEM; 2144 2145 sg_init_table(sg, nent); 2146 2147 while (length) { 2148 u32 page_len = min_t(u32, length, PAGE_SIZE); 2149 page = alloc_page(GFP_KERNEL | zero_flag); 2150 if (!page) 2151 goto out; 2152 2153 sg_set_page(&sg[i], page, page_len, 0); 2154 length -= page_len; 2155 i++; 2156 } 2157 *sgl = sg; 2158 *nents = nent; 2159 return 0; 2160 2161 out: 2162 while (i > 0) { 2163 i--; 2164 __free_page(sg_page(&sg[i])); 2165 } 2166 kfree(sg); 2167 return -ENOMEM; 2168 } 2169 2170 /* 2171 * Allocate any required resources to execute the command. For writes we 2172 * might not have the payload yet, so notify the fabric via a call to 2173 * ->write_pending instead. Otherwise place it on the execution queue. 2174 */ 2175 sense_reason_t 2176 transport_generic_new_cmd(struct se_cmd *cmd) 2177 { 2178 int ret = 0; 2179 2180 /* 2181 * Determine is the TCM fabric module has already allocated physical 2182 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2183 * beforehand. 2184 */ 2185 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2186 cmd->data_length) { 2187 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2188 2189 if ((cmd->se_cmd_flags & SCF_BIDI) || 2190 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2191 u32 bidi_length; 2192 2193 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2194 bidi_length = cmd->t_task_nolb * 2195 cmd->se_dev->dev_attrib.block_size; 2196 else 2197 bidi_length = cmd->data_length; 2198 2199 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2200 &cmd->t_bidi_data_nents, 2201 bidi_length, zero_flag); 2202 if (ret < 0) 2203 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2204 } 2205 2206 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2207 cmd->data_length, zero_flag); 2208 if (ret < 0) 2209 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2210 } 2211 /* 2212 * If this command is not a write we can execute it right here, 2213 * for write buffers we need to notify the fabric driver first 2214 * and let it call back once the write buffers are ready. 2215 */ 2216 target_add_to_state_list(cmd); 2217 if (cmd->data_direction != DMA_TO_DEVICE) { 2218 target_execute_cmd(cmd); 2219 return 0; 2220 } 2221 transport_cmd_check_stop(cmd, false, true); 2222 2223 ret = cmd->se_tfo->write_pending(cmd); 2224 if (ret == -EAGAIN || ret == -ENOMEM) 2225 goto queue_full; 2226 2227 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2228 WARN_ON(ret); 2229 2230 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2231 2232 queue_full: 2233 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2234 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2235 transport_handle_queue_full(cmd, cmd->se_dev); 2236 return 0; 2237 } 2238 EXPORT_SYMBOL(transport_generic_new_cmd); 2239 2240 static void transport_write_pending_qf(struct se_cmd *cmd) 2241 { 2242 int ret; 2243 2244 ret = cmd->se_tfo->write_pending(cmd); 2245 if (ret == -EAGAIN || ret == -ENOMEM) { 2246 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2247 cmd); 2248 transport_handle_queue_full(cmd, cmd->se_dev); 2249 } 2250 } 2251 2252 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2253 { 2254 unsigned long flags; 2255 int ret = 0; 2256 2257 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2258 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2259 transport_wait_for_tasks(cmd); 2260 2261 ret = transport_release_cmd(cmd); 2262 } else { 2263 if (wait_for_tasks) 2264 transport_wait_for_tasks(cmd); 2265 /* 2266 * Handle WRITE failure case where transport_generic_new_cmd() 2267 * has already added se_cmd to state_list, but fabric has 2268 * failed command before I/O submission. 2269 */ 2270 if (cmd->state_active) { 2271 spin_lock_irqsave(&cmd->t_state_lock, flags); 2272 target_remove_from_state_list(cmd); 2273 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2274 } 2275 2276 if (cmd->se_lun) 2277 transport_lun_remove_cmd(cmd); 2278 2279 ret = transport_put_cmd(cmd); 2280 } 2281 return ret; 2282 } 2283 EXPORT_SYMBOL(transport_generic_free_cmd); 2284 2285 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2286 * @se_sess: session to reference 2287 * @se_cmd: command descriptor to add 2288 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2289 */ 2290 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2291 bool ack_kref) 2292 { 2293 unsigned long flags; 2294 int ret = 0; 2295 2296 kref_init(&se_cmd->cmd_kref); 2297 /* 2298 * Add a second kref if the fabric caller is expecting to handle 2299 * fabric acknowledgement that requires two target_put_sess_cmd() 2300 * invocations before se_cmd descriptor release. 