1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <asm/unaligned.h> 38 #include <net/sock.h> 39 #include <net/tcp.h> 40 #include <scsi/scsi.h> 41 #include <scsi/scsi_cmnd.h> 42 #include <scsi/scsi_tcq.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 #include <target/target_core_configfs.h> 48 49 #include "target_core_internal.h" 50 #include "target_core_alua.h" 51 #include "target_core_pr.h" 52 #include "target_core_ua.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/target.h> 56 57 static struct workqueue_struct *target_completion_wq; 58 static struct kmem_cache *se_sess_cache; 59 struct kmem_cache *se_ua_cache; 60 struct kmem_cache *t10_pr_reg_cache; 61 struct kmem_cache *t10_alua_lu_gp_cache; 62 struct kmem_cache *t10_alua_lu_gp_mem_cache; 63 struct kmem_cache *t10_alua_tg_pt_gp_cache; 64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 65 struct kmem_cache *t10_alua_lba_map_cache; 66 struct kmem_cache *t10_alua_lba_map_mem_cache; 67 68 static void transport_complete_task_attr(struct se_cmd *cmd); 69 static void transport_handle_queue_full(struct se_cmd *cmd, 70 struct se_device *dev); 71 static int transport_put_cmd(struct se_cmd *cmd); 72 static void target_complete_ok_work(struct work_struct *work); 73 74 int init_se_kmem_caches(void) 75 { 76 se_sess_cache = kmem_cache_create("se_sess_cache", 77 sizeof(struct se_session), __alignof__(struct se_session), 78 0, NULL); 79 if (!se_sess_cache) { 80 pr_err("kmem_cache_create() for struct se_session" 81 " failed\n"); 82 goto out; 83 } 84 se_ua_cache = kmem_cache_create("se_ua_cache", 85 sizeof(struct se_ua), __alignof__(struct se_ua), 86 0, NULL); 87 if (!se_ua_cache) { 88 pr_err("kmem_cache_create() for struct se_ua failed\n"); 89 goto out_free_sess_cache; 90 } 91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 92 sizeof(struct t10_pr_registration), 93 __alignof__(struct t10_pr_registration), 0, NULL); 94 if (!t10_pr_reg_cache) { 95 pr_err("kmem_cache_create() for struct t10_pr_registration" 96 " failed\n"); 97 goto out_free_ua_cache; 98 } 99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 101 0, NULL); 102 if (!t10_alua_lu_gp_cache) { 103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 104 " failed\n"); 105 goto out_free_pr_reg_cache; 106 } 107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 108 sizeof(struct t10_alua_lu_gp_member), 109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 110 if (!t10_alua_lu_gp_mem_cache) { 111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 112 "cache failed\n"); 113 goto out_free_lu_gp_cache; 114 } 115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 116 sizeof(struct t10_alua_tg_pt_gp), 117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 118 if (!t10_alua_tg_pt_gp_cache) { 119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 120 "cache failed\n"); 121 goto out_free_lu_gp_mem_cache; 122 } 123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 124 "t10_alua_tg_pt_gp_mem_cache", 125 sizeof(struct t10_alua_tg_pt_gp_member), 126 __alignof__(struct t10_alua_tg_pt_gp_member), 127 0, NULL); 128 if (!t10_alua_tg_pt_gp_mem_cache) { 129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 130 "mem_t failed\n"); 131 goto out_free_tg_pt_gp_cache; 132 } 133 t10_alua_lba_map_cache = kmem_cache_create( 134 "t10_alua_lba_map_cache", 135 sizeof(struct t10_alua_lba_map), 136 __alignof__(struct t10_alua_lba_map), 0, NULL); 137 if (!t10_alua_lba_map_cache) { 138 pr_err("kmem_cache_create() for t10_alua_lba_map_" 139 "cache failed\n"); 140 goto out_free_tg_pt_gp_mem_cache; 141 } 142 t10_alua_lba_map_mem_cache = kmem_cache_create( 143 "t10_alua_lba_map_mem_cache", 144 sizeof(struct t10_alua_lba_map_member), 145 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 146 if (!t10_alua_lba_map_mem_cache) { 147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 148 "cache failed\n"); 149 goto out_free_lba_map_cache; 150 } 151 152 target_completion_wq = alloc_workqueue("target_completion", 153 WQ_MEM_RECLAIM, 0); 154 if (!target_completion_wq) 155 goto out_free_lba_map_mem_cache; 156 157 return 0; 158 159 out_free_lba_map_mem_cache: 160 