1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 68 static void transport_handle_queue_full(struct se_cmd *cmd, 69 struct se_device *dev, int err, bool write_pending); 70 static int transport_put_cmd(struct se_cmd *cmd); 71 static void target_complete_ok_work(struct work_struct *work); 72 73 int init_se_kmem_caches(void) 74 { 75 se_sess_cache = kmem_cache_create("se_sess_cache", 76 sizeof(struct se_session), __alignof__(struct se_session), 77 0, NULL); 78 if (!se_sess_cache) { 79 pr_err("kmem_cache_create() for struct se_session" 80 " failed\n"); 81 goto out; 82 } 83 se_ua_cache = kmem_cache_create("se_ua_cache", 84 sizeof(struct se_ua), __alignof__(struct se_ua), 85 0, NULL); 86 if (!se_ua_cache) { 87 pr_err("kmem_cache_create() for struct se_ua failed\n"); 88 goto out_free_sess_cache; 89 } 90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 91 sizeof(struct t10_pr_registration), 92 __alignof__(struct t10_pr_registration), 0, NULL); 93 if (!t10_pr_reg_cache) { 94 pr_err("kmem_cache_create() for struct t10_pr_registration" 95 " failed\n"); 96 goto out_free_ua_cache; 97 } 98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 100 0, NULL); 101 if (!t10_alua_lu_gp_cache) { 102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 103 " failed\n"); 104 goto out_free_pr_reg_cache; 105 } 106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 107 sizeof(struct t10_alua_lu_gp_member), 108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 109 if (!t10_alua_lu_gp_mem_cache) { 110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 111 "cache failed\n"); 112 goto out_free_lu_gp_cache; 113 } 114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 115 sizeof(struct t10_alua_tg_pt_gp), 116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 117 if (!t10_alua_tg_pt_gp_cache) { 118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 119 "cache failed\n"); 120 goto out_free_lu_gp_mem_cache; 121 } 122 t10_alua_lba_map_cache = kmem_cache_create( 123 "t10_alua_lba_map_cache", 124 sizeof(struct t10_alua_lba_map), 125 __alignof__(struct t10_alua_lba_map), 0, NULL); 126 if (!t10_alua_lba_map_cache) { 127 pr_err("kmem_cache_create() for t10_alua_lba_map_" 128 "cache failed\n"); 129 goto out_free_tg_pt_gp_cache; 130 } 131 t10_alua_lba_map_mem_cache = kmem_cache_create( 132 "t10_alua_lba_map_mem_cache", 133 sizeof(struct t10_alua_lba_map_member), 134 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 135 if (!t10_alua_lba_map_mem_cache) { 136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 137 "cache failed\n"); 138 goto out_free_lba_map_cache; 139 } 140 141 target_completion_wq = alloc_workqueue("target_completion", 142 WQ_MEM_RECLAIM, 0); 143 if (!target_completion_wq) 144 goto out_free_lba_map_mem_cache; 145 146 return 0; 147 148 out_free_lba_map_mem_cache: 149 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 150 out_free_lba_map_cache: 151 kmem_cache_destroy(t10_alua_lba_map_cache); 152 out_free_tg_pt_gp_cache: 153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 154 out_free_lu_gp_mem_cache: 155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 156 out_free_lu_gp_cache: 157 kmem_cache_destroy(t10_alua_lu_gp_cache); 158 out_free_pr_reg_cache: 159 kmem_cache_destroy(t10_pr_reg_cache); 160 out_free_ua_cache: 161 kmem_cache_destroy(se_ua_cache); 162 out_free_sess_cache: 163 kmem_cache_destroy(se_sess_cache); 164 out: 165 return -ENOMEM; 166 } 167 168 void release_se_kmem_caches(void) 169 { 170 destroy_workqueue(target_completion_wq); 171 kmem_cache_destroy(se_sess_cache); 172 kmem_cache_destroy(se_ua_cache); 173 kmem_cache_destroy(t10_pr_reg_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_cache); 175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 177 kmem_cache_destroy(t10_alua_lba_map_cache); 178 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 179 } 180 181 /* This code ensures unique mib indexes are handed out. */ 182 static DEFINE_SPINLOCK(scsi_mib_index_lock); 183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 184 185 /* 186 * Allocate a new row index for the entry type specified 187 */ 188 u32 scsi_get_new_index(scsi_index_t type) 189 { 190 u32 new_index; 191 192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 193 194 spin_lock(&scsi_mib_index_lock); 195 new_index = ++scsi_mib_index[type]; 196 spin_unlock(&scsi_mib_index_lock); 197 198 return new_index; 199 } 200 201 void transport_subsystem_check_init(void) 202 { 203 int ret; 204 static int sub_api_initialized; 205 206 if (sub_api_initialized) 207 return; 208 209 ret = request_module("target_core_iblock"); 210 if (ret != 0) 211 pr_err("Unable to load target_core_iblock\n"); 212 213 ret = request_module("target_core_file"); 214 if (ret != 0) 215 pr_err("Unable to load target_core_file\n"); 216 217 ret = request_module("target_core_pscsi"); 218 if (ret != 0) 219 pr_err("Unable to load target_core_pscsi\n"); 220 221 ret = request_module("target_core_user"); 222 if (ret != 0) 223 pr_err("Unable to load target_core_user\n"); 224 225 sub_api_initialized = 1; 226 } 227 228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 229 { 230 struct se_session *se_sess; 231 232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 233 if (!se_sess) { 234 pr_err("Unable to allocate struct se_session from" 235 " se_sess_cache\n"); 236 return ERR_PTR(-ENOMEM); 237 } 238 INIT_LIST_HEAD(&se_sess->sess_list); 239 INIT_LIST_HEAD(&se_sess->sess_acl_list); 240 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 241 INIT_LIST_HEAD(&se_sess->sess_wait_list); 242 spin_lock_init(&se_sess->sess_cmd_lock); 243 se_sess->sup_prot_ops = sup_prot_ops; 244 245 return se_sess; 246 } 247 EXPORT_SYMBOL(transport_init_session); 248 249 int transport_alloc_session_tags(struct se_session *se_sess, 250 unsigned int tag_num, unsigned int tag_size) 251 { 252 int rc; 253 254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 255 GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL); 256 if (!se_sess->sess_cmd_map) { 257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 258 if (!se_sess->sess_cmd_map) { 259 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 260 return -ENOMEM; 261 } 262 } 263 264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 265 if (rc < 0) { 266 pr_err("Unable to init se_sess->sess_tag_pool," 267 " tag_num: %u\n", tag_num); 268 kvfree(se_sess->sess_cmd_map); 269 se_sess->sess_cmd_map = NULL; 270 return -ENOMEM; 271 } 272 273 return 0; 274 } 275 EXPORT_SYMBOL(transport_alloc_session_tags); 276 277 struct se_session *transport_init_session_tags(unsigned int tag_num, 278 unsigned int tag_size, 279 enum target_prot_op sup_prot_ops) 280 { 281 struct se_session *se_sess; 282 int rc; 283 284 if (tag_num != 0 && !tag_size) { 285 pr_err("init_session_tags called with percpu-ida tag_num:" 286 " %u, but zero tag_size\n", tag_num); 287 return ERR_PTR(-EINVAL); 288 } 289 if (!tag_num && tag_size) { 290 pr_err("init_session_tags called with percpu-ida tag_size:" 291 " %u, but zero tag_num\n", tag_size); 292 return ERR_PTR(-EINVAL); 293 } 294 295 se_sess = transport_init_session(sup_prot_ops); 296 if (IS_ERR(se_sess)) 297 return se_sess; 298 299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 300 if (rc < 0) { 301 transport_free_session(se_sess); 302 return ERR_PTR(-ENOMEM); 303 } 304 305 return se_sess; 306 } 307 EXPORT_SYMBOL(transport_init_session_tags); 308 309 /* 310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 311 */ 312 void __transport_register_session( 313 struct se_portal_group *se_tpg, 314 struct se_node_acl *se_nacl, 315 struct se_session *se_sess, 316 void *fabric_sess_ptr) 317 { 318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 319 unsigned char buf[PR_REG_ISID_LEN]; 320 321 se_sess->se_tpg = se_tpg; 322 se_sess->fabric_sess_ptr = fabric_sess_ptr; 323 /* 324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 325 * 326 * Only set for struct se_session's that will actually be moving I/O. 327 * eg: *NOT* discovery sessions. 328 */ 329 if (se_nacl) { 330 /* 331 * 332 * Determine if fabric allows for T10-PI feature bits exposed to 333 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 334 * 335 * If so, then always save prot_type on a per se_node_acl node 336 * basis and re-instate the previous sess_prot_type to avoid 337 * disabling PI from below any previously initiator side 338 * registered LUNs. 339 */ 340 if (se_nacl->saved_prot_type) 341 se_sess->sess_prot_type = se_nacl->saved_prot_type; 342 else if (tfo->tpg_check_prot_fabric_only) 343 se_sess->sess_prot_type = se_nacl->saved_prot_type = 344 tfo->tpg_check_prot_fabric_only(se_tpg); 345 /* 346 * If the fabric module supports an ISID based TransportID, 347 * save this value in binary from the fabric I_T Nexus now. 348 */ 349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 350 memset(&buf[0], 0, PR_REG_ISID_LEN); 351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 352 &buf[0], PR_REG_ISID_LEN); 353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 354 } 355 356 spin_lock_irq(&se_nacl->nacl_sess_lock); 357 /* 358 * The se_nacl->nacl_sess pointer will be set to the 359 * last active I_T Nexus for each struct se_node_acl. 360 */ 361 se_nacl->nacl_sess = se_sess; 362 363 list_add_tail(&se_sess->sess_acl_list, 364 &se_nacl->acl_sess_list); 365 spin_unlock_irq(&se_nacl->nacl_sess_lock); 366 } 367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 368 369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 371 } 372 EXPORT_SYMBOL(__transport_register_session); 373 374 void transport_register_session( 375 struct se_portal_group *se_tpg, 376 struct se_node_acl *se_nacl, 377 struct se_session *se_sess, 378 void *fabric_sess_ptr) 379 { 380 unsigned long flags; 381 382 spin_lock_irqsave(&se_tpg->session_lock, flags); 383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 384 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 385 } 386 EXPORT_SYMBOL(transport_register_session); 387 388 struct se_session * 389 target_alloc_session(struct se_portal_group *tpg, 390 unsigned int tag_num, unsigned int tag_size, 391 enum target_prot_op prot_op, 392 const char *initiatorname, void *private, 393 int (*callback)(struct se_portal_group *, 394 struct se_session *, void *)) 395 { 396 struct se_session *sess; 397 398 /* 399 * If the fabric driver is using percpu-ida based pre allocation 400 * of I/O descriptor tags, go ahead and perform that setup now.. 401 */ 402 if (tag_num != 0) 403 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 404 else 405 sess = transport_init_session(prot_op); 406 407 if (IS_ERR(sess)) 408 return sess; 409 410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 411 (unsigned char *)initiatorname); 412 if (!sess->se_node_acl) { 413 transport_free_session(sess); 414 return ERR_PTR(-EACCES); 415 } 416 /* 417 * Go ahead and perform any remaining fabric setup that is 418 * required before transport_register_session(). 419 */ 420 if (callback != NULL) { 421 int rc = callback(tpg, sess, private); 422 if (rc) { 423 transport_free_session(sess); 424 return ERR_PTR(rc); 425 } 426 } 427 428 transport_register_session(tpg, sess->se_node_acl, sess, private); 429 return sess; 430 } 431 EXPORT_SYMBOL(target_alloc_session); 432 433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 434 { 435 struct se_session *se_sess; 436 ssize_t len = 0; 437 438 spin_lock_bh(&se_tpg->session_lock); 439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 440 if (!se_sess->se_node_acl) 441 continue; 442 if (!se_sess->se_node_acl->dynamic_node_acl) 443 continue; 444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 445 break; 446 447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 448 se_sess->se_node_acl->initiatorname); 449 len += 1; /* Include NULL terminator */ 450 } 451 spin_unlock_bh(&se_tpg->session_lock); 452 453 return len; 454 } 455 EXPORT_SYMBOL(target_show_dynamic_sessions); 456 457 static void target_complete_nacl(struct kref *kref) 458 { 459 struct se_node_acl *nacl = container_of(kref, 460 struct se_node_acl, acl_kref); 461 struct se_portal_group *se_tpg = nacl->se_tpg; 462 463 if (!nacl->dynamic_stop) { 464 complete(&nacl->acl_free_comp); 465 return; 466 } 467 468 mutex_lock(&se_tpg->acl_node_mutex); 469 list_del_init(&nacl->acl_list); 470 mutex_unlock(&se_tpg->acl_node_mutex); 471 472 core_tpg_wait_for_nacl_pr_ref(nacl); 473 core_free_device_list_for_node(nacl, se_tpg); 474 kfree(nacl); 475 } 476 477 void target_put_nacl(struct se_node_acl *nacl) 478 { 479 kref_put(&nacl->acl_kref, target_complete_nacl); 480 } 481 EXPORT_SYMBOL(target_put_nacl); 482 483 void transport_deregister_session_configfs(struct se_session *se_sess) 484 { 485 struct se_node_acl *se_nacl; 486 unsigned long flags; 487 /* 488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 489 */ 490 se_nacl = se_sess->se_node_acl; 491 if (se_nacl) { 492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 493 if (!list_empty(&se_sess->sess_acl_list)) 494 list_del_init(&se_sess->sess_acl_list); 495 /* 496 * If the session list is empty, then clear the pointer. 