2301 */ 2302 if (ack_kref == true) { 2303 kref_get(&se_cmd->cmd_kref); 2304 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2305 } 2306 2307 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2308 if (se_sess->sess_tearing_down) { 2309 ret = -ESHUTDOWN; 2310 goto out; 2311 } 2312 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2313 out: 2314 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2315 return ret; 2316 } 2317 EXPORT_SYMBOL(target_get_sess_cmd); 2318 2319 static void target_release_cmd_kref(struct kref *kref) 2320 { 2321 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2322 struct se_session *se_sess = se_cmd->se_sess; 2323 2324 if (list_empty(&se_cmd->se_cmd_list)) { 2325 spin_unlock(&se_sess->sess_cmd_lock); 2326 se_cmd->se_tfo->release_cmd(se_cmd); 2327 return; 2328 } 2329 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2330 spin_unlock(&se_sess->sess_cmd_lock); 2331 complete(&se_cmd->cmd_wait_comp); 2332 return; 2333 } 2334 list_del(&se_cmd->se_cmd_list); 2335 spin_unlock(&se_sess->sess_cmd_lock); 2336 2337 se_cmd->se_tfo->release_cmd(se_cmd); 2338 } 2339 2340 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2341 * @se_sess: session to reference 2342 * @se_cmd: command descriptor to drop 2343 */ 2344 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2345 { 2346 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2347 &se_sess->sess_cmd_lock); 2348 } 2349 EXPORT_SYMBOL(target_put_sess_cmd); 2350 2351 /* target_sess_cmd_list_set_waiting - Flag all commands in 2352 * sess_cmd_list to complete cmd_wait_comp. Set 2353 * sess_tearing_down so no more commands are queued. 2354 * @se_sess: session to flag 2355 */ 2356 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2357 { 2358 struct se_cmd *se_cmd; 2359 unsigned long flags; 2360 2361 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2362 if (se_sess->sess_tearing_down) { 2363 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2364 return; 2365 } 2366 se_sess->sess_tearing_down = 1; 2367 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2368 2369 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2370 se_cmd->cmd_wait_set = 1; 2371 2372 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2373 } 2374 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2375 2376 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2377 * @se_sess: session to wait for active I/O 2378 */ 2379 void target_wait_for_sess_cmds(struct se_session *se_sess) 2380 { 2381 struct se_cmd *se_cmd, *tmp_cmd; 2382 unsigned long flags; 2383 2384 list_for_each_entry_safe(se_cmd, tmp_cmd, 2385 &se_sess->sess_wait_list, se_cmd_list) { 2386 list_del(&se_cmd->se_cmd_list); 2387 2388 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2389 " %d\n", se_cmd, se_cmd->t_state, 2390 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2391 2392 wait_for_completion(&se_cmd->cmd_wait_comp); 2393 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2394 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2395 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2396 2397 se_cmd->se_tfo->release_cmd(se_cmd); 2398 } 2399 2400 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2401 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2402 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2403 2404 } 2405 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2406 2407 /* transport_lun_wait_for_tasks(): 2408 * 2409 * Called from ConfigFS context to stop the passed struct se_cmd to allow 2410 * an struct se_lun to be successfully shutdown. 2411 */ 2412 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) 2413 { 2414 unsigned long flags; 2415 int ret = 0; 2416 2417 /* 2418 * If the frontend has already requested this struct se_cmd to 2419 * be stopped, we can safely ignore this struct se_cmd. 2420 */ 2421 spin_lock_irqsave(&cmd->t_state_lock, flags); 2422 if (cmd->transport_state & CMD_T_STOP) { 2423 cmd->transport_state &= ~CMD_T_LUN_STOP; 2424 2425 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n", 2426 cmd->se_tfo->get_task_tag(cmd)); 2427 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2428 transport_cmd_check_stop(cmd, false, false); 2429 return -EPERM; 2430 } 2431 cmd->transport_state |= CMD_T_LUN_FE_STOP; 2432 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2433 2434 // XXX: audit task_flags checks. 