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 161 out_free_lba_map_cache: 162 kmem_cache_destroy(t10_alua_lba_map_cache); 163 out_free_tg_pt_gp_mem_cache: 164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 165 out_free_tg_pt_gp_cache: 166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 167 out_free_lu_gp_mem_cache: 168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 169 out_free_lu_gp_cache: 170 kmem_cache_destroy(t10_alua_lu_gp_cache); 171 out_free_pr_reg_cache: 172 kmem_cache_destroy(t10_pr_reg_cache); 173 out_free_ua_cache: 174 kmem_cache_destroy(se_ua_cache); 175 out_free_sess_cache: 176 kmem_cache_destroy(se_sess_cache); 177 out: 178 return -ENOMEM; 179 } 180 181 void release_se_kmem_caches(void) 182 { 183 destroy_workqueue(target_completion_wq); 184 kmem_cache_destroy(se_sess_cache); 185 kmem_cache_destroy(se_ua_cache); 186 kmem_cache_destroy(t10_pr_reg_cache); 187 kmem_cache_destroy(t10_alua_lu_gp_cache); 188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 191 kmem_cache_destroy(t10_alua_lba_map_cache); 192 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 193 } 194 195 /* This code ensures unique mib indexes are handed out. */ 196 static DEFINE_SPINLOCK(scsi_mib_index_lock); 197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 198 199 /* 200 * Allocate a new row index for the entry type specified 201 */ 202 u32 scsi_get_new_index(scsi_index_t type) 203 { 204 u32 new_index; 205 206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 207 208 spin_lock(&scsi_mib_index_lock); 209 new_index = ++scsi_mib_index[type]; 210 spin_unlock(&scsi_mib_index_lock); 211 212 return new_index; 213 } 214 215 void transport_subsystem_check_init(void) 216 { 217 int ret; 218 static int sub_api_initialized; 219 220 if (sub_api_initialized) 221 return; 222 223 ret = request_module("target_core_iblock"); 224 if (ret != 0) 225 pr_err("Unable to load target_core_iblock\n"); 226 227 ret = request_module("target_core_file"); 228 if (ret != 0) 229 pr_err("Unable to load target_core_file\n"); 230 231 ret = request_module("target_core_pscsi"); 232 if (ret != 0) 233 pr_err("Unable to load target_core_pscsi\n"); 234 235 sub_api_initialized = 1; 236 } 237 238 struct se_session *transport_init_session(void) 239 { 240 struct se_session *se_sess; 241 242 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 243 if (!se_sess) { 244 pr_err("Unable to allocate struct se_session from" 245 " se_sess_cache\n"); 246 return ERR_PTR(-ENOMEM); 247 } 248 INIT_LIST_HEAD(&se_sess->sess_list); 249 INIT_LIST_HEAD(&se_sess->sess_acl_list); 250 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 251 INIT_LIST_HEAD(&se_sess->sess_wait_list); 252 spin_lock_init(&se_sess->sess_cmd_lock); 253 kref_init(&se_sess->sess_kref); 254 255 return se_sess; 256 } 257 EXPORT_SYMBOL(transport_init_session); 258 259 int transport_alloc_session_tags(struct se_session *se_sess, 260 unsigned int tag_num, unsigned int tag_size) 261 { 262 int rc; 263 264 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 265 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 266 if (!se_sess->sess_cmd_map) { 267 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 268 if (!se_sess->sess_cmd_map) { 269 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 270 return -ENOMEM; 271 } 272 } 273 274 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 275 if (rc < 0) { 276 pr_err("Unable to init se_sess->sess_tag_pool," 277 " tag_num: %u\n", tag_num); 278 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 279 vfree(se_sess->sess_cmd_map); 280 else 281 kfree(se_sess->sess_cmd_map); 282 se_sess->sess_cmd_map = NULL; 283 return -ENOMEM; 284 } 285 286 return 0; 287 } 288 EXPORT_SYMBOL(transport_alloc_session_tags); 289 290 struct se_session *transport_init_session_tags(unsigned int tag_num, 291 unsigned int tag_size) 292 { 293 struct se_session *se_sess; 294 int rc; 295 296 se_sess = transport_init_session(); 297 if (IS_ERR(se_sess)) 298 return se_sess; 299 300 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 301 if (rc < 0) { 302 transport_free_session(se_sess); 303 return ERR_PTR(-ENOMEM); 304 } 305 306 return se_sess; 307 } 308 EXPORT_SYMBOL(transport_init_session_tags); 309 310 /* 311 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 312 */ 313 void __transport_register_session( 314 struct se_portal_group *se_tpg, 315 struct se_node_acl *se_nacl, 316 struct se_session *se_sess, 317 void *fabric_sess_ptr) 318 { 319 unsigned char buf[PR_REG_ISID_LEN]; 320 321 se_sess->se_tpg = se_tpg; 322 se_sess->fabric_sess_ptr = fabric_sess_ptr; 323 /* 324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 325 * 326 * Only set for struct se_session's that will actually be moving I/O. 327 * eg: *NOT* discovery sessions. 