497 * Otherwise, set the struct se_session pointer from the tail 498 * element of the per struct se_node_acl active session list. 499 */ 500 if (list_empty(&se_nacl->acl_sess_list)) 501 se_nacl->nacl_sess = NULL; 502 else { 503 se_nacl->nacl_sess = container_of( 504 se_nacl->acl_sess_list.prev, 505 struct se_session, sess_acl_list); 506 } 507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 508 } 509 } 510 EXPORT_SYMBOL(transport_deregister_session_configfs); 511 512 void transport_free_session(struct se_session *se_sess) 513 { 514 struct se_node_acl *se_nacl = se_sess->se_node_acl; 515 516 /* 517 * Drop the se_node_acl->nacl_kref obtained from within 518 * core_tpg_get_initiator_node_acl(). 519 */ 520 if (se_nacl) { 521 struct se_portal_group *se_tpg = se_nacl->se_tpg; 522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 523 unsigned long flags; 524 525 se_sess->se_node_acl = NULL; 526 527 /* 528 * Also determine if we need to drop the extra ->cmd_kref if 529 * it had been previously dynamically generated, and 530 * the endpoint is not caching dynamic ACLs. 531 */ 532 mutex_lock(&se_tpg->acl_node_mutex); 533 if (se_nacl->dynamic_node_acl && 534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 536 if (list_empty(&se_nacl->acl_sess_list)) 537 se_nacl->dynamic_stop = true; 538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 539 540 if (se_nacl->dynamic_stop) 541 list_del_init(&se_nacl->acl_list); 542 } 543 mutex_unlock(&se_tpg->acl_node_mutex); 544 545 if (se_nacl->dynamic_stop) 546 target_put_nacl(se_nacl); 547 548 target_put_nacl(se_nacl); 549 } 550 if (se_sess->sess_cmd_map) { 551 percpu_ida_destroy(&se_sess->sess_tag_pool); 552 kvfree(se_sess->sess_cmd_map); 553 } 554 kmem_cache_free(se_sess_cache, se_sess); 555 } 556 EXPORT_SYMBOL(transport_free_session); 557 558 void transport_deregister_session(struct se_session *se_sess) 559 { 560 struct se_portal_group *se_tpg = se_sess->se_tpg; 561 unsigned long flags; 562 563 if (!se_tpg) { 564 transport_free_session(se_sess); 565 return; 566 } 567 568 spin_lock_irqsave(&se_tpg->session_lock, flags); 569 list_del(&se_sess->sess_list); 570 se_sess->se_tpg = NULL; 571 se_sess->fabric_sess_ptr = NULL; 572 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 573 574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 575 se_tpg->se_tpg_tfo->get_fabric_name()); 576 /* 577 * If last kref is dropping now for an explicit NodeACL, awake sleeping 578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 579 * removal context from within transport_free_session() code. 580 * 581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 582 * to release all remaining generate_node_acl=1 created ACL resources. 583 */ 584 585 transport_free_session(se_sess); 586 } 587 EXPORT_SYMBOL(transport_deregister_session); 588 589 static void target_remove_from_state_list(struct se_cmd *cmd) 590 { 591 struct se_device *dev = cmd->se_dev; 592 unsigned long flags; 593 594 if (!dev) 595 return; 596 597 spin_lock_irqsave(&dev->execute_task_lock, flags); 598 if (cmd->state_active) { 599 list_del(&cmd->state_list); 600 cmd->state_active = false; 601 } 602 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 603 } 604 605 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 606 { 607 unsigned long flags; 608 609 target_remove_from_state_list(cmd); 610 611 /* 612 * Clear struct se_cmd->se_lun before the handoff to FE. 613 */ 614 cmd->se_lun = NULL; 615 616 spin_lock_irqsave(&cmd->t_state_lock, flags); 617 /* 618 * Determine if frontend context caller is requesting the stopping of 619 * this command for frontend exceptions. 620 */ 621 if (cmd->transport_state & CMD_T_STOP) { 622 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 623 __func__, __LINE__, cmd->tag); 624 625 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 626 627 complete_all(&cmd->t_transport_stop_comp); 628 return 1; 629 } 630 cmd->transport_state &= ~CMD_T_ACTIVE; 631 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 632 633 /* 634 * Some fabric modules like tcm_loop can release their internally 635 * allocated I/O reference and struct se_cmd now. 636 * 637 * Fabric modules are expected to return '1' here if the se_cmd being 638 * passed is released at this point, or zero if not being released. 639 */ 640 return cmd->se_tfo->check_stop_free(cmd); 641 } 642 643 static void transport_lun_remove_cmd(struct se_cmd *cmd) 644 { 645 struct se_lun *lun = cmd->se_lun; 646 647 if (!lun) 648 return; 649 650 if (cmpxchg(&cmd->lun_ref_active, true, false)) 651 percpu_ref_put(&lun->lun_ref); 652 } 653 654 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 655 { 656 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); 657 int ret = 0; 658 659 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 660 transport_lun_remove_cmd(cmd); 661 /* 662 * Allow the fabric driver to unmap any resources before 663 * releasing the descriptor via TFO->release_cmd() 664 */ 665 if (remove) 666 cmd->se_tfo->aborted_task(cmd); 667 668 if (transport_cmd_check_stop_to_fabric(cmd)) 669 return 1; 670 if (remove && ack_kref) 671 ret = transport_put_cmd(cmd); 672 673 return ret; 674 } 675 676 static void target_complete_failure_work(struct work_struct *work) 677 { 678 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 679 680 transport_generic_request_failure(cmd, 681 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 682 } 683 684 /* 685 * Used when asking transport to copy Sense Data from the underlying 686 * Linux/SCSI struct scsi_cmnd 687 */ 688 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 689 { 690 struct se_device *dev = cmd->se_dev; 691 692 WARN_ON(!cmd->se_lun); 693 694 if (!dev) 695 return NULL; 696 697 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 698 return NULL; 699 700 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 701 702 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 703 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 704 return cmd->sense_buffer; 705 } 706 707 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense) 708 { 709 unsigned char *cmd_sense_buf; 710 unsigned long flags; 711 712 spin_lock_irqsave(&cmd->t_state_lock, flags); 713 cmd_sense_buf = transport_get_sense_buffer(cmd); 714 if (!cmd_sense_buf) { 715 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 716 return; 717 } 718 719 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 720 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length); 721 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 722 } 723 EXPORT_SYMBOL(transport_copy_sense_to_cmd); 724 725 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 726 { 727 struct se_device *dev = cmd->se_dev; 728 int success; 729 unsigned long flags; 730 731 cmd->scsi_status = scsi_status; 732 733 spin_lock_irqsave(&cmd->t_state_lock, flags); 734 switch (cmd->scsi_status) { 735 case SAM_STAT_CHECK_CONDITION: 736 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 737 success = 1; 738 else 739 success = 0; 740 break; 741 default: 742 success = 1; 743 break; 744 } 745 746 /* 747 * Check for case where an explicit ABORT_TASK has been received 748 * and transport_wait_for_tasks() will be waiting for completion.. 749 */ 750 if (cmd->transport_state & CMD_T_ABORTED || 751 cmd->transport_state & CMD_T_STOP) { 752 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 753 /* 754 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(), 755 * release se_device->caw_sem obtained by sbc_compare_and_write() 756 * since target_complete_ok_work() or target_complete_failure_work() 757 * won't be called to invoke the normal CAW completion callbacks. 758 */ 759 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 760 up(&dev->caw_sem); 761 } 762 complete_all(&cmd->t_transport_stop_comp); 763 return; 764 } else if (!success) { 765 INIT_WORK(&cmd->work, target_complete_failure_work); 766 } else { 767 INIT_WORK(&cmd->work, target_complete_ok_work); 768 } 769 770 cmd->t_state = TRANSPORT_COMPLETE; 771 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 772 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 773 774 if (cmd->se_cmd_flags & SCF_USE_CPUID) 775 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 776 else 777 queue_work(target_completion_wq, &cmd->work); 778 } 779 EXPORT_SYMBOL(target_complete_cmd); 780 781 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 782 { 783 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 784 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 785 cmd->residual_count += cmd->data_length - length; 786 } else { 787 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 788 cmd->residual_count = cmd->data_length - length; 789 } 790 791 cmd->data_length = length; 792 } 793 794 target_complete_cmd(cmd, scsi_status); 795 } 796 EXPORT_SYMBOL(target_complete_cmd_with_length); 797 798 static void target_add_to_state_list(struct se_cmd *cmd) 799 { 800 struct se_device *dev = cmd->se_dev; 801 unsigned long flags; 802 803 spin_lock_irqsave(&dev->execute_task_lock, flags); 804 if (!cmd->state_active) { 805 list_add_tail(&cmd->state_list, &dev->state_list); 806 cmd->state_active = true; 807 } 808 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 809 } 810 811 /* 812 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 813 */ 814 static void transport_write_pending_qf(struct se_cmd *cmd); 815 static void transport_complete_qf(struct se_cmd *cmd); 816 817 void target_qf_do_work(struct work_struct *work) 818 { 819 struct se_device *dev = container_of(work, struct se_device, 820 qf_work_queue); 821 LIST_HEAD(qf_cmd_list); 822 struct se_cmd *cmd, *cmd_tmp; 823 824 spin_lock_irq(&dev->qf_cmd_lock); 825 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 826 spin_unlock_irq(&dev->qf_cmd_lock); 827 828 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 829 list_del(&cmd->se_qf_node); 830 atomic_dec_mb(&dev->dev_qf_count); 831 832 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 833 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 834 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 835 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 836 : "UNKNOWN"); 837 838 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 839 transport_write_pending_qf(cmd); 840 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 841 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 842 transport_complete_qf(cmd); 843 } 844 } 845 846 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 847 { 848 switch (cmd->data_direction) { 849 case DMA_NONE: 850 return "NONE"; 851 case DMA_FROM_DEVICE: 852 return "READ"; 853 case DMA_TO_DEVICE: 854 return "WRITE"; 855 case DMA_BIDIRECTIONAL: 856 return "BIDI"; 857 default: 858 break; 859 } 860 861 return "UNKNOWN"; 862 } 863 864 void transport_dump_dev_state( 865 struct se_device *dev, 866 char *b, 867 int *bl) 868 { 869 *bl += sprintf(b + *bl, "Status: "); 870 if (dev->export_count) 871 *bl += sprintf(b + *bl, "ACTIVATED"); 872 else 873 *bl += sprintf(b + *bl, "DEACTIVATED"); 874 875 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 876 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 877 dev->dev_attrib.block_size, 878 dev->dev_attrib.hw_max_sectors); 879 *bl += sprintf(b + *bl, " "); 880 } 881 882 void transport_dump_vpd_proto_id( 883 struct t10_vpd *vpd, 884 unsigned char *p_buf, 885 int p_buf_len) 886 { 887 unsigned char buf[VPD_TMP_BUF_SIZE]; 888 int len; 889 890 memset(buf, 0, VPD_TMP_BUF_SIZE); 891 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 892 893 switch (vpd->protocol_identifier) { 894 case 0x00: 895 sprintf(buf+len, "Fibre Channel\n"); 896 break; 897 case 0x10: 898 sprintf(buf+len, "Parallel SCSI\n"); 899 break; 900 case 0x20: 901 sprintf(buf+len, "SSA\n"); 902 break; 903 case 0x30: 904 sprintf(buf+len, "IEEE 1394\n"); 905 break; 906 case 0x40: 907 sprintf(buf+len, "SCSI Remote Direct Memory Access" 908 " Protocol\n"); 909 break; 910 case 0x50: 911 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 912 break; 913 case 0x60: 914 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 915 break; 916 case 0x70: 917 sprintf(buf+len, "Automation/Drive Interface Transport" 918 " Protocol\n"); 919 break; 920 case 0x80: 921 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 922 break; 923 default: 924 sprintf(buf+len, "Unknown 0x%02x\n", 925 vpd->protocol_identifier); 926 break; 927 } 928 929 if (p_buf) 930 strncpy(p_buf, buf, p_buf_len); 931 else 932 pr_debug("%s", buf); 933 } 934 935 void 936 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 937 { 938 /* 939 * Check if the Protocol Identifier Valid (PIV) bit is set.. 940 * 941 * from spc3r23.pdf section 7.5.1 942 */ 943 if (page_83[1] & 0x80) { 944 vpd->protocol_identifier = (page_83[0] & 0xf0); 945 vpd->protocol_identifier_set = 1; 946 transport_dump_vpd_proto_id(vpd, NULL, 0); 947 } 948 } 949 EXPORT_SYMBOL(transport_set_vpd_proto_id); 950 951 int transport_dump_vpd_assoc( 952 struct t10_vpd *vpd, 953 unsigned char *p_buf, 954 int p_buf_len) 955 { 956 unsigned char buf[VPD_TMP_BUF_SIZE]; 957 int ret = 0; 958 int len; 959 960 memset(buf, 0, VPD_TMP_BUF_SIZE); 961 len = sprintf(buf, "T10 VPD Identifier Association: "); 962 963 switch (vpd->association) { 964 case 0x00: 965 sprintf(buf+len, "addressed logical unit\n"); 966 break; 967 case 0x10: 968 sprintf(buf+len, "target port\n"); 969 break; 970 case 0x20: 971 sprintf(buf+len, "SCSI target device\n"); 972 break; 973 default: 974 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 975 ret = -EINVAL; 976 break; 977 } 978 979 if (p_buf) 980 strncpy(p_buf, buf, p_buf_len); 981 else 982 pr_debug("%s", buf); 983 984 return ret; 985 } 986 987 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 988 { 989 /* 990 * The VPD identification association.. 