2435 spin_lock_irqsave(&cmd->t_state_lock, flags); 2436 if ((cmd->transport_state & CMD_T_BUSY) && 2437 (cmd->transport_state & CMD_T_SENT)) { 2438 if (!target_stop_cmd(cmd, &flags)) 2439 ret++; 2440 } 2441 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2442 2443 pr_debug("ConfigFS: cmd: %p stop tasks ret:" 2444 " %d\n", cmd, ret); 2445 if (!ret) { 2446 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n", 2447 cmd->se_tfo->get_task_tag(cmd)); 2448 wait_for_completion(&cmd->transport_lun_stop_comp); 2449 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n", 2450 cmd->se_tfo->get_task_tag(cmd)); 2451 } 2452 2453 return 0; 2454 } 2455 2456 static void __transport_clear_lun_from_sessions(struct se_lun *lun) 2457 { 2458 struct se_cmd *cmd = NULL; 2459 unsigned long lun_flags, cmd_flags; 2460 /* 2461 * Do exception processing and return CHECK_CONDITION status to the 2462 * Initiator Port. 2463 */ 2464 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2465 while (!list_empty(&lun->lun_cmd_list)) { 2466 cmd = list_first_entry(&lun->lun_cmd_list, 2467 struct se_cmd, se_lun_node); 2468 list_del_init(&cmd->se_lun_node); 2469 2470 spin_lock(&cmd->t_state_lock); 2471 pr_debug("SE_LUN[%d] - Setting cmd->transport" 2472 "_lun_stop for ITT: 0x%08x\n", 2473 cmd->se_lun->unpacked_lun, 2474 cmd->se_tfo->get_task_tag(cmd)); 2475 cmd->transport_state |= CMD_T_LUN_STOP; 2476 spin_unlock(&cmd->t_state_lock); 2477 2478 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2479 2480 if (!cmd->se_lun) { 2481 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n", 2482 cmd->se_tfo->get_task_tag(cmd), 2483 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2484 BUG(); 2485 } 2486 /* 2487 * If the Storage engine still owns the iscsi_cmd_t, determine 2488 * and/or stop its context. 2489 */ 2490 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport" 2491 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun, 2492 cmd->se_tfo->get_task_tag(cmd)); 2493 2494 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) { 2495 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2496 continue; 2497 } 2498 2499 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun" 2500 "_wait_for_tasks(): SUCCESS\n", 2501 cmd->se_lun->unpacked_lun, 2502 cmd->se_tfo->get_task_tag(cmd)); 2503 2504 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2505 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) { 2506 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2507 goto check_cond; 2508 } 2509 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 2510 target_remove_from_state_list(cmd); 2511 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2512 2513 /* 2514 * The Storage engine stopped this struct se_cmd before it was 2515 * send to the fabric frontend for delivery back to the 2516 * Initiator Node. Return this SCSI CDB back with an 2517 * CHECK_CONDITION status. 2518 */ 2519 check_cond: 2520 transport_send_check_condition_and_sense(cmd, 2521 TCM_NON_EXISTENT_LUN, 0); 2522 /* 2523 * If the fabric frontend is waiting for this iscsi_cmd_t to 2524 * be released, notify the waiting thread now that LU has 2525 * finished accessing it. 2526 */ 2527 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2528 if (cmd->transport_state & CMD_T_LUN_FE_STOP) { 2529 pr_debug("SE_LUN[%d] - Detected FE stop for" 2530 " struct se_cmd: %p ITT: 0x%08x\n", 2531 lun->unpacked_lun, 2532 cmd, cmd->se_tfo->get_task_tag(cmd)); 2533 2534 spin_unlock_irqrestore(&cmd->t_state_lock, 2535 cmd_flags); 2536 transport_cmd_check_stop(cmd, false, false); 2537 complete(&cmd->transport_lun_fe_stop_comp); 2538 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2539 continue; 2540 } 2541 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n", 2542 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); 2543 2544 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2545 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2546 } 2547 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2548 } 2549 2550 static int transport_clear_lun_thread(void *p) 2551 { 2552 struct se_lun *lun = p; 2553 2554 __transport_clear_lun_from_sessions(lun); 2555 complete(&lun->lun_shutdown_comp); 2556 2557 return 0; 2558 } 2559 2560 int transport_clear_lun_from_sessions(struct se_lun *lun) 2561 { 2562 struct task_struct *kt; 2563 2564 kt = kthread_run(transport_clear_lun_thread, lun, 2565 "tcm_cl_%u", lun->unpacked_lun); 2566 if (IS_ERR(kt)) { 2567 pr_err("Unable to start clear_lun thread\n"); 2568 return PTR_ERR(kt); 2569 } 2570 wait_for_completion(&lun->lun_shutdown_comp); 2571 2572 return 0; 2573 } 2574 2575 /** 2576 * transport_wait_for_tasks - wait for completion to occur 2577 * @cmd: command to wait 2578 * 2579 * Called from frontend fabric context to wait for storage engine 2580 * to pause and/or release frontend generated struct se_cmd. 2581 */ 2582 bool transport_wait_for_tasks(struct se_cmd *cmd) 2583 { 2584 unsigned long flags; 2585 2586 spin_lock_irqsave(&cmd->t_state_lock, flags); 2587 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2588 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2589 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2590 return false; 2591 } 2592 2593 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2594 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2595 