328 */ 329 if (se_nacl) { 330 /* 331 * If the fabric module supports an ISID based TransportID, 332 * save this value in binary from the fabric I_T Nexus now. 333 */ 334 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 335 memset(&buf[0], 0, PR_REG_ISID_LEN); 336 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 337 &buf[0], PR_REG_ISID_LEN); 338 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 339 } 340 kref_get(&se_nacl->acl_kref); 341 342 spin_lock_irq(&se_nacl->nacl_sess_lock); 343 /* 344 * The se_nacl->nacl_sess pointer will be set to the 345 * last active I_T Nexus for each struct se_node_acl. 346 */ 347 se_nacl->nacl_sess = se_sess; 348 349 list_add_tail(&se_sess->sess_acl_list, 350 &se_nacl->acl_sess_list); 351 spin_unlock_irq(&se_nacl->nacl_sess_lock); 352 } 353 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 354 355 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 356 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 357 } 358 EXPORT_SYMBOL(__transport_register_session); 359 360 void transport_register_session( 361 struct se_portal_group *se_tpg, 362 struct se_node_acl *se_nacl, 363 struct se_session *se_sess, 364 void *fabric_sess_ptr) 365 { 366 unsigned long flags; 367 368 spin_lock_irqsave(&se_tpg->session_lock, flags); 369 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 370 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 371 } 372 EXPORT_SYMBOL(transport_register_session); 373 374 static void target_release_session(struct kref *kref) 375 { 376 struct se_session *se_sess = container_of(kref, 377 struct se_session, sess_kref); 378 struct se_portal_group *se_tpg = se_sess->se_tpg; 379 380 se_tpg->se_tpg_tfo->close_session(se_sess); 381 } 382 383 void target_get_session(struct se_session *se_sess) 384 { 385 kref_get(&se_sess->sess_kref); 386 } 387 EXPORT_SYMBOL(target_get_session); 388 389 void target_put_session(struct se_session *se_sess) 390 { 391 struct se_portal_group *tpg = se_sess->se_tpg; 392 393 if (tpg->se_tpg_tfo->put_session != NULL) { 394 tpg->se_tpg_tfo->put_session(se_sess); 395 return; 396 } 397 kref_put(&se_sess->sess_kref, target_release_session); 398 } 399 EXPORT_SYMBOL(target_put_session); 400 401 static void target_complete_nacl(struct kref *kref) 402 { 403 struct se_node_acl *nacl = container_of(kref, 404 struct se_node_acl, acl_kref); 405 406 complete(&nacl->acl_free_comp); 407 } 408 409 void target_put_nacl(struct se_node_acl *nacl) 410 { 411 kref_put(&nacl->acl_kref, target_complete_nacl); 412 } 413 414 void transport_deregister_session_configfs(struct se_session *se_sess) 415 { 416 struct se_node_acl *se_nacl; 417 unsigned long flags; 418 /* 419 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 420 */ 421 se_nacl = se_sess->se_node_acl; 422 if (se_nacl) { 423 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 424 if (se_nacl->acl_stop == 0) 425 list_del(&se_sess->sess_acl_list); 426 /* 427 * If the session list is empty, then clear the pointer. 