991 * 992 * from spc3r23.pdf Section 7.6.3.1 Table 297 993 */ 994 vpd->association = (page_83[1] & 0x30); 995 return transport_dump_vpd_assoc(vpd, NULL, 0); 996 } 997 EXPORT_SYMBOL(transport_set_vpd_assoc); 998 999 int transport_dump_vpd_ident_type( 1000 struct t10_vpd *vpd, 1001 unsigned char *p_buf, 1002 int p_buf_len) 1003 { 1004 unsigned char buf[VPD_TMP_BUF_SIZE]; 1005 int ret = 0; 1006 int len; 1007 1008 memset(buf, 0, VPD_TMP_BUF_SIZE); 1009 len = sprintf(buf, "T10 VPD Identifier Type: "); 1010 1011 switch (vpd->device_identifier_type) { 1012 case 0x00: 1013 sprintf(buf+len, "Vendor specific\n"); 1014 break; 1015 case 0x01: 1016 sprintf(buf+len, "T10 Vendor ID based\n"); 1017 break; 1018 case 0x02: 1019 sprintf(buf+len, "EUI-64 based\n"); 1020 break; 1021 case 0x03: 1022 sprintf(buf+len, "NAA\n"); 1023 break; 1024 case 0x04: 1025 sprintf(buf+len, "Relative target port identifier\n"); 1026 break; 1027 case 0x08: 1028 sprintf(buf+len, "SCSI name string\n"); 1029 break; 1030 default: 1031 sprintf(buf+len, "Unsupported: 0x%02x\n", 1032 vpd->device_identifier_type); 1033 ret = -EINVAL; 1034 break; 1035 } 1036 1037 if (p_buf) { 1038 if (p_buf_len < strlen(buf)+1) 1039 return -EINVAL; 1040 strncpy(p_buf, buf, p_buf_len); 1041 } else { 1042 pr_debug("%s", buf); 1043 } 1044 1045 return ret; 1046 } 1047 1048 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1049 { 1050 /* 1051 * The VPD identifier type.. 1052 * 1053 * from spc3r23.pdf Section 7.6.3.1 Table 298 1054 */ 1055 vpd->device_identifier_type = (page_83[1] & 0x0f); 1056 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1057 } 1058 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1059 1060 int transport_dump_vpd_ident( 1061 struct t10_vpd *vpd, 1062 unsigned char *p_buf, 1063 int p_buf_len) 1064 { 1065 unsigned char buf[VPD_TMP_BUF_SIZE]; 1066 int ret = 0; 1067 1068 memset(buf, 0, VPD_TMP_BUF_SIZE); 1069 1070 switch (vpd->device_identifier_code_set) { 1071 case 0x01: /* Binary */ 1072 snprintf(buf, sizeof(buf), 1073 "T10 VPD Binary Device Identifier: %s\n", 1074 &vpd->device_identifier[0]); 1075 break; 1076 case 0x02: /* ASCII */ 1077 snprintf(buf, sizeof(buf), 1078 "T10 VPD ASCII Device Identifier: %s\n", 1079 &vpd->device_identifier[0]); 1080 break; 1081 case 0x03: /* UTF-8 */ 1082 snprintf(buf, sizeof(buf), 1083 "T10 VPD UTF-8 Device Identifier: %s\n", 1084 &vpd->device_identifier[0]); 1085 break; 1086 default: 1087 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1088 " 0x%02x", vpd->device_identifier_code_set); 1089 ret = -EINVAL; 1090 break; 1091 } 1092 1093 if (p_buf) 1094 strncpy(p_buf, buf, p_buf_len); 1095 else 1096 pr_debug("%s", buf); 1097 1098 return ret; 1099 } 1100 1101 int 1102 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1103 { 1104 static const char hex_str[] = "0123456789abcdef"; 1105 int j = 0, i = 4; /* offset to start of the identifier */ 1106 1107 /* 1108 * The VPD Code Set (encoding) 1109 * 1110 * from spc3r23.pdf Section 7.6.3.1 Table 296 1111 */ 1112 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1113 switch (vpd->device_identifier_code_set) { 1114 case 0x01: /* Binary */ 1115 vpd->device_identifier[j++] = 1116 hex_str[vpd->device_identifier_type]; 1117 while (i < (4 + page_83[3])) { 1118 vpd->device_identifier[j++] = 1119 hex_str[(page_83[i] & 0xf0) >> 4]; 1120 vpd->device_identifier[j++] = 1121 hex_str[page_83[i] & 0x0f]; 1122 i++; 1123 } 1124 break; 1125 case 0x02: /* ASCII */ 1126 case 0x03: /* UTF-8 */ 1127 while (i < (4 + page_83[3])) 1128 vpd->device_identifier[j++] = page_83[i++]; 1129 break; 1130 default: 1131 break; 1132 } 1133 1134 return transport_dump_vpd_ident(vpd, NULL, 0); 1135 } 1136 EXPORT_SYMBOL(transport_set_vpd_ident); 1137 1138 static sense_reason_t 1139 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1140 unsigned int size) 1141 { 1142 u32 mtl; 1143 1144 if (!cmd->se_tfo->max_data_sg_nents) 1145 return TCM_NO_SENSE; 1146 /* 1147 * Check if fabric enforced maximum SGL entries per I/O descriptor 1148 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1149 * residual_count and reduce original cmd->data_length to maximum 1150 * length based on single PAGE_SIZE entry scatter-lists. 1151 */ 1152 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1153 if (cmd->data_length > mtl) { 1154 /* 1155 * If an existing CDB overflow is present, calculate new residual 1156 * based on CDB size minus fabric maximum transfer length. 1157 * 1158 * If an existing CDB underflow is present, calculate new residual 1159 * based on original cmd->data_length minus fabric maximum transfer 1160 * length. 1161 * 1162 * Otherwise, set the underflow residual based on cmd->data_length 1163 * minus fabric maximum transfer length. 1164 */ 1165 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1166 cmd->residual_count = (size - mtl); 1167 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1168 u32 orig_dl = size + cmd->residual_count; 1169 cmd->residual_count = (orig_dl - mtl); 1170 } else { 1171 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1172 cmd->residual_count = (cmd->data_length - mtl); 1173 } 1174 cmd->data_length = mtl; 1175 /* 1176 * Reset sbc_check_prot() calculated protection payload 1177 * length based upon the new smaller MTL. 1178 */ 1179 if (cmd->prot_length) { 1180 u32 sectors = (mtl / dev->dev_attrib.block_size); 1181 cmd->prot_length = dev->prot_length * sectors; 1182 } 1183 } 1184 return TCM_NO_SENSE; 1185 } 1186 1187 sense_reason_t 1188 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1189 { 1190 struct se_device *dev = cmd->se_dev; 1191 1192 if (cmd->unknown_data_length) { 1193 cmd->data_length = size; 1194 } else if (size != cmd->data_length) { 1195 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" 1196 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1197 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1198 cmd->data_length, size, cmd->t_task_cdb[0]); 1199 1200 if (cmd->data_direction == DMA_TO_DEVICE) { 1201 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1202 pr_err_ratelimited("Rejecting underflow/overflow" 1203 " for WRITE data CDB\n"); 1204 return TCM_INVALID_CDB_FIELD; 1205 } 1206 /* 1207 * Some fabric drivers like iscsi-target still expect to 1208 * always reject overflow writes. Reject this case until 1209 * full fabric driver level support for overflow writes 1210 * is introduced tree-wide. 1211 */ 1212 if (size > cmd->data_length) { 1213 pr_err_ratelimited("Rejecting overflow for" 1214 " WRITE control CDB\n"); 1215 return TCM_INVALID_CDB_FIELD; 1216 } 1217 } 1218 /* 1219 * Reject READ_* or WRITE_* with overflow/underflow for 1220 * type SCF_SCSI_DATA_CDB. 1221 */ 1222 if (dev->dev_attrib.block_size != 512) { 1223 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1224 " CDB on non 512-byte sector setup subsystem" 1225 " plugin: %s\n", dev->transport->name); 1226 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1227 return TCM_INVALID_CDB_FIELD; 1228 } 1229 /* 1230 * For the overflow case keep the existing fabric provided 1231 * ->data_length. Otherwise for the underflow case, reset 1232 * ->data_length to the smaller SCSI expected data transfer 1233 * length. 1234 */ 1235 if (size > cmd->data_length) { 1236 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1237 cmd->residual_count = (size - cmd->data_length); 1238 } else { 1239 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1240 cmd->residual_count = (cmd->data_length - size); 1241 cmd->data_length = size; 1242 } 1243 } 1244 1245 return target_check_max_data_sg_nents(cmd, dev, size); 1246 1247 } 1248 1249 /* 1250 * Used by fabric modules containing a local struct se_cmd within their 1251 * fabric dependent per I/O descriptor. 1252 * 1253 * Preserves the value of @cmd->tag. 1254 */ 1255 void transport_init_se_cmd( 1256 struct se_cmd *cmd, 1257 const struct target_core_fabric_ops *tfo, 1258 struct se_session *se_sess, 1259 u32 data_length, 1260 int data_direction, 1261 int task_attr, 1262 unsigned char *sense_buffer) 1263 { 1264 INIT_LIST_HEAD(&cmd->se_delayed_node); 1265 INIT_LIST_HEAD(&cmd->se_qf_node); 1266 INIT_LIST_HEAD(&cmd->se_cmd_list); 1267 INIT_LIST_HEAD(&cmd->state_list); 1268 init_completion(&cmd->t_transport_stop_comp); 1269 init_completion(&cmd->cmd_wait_comp); 1270 spin_lock_init(&cmd->t_state_lock); 1271 INIT_WORK(&cmd->work, NULL); 1272 kref_init(&cmd->cmd_kref); 1273 1274 cmd->se_tfo = tfo; 1275 cmd->se_sess = se_sess; 1276 cmd->data_length = data_length; 1277 cmd->data_direction = data_direction; 1278 cmd->sam_task_attr = task_attr; 1279 cmd->sense_buffer = sense_buffer; 1280 1281 cmd->state_active = false; 1282 } 1283 EXPORT_SYMBOL(transport_init_se_cmd); 1284 1285 static sense_reason_t 1286 transport_check_alloc_task_attr(struct se_cmd *cmd) 1287 { 1288 struct se_device *dev = cmd->se_dev; 1289 1290 /* 1291 * Check if SAM Task Attribute emulation is enabled for this 1292 * struct se_device storage object 1293 */ 1294 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1295 return 0; 1296 1297 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1298 pr_debug("SAM Task Attribute ACA" 1299 " emulation is not supported\n"); 1300 return TCM_INVALID_CDB_FIELD; 1301 } 1302 1303 return 0; 1304 } 1305 1306 sense_reason_t 1307 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1308 { 1309 struct se_device *dev = cmd->se_dev; 1310 sense_reason_t ret; 1311 1312 /* 1313 * Ensure that the received CDB is less than the max (252 + 8) bytes 1314 * for VARIABLE_LENGTH_CMD 1315 */ 1316 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1317 pr_err("Received SCSI CDB with command_size: %d that" 1318 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1319 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1320 return TCM_INVALID_CDB_FIELD; 1321 } 1322 /* 1323 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1324 * allocate the additional extended CDB buffer now.. Otherwise 1325 * setup the pointer from __t_task_cdb to t_task_cdb. 1326 */ 1327 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1328 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1329 GFP_KERNEL); 1330 if (!cmd->t_task_cdb) { 1331 pr_err("Unable to allocate cmd->t_task_cdb" 1332 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1333 scsi_command_size(cdb), 1334 (unsigned long)sizeof(cmd->__t_task_cdb)); 1335 return TCM_OUT_OF_RESOURCES; 1336 } 1337 } else 1338 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1339 /* 1340 * Copy the original CDB into cmd-> 1341 */ 1342 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1343 1344 trace_target_sequencer_start(cmd); 1345 1346 ret = dev->transport->parse_cdb(cmd); 1347 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1348 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1349 cmd->se_tfo->get_fabric_name(), 1350 cmd->se_sess->se_node_acl->initiatorname, 1351 cmd->t_task_cdb[0]); 1352 if (ret) 1353 return ret; 1354 1355 ret = transport_check_alloc_task_attr(cmd); 1356 if (ret) 1357 return ret; 1358 1359 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1360 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1361 return 0; 1362 } 1363 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1364 1365 /* 1366 * Used by fabric module frontends to queue tasks directly. 