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2596 return false; 2597 } 2598 /* 2599 * If we are already stopped due to an external event (ie: LUN shutdown) 2600 * sleep until the connection can have the passed struct se_cmd back. 2601 * The cmd->transport_lun_stopped_sem will be upped by 2602 * transport_clear_lun_from_sessions() once the ConfigFS context caller 2603 * has completed its operation on the struct se_cmd. 2604 */ 2605 if (cmd->transport_state & CMD_T_LUN_STOP) { 2606 pr_debug("wait_for_tasks: Stopping" 2607 " wait_for_completion(&cmd->t_tasktransport_lun_fe" 2608 "_stop_comp); for ITT: 0x%08x\n", 2609 cmd->se_tfo->get_task_tag(cmd)); 2610 /* 2611 * There is a special case for WRITES where a FE exception + 2612 * LUN shutdown means ConfigFS context is still sleeping on 2613 * transport_lun_stop_comp in transport_lun_wait_for_tasks(). 2614 * We go ahead and up transport_lun_stop_comp just to be sure 2615 * here. 2616 */ 2617 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2618 complete(&cmd->transport_lun_stop_comp); 2619 wait_for_completion(&cmd->transport_lun_fe_stop_comp); 2620 spin_lock_irqsave(&cmd->t_state_lock, flags); 2621 2622 target_remove_from_state_list(cmd); 2623 /* 2624 * At this point, the frontend who was the originator of this 2625 * struct se_cmd, now owns the structure and can be released through 2626 * normal means below. 2627 */ 2628 pr_debug("wait_for_tasks: Stopped" 2629 " wait_for_completion(&cmd->t_tasktransport_lun_fe_" 2630 "stop_comp); for ITT: 0x%08x\n", 2631 cmd->se_tfo->get_task_tag(cmd)); 2632 2633 cmd->transport_state &= ~CMD_T_LUN_STOP; 2634 } 2635 2636 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2637 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2638 return false; 2639 } 2640 2641 cmd->transport_state |= CMD_T_STOP; 2642 2643 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2644 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2645 cmd, cmd->se_tfo->get_task_tag(cmd), 2646 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2647 2648 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2649 2650 wait_for_completion(&cmd->t_transport_stop_comp); 2651 2652 spin_lock_irqsave(&cmd->t_state_lock, flags); 2653 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2654 2655 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2656 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2657 cmd->se_tfo->get_task_tag(cmd)); 2658 2659 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2660 2661 return true; 2662 } 2663 EXPORT_SYMBOL(transport_wait_for_tasks); 2664 2665 static int transport_get_sense_codes( 2666 struct se_cmd *cmd, 2667 u8 *asc, 2668 u8 *ascq) 2669 { 2670 *asc = cmd->scsi_asc; 2671 *ascq = cmd->scsi_ascq; 2672 2673 return 0; 2674 } 2675 2676 int 2677 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2678 sense_reason_t reason, int from_transport) 2679 { 2680 unsigned char *buffer = cmd->sense_buffer; 2681 unsigned long flags; 2682 u8 asc = 0, ascq = 0; 2683 2684 spin_lock_irqsave(&cmd->t_state_lock, flags); 2685 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2686 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2687 return 0; 2688 } 2689 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2690 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2691 2692 if (!reason && from_transport) 2693 goto after_reason; 2694 2695 if (!from_transport) 2696 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2697 2698 /* 2699 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2700 * SENSE KEY values from include/scsi/scsi.h 2701 */ 2702 switch (reason) { 2703 case TCM_NO_SENSE: 2704 /* CURRENT ERROR */ 2705 buffer[0] = 0x70; 2706 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2707 /* Not Ready */ 2708 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2709 /* NO ADDITIONAL SENSE INFORMATION */ 2710 buffer[SPC_ASC_KEY_OFFSET] = 0; 2711 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2712 break; 2713 case TCM_NON_EXISTENT_LUN: 2714 /* CURRENT ERROR */ 2715 buffer[0] = 0x70; 2716 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2717 /* ILLEGAL REQUEST */ 2718 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2719 /* LOGICAL UNIT NOT SUPPORTED */ 2720 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2721 break; 2722 case TCM_UNSUPPORTED_SCSI_OPCODE: 2723 case TCM_SECTOR_COUNT_TOO_MANY: 2724 /* CURRENT ERROR */ 2725 buffer[0] = 0x70; 2726 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2727 /* ILLEGAL REQUEST */ 2728 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2729 /* INVALID COMMAND OPERATION CODE */ 2730 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2731 break; 2732 case TCM_UNKNOWN_MODE_PAGE: 2733 /* CURRENT ERROR */ 2734 buffer[0] = 