428 * Otherwise, set the struct se_session pointer from the tail 429 * element of the per struct se_node_acl active session list. 430 */ 431 if (list_empty(&se_nacl->acl_sess_list)) 432 se_nacl->nacl_sess = NULL; 433 else { 434 se_nacl->nacl_sess = container_of( 435 se_nacl->acl_sess_list.prev, 436 struct se_session, sess_acl_list); 437 } 438 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 439 } 440 } 441 EXPORT_SYMBOL(transport_deregister_session_configfs); 442 443 void transport_free_session(struct se_session *se_sess) 444 { 445 if (se_sess->sess_cmd_map) { 446 percpu_ida_destroy(&se_sess->sess_tag_pool); 447 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 448 vfree(se_sess->sess_cmd_map); 449 else 450 kfree(se_sess->sess_cmd_map); 451 } 452 kmem_cache_free(se_sess_cache, se_sess); 453 } 454 EXPORT_SYMBOL(transport_free_session); 455 456 void transport_deregister_session(struct se_session *se_sess) 457 { 458 struct se_portal_group *se_tpg = se_sess->se_tpg; 459 struct target_core_fabric_ops *se_tfo; 460 struct se_node_acl *se_nacl; 461 unsigned long flags; 462 bool comp_nacl = true; 463 464 if (!se_tpg) { 465 transport_free_session(se_sess); 466 return; 467 } 468 se_tfo = se_tpg->se_tpg_tfo; 469 470 spin_lock_irqsave(&se_tpg->session_lock, flags); 471 list_del(&se_sess->sess_list); 472 se_sess->se_tpg = NULL; 473 se_sess->fabric_sess_ptr = NULL; 474 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 475 476 /* 477 * Determine if we need to do extra work for this initiator node's 478 * struct se_node_acl if it had been previously dynamically generated. 479 */ 480 se_nacl = se_sess->se_node_acl; 481 482 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 483 if (se_nacl && se_nacl->dynamic_node_acl) { 484 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 485 list_del(&se_nacl->acl_list); 486 se_tpg->num_node_acls--; 487 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 488 core_tpg_wait_for_nacl_pr_ref(se_nacl); 489 core_free_device_list_for_node(se_nacl, se_tpg); 490 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 491 492 comp_nacl = false; 493 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 494 } 495 } 496 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 497 498 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 499 se_tpg->se_tpg_tfo->get_fabric_name()); 500 /* 501 * If last kref is dropping now for an explicit NodeACL, awake sleeping 502 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 503 * removal context. 504 */ 505 if (se_nacl && comp_nacl == true) 506 target_put_nacl(se_nacl); 507 508 transport_free_session(se_sess); 509 } 510 EXPORT_SYMBOL(transport_deregister_session); 511 512 /* 513 * Called with cmd->t_state_lock held. 514 */ 515 static void target_remove_from_state_list(struct se_cmd *cmd) 516 { 517 struct se_device *dev = cmd->se_dev; 518 unsigned long flags; 519 520 if (!dev) 521 return; 522 523 if (cmd->transport_state & CMD_T_BUSY) 524 return; 525 526 spin_lock_irqsave(&dev->execute_task_lock, flags); 527 if (cmd->state_active) { 528 list_del(&cmd->state_list); 529 cmd->state_active = false; 530 } 531 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 532 } 533 534 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 535 bool write_pending) 536 { 537 unsigned long flags; 538 539 spin_lock_irqsave(&cmd->t_state_lock, flags); 540 if (write_pending) 541 cmd->t_state = TRANSPORT_WRITE_PENDING; 542 543 if (remove_from_lists) { 544 target_remove_from_state_list(cmd); 545 546 /* 547 * Clear struct se_cmd->se_lun before the handoff to FE. 548 */ 549 cmd->se_lun = NULL; 550 } 551 552 /* 553 * Determine if frontend context caller is requesting the stopping of 554 * this command for frontend exceptions. 555 */ 556 if (cmd->transport_state & CMD_T_STOP) { 557 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 558 __func__, __LINE__, 559 cmd->se_tfo->get_task_tag(cmd)); 560 561 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 562 563 complete(&cmd->t_transport_stop_comp); 564 return 1; 565 } 566 567 cmd->transport_state &= ~CMD_T_ACTIVE; 568 if (remove_from_lists) { 569 /* 570 * Some fabric modules like tcm_loop can release 571 * their internally allocated I/O reference now and 572 * struct se_cmd now. 573 * 574 * Fabric modules are expected to return '1' here if the 575 * se_cmd being passed is released at this point, 576 * or zero if not being released. 