1367 * May only be used from process context. 1368 */ 1369 int transport_handle_cdb_direct( 1370 struct se_cmd *cmd) 1371 { 1372 sense_reason_t ret; 1373 1374 if (!cmd->se_lun) { 1375 dump_stack(); 1376 pr_err("cmd->se_lun is NULL\n"); 1377 return -EINVAL; 1378 } 1379 if (in_interrupt()) { 1380 dump_stack(); 1381 pr_err("transport_generic_handle_cdb cannot be called" 1382 " from interrupt context\n"); 1383 return -EINVAL; 1384 } 1385 /* 1386 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1387 * outstanding descriptors are handled correctly during shutdown via 1388 * transport_wait_for_tasks() 1389 * 1390 * Also, we don't take cmd->t_state_lock here as we only expect 1391 * this to be called for initial descriptor submission. 1392 */ 1393 cmd->t_state = TRANSPORT_NEW_CMD; 1394 cmd->transport_state |= CMD_T_ACTIVE; 1395 1396 /* 1397 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1398 * so follow TRANSPORT_NEW_CMD processing thread context usage 1399 * and call transport_generic_request_failure() if necessary.. 1400 */ 1401 ret = transport_generic_new_cmd(cmd); 1402 if (ret) 1403 transport_generic_request_failure(cmd, ret); 1404 return 0; 1405 } 1406 EXPORT_SYMBOL(transport_handle_cdb_direct); 1407 1408 sense_reason_t 1409 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1410 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1411 { 1412 if (!sgl || !sgl_count) 1413 return 0; 1414 1415 /* 1416 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1417 * scatterlists already have been set to follow what the fabric 1418 * passes for the original expected data transfer length. 1419 */ 1420 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1421 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1422 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1423 return TCM_INVALID_CDB_FIELD; 1424 } 1425 1426 cmd->t_data_sg = sgl; 1427 cmd->t_data_nents = sgl_count; 1428 cmd->t_bidi_data_sg = sgl_bidi; 1429 cmd->t_bidi_data_nents = sgl_bidi_count; 1430 1431 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1432 return 0; 1433 } 1434 1435 /* 1436 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1437 * se_cmd + use pre-allocated SGL memory. 1438 * 1439 * @se_cmd: command descriptor to submit 1440 * @se_sess: associated se_sess for endpoint 1441 * @cdb: pointer to SCSI CDB 1442 * @sense: pointer to SCSI sense buffer 1443 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1444 * @data_length: fabric expected data transfer length 1445 * @task_addr: SAM task attribute 1446 * @data_dir: DMA data direction 1447 * @flags: flags for command submission from target_sc_flags_tables 1448 * @sgl: struct scatterlist memory for unidirectional mapping 1449 * @sgl_count: scatterlist count for unidirectional mapping 1450 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1451 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1452 * @sgl_prot: struct scatterlist memory protection information 1453 * @sgl_prot_count: scatterlist count for protection information 1454 * 1455 * Task tags are supported if the caller has set @se_cmd->tag. 1456 * 1457 * Returns non zero to signal active I/O shutdown failure. All other 1458 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1459 * but still return zero here. 1460 * 1461 * This may only be called from process context, and also currently 1462 * assumes internal allocation of fabric payload buffer by target-core. 1463 */ 1464 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1465 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1466 u32 data_length, int task_attr, int data_dir, int flags, 1467 struct scatterlist *sgl, u32 sgl_count, 1468 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1469 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1470 { 1471 struct se_portal_group *se_tpg; 1472 sense_reason_t rc; 1473 int ret; 1474 1475 se_tpg = se_sess->se_tpg; 1476 BUG_ON(!se_tpg); 1477 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1478 BUG_ON(in_interrupt()); 1479 /* 1480 * Initialize se_cmd for target operation. From this point 1481 * exceptions are handled by sending exception status via 1482 * target_core_fabric_ops->queue_status() callback 1483 */ 1484 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1485 data_length, data_dir, task_attr, sense); 1486 1487 if (flags & TARGET_SCF_USE_CPUID) 1488 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1489 else 1490 se_cmd->cpuid = WORK_CPU_UNBOUND; 1491 1492 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1493 se_cmd->unknown_data_length = 1; 1494 /* 1495 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1496 * se_sess->sess_cmd_list. A second kref_get here is necessary 1497 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1498 * kref_put() to happen during fabric packet acknowledgement. 1499 */ 1500 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1501 if (ret) 1502 return ret; 1503 /* 1504 * Signal bidirectional data payloads to target-core 1505 */ 1506 if (flags & TARGET_SCF_BIDI_OP) 1507 se_cmd->se_cmd_flags |= SCF_BIDI; 1508 /* 1509 * Locate se_lun pointer and attach it to struct se_cmd 1510 */ 1511 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1512 if (rc) { 1513 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1514 target_put_sess_cmd(se_cmd); 1515 return 0; 1516 } 1517 1518 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1519 if (rc != 0) { 1520 transport_generic_request_failure(se_cmd, rc); 1521 return 0; 1522 } 1523 1524 /* 1525 * Save pointers for SGLs containing protection information, 1526 * if present. 1527 */ 1528 if (sgl_prot_count) { 1529 se_cmd->t_prot_sg = sgl_prot; 1530 se_cmd->t_prot_nents = sgl_prot_count; 1531 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1532 } 1533 1534 /* 1535 * When a non zero sgl_count has been passed perform SGL passthrough 1536 * mapping for pre-allocated fabric memory instead of having target 1537 * core perform an internal SGL allocation.. 1538 */ 1539 if (sgl_count != 0) { 1540 BUG_ON(!sgl); 1541 1542 /* 1543 * A work-around for tcm_loop as some userspace code via 1544 * scsi-generic do not memset their associated read buffers, 1545 * so go ahead and do that here for type non-data CDBs. Also 1546 * note that this is currently guaranteed to be a single SGL 1547 * for this case by target core in target_setup_cmd_from_cdb() 1548 * -> transport_generic_cmd_sequencer(). 1549 */ 1550 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1551 se_cmd->data_direction == DMA_FROM_DEVICE) { 1552 unsigned char *buf = NULL; 1553 1554 if (sgl) 1555 buf = kmap(sg_page(sgl)) + sgl->offset; 1556 1557 if (buf) { 1558 memset(buf, 0, sgl->length); 1559 kunmap(sg_page(sgl)); 1560 } 1561 } 1562 1563 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1564 sgl_bidi, sgl_bidi_count); 1565 if (rc != 0) { 1566 transport_generic_request_failure(se_cmd, rc); 1567 return 0; 1568 } 1569 } 1570 1571 /* 1572 * Check if we need to delay processing because of ALUA 1573 * Active/NonOptimized primary access state.. 1574 */ 1575 core_alua_check_nonop_delay(se_cmd); 1576 1577 transport_handle_cdb_direct(se_cmd); 1578 return 0; 1579 } 1580 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1581 1582 /* 1583 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1584 * 1585 * @se_cmd: command descriptor to submit 1586 * @se_sess: associated se_sess for endpoint 1587 * @cdb: pointer to SCSI CDB 1588 * @sense: pointer to SCSI sense buffer 1589 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1590 * @data_length: fabric expected data transfer length 1591 * @task_addr: SAM task attribute 1592 * @data_dir: DMA data direction 1593 * @flags: flags for command submission from target_sc_flags_tables 1594 * 1595 * Task tags are supported if the caller has set @se_cmd->tag. 1596 * 1597 * Returns non zero to signal active I/O shutdown failure. All other 1598 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1599 * but still return zero here. 1600 * 1601 * This may only be called from process context, and also currently 1602 * assumes internal allocation of fabric payload buffer by target-core. 1603 * 1604 * It also assumes interal target core SGL memory allocation. 1605 */ 1606 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1607 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1608 u32 data_length, int task_attr, int data_dir, int flags) 1609 { 1610 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1611 unpacked_lun, data_length, task_attr, data_dir, 1612 flags, NULL, 0, NULL, 0, NULL, 0); 1613 } 1614 EXPORT_SYMBOL(target_submit_cmd); 1615 1616 static void target_complete_tmr_failure(struct work_struct *work) 1617 { 1618 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1619 1620 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1621 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1622 1623 transport_lun_remove_cmd(se_cmd); 1624 transport_cmd_check_stop_to_fabric(se_cmd); 1625 } 1626 1627 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag, 1628 u64 *unpacked_lun) 1629 { 1630 struct se_cmd *se_cmd; 1631 unsigned long flags; 1632 bool ret = false; 1633 1634 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 1635 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) { 1636 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 1637 continue; 1638 1639 if (se_cmd->tag == tag) { 1640 *unpacked_lun = se_cmd->orig_fe_lun; 1641 ret = true; 1642 break; 1643 } 1644 } 1645 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 1646 1647 return ret; 1648 } 1649 1650 /** 1651 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1652 * for TMR CDBs 1653 * 1654 * @se_cmd: command descriptor to submit 1655 * @se_sess: associated se_sess for endpoint 1656 * @sense: pointer to SCSI sense buffer 1657 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1658 * @fabric_context: fabric context for TMR req 1659 * @tm_type: Type of TM request 1660 * @gfp: gfp type for caller 1661 * @tag: referenced task tag for TMR_ABORT_TASK 1662 * @flags: submit cmd flags 1663 * 1664 * Callable from all contexts. 1665 **/ 1666 1667 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1668 unsigned char *sense, u64 unpacked_lun, 1669 void *fabric_tmr_ptr, unsigned char tm_type, 1670 gfp_t gfp, u64 tag, int flags) 1671 { 1672 struct se_portal_group *se_tpg; 1673 int ret; 1674 1675 se_tpg = se_sess->se_tpg; 1676 BUG_ON(!se_tpg); 1677 1678 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1679 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1680 /* 1681 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1682 * allocation failure. 1683 */ 1684 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1685 if (ret < 0) 1686 return -ENOMEM; 1687 1688 if (tm_type == TMR_ABORT_TASK) 1689 se_cmd->se_tmr_req->ref_task_tag = tag; 1690 1691 /* See target_submit_cmd for commentary */ 1692 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1693 if (ret) { 1694 core_tmr_release_req(se_cmd->se_tmr_req); 1695 return ret; 1696 } 1697 /* 1698 * If this is ABORT_TASK with no explicit fabric provided LUN, 1699 * go ahead and search active session tags for a match to figure 1700 * out unpacked_lun for the original se_cmd. 1701 */ 1702 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) { 1703 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun)) 1704 goto failure; 1705 } 1706 1707 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1708 if (ret) 1709 goto failure; 1710 1711 transport_generic_handle_tmr(se_cmd); 1712 return 0; 1713 1714 /* 1715 * For callback during failure handling, push this work off 1716 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1717 */ 1718 failure: 1719 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1720 schedule_work(&se_cmd->work); 1721 return 0; 1722 } 1723 EXPORT_SYMBOL(target_submit_tmr); 1724 1725 /* 1726 * Handle SAM-esque emulation for generic transport request failures. 