0x70; 2735 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2736 /* ILLEGAL REQUEST */ 2737 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2738 /* INVALID FIELD IN CDB */ 2739 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2740 break; 2741 case TCM_CHECK_CONDITION_ABORT_CMD: 2742 /* CURRENT ERROR */ 2743 buffer[0] = 0x70; 2744 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2745 /* ABORTED COMMAND */ 2746 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2747 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2748 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2749 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2750 break; 2751 case TCM_INCORRECT_AMOUNT_OF_DATA: 2752 /* CURRENT ERROR */ 2753 buffer[0] = 0x70; 2754 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2755 /* ABORTED COMMAND */ 2756 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2757 /* WRITE ERROR */ 2758 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2759 /* NOT ENOUGH UNSOLICITED DATA */ 2760 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2761 break; 2762 case TCM_INVALID_CDB_FIELD: 2763 /* CURRENT ERROR */ 2764 buffer[0] = 0x70; 2765 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2766 /* ILLEGAL REQUEST */ 2767 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2768 /* INVALID FIELD IN CDB */ 2769 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2770 break; 2771 case TCM_INVALID_PARAMETER_LIST: 2772 /* CURRENT ERROR */ 2773 buffer[0] = 0x70; 2774 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2775 /* ILLEGAL REQUEST */ 2776 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2777 /* INVALID FIELD IN PARAMETER LIST */ 2778 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2779 break; 2780 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2781 /* CURRENT ERROR */ 2782 buffer[0] = 0x70; 2783 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2784 /* ILLEGAL REQUEST */ 2785 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2786 /* PARAMETER LIST LENGTH ERROR */ 2787 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2788 break; 2789 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2790 /* CURRENT ERROR */ 2791 buffer[0] = 0x70; 2792 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2793 /* ABORTED COMMAND */ 2794 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2795 /* WRITE ERROR */ 2796 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2797 /* UNEXPECTED_UNSOLICITED_DATA */ 2798 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2799 break; 2800 case TCM_SERVICE_CRC_ERROR: 2801 /* CURRENT ERROR */ 2802 buffer[0] = 0x70; 2803 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2804 /* ABORTED COMMAND */ 2805 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2806 /* PROTOCOL SERVICE CRC ERROR */ 2807 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2808 /* N/A */ 2809 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2810 break; 2811 case TCM_SNACK_REJECTED: 2812 /* CURRENT ERROR */ 2813 buffer[0] = 0x70; 2814 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2815 /* ABORTED COMMAND */ 2816 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2817 /* READ ERROR */ 2818 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2819 /* FAILED RETRANSMISSION REQUEST */ 2820 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2821 break; 2822 case TCM_WRITE_PROTECTED: 2823 /* CURRENT ERROR */ 2824 buffer[0] = 0x70; 2825 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2826 /* DATA PROTECT */ 2827 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2828 /* WRITE PROTECTED */ 2829 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2830 break; 2831 case TCM_ADDRESS_OUT_OF_RANGE: 2832 /* CURRENT ERROR */ 2833 buffer[0] = 0x70; 2834 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2835 /* ILLEGAL REQUEST */ 2836 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2837 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2838 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2839 break; 2840 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2841 /* CURRENT ERROR */ 2842 buffer[0] = 0x70; 2843 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2844 /* UNIT ATTENTION */ 2845 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2846 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2847 buffer[SPC_ASC_KEY_OFFSET] = asc; 2848 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2849 break; 2850 case TCM_CHECK_CONDITION_NOT_READY: 2851 /* CURRENT ERROR */ 2852 buffer[0] = 0x70; 2853 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2854 /* Not Ready */ 2855 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2856 transport_get_sense_codes(cmd, &asc, &ascq); 2857 