577 */ 578 if (cmd->se_tfo->check_stop_free != NULL) { 579 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 580 return cmd->se_tfo->check_stop_free(cmd); 581 } 582 } 583 584 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 585 return 0; 586 } 587 588 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 589 { 590 return transport_cmd_check_stop(cmd, true, false); 591 } 592 593 static void transport_lun_remove_cmd(struct se_cmd *cmd) 594 { 595 struct se_lun *lun = cmd->se_lun; 596 597 if (!lun) 598 return; 599 600 if (cmpxchg(&cmd->lun_ref_active, true, false)) 601 percpu_ref_put(&lun->lun_ref); 602 } 603 604 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 605 { 606 if (transport_cmd_check_stop_to_fabric(cmd)) 607 return; 608 if (remove) 609 transport_put_cmd(cmd); 610 } 611 612 static void target_complete_failure_work(struct work_struct *work) 613 { 614 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 615 616 transport_generic_request_failure(cmd, 617 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 618 } 619 620 /* 621 * Used when asking transport to copy Sense Data from the underlying 622 * Linux/SCSI struct scsi_cmnd 623 */ 624 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 625 { 626 struct se_device *dev = cmd->se_dev; 627 628 WARN_ON(!cmd->se_lun); 629 630 if (!dev) 631 return NULL; 632 633 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 634 return NULL; 635 636 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 637 638 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 639 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 640 return cmd->sense_buffer; 641 } 642 643 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 644 { 645 struct se_device *dev = cmd->se_dev; 646 int success = scsi_status == GOOD; 647 unsigned long flags; 648 649 cmd->scsi_status = scsi_status; 650 651 652 spin_lock_irqsave(&cmd->t_state_lock, flags); 653 cmd->transport_state &= ~CMD_T_BUSY; 654 655 if (dev && dev->transport->transport_complete) { 656 dev->transport->transport_complete(cmd, 657 cmd->t_data_sg, 658 transport_get_sense_buffer(cmd)); 659 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 660 success = 1; 661 } 662 663 /* 664 * See if we are waiting to complete for an exception condition. 665 */ 666 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 667 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 668 complete(&cmd->task_stop_comp); 669 return; 670 } 671 672 /* 673 * Check for case where an explicit ABORT_TASK has been received 674 * and transport_wait_for_tasks() will be waiting for completion.. 675 */ 676 if (cmd->transport_state & CMD_T_ABORTED && 677 cmd->transport_state & CMD_T_STOP) { 678 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 679 complete(&cmd->t_transport_stop_comp); 680 return; 681 } else if (!success) { 682 INIT_WORK(&cmd->work, target_complete_failure_work); 683 } else { 684 INIT_WORK(&cmd->work, target_complete_ok_work); 685 } 686 687 cmd->t_state = TRANSPORT_COMPLETE; 688 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 689 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 690 691 queue_work(target_completion_wq, &cmd->work); 692 } 693 EXPORT_SYMBOL(target_complete_cmd); 694 695 static void target_add_to_state_list(struct se_cmd *cmd) 696 { 697 struct se_device *dev = cmd->se_dev; 698 unsigned long flags; 699 700 spin_lock_irqsave(&dev->execute_task_lock, flags); 701 if (!cmd->state_active) { 702 list_add_tail(&cmd->state_list, &dev->state_list); 703 cmd->state_active = true; 704 } 705 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 706 } 707 708 /* 709 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 710 */ 711 static void transport_write_pending_qf(struct se_cmd *cmd); 712 static void transport_complete_qf(struct se_cmd *cmd); 713 714 void target_qf_do_work(struct work_struct *work) 715 { 716 struct se_device *dev = container_of(work, struct se_device, 717 qf_work_queue); 718 LIST_HEAD(qf_cmd_list); 719 struct se_cmd *cmd, *cmd_tmp; 720 721 spin_lock_irq(&dev->qf_cmd_lock); 722 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 723 spin_unlock_irq(&dev->qf_cmd_lock); 724 725 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 726 list_del(&cmd->se_qf_node); 727 atomic_dec(&dev->dev_qf_count); 728 smp_mb__after_atomic_dec(); 729 730 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 731 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 