1727 */ 1728 void transport_generic_request_failure(struct se_cmd *cmd, 1729 sense_reason_t sense_reason) 1730 { 1731 int ret = 0, post_ret = 0; 1732 1733 if (transport_check_aborted_status(cmd, 1)) 1734 return; 1735 1736 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n", 1737 sense_reason); 1738 target_show_cmd("-----[ ", cmd); 1739 1740 /* 1741 * For SAM Task Attribute emulation for failed struct se_cmd 1742 */ 1743 transport_complete_task_attr(cmd); 1744 /* 1745 * Handle special case for COMPARE_AND_WRITE failure, where the 1746 * callback is expected to drop the per device ->caw_sem. 1747 */ 1748 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1749 cmd->transport_complete_callback) 1750 cmd->transport_complete_callback(cmd, false, &post_ret); 1751 1752 switch (sense_reason) { 1753 case TCM_NON_EXISTENT_LUN: 1754 case TCM_UNSUPPORTED_SCSI_OPCODE: 1755 case TCM_INVALID_CDB_FIELD: 1756 case TCM_INVALID_PARAMETER_LIST: 1757 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1758 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1759 case TCM_UNKNOWN_MODE_PAGE: 1760 case TCM_WRITE_PROTECTED: 1761 case TCM_ADDRESS_OUT_OF_RANGE: 1762 case TCM_CHECK_CONDITION_ABORT_CMD: 1763 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1764 case TCM_CHECK_CONDITION_NOT_READY: 1765 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1766 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1767 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1768 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1769 case TCM_TOO_MANY_TARGET_DESCS: 1770 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1771 case TCM_TOO_MANY_SEGMENT_DESCS: 1772 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1773 break; 1774 case TCM_OUT_OF_RESOURCES: 1775 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1776 break; 1777 case TCM_RESERVATION_CONFLICT: 1778 /* 1779 * No SENSE Data payload for this case, set SCSI Status 1780 * and queue the response to $FABRIC_MOD. 1781 * 1782 * Uses linux/include/scsi/scsi.h SAM status codes defs 1783 */ 1784 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1785 /* 1786 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1787 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1788 * CONFLICT STATUS. 1789 * 1790 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1791 */ 1792 if (cmd->se_sess && 1793 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1794 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1795 cmd->orig_fe_lun, 0x2C, 1796 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1797 } 1798 trace_target_cmd_complete(cmd); 1799 ret = cmd->se_tfo->queue_status(cmd); 1800 if (ret) 1801 goto queue_full; 1802 goto check_stop; 1803 default: 1804 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1805 cmd->t_task_cdb[0], sense_reason); 1806 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1807 break; 1808 } 1809 1810 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1811 if (ret) 1812 goto queue_full; 1813 1814 check_stop: 1815 transport_lun_remove_cmd(cmd); 1816 transport_cmd_check_stop_to_fabric(cmd); 1817 return; 1818 1819 queue_full: 1820 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 1821 } 1822 EXPORT_SYMBOL(transport_generic_request_failure); 1823 1824 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1825 { 1826 sense_reason_t ret; 1827 1828 if (!cmd->execute_cmd) { 1829 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1830 goto err; 1831 } 1832 if (do_checks) { 1833 /* 1834 * Check for an existing UNIT ATTENTION condition after 1835 * target_handle_task_attr() has done SAM task attr 1836 * checking, and possibly have already defered execution 1837 * out to target_restart_delayed_cmds() context. 1838 */ 1839 ret = target_scsi3_ua_check(cmd); 1840 if (ret) 1841 goto err; 1842 1843 ret = target_alua_state_check(cmd); 1844 if (ret) 1845 goto err; 1846 1847 ret = target_check_reservation(cmd); 1848 if (ret) { 1849 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1850 goto err; 1851 } 1852 } 1853 1854 ret = cmd->execute_cmd(cmd); 1855 if (!ret) 1856 return; 1857 err: 1858 spin_lock_irq(&cmd->t_state_lock); 1859 cmd->transport_state &= ~CMD_T_SENT; 1860 spin_unlock_irq(&cmd->t_state_lock); 1861 1862 transport_generic_request_failure(cmd, ret); 1863 } 1864 1865 static int target_write_prot_action(struct se_cmd *cmd) 1866 { 1867 u32 sectors; 1868 /* 1869 * Perform WRITE_INSERT of PI using software emulation when backend 1870 * device has PI enabled, if the transport has not already generated 1871 * PI using hardware WRITE_INSERT offload. 1872 */ 1873 switch (cmd->prot_op) { 1874 case TARGET_PROT_DOUT_INSERT: 1875 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1876 sbc_dif_generate(cmd); 1877 break; 1878 case TARGET_PROT_DOUT_STRIP: 1879 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1880 break; 1881 1882 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1883 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1884 sectors, 0, cmd->t_prot_sg, 0); 1885 if (unlikely(cmd->pi_err)) { 1886 spin_lock_irq(&cmd->t_state_lock); 1887 cmd->transport_state &= ~CMD_T_SENT; 1888 spin_unlock_irq(&cmd->t_state_lock); 1889 transport_generic_request_failure(cmd, cmd->pi_err); 1890 return -1; 1891 } 1892 break; 1893 default: 1894 break; 1895 } 1896 1897 return 0; 1898 } 1899 1900 static bool target_handle_task_attr(struct se_cmd *cmd) 1901 { 1902 struct se_device *dev = cmd->se_dev; 1903 1904 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1905 return false; 1906 1907 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 1908 1909 /* 1910 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1911 * to allow the passed struct se_cmd list of tasks to the front of the list. 1912 */ 1913 switch (cmd->sam_task_attr) { 1914 case TCM_HEAD_TAG: 1915 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1916 cmd->t_task_cdb[0]); 1917 return false; 1918 case TCM_ORDERED_TAG: 1919 atomic_inc_mb(&dev->dev_ordered_sync); 1920 1921 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1922 cmd->t_task_cdb[0]); 1923 1924 /* 1925 * Execute an ORDERED command if no other older commands 1926 * exist that need to be completed first. 1927 */ 1928 if (!atomic_read(&dev->simple_cmds)) 1929 return false; 1930 break; 1931 default: 1932 /* 1933 * For SIMPLE and UNTAGGED Task Attribute commands 1934 */ 1935 atomic_inc_mb(&dev->simple_cmds); 1936 break; 1937 } 1938 1939 if (atomic_read(&dev->dev_ordered_sync) == 0) 1940 return false; 1941 1942 spin_lock(&dev->delayed_cmd_lock); 1943 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1944 spin_unlock(&dev->delayed_cmd_lock); 1945 1946 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1947 cmd->t_task_cdb[0], cmd->sam_task_attr); 1948 return true; 1949 } 1950 1951 static int __transport_check_aborted_status(struct se_cmd *, int); 1952 1953 void target_execute_cmd(struct se_cmd *cmd) 1954 { 1955 /* 1956 * Determine if frontend context caller is requesting the stopping of 1957 * this command for frontend exceptions. 1958 * 1959 * If the received CDB has aleady been aborted stop processing it here. 1960 */ 1961 spin_lock_irq(&cmd->t_state_lock); 1962 if (__transport_check_aborted_status(cmd, 1)) { 1963 spin_unlock_irq(&cmd->t_state_lock); 1964 return; 1965 } 1966 if (cmd->transport_state & CMD_T_STOP) { 1967 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1968 __func__, __LINE__, cmd->tag); 1969 1970 spin_unlock_irq(&cmd->t_state_lock); 1971 complete_all(&cmd->t_transport_stop_comp); 1972 return; 1973 } 1974 1975 cmd->t_state = TRANSPORT_PROCESSING; 1976 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 1977 spin_unlock_irq(&cmd->t_state_lock); 1978 1979 if (target_write_prot_action(cmd)) 1980 return; 1981 1982 if (target_handle_task_attr(cmd)) { 1983 spin_lock_irq(&cmd->t_state_lock); 1984 cmd->transport_state &= ~CMD_T_SENT; 1985 spin_unlock_irq(&cmd->t_state_lock); 1986 return; 1987 } 1988 1989 __target_execute_cmd(cmd, true); 1990 } 1991 EXPORT_SYMBOL(target_execute_cmd); 1992 1993 /* 1994 * Process all commands up to the last received ORDERED task attribute which 1995 * requires another blocking boundary 1996 */ 1997 static void target_restart_delayed_cmds(struct se_device *dev) 1998 { 1999 for (;;) { 2000 struct se_cmd *cmd; 2001 2002 spin_lock(&dev->delayed_cmd_lock); 2003 if (list_empty(&dev->delayed_cmd_list)) { 2004 spin_unlock(&dev->delayed_cmd_lock); 2005 break; 2006 } 2007 2008 cmd = list_entry(dev->delayed_cmd_list.next, 2009 struct se_cmd, se_delayed_node); 2010 list_del(&cmd->se_delayed_node); 2011 spin_unlock(&dev->delayed_cmd_lock); 2012 2013 __target_execute_cmd(cmd, true); 2014 2015 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 2016 break; 2017 } 2018 } 2019 2020 /* 2021 * Called from I/O completion to determine which dormant/delayed 2022 * and ordered cmds need to have their tasks added to the execution queue. 2023 */ 2024 static void transport_complete_task_attr(struct se_cmd *cmd) 2025 { 2026 struct se_device *dev = cmd->se_dev; 2027 2028 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2029 return; 2030 2031 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 2032 goto restart; 2033 2034 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 2035 atomic_dec_mb(&dev->simple_cmds); 2036 dev->dev_cur_ordered_id++; 2037 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 2038 dev->dev_cur_ordered_id++; 2039 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 2040 dev->dev_cur_ordered_id); 2041 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 2042 atomic_dec_mb(&dev->dev_ordered_sync); 2043 2044 dev->dev_cur_ordered_id++; 2045 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 2046 dev->dev_cur_ordered_id); 2047 } 2048 restart: 2049 target_restart_delayed_cmds(dev); 2050 } 2051 2052 static void transport_complete_qf(struct se_cmd *cmd) 2053 { 2054 int ret = 0; 2055 2056 transport_complete_task_attr(cmd); 2057 /* 2058 * If a fabric driver ->write_pending() or ->queue_data_in() callback 2059 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 2060 * the same callbacks should not be retried. Return CHECK_CONDITION 2061 * if a scsi_status is not already set. 2062 * 2063 * If a fabric driver ->queue_status() has returned non zero, always 2064 * keep retrying no matter what.. 2065 */ 2066 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 2067 if (cmd->scsi_status) 2068 goto queue_status; 2069 2070 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2071 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2072 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2073 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 2074 goto queue_status; 2075 } 2076 2077 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2078 goto queue_status; 2079 2080 switch (cmd->data_direction) { 2081 case DMA_FROM_DEVICE: 2082 if (cmd->scsi_status) 2083 goto queue_status; 2084 2085 trace_target_cmd_complete(cmd); 2086 ret = cmd->se_tfo->queue_data_in(cmd); 2087 break; 2088 case DMA_TO_DEVICE: 2089 if (cmd->se_cmd_flags & SCF_BIDI) { 2090 ret = cmd->se_tfo->queue_data_in(cmd); 2091 break; 2092 } 2093 /* Fall through for DMA_TO_DEVICE */ 2094 case DMA_NONE: 2095 queue_status: 2096 trace_target_cmd_complete(cmd); 2097 ret = cmd->se_tfo->queue_status(cmd); 2098 break; 2099 default: 2100 break; 2101 } 2102 2103 if (ret < 0) { 2104 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2105 return; 2106 } 2107 transport_lun_remove_cmd(cmd); 2108 transport_cmd_check_stop_to_fabric(cmd); 2109 } 2110 2111 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2112 int err, bool write_pending) 2113 { 2114 /* 2115 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2116 * ->queue_data_in() callbacks from new process context. 2117 * 2118 * Otherwise for other errors, transport_complete_qf() will send 2119 * CHECK_CONDITION via ->queue_status() instead of attempting to 2120 * retry associated fabric driver data-transfer callbacks. 2121 */ 2122 if (err == -EAGAIN || err == -ENOMEM) { 2123 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2124 TRANSPORT_COMPLETE_QF_OK; 2125 } else { 2126 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2127 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2128 } 2129 2130 spin_lock_irq(&dev->qf_cmd_lock); 2131 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2132 atomic_inc_mb(&dev->dev_qf_count); 2133 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2134 2135 schedule_work(&cmd->se_dev->qf_work_queue); 2136 } 2137 2138 static bool target_read_prot_action(struct se_cmd *cmd) 2139 { 2140 switch (cmd->prot_op) { 2141 case TARGET_PROT_DIN_STRIP: 2142 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2143 u32 sectors = cmd->data_length >> 2144 ilog2(cmd->se_dev->dev_attrib.block_size); 2145 2146 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2147 sectors, 0, cmd->t_prot_sg, 2148 0); 2149 if (cmd->pi_err) 2150 return true; 2151 } 2152 break; 2153 case TARGET_PROT_DIN_INSERT: 2154 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2155 break; 2156 2157 sbc_dif_generate(cmd); 2158 break; 2159 default: 2160 break; 2161 } 2162 2163 return false; 2164 } 2165 2166 static void target_complete_ok_work(struct work_struct *work) 2167 { 2168 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2169 int ret; 2170 2171 /* 2172 * Check if we need to move delayed/dormant tasks from cmds on the 2173 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2174 * Attribute. 