buffer[SPC_ASC_KEY_OFFSET] = asc; 2858 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2859 break; 2860 case TCM_MISCOMPARE_VERIFY: 2861 /* CURRENT ERROR */ 2862 buffer[0] = 0x70; 2863 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2864 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE; 2865 /* MISCOMPARE DURING VERIFY OPERATION */ 2866 buffer[SPC_ASC_KEY_OFFSET] = 0x1d; 2867 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00; 2868 break; 2869 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2870 default: 2871 /* CURRENT ERROR */ 2872 buffer[0] = 0x70; 2873 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2874 /* 2875 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2876 * Solaris initiators. Returning NOT READY instead means the 2877 * operations will be retried a finite number of times and we 2878 * can survive intermittent errors. 2879 */ 2880 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2881 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2882 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2883 break; 2884 } 2885 /* 2886 * This code uses linux/include/scsi/scsi.h SAM status codes! 2887 */ 2888 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2889 /* 2890 * Automatically padded, this value is encoded in the fabric's 2891 * data_length response PDU containing the SCSI defined sense data. 2892 */ 2893 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2894 2895 after_reason: 2896 trace_target_cmd_complete(cmd); 2897 return cmd->se_tfo->queue_status(cmd); 2898 } 2899 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2900 2901 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2902 { 2903 if (!(cmd->transport_state & CMD_T_ABORTED)) 2904 return 0; 2905 2906 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 2907 return 1; 2908 2909 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2910 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2911 2912 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 2913 trace_target_cmd_complete(cmd); 2914 cmd->se_tfo->queue_status(cmd); 2915 2916 return 1; 2917 } 2918 EXPORT_SYMBOL(transport_check_aborted_status); 2919 2920 void transport_send_task_abort(struct se_cmd *cmd) 2921 { 2922 unsigned long flags; 2923 2924 spin_lock_irqsave(&cmd->t_state_lock, flags); 2925 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) { 2926 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2927 return; 2928 } 2929 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2930 2931 /* 2932 * If there are still expected incoming fabric WRITEs, we wait 2933 * until until they have completed before sending a TASK_ABORTED 2934 * response. This response with TASK_ABORTED status will be 2935 * queued back to fabric module by transport_check_aborted_status(). 2936 */ 2937 if (cmd->data_direction == DMA_TO_DEVICE) { 2938 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2939 cmd->transport_state |= CMD_T_ABORTED; 2940 smp_mb__after_atomic_inc(); 2941 } 2942 } 2943 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2944 2945 transport_lun_remove_cmd(cmd); 2946 2947 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 2948 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 2949 cmd->se_tfo->get_task_tag(cmd)); 2950 2951 trace_target_cmd_complete(cmd); 2952 cmd->se_tfo->queue_status(cmd); 2953 } 2954 2955 static void target_tmr_work(struct work_struct *work) 2956 { 2957 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2958 struct se_device *dev = cmd->se_dev; 2959 struct se_tmr_req *tmr = cmd->se_tmr_req; 2960 int ret; 2961 2962 switch (tmr->function) { 2963 case TMR_ABORT_TASK: 2964 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2965 break; 2966 case TMR_ABORT_TASK_SET: 2967 case TMR_CLEAR_ACA: 2968 case TMR_CLEAR_TASK_SET: 2969 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2970 break; 2971 case TMR_LUN_RESET: 2972 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2973 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2974 TMR_FUNCTION_REJECTED; 2975 break; 2976 case TMR_TARGET_WARM_RESET: 2977 tmr->response = TMR_FUNCTION_REJECTED; 2978 break; 2979 case TMR_TARGET_COLD_RESET: 2980 tmr->response = TMR_FUNCTION_REJECTED; 2981 break; 2982 default: 2983 pr_err("Uknown TMR function: 0x%02x.\n", 2984 tmr->function); 2985 tmr->response = TMR_FUNCTION_REJECTED; 2986 break; 2987 } 2988 2989 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2990 cmd->se_tfo->queue_tm_rsp(cmd); 2991 2992 transport_cmd_check_stop_to_fabric(cmd); 2993 } 2994 2995 int transport_generic_handle_tmr( 2996 struct se_cmd *cmd) 2997 { 2998 INIT_WORK(&cmd->work, target_tmr_work); 2999 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3000 return 0; 3001 } 3002 EXPORT_SYMBOL(transport_generic_handle_tmr); 3003