732 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 733 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 734 : "UNKNOWN"); 735 736 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 737 transport_write_pending_qf(cmd); 738 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 739 transport_complete_qf(cmd); 740 } 741 } 742 743 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 744 { 745 switch (cmd->data_direction) { 746 case DMA_NONE: 747 return "NONE"; 748 case DMA_FROM_DEVICE: 749 return "READ"; 750 case DMA_TO_DEVICE: 751 return "WRITE"; 752 case DMA_BIDIRECTIONAL: 753 return "BIDI"; 754 default: 755 break; 756 } 757 758 return "UNKNOWN"; 759 } 760 761 void transport_dump_dev_state( 762 struct se_device *dev, 763 char *b, 764 int *bl) 765 { 766 *bl += sprintf(b + *bl, "Status: "); 767 if (dev->export_count) 768 *bl += sprintf(b + *bl, "ACTIVATED"); 769 else 770 *bl += sprintf(b + *bl, "DEACTIVATED"); 771 772 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 773 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 774 dev->dev_attrib.block_size, 775 dev->dev_attrib.hw_max_sectors); 776 *bl += sprintf(b + *bl, " "); 777 } 778 779 void transport_dump_vpd_proto_id( 780 struct t10_vpd *vpd, 781 unsigned char *p_buf, 782 int p_buf_len) 783 { 784 unsigned char buf[VPD_TMP_BUF_SIZE]; 785 int len; 786 787 memset(buf, 0, VPD_TMP_BUF_SIZE); 788 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 789 790 switch (vpd->protocol_identifier) { 791 case 0x00: 792 sprintf(buf+len, "Fibre Channel\n"); 793 break; 794 case 0x10: 795 sprintf(buf+len, "Parallel SCSI\n"); 796 break; 797 case 0x20: 798 sprintf(buf+len, "SSA\n"); 799 break; 800 case 0x30: 801 sprintf(buf+len, "IEEE 1394\n"); 802 break; 803 case 0x40: 804 sprintf(buf+len, "SCSI Remote Direct Memory Access" 805 " Protocol\n"); 806 break; 807 case 0x50: 808 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 809 break; 810 case 0x60: 811 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 812 break; 813 case 0x70: 814 sprintf(buf+len, "Automation/Drive Interface Transport" 815 " Protocol\n"); 816 break; 817 case 0x80: 818 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 819 break; 820 default: 821 sprintf(buf+len, "Unknown 0x%02x\n", 822 vpd->protocol_identifier); 823 break; 824 } 825 826 if (p_buf) 827 strncpy(p_buf, buf, p_buf_len); 828 else 829 pr_debug("%s", buf); 830 } 831 832 void 833 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 834 { 835 /* 836 * Check if the Protocol Identifier Valid (PIV) bit is set.. 837 * 838 * from spc3r23.pdf section 7.5.1 839 */ 840 if (page_83[1] & 0x80) { 841 vpd->protocol_identifier = (page_83[0] & 0xf0); 842 vpd->protocol_identifier_set = 1; 843 transport_dump_vpd_proto_id(vpd, NULL, 0); 844 } 845 } 846 EXPORT_SYMBOL(transport_set_vpd_proto_id); 847 848 int transport_dump_vpd_assoc( 849 struct t10_vpd *vpd, 850 unsigned char *p_buf, 851 int p_buf_len) 852 { 853 unsigned char buf[VPD_TMP_BUF_SIZE]; 854 int ret = 0; 855 int len; 856 857 memset(buf, 0, VPD_TMP_BUF_SIZE); 858 len = sprintf(buf, "T10 VPD Identifier Association: "); 859 860 switch (vpd->association) { 861 case 0x00: 862 sprintf(buf+len, "addressed logical unit\n"); 863 break; 864 case 0x10: 865 sprintf(buf+len, "target port\n"); 866 break; 867 case 0x20: 868 sprintf(buf+len, "SCSI target device\n"); 869 break; 870 default: 871 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 872 ret = -EINVAL; 873 break; 874 } 875 876 if (p_buf) 877 strncpy(p_buf, buf, p_buf_len); 878 else 879 pr_debug("%s", buf); 880 881 return ret; 882 } 883 884 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 885 { 886 /* 887 * The VPD identification association.. 