2175 */ 2176 transport_complete_task_attr(cmd); 2177 2178 /* 2179 * Check to schedule QUEUE_FULL work, or execute an existing 2180 * cmd->transport_qf_callback() 2181 */ 2182 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2183 schedule_work(&cmd->se_dev->qf_work_queue); 2184 2185 /* 2186 * Check if we need to send a sense buffer from 2187 * the struct se_cmd in question. 2188 */ 2189 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2190 WARN_ON(!cmd->scsi_status); 2191 ret = transport_send_check_condition_and_sense( 2192 cmd, 0, 1); 2193 if (ret) 2194 goto queue_full; 2195 2196 transport_lun_remove_cmd(cmd); 2197 transport_cmd_check_stop_to_fabric(cmd); 2198 return; 2199 } 2200 /* 2201 * Check for a callback, used by amongst other things 2202 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2203 */ 2204 if (cmd->transport_complete_callback) { 2205 sense_reason_t rc; 2206 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2207 bool zero_dl = !(cmd->data_length); 2208 int post_ret = 0; 2209 2210 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2211 if (!rc && !post_ret) { 2212 if (caw && zero_dl) 2213 goto queue_rsp; 2214 2215 return; 2216 } else if (rc) { 2217 ret = transport_send_check_condition_and_sense(cmd, 2218 rc, 0); 2219 if (ret) 2220 goto queue_full; 2221 2222 transport_lun_remove_cmd(cmd); 2223 transport_cmd_check_stop_to_fabric(cmd); 2224 return; 2225 } 2226 } 2227 2228 queue_rsp: 2229 switch (cmd->data_direction) { 2230 case DMA_FROM_DEVICE: 2231 if (cmd->scsi_status) 2232 goto queue_status; 2233 2234 atomic_long_add(cmd->data_length, 2235 &cmd->se_lun->lun_stats.tx_data_octets); 2236 /* 2237 * Perform READ_STRIP of PI using software emulation when 2238 * backend had PI enabled, if the transport will not be 2239 * performing hardware READ_STRIP offload. 2240 */ 2241 if (target_read_prot_action(cmd)) { 2242 ret = transport_send_check_condition_and_sense(cmd, 2243 cmd->pi_err, 0); 2244 if (ret) 2245 goto queue_full; 2246 2247 transport_lun_remove_cmd(cmd); 2248 transport_cmd_check_stop_to_fabric(cmd); 2249 return; 2250 } 2251 2252 trace_target_cmd_complete(cmd); 2253 ret = cmd->se_tfo->queue_data_in(cmd); 2254 if (ret) 2255 goto queue_full; 2256 break; 2257 case DMA_TO_DEVICE: 2258 atomic_long_add(cmd->data_length, 2259 &cmd->se_lun->lun_stats.rx_data_octets); 2260 /* 2261 * Check if we need to send READ payload for BIDI-COMMAND 2262 */ 2263 if (cmd->se_cmd_flags & SCF_BIDI) { 2264 atomic_long_add(cmd->data_length, 2265 &cmd->se_lun->lun_stats.tx_data_octets); 2266 ret = cmd->se_tfo->queue_data_in(cmd); 2267 if (ret) 2268 goto queue_full; 2269 break; 2270 } 2271 /* Fall through for DMA_TO_DEVICE */ 2272 case DMA_NONE: 2273 queue_status: 2274 trace_target_cmd_complete(cmd); 2275 ret = cmd->se_tfo->queue_status(cmd); 2276 if (ret) 2277 goto queue_full; 2278 break; 2279 default: 2280 break; 2281 } 2282 2283 transport_lun_remove_cmd(cmd); 2284 transport_cmd_check_stop_to_fabric(cmd); 2285 return; 2286 2287 queue_full: 2288 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2289 " data_direction: %d\n", cmd, cmd->data_direction); 2290 2291 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2292 } 2293 2294 void target_free_sgl(struct scatterlist *sgl, int nents) 2295 { 2296 struct scatterlist *sg; 2297 int count; 2298 2299 for_each_sg(sgl, sg, nents, count) 2300 __free_page(sg_page(sg)); 2301 2302 kfree(sgl); 2303 } 2304 EXPORT_SYMBOL(target_free_sgl); 2305 2306 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2307 { 2308 /* 2309 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2310 * emulation, and free + reset pointers if necessary.. 2311 */ 2312 if (!cmd->t_data_sg_orig) 2313 return; 2314 2315 kfree(cmd->t_data_sg); 2316 cmd->t_data_sg = cmd->t_data_sg_orig; 2317 cmd->t_data_sg_orig = NULL; 2318 cmd->t_data_nents = cmd->t_data_nents_orig; 2319 cmd->t_data_nents_orig = 0; 2320 } 2321 2322 static inline void transport_free_pages(struct se_cmd *cmd) 2323 { 2324 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2325 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2326 cmd->t_prot_sg = NULL; 2327 cmd->t_prot_nents = 0; 2328 } 2329 2330 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2331 /* 2332 * Release special case READ buffer payload required for 2333 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2334 */ 2335 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2336 target_free_sgl(cmd->t_bidi_data_sg, 2337 cmd->t_bidi_data_nents); 2338 cmd->t_bidi_data_sg = NULL; 2339 cmd->t_bidi_data_nents = 0; 2340 } 2341 transport_reset_sgl_orig(cmd); 2342 return; 2343 } 2344 transport_reset_sgl_orig(cmd); 2345 2346 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2347 cmd->t_data_sg = NULL; 2348 cmd->t_data_nents = 0; 2349 2350 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2351 cmd->t_bidi_data_sg = NULL; 2352 cmd->t_bidi_data_nents = 0; 2353 } 2354 2355 /** 2356 * transport_put_cmd - release a reference to a command 2357 * @cmd: command to release 2358 * 2359 * This routine releases our reference to the command and frees it if possible. 2360 */ 2361 static int transport_put_cmd(struct se_cmd *cmd) 2362 { 2363 BUG_ON(!cmd->se_tfo); 2364 /* 2365 * If this cmd has been setup with target_get_sess_cmd(), drop 2366 * the kref and call ->release_cmd() in kref callback. 2367 */ 2368 return target_put_sess_cmd(cmd); 2369 } 2370 2371 void *transport_kmap_data_sg(struct se_cmd *cmd) 2372 { 2373 struct scatterlist *sg = cmd->t_data_sg; 2374 struct page **pages; 2375 int i; 2376 2377 /* 2378 * We need to take into account a possible offset here for fabrics like 2379 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2380 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2381 */ 2382 if (!cmd->t_data_nents) 2383 return NULL; 2384 2385 BUG_ON(!sg); 2386 if (cmd->t_data_nents == 1) 2387 return kmap(sg_page(sg)) + sg->offset; 2388 2389 /* >1 page. use vmap */ 2390 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); 2391 if (!pages) 2392 return NULL; 2393 2394 /* convert sg[] to pages[] */ 2395 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2396 pages[i] = sg_page(sg); 2397 } 2398 2399 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2400 kfree(pages); 2401 if (!cmd->t_data_vmap) 2402 return NULL; 2403 2404 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2405 } 2406 EXPORT_SYMBOL(transport_kmap_data_sg); 2407 2408 void transport_kunmap_data_sg(struct se_cmd *cmd) 2409 { 2410 if (!cmd->t_data_nents) { 2411 return; 2412 } else if (cmd->t_data_nents == 1) { 2413 kunmap(sg_page(cmd->t_data_sg)); 2414 return; 2415 } 2416 2417 vunmap(cmd->t_data_vmap); 2418 cmd->t_data_vmap = NULL; 2419 } 2420 EXPORT_SYMBOL(transport_kunmap_data_sg); 2421 2422 int 2423 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2424 bool zero_page, bool chainable) 2425 { 2426 struct scatterlist *sg; 2427 struct page *page; 2428 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2429 unsigned int nalloc, nent; 2430 int i = 0; 2431 2432 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE); 2433 if (chainable) 2434 nalloc++; 2435 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL); 2436 if (!sg) 2437 return -ENOMEM; 2438 2439 sg_init_table(sg, nalloc); 2440 2441 while (length) { 2442 u32 page_len = min_t(u32, length, PAGE_SIZE); 2443 page = alloc_page(GFP_KERNEL | zero_flag); 2444 if (!page) 2445 goto out; 2446 2447 sg_set_page(&sg[i], page, page_len, 0); 2448 length -= page_len; 2449 i++; 2450 } 2451 *sgl = sg; 2452 *nents = nent; 2453 return 0; 2454 2455 out: 2456 while (i > 0) { 2457 i--; 2458 __free_page(sg_page(&sg[i])); 2459 } 2460 kfree(sg); 2461 return -ENOMEM; 2462 } 2463 EXPORT_SYMBOL(target_alloc_sgl); 2464 2465 /* 2466 * Allocate any required resources to execute the command. For writes we 2467 * might not have the payload yet, so notify the fabric via a call to 2468 * ->write_pending instead. Otherwise place it on the execution queue. 2469 */ 2470 sense_reason_t 2471 transport_generic_new_cmd(struct se_cmd *cmd) 2472 { 2473 unsigned long flags; 2474 int ret = 0; 2475 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2476 2477 if (cmd->prot_op != TARGET_PROT_NORMAL && 2478 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2479 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2480 cmd->prot_length, true, false); 2481 if (ret < 0) 2482 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2483 } 2484 2485 /* 2486 * Determine is the TCM fabric module has already allocated physical 2487 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2488 * beforehand. 2489 */ 2490 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2491 cmd->data_length) { 2492 2493 if ((cmd->se_cmd_flags & SCF_BIDI) || 2494 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2495 u32 bidi_length; 2496 2497 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2498 bidi_length = cmd->t_task_nolb * 2499 cmd->se_dev->dev_attrib.block_size; 2500 else 2501 bidi_length = cmd->data_length; 2502 2503 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2504 &cmd->t_bidi_data_nents, 2505 bidi_length, zero_flag, false); 2506 if (ret < 0) 2507 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2508 } 2509 2510 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2511 cmd->data_length, zero_flag, false); 2512 if (ret < 0) 2513 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2514 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2515 cmd->data_length) { 2516 /* 2517 * Special case for COMPARE_AND_WRITE with fabrics 2518 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2519 */ 2520 u32 caw_length = cmd->t_task_nolb * 2521 cmd->se_dev->dev_attrib.block_size; 2522 2523 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2524 &cmd->t_bidi_data_nents, 2525 caw_length, zero_flag, false); 2526 if (ret < 0) 2527 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2528 } 2529 /* 2530 * If this command is not a write we can execute it right here, 2531 * for write buffers we need to notify the fabric driver first 2532 * and let it call back once the write buffers are ready. 2533 */ 2534 target_add_to_state_list(cmd); 2535 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2536 target_execute_cmd(cmd); 2537 return 0; 2538 } 2539 2540 spin_lock_irqsave(&cmd->t_state_lock, flags); 2541 cmd->t_state = TRANSPORT_WRITE_PENDING; 2542 /* 2543 * Determine if frontend context caller is requesting the stopping of 2544 * this command for frontend exceptions. 2545 */ 2546 if (cmd->transport_state & CMD_T_STOP) { 2547 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2548 __func__, __LINE__, cmd->tag); 2549 2550 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2551 2552 complete_all(&cmd->t_transport_stop_comp); 2553 return 0; 2554 } 2555 cmd->transport_state &= ~CMD_T_ACTIVE; 2556 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2557 2558 ret = cmd->se_tfo->write_pending(cmd); 2559 if (ret) 2560 goto queue_full; 2561 2562 return 0; 2563 2564 queue_full: 2565 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2566 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2567 return 0; 2568 } 2569 EXPORT_SYMBOL(transport_generic_new_cmd); 2570 2571 static void transport_write_pending_qf(struct se_cmd *cmd) 2572 { 2573 int ret; 2574 2575 ret = cmd->se_tfo->write_pending(cmd); 2576 if (ret) { 2577 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2578 cmd); 2579 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2580 } 2581 } 2582 2583 static bool 2584 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2585 unsigned long *flags); 2586 2587 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2588 { 2589 unsigned long flags; 2590 2591 spin_lock_irqsave(&cmd->t_state_lock, flags); 2592 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2593 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2594 } 2595 2596 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2597 { 2598 int ret = 0; 2599 bool aborted = false, tas = false; 2600 2601 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2602 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2603 target_wait_free_cmd(cmd, &aborted, &tas); 2604 2605 if (!aborted || tas) 2606 ret = transport_put_cmd(cmd); 2607 } else { 2608 if (wait_for_tasks) 2609 target_wait_free_cmd(cmd, &aborted, &tas); 2610 /* 2611 * Handle WRITE failure case where transport_generic_new_cmd() 2612 * has already added se_cmd to state_list, but fabric has 2613 * failed command before I/O submission. 2614 */ 2615 if (cmd->state_active) 2616 target_remove_from_state_list(cmd); 2617 2618 if (cmd->se_lun) 2619 transport_lun_remove_cmd(cmd); 2620 2621 if (!aborted || tas) 2622 ret = transport_put_cmd(cmd); 2623 } 2624 /* 2625 * If the task has been internally aborted due to TMR ABORT_TASK 2626 * or LUN_RESET, target_core_tmr.c is responsible for performing 2627 * the remaining calls to target_put_sess_cmd(), and not the 2628 * callers of this function. 2629 */ 2630 if (aborted) { 2631 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2632 wait_for_completion(&cmd->cmd_wait_comp); 2633 cmd->se_tfo->release_cmd(cmd); 2634 ret = 1; 2635 } 2636 return ret; 2637 } 2638 EXPORT_SYMBOL(transport_generic_free_cmd); 2639 2640 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2641 * @se_cmd: command descriptor to add 2642 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2643 */ 2644 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2645 { 2646 struct se_session *se_sess = se_cmd->se_sess; 2647 unsigned long flags; 2648 int ret = 0; 2649 2650 /* 2651 * Add a second kref if the fabric caller is expecting to handle 2652 * fabric acknowledgement that requires two target_put_sess_cmd() 2653 * invocations before se_cmd descriptor release. 2654 */ 2655 if (ack_kref) { 2656 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2657 return -EINVAL; 2658 2659 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2660 } 2661 2662 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2663 if (se_sess->sess_tearing_down) { 2664 ret = -ESHUTDOWN; 2665 goto out; 2666 } 2667 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2668 out: 2669 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2670 2671 if (ret && ack_kref) 2672 target_put_sess_cmd(se_cmd); 2673 2674 return ret; 2675 } 2676 EXPORT_SYMBOL(target_get_sess_cmd); 2677 2678 static void target_free_cmd_mem(struct se_cmd *cmd) 2679 { 2680 transport_free_pages(cmd); 2681 2682 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2683 core_tmr_release_req(cmd->se_tmr_req); 2684 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2685 kfree(cmd->t_task_cdb); 2686 } 2687 2688 static void target_release_cmd_kref(struct kref *kref) 2689 { 2690 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2691 struct se_session *se_sess = se_cmd->se_sess; 2692 unsigned long flags; 2693 bool fabric_stop; 2694 2695 if (se_sess) { 2696 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2697 2698 spin_lock(&se_cmd->t_state_lock); 2699 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) && 2700 (se_cmd->transport_state & CMD_T_ABORTED); 2701 spin_unlock(&se_cmd->t_state_lock); 2702 2703 if (se_cmd->cmd_wait_set || fabric_stop) { 2704 list_del_init(&se_cmd->se_cmd_list); 2705 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2706 target_free_cmd_mem(se_cmd); 2707 complete(&se_cmd->cmd_wait_comp); 2708 return; 2709 } 2710 list_del_init(&se_cmd->se_cmd_list); 2711 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2712 } 2713 2714 target_free_cmd_mem(se_cmd); 2715 se_cmd->se_tfo->release_cmd(se_cmd); 2716 } 2717 2718 /** 2719 * target_put_sess_cmd - decrease the command reference count 2720 * @se_cmd: command to drop a reference from 2721 * 2722 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2723 * refcount to drop to zero. Returns zero otherwise. 2724 */ 2725 int target_put_sess_cmd(struct se_cmd *se_cmd) 2726 { 2727 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2728 } 2729 EXPORT_SYMBOL(target_put_sess_cmd); 2730 2731 static const char *data_dir_name(enum dma_data_direction d) 2732 { 2733 switch (d) { 2734 case DMA_BIDIRECTIONAL: return "BIDI"; 2735 case DMA_TO_DEVICE: return "WRITE"; 2736 case DMA_FROM_DEVICE: return "READ"; 2737 case DMA_NONE: return "NONE"; 2738 } 2739 2740 return "(?)"; 2741 } 2742 2743 static const char *cmd_state_name(enum transport_state_table t) 2744 { 2745 switch (t) { 2746 case TRANSPORT_NO_STATE: return "NO_STATE"; 2747 case TRANSPORT_NEW_CMD: return "NEW_CMD"; 2748 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING"; 2749 case TRANSPORT_PROCESSING: return "PROCESSING"; 2750 case TRANSPORT_COMPLETE: return "COMPLETE"; 2751 case TRANSPORT_ISTATE_PROCESSING: 2752 return "ISTATE_PROCESSING"; 2753 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP"; 2754 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK"; 2755 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR"; 2756 } 2757 2758 return "(?)"; 2759 } 2760 2761 static void target_append_str(char **str, const char *txt) 2762 { 2763 char *prev = *str; 2764 2765 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) : 2766 kstrdup(txt, GFP_ATOMIC); 2767 kfree(prev); 2768 } 2769 2770 /* 2771 * Convert a transport state bitmask into a string. The caller is 2772 * responsible for freeing the returned pointer. 2773 */ 2774 static char *target_ts_to_str(u32 ts) 2775 { 2776 char *str = NULL; 2777 2778 if (ts & CMD_T_ABORTED) 2779 target_append_str(&str, "aborted"); 2780 if (ts & CMD_T_ACTIVE) 2781 target_append_str(&str, "active"); 2782 if (ts & CMD_T_COMPLETE) 2783 target_append_str(&str, "complete"); 2784 if (ts & CMD_T_SENT) 2785 target_append_str(&str, "sent"); 2786 if (ts & CMD_T_STOP) 2787 target_append_str(&str, "stop"); 2788 if (ts & CMD_T_FABRIC_STOP) 2789 target_append_str(&str, "fabric_stop"); 2790 2791 return str; 2792 } 2793 2794 static const char *target_tmf_name(enum tcm_tmreq_table tmf) 2795 { 2796 switch (tmf) { 2797 case TMR_ABORT_TASK: return "ABORT_TASK"; 2798 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET"; 2799 case TMR_CLEAR_ACA: return "CLEAR_ACA"; 2800 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET"; 2801 case TMR_LUN_RESET: return "LUN_RESET"; 2802 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET"; 2803 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET"; 2804 case TMR_UNKNOWN: break; 2805 } 2806 return "(?)"; 2807 } 2808 2809 void target_show_cmd(const char *pfx, struct se_cmd *cmd) 2810 { 2811 char *ts_str = target_ts_to_str(cmd->transport_state); 2812 const u8 *cdb = cmd->t_task_cdb; 2813 struct se_tmr_req *tmf = cmd->se_tmr_req; 2814 2815 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2816 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n", 2817 pfx, cdb[0], cdb[1], cmd->tag, 2818 data_dir_name(cmd->data_direction), 2819 cmd->se_tfo->get_cmd_state(cmd), 2820 cmd_state_name(cmd->t_state), cmd->data_length, 2821 kref_read(&cmd->cmd_kref), ts_str); 2822 } else { 2823 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n", 2824 pfx, target_tmf_name(tmf->function), cmd->tag, 2825 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd), 2826 cmd_state_name(cmd->t_state), 2827 kref_read(&cmd->cmd_kref), ts_str); 2828 } 2829 kfree(ts_str); 2830 } 2831 EXPORT_SYMBOL(target_show_cmd); 2832 2833 /* target_sess_cmd_list_set_waiting - Flag all commands in 2834 * sess_cmd_list to complete cmd_wait_comp. Set 2835 * sess_tearing_down so no more commands are queued. 2836 * @se_sess: session to flag 2837 */ 2838 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2839 { 2840 struct se_cmd *se_cmd, *tmp_cmd; 2841 unsigned long flags; 2842 int rc; 2843 2844 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2845 if (se_sess->sess_tearing_down) { 2846 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2847 return; 2848 } 2849 se_sess->sess_tearing_down = 1; 2850 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2851 2852 list_for_each_entry_safe(se_cmd, tmp_cmd, 2853 &se_sess->sess_wait_list, se_cmd_list) { 2854 rc = kref_get_unless_zero(&se_cmd->cmd_kref); 2855 if (rc) { 2856 se_cmd->cmd_wait_set = 1; 2857 spin_lock(&se_cmd->t_state_lock); 2858 se_cmd->transport_state |= CMD_T_FABRIC_STOP; 2859 spin_unlock(&se_cmd->t_state_lock); 2860 } else 2861 list_del_init(&se_cmd->se_cmd_list); 2862 } 2863 2864 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2865 } 2866 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2867 2868 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2869 * @se_sess: session to wait for active I/O 2870 */ 2871 void target_wait_for_sess_cmds(struct se_session *se_sess) 2872 { 2873 struct se_cmd *se_cmd, *tmp_cmd; 2874 unsigned long flags; 2875 bool tas; 2876 2877 list_for_each_entry_safe(se_cmd, tmp_cmd, 2878 &se_sess->sess_wait_list, se_cmd_list) { 2879 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2880 " %d\n", se_cmd, se_cmd->t_state, 2881 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2882 2883 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2884 tas = (se_cmd->transport_state & CMD_T_TAS); 2885 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2886 2887 if (!target_put_sess_cmd(se_cmd)) { 2888 if (tas) 2889 target_put_sess_cmd(se_cmd); 2890 } 2891 2892 wait_for_completion(&se_cmd->cmd_wait_comp); 2893 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2894 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2895 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2896 2897 se_cmd->se_tfo->release_cmd(se_cmd); 2898 } 2899 2900 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2901 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2902 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2903 2904 } 2905 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2906 2907 static void target_lun_confirm(struct percpu_ref *ref) 2908 { 2909 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref); 2910 2911 complete(&lun->lun_ref_comp); 2912 } 2913 2914 void transport_clear_lun_ref(struct se_lun *lun) 2915 { 2916 /* 2917 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop 2918 * the initial reference and schedule confirm kill to be 2919 * executed after one full RCU grace period has completed. 2920 */ 2921 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm); 2922 /* 2923 * The first completion waits for percpu_ref_switch_to_atomic_rcu() 2924 * to call target_lun_confirm after lun->lun_ref has been marked 2925 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t 2926 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref 2927 * fails for all new incoming I/O. 2928 */ 2929 wait_for_completion(&lun->lun_ref_comp); 2930 /* 2931 * The second completion waits for percpu_ref_put_many() to 2932 * invoke ->release() after lun->lun_ref has switched to 2933 * atomic_t mode, and lun->lun_ref.count has reached zero. 2934 * 2935 * At this point all target-core lun->lun_ref references have 2936 * been dropped via transport_lun_remove_cmd(), and it's safe 2937 * to proceed with the remaining LUN shutdown. 2938 */ 2939 wait_for_completion(&lun->lun_shutdown_comp); 2940 } 2941 2942 static bool 2943 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2944 bool *aborted, bool *tas, unsigned long *flags) 2945 __releases(&cmd->t_state_lock) 2946 __acquires(&cmd->t_state_lock) 2947 { 2948 2949 assert_spin_locked(&cmd->t_state_lock); 2950 WARN_ON_ONCE(!irqs_disabled()); 2951 2952 if (fabric_stop) 2953 cmd->transport_state |= CMD_T_FABRIC_STOP; 2954 2955 if (cmd->transport_state & CMD_T_ABORTED) 2956 *aborted = true; 2957 2958 if (cmd->transport_state & CMD_T_TAS) 2959 *tas = true; 2960 2961 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2962 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2963 return false; 2964 2965 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2966 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2967 return false; 2968 2969 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2970 return false; 2971 2972 if (fabric_stop && *aborted) 2973 return false; 2974 2975 cmd->transport_state |= CMD_T_STOP; 2976 2977 target_show_cmd("wait_for_tasks: Stopping ", cmd); 2978 2979 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2980 2981 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp, 2982 180 * HZ)) 2983 target_show_cmd("wait for tasks: ", cmd); 2984 2985 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2986 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2987 2988 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 2989 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 2990 2991 return true; 2992 } 2993 2994 /** 2995 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 2996 * @cmd: command to wait on 2997 */ 2998 bool transport_wait_for_tasks(struct se_cmd *cmd) 2999 { 3000 unsigned long flags; 3001 bool ret, aborted = false, tas = false; 3002 3003 spin_lock_irqsave(&cmd->t_state_lock, flags); 3004 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 3005 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3006 3007 return ret; 3008 } 3009 EXPORT_SYMBOL(transport_wait_for_tasks); 3010 3011 struct sense_info { 3012 u8 key; 3013 u8 asc; 3014 u8 ascq; 3015 bool add_sector_info; 3016 }; 3017 3018 static const struct sense_info sense_info_table[] = { 3019 [TCM_NO_SENSE] = { 3020 .key = NOT_READY 3021 }, 3022 [TCM_NON_EXISTENT_LUN] = { 3023 .key = ILLEGAL_REQUEST, 3024 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 3025 }, 3026 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 3027 .key = ILLEGAL_REQUEST, 3028 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3029 }, 3030 [TCM_SECTOR_COUNT_TOO_MANY] = { 3031 .key = ILLEGAL_REQUEST, 3032 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3033 }, 3034 [TCM_UNKNOWN_MODE_PAGE] = { 3035 .key = ILLEGAL_REQUEST, 3036 .asc = 0x24, /* INVALID FIELD IN CDB */ 3037 }, 3038 [TCM_CHECK_CONDITION_ABORT_CMD] = { 3039 .key = ABORTED_COMMAND, 3040 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 3041 .ascq = 0x03, 3042 }, 3043 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 3044 .key = ABORTED_COMMAND, 3045 .asc = 0x0c, /* WRITE ERROR */ 3046 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 3047 }, 3048 [TCM_INVALID_CDB_FIELD] = { 3049 .key = ILLEGAL_REQUEST, 3050 .asc = 0x24, /* INVALID FIELD IN CDB */ 3051 }, 3052 [TCM_INVALID_PARAMETER_LIST] = { 3053 .key = ILLEGAL_REQUEST, 3054 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 3055 }, 3056 [TCM_TOO_MANY_TARGET_DESCS] = { 3057 .key = ILLEGAL_REQUEST, 3058 .asc = 0x26, 3059 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 3060 }, 3061 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 3062 .key = ILLEGAL_REQUEST, 3063 .asc = 0x26, 3064 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 3065 }, 3066 [TCM_TOO_MANY_SEGMENT_DESCS] = { 3067 .key = ILLEGAL_REQUEST, 3068 .asc = 0x26, 3069 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 3070 }, 3071 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 3072 .key = ILLEGAL_REQUEST, 3073 .asc = 0x26, 3074 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 3075 }, 3076 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 3077 .key = ILLEGAL_REQUEST, 3078 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 3079 }, 3080 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 3081 .key = ILLEGAL_REQUEST, 3082 .asc = 0x0c, /* WRITE ERROR */ 3083 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 3084 }, 3085 [TCM_SERVICE_CRC_ERROR] = { 3086 .key = ABORTED_COMMAND, 3087 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 3088 .ascq = 0x05, /* N/A */ 3089 }, 3090 [TCM_SNACK_REJECTED] = { 3091 .key = ABORTED_COMMAND, 3092 .asc = 0x11, /* READ ERROR */ 3093 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 3094 }, 3095 [TCM_WRITE_PROTECTED] = { 3096 .key = DATA_PROTECT, 3097 .asc = 0x27, /* WRITE PROTECTED */ 3098 }, 3099 [TCM_ADDRESS_OUT_OF_RANGE] = { 3100 .key = ILLEGAL_REQUEST, 3101 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 3102 }, 3103 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 3104 .key = UNIT_ATTENTION, 3105 }, 3106 [TCM_CHECK_CONDITION_NOT_READY] = { 3107 .key = NOT_READY, 3108 }, 3109 [TCM_MISCOMPARE_VERIFY] = { 3110 .key = MISCOMPARE, 3111 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 3112 .ascq = 0x00, 3113 }, 3114 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 3115 .key = ABORTED_COMMAND, 3116 .asc = 0x10, 3117 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 3118 .add_sector_info = true, 3119 }, 3120 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 3121 .key = ABORTED_COMMAND, 3122 .asc = 0x10, 3123 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 3124 .add_sector_info = true, 3125 }, 3126 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 3127 .key = ABORTED_COMMAND, 3128 .asc = 0x10, 3129 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 3130 .add_sector_info = true, 3131 }, 3132 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 3133 .key = COPY_ABORTED, 3134 .asc = 0x0d, 3135 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 3136 3137 }, 3138 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 3139 /* 3140 * Returning ILLEGAL REQUEST would cause immediate IO errors on 3141 * Solaris initiators. Returning NOT READY instead means the 3142 * operations will be retried a finite number of times and we 3143 * can survive intermittent errors. 3144 */ 3145 .key = NOT_READY, 3146 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 3147 }, 3148 }; 3149 3150 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 3151 { 3152 const struct sense_info *si; 3153 u8 *buffer = cmd->sense_buffer; 3154 int r = (__force int)reason; 3155 u8 asc, ascq; 3156 bool desc_format = target_sense_desc_format(cmd->se_dev); 3157 3158 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 3159 si = &sense_info_table[r]; 3160 else 3161 si = &sense_info_table[(__force int) 3162 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 3163 3164 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 3165 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 3166 WARN_ON_ONCE(asc == 0); 3167 } else if (si->asc == 0) { 3168 WARN_ON_ONCE(cmd->scsi_asc == 0); 3169 asc = cmd->scsi_asc; 3170 ascq = cmd->scsi_ascq; 3171 } else { 3172 asc = si->asc; 3173 ascq = si->ascq; 3174 } 3175 3176 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 3177 if (si->add_sector_info) 3178 return scsi_set_sense_information(buffer, 3179 cmd->scsi_sense_length, 3180 cmd->bad_sector); 3181 3182 return 0; 3183 } 3184 3185 int 3186 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3187 sense_reason_t reason, int from_transport) 3188 { 3189 unsigned long flags; 3190 3191 spin_lock_irqsave(&cmd->t_state_lock, flags); 3192 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3193 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3194 return 0; 3195 } 3196 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3197 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3198 3199 if (!from_transport) { 3200 int rc; 3201 3202 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3203 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3204 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3205 rc = translate_sense_reason(cmd, reason); 3206 if (rc) 3207 return rc; 3208 } 3209 3210 trace_target_cmd_complete(cmd); 3211 return cmd->se_tfo->queue_status(cmd); 3212 } 3213 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3214 3215 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3216 __releases(&cmd->t_state_lock) 3217 __acquires(&cmd->t_state_lock) 3218 { 3219 int ret; 3220 3221 assert_spin_locked(&cmd->t_state_lock); 3222 WARN_ON_ONCE(!irqs_disabled()); 3223 3224 if (!(cmd->transport_state & CMD_T_ABORTED)) 3225 return 0; 3226 /* 3227 * If cmd has been aborted but either no status is to be sent or it has 3228 * already been sent, just return 3229 */ 3230 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { 3231 if (send_status) 3232 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3233 return 1; 3234 } 3235 3236 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" 3237 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); 3238 3239 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 3240 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3241 trace_target_cmd_complete(cmd); 3242 3243 spin_unlock_irq(&cmd->t_state_lock); 3244 ret = cmd->se_tfo->queue_status(cmd); 3245 if (ret) 3246 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 3247 spin_lock_irq(&cmd->t_state_lock); 3248 3249 return 1; 3250 } 3251 3252 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3253 { 3254 int ret; 3255 3256 spin_lock_irq(&cmd->t_state_lock); 3257 ret = __transport_check_aborted_status(cmd, send_status); 3258 spin_unlock_irq(&cmd->t_state_lock); 3259 3260 return ret; 3261 } 3262 EXPORT_SYMBOL(transport_check_aborted_status); 3263 3264 void transport_send_task_abort(struct se_cmd *cmd) 3265 { 3266 unsigned long flags; 3267 int ret; 3268 3269 spin_lock_irqsave(&cmd->t_state_lock, flags); 3270 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 3271 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3272 return; 3273 } 3274 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3275 3276 /* 3277 * If there are still expected incoming fabric WRITEs, we wait 3278 * until until they have completed before sending a TASK_ABORTED 3279 * response. This response with TASK_ABORTED status will be 3280 * queued back to fabric module by transport_check_aborted_status(). 3281 */ 3282 if (cmd->data_direction == DMA_TO_DEVICE) { 3283 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3284 spin_lock_irqsave(&cmd->t_state_lock, flags); 3285 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { 3286 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3287 goto send_abort; 3288 } 3289 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3290 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3291 return; 3292 } 3293 } 3294 send_abort: 3295 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3296 3297 transport_lun_remove_cmd(cmd); 3298 3299 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 3300 cmd->t_task_cdb[0], cmd->tag); 3301 3302 trace_target_cmd_complete(cmd); 3303 ret = cmd->se_tfo->queue_status(cmd); 3304 if (ret) 3305 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 3306 } 3307 3308 static void target_tmr_work(struct work_struct *work) 3309 { 3310 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3311 struct se_device *dev = cmd->se_dev; 3312 struct se_tmr_req *tmr = cmd->se_tmr_req; 3313 unsigned long flags; 3314 int ret; 3315 3316 spin_lock_irqsave(&cmd->t_state_lock, flags); 3317 if (cmd->transport_state & CMD_T_ABORTED) { 3318 tmr->response = TMR_FUNCTION_REJECTED; 3319 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3320 goto check_stop; 3321 } 3322 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3323 3324 switch (tmr->function) { 3325 case TMR_ABORT_TASK: 3326 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3327 break; 3328 case TMR_ABORT_TASK_SET: 3329 case TMR_CLEAR_ACA: 3330 case TMR_CLEAR_TASK_SET: 3331 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3332 break; 3333 case TMR_LUN_RESET: 3334 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3335 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3336 TMR_FUNCTION_REJECTED; 3337 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3338 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3339 cmd->orig_fe_lun, 0x29, 3340 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3341 } 3342 break; 3343 case TMR_TARGET_WARM_RESET: 3344 tmr->response = TMR_FUNCTION_REJECTED; 3345 break; 3346 case TMR_TARGET_COLD_RESET: 3347 tmr->response = TMR_FUNCTION_REJECTED; 3348 break; 3349 default: 3350 pr_err("Uknown TMR function: 0x%02x.\n", 3351 tmr->function); 3352 tmr->response = TMR_FUNCTION_REJECTED; 3353 break; 3354 } 3355 3356 spin_lock_irqsave(&cmd->t_state_lock, flags); 3357 if (cmd->transport_state & CMD_T_ABORTED) { 3358 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3359 goto check_stop; 3360 } 3361 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3362 3363 cmd->se_tfo->queue_tm_rsp(cmd); 3364 3365 check_stop: 3366 transport_lun_remove_cmd(cmd); 3367 transport_cmd_check_stop_to_fabric(cmd); 3368 } 3369 3370 int transport_generic_handle_tmr( 3371 struct se_cmd *cmd) 3372 { 3373 unsigned long flags; 3374 bool aborted = false; 3375 3376 spin_lock_irqsave(&cmd->t_state_lock, flags); 3377 if (cmd->transport_state & CMD_T_ABORTED) { 3378 aborted = true; 3379 } else { 3380 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3381 cmd->transport_state |= CMD_T_ACTIVE; 3382 } 3383 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3384 3385 if (aborted) { 3386 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d" 3387 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function, 3388 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3389 transport_lun_remove_cmd(cmd); 3390 transport_cmd_check_stop_to_fabric(cmd); 3391 return 0; 3392 } 3393 3394 INIT_WORK(&cmd->work, target_tmr_work); 3395 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3396 return 0; 3397 } 3398 EXPORT_SYMBOL(transport_generic_handle_tmr); 3399 3400 bool 3401 target_check_wce(struct se_device *dev) 3402 { 3403 bool wce = false; 3404 3405 if (dev->transport->get_write_cache) 3406 wce = dev->transport->get_write_cache(dev); 3407 else if (dev->dev_attrib.emulate_write_cache > 0) 3408 wce = true; 3409 3410 return wce; 3411 } 3412 3413 bool 3414 target_check_fua(struct se_device *dev) 3415 { 3416 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3417 } 3418