888 * 889 * from spc3r23.pdf Section 7.6.3.1 Table 297 890 */ 891 vpd->association = (page_83[1] & 0x30); 892 return transport_dump_vpd_assoc(vpd, NULL, 0); 893 } 894 EXPORT_SYMBOL(transport_set_vpd_assoc); 895 896 int transport_dump_vpd_ident_type( 897 struct t10_vpd *vpd, 898 unsigned char *p_buf, 899 int p_buf_len) 900 { 901 unsigned char buf[VPD_TMP_BUF_SIZE]; 902 int ret = 0; 903 int len; 904 905 memset(buf, 0, VPD_TMP_BUF_SIZE); 906 len = sprintf(buf, "T10 VPD Identifier Type: "); 907 908 switch (vpd->device_identifier_type) { 909 case 0x00: 910 sprintf(buf+len, "Vendor specific\n"); 911 break; 912 case 0x01: 913 sprintf(buf+len, "T10 Vendor ID based\n"); 914 break; 915 case 0x02: 916 sprintf(buf+len, "EUI-64 based\n"); 917 break; 918 case 0x03: 919 sprintf(buf+len, "NAA\n"); 920 break; 921 case 0x04: 922 sprintf(buf+len, "Relative target port identifier\n"); 923 break; 924 case 0x08: 925 sprintf(buf+len, "SCSI name string\n"); 926 break; 927 default: 928 sprintf(buf+len, "Unsupported: 0x%02x\n", 929 vpd->device_identifier_type); 930 ret = -EINVAL; 931 break; 932 } 933 934 if (p_buf) { 935 if (p_buf_len < strlen(buf)+1) 936 return -EINVAL; 937 strncpy(p_buf, buf, p_buf_len); 938 } else { 939 pr_debug("%s", buf); 940 } 941 942 return ret; 943 } 944 945 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 946 { 947 /* 948 * The VPD identifier type.. 949 * 950 * from spc3r23.pdf Section 7.6.3.1 Table 298 951 */ 952 vpd->device_identifier_type = (page_83[1] & 0x0f); 953 return transport_dump_vpd_ident_type(vpd, NULL, 0); 954 } 955 EXPORT_SYMBOL(transport_set_vpd_ident_type); 956 957 int transport_dump_vpd_ident( 958 struct t10_vpd *vpd, 959 unsigned char *p_buf, 960 int p_buf_len) 961 { 962 unsigned char buf[VPD_TMP_BUF_SIZE]; 963 int ret = 0; 964 965 memset(buf, 0, VPD_TMP_BUF_SIZE); 966 967 switch (vpd->device_identifier_code_set) { 968 case 0x01: /* Binary */ 969 snprintf(buf, sizeof(buf), 970 "T10 VPD Binary Device Identifier: %s\n", 971 &vpd->device_identifier[0]); 972 break; 973 case 0x02: /* ASCII */ 974 snprintf(buf, sizeof(buf), 975 "T10 VPD ASCII Device Identifier: %s\n", 976 &vpd->device_identifier[0]); 977 break; 978 case 0x03: /* UTF-8 */ 979 snprintf(buf, sizeof(buf), 980 "T10 VPD UTF-8 Device Identifier: %s\n", 981 &vpd->device_identifier[0]); 982 break; 983 default: 984 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 985 " 0x%02x", vpd->device_identifier_code_set); 986 ret = -EINVAL; 987 break; 988 } 989 990 if (p_buf) 991 strncpy(p_buf, buf, p_buf_len); 992 else 993 pr_debug("%s", buf); 994 995 return ret; 996 } 997 998 int 999 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1000 { 1001 static const char hex_str[] = "0123456789abcdef"; 1002 int j = 0, i = 4; /* offset to start of the identifier */ 1003 1004 /* 1005 * The VPD Code Set (encoding) 1006 * 1007 * from spc3r23.pdf Section 7.6.3.1 Table 296 1008 */ 1009 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1010 switch (vpd->device_identifier_code_set) { 1011 case 0x01: /* Binary */ 1012 vpd->device_identifier[j++] = 1013 hex_str[vpd->device_identifier_type]; 1014 while (i < (4 + page_83[3])) { 1015 vpd->device_identifier[j++] = 1016 hex_str[(page_83[i] & 0xf0) >> 4]; 1017 vpd->device_identifier[j++] = 1018 hex_str[page_83[i] & 0x0f]; 1019 i++; 1020 } 1021 break; 1022 case 0x02: /* ASCII */ 1023 case 0x03: /* UTF-8 */ 1024 while (i < (4 + page_83[3])) 1025 vpd->device_identifier[j++] = page_83[i++]; 1026 break; 1027 default: 1028 break; 1029 } 1030 1031 return transport_dump_vpd_ident(vpd, NULL, 0); 1032 } 1033 EXPORT_SYMBOL(transport_set_vpd_ident); 1034 1035 sense_reason_t 1036 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1037 { 1038 struct se_device *dev = cmd->se_dev; 1039 1040 if (cmd->unknown_data_length) { 1041 cmd->data_length = size; 1042 } else if (size != cmd->data_length) { 1043 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1044 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1045 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1046 cmd->data_length, size, cmd->t_task_cdb[0]); 1047 1048 if (cmd->data_direction == DMA_TO_DEVICE) { 1049 pr_err("Rejecting underflow/overflow" 1050 " WRITE data\n"); 1051 return TCM_INVALID_CDB_FIELD; 1052 } 1053 /* 1054 * Reject READ_* or WRITE_* with overflow/underflow for 1055 * type SCF_SCSI_DATA_CDB. 1056 */ 1057 if (dev->dev_attrib.block_size != 512) { 1058 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1059 " CDB on non 512-byte sector setup subsystem" 1060 " plugin: %s\n", dev->transport->name); 1061 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1062 return TCM_INVALID_CDB_FIELD; 1063 } 1064 /* 1065 * For the overflow case keep the existing fabric provided 1066 * ->data_length. Otherwise for the underflow case, reset 1067 * ->data_length to the smaller SCSI expected data transfer 1068 * length. 1069 */ 1070 if (size > cmd->data_length) { 1071 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1072 cmd->residual_count = (size - cmd->data_length); 1073 } else { 1074 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1075 cmd->residual_count = (cmd->data_length - size); 1076 cmd->data_length = size; 1077 } 1078 } 1079 1080 return 0; 1081 1082 } 1083 1084 /* 1085 * Used by fabric modules containing a local struct se_cmd within their 1086 * fabric dependent per I/O descriptor. 1087 */ 1088 void transport_init_se_cmd( 1089 struct se_cmd *cmd, 1090 struct target_core_fabric_ops *tfo, 1091 struct se_session *se_sess, 1092 u32 data_length, 1093 int data_direction, 1094 int task_attr, 1095 unsigned char *sense_buffer) 1096 { 1097 INIT_LIST_HEAD(&cmd->se_delayed_node); 1098 INIT_LIST_HEAD(&cmd->se_qf_node); 1099 INIT_LIST_HEAD(&cmd->se_cmd_list); 1100 INIT_LIST_HEAD(&cmd->state_list); 1101 init_completion(&cmd->t_transport_stop_comp); 1102 init_completion(&cmd->cmd_wait_comp); 1103 init_completion(&cmd->task_stop_comp); 1104 spin_lock_init(&cmd->t_state_lock); 1105 cmd->transport_state = CMD_T_DEV_ACTIVE; 1106 1107 cmd->se_tfo = tfo; 1108 cmd->se_sess = se_sess; 1109 cmd->data_length = data_length; 1110 cmd->data_direction = data_direction; 1111 cmd->sam_task_attr = task_attr; 1112 cmd->sense_buffer = sense_buffer; 1113 1114 cmd->state_active = false; 1115 } 1116 EXPORT_SYMBOL(transport_init_se_cmd); 1117 1118 static sense_reason_t 1119 transport_check_alloc_task_attr(struct se_cmd *cmd) 1120 { 1121 struct se_device *dev = cmd->se_dev; 1122 1123 /* 1124 * Check if SAM Task Attribute emulation is enabled for this 1125 * struct se_device storage object 1126 */ 1127 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1128 return 0; 1129 1130 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1131 pr_debug("SAM Task Attribute ACA" 1132 " emulation is not supported\n"); 1133 return TCM_INVALID_CDB_FIELD; 1134 } 1135 /* 1136 * Used to determine when ORDERED commands should go from 1137 * Dormant to Active status. 1138 */ 1139 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1140 smp_mb__after_atomic_inc(); 1141 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1142 cmd->se_ordered_id, cmd->sam_task_attr, 1143 dev->transport->name); 1144 return 0; 1145 } 1146 1147 sense_reason_t 1148 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1149 { 1150 struct se_device *dev = cmd->se_dev; 1151 sense_reason_t ret; 1152 1153 /* 1154 * Ensure that the received CDB is less than the max (252 + 8) bytes 1155 * for VARIABLE_LENGTH_CMD 1156 */ 1157 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1158 pr_err("Received SCSI CDB with command_size: %d that" 1159 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1160 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1161 return TCM_INVALID_CDB_FIELD; 1162 } 1163 /* 1164 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1165 * allocate the additional extended CDB buffer now.. Otherwise 1166 * setup the pointer from __t_task_cdb to t_task_cdb. 1167 */ 1168 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1169 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1170 GFP_KERNEL); 1171 if (!cmd->t_task_cdb) { 1172 pr_err("Unable to allocate cmd->t_task_cdb" 1173 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1174 scsi_command_size(cdb), 1175 (unsigned long)sizeof(cmd->__t_task_cdb)); 1176 return TCM_OUT_OF_RESOURCES; 1177 } 1178 } else 1179 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1180 /* 1181 * Copy the original CDB into cmd-> 1182 */ 1183 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1184 1185 trace_target_sequencer_start(cmd); 1186 1187 /* 1188 * Check for an existing UNIT ATTENTION condition 1189 */ 1190 ret = target_scsi3_ua_check(cmd); 1191 if (ret) 1192 return ret; 1193 1194 ret = target_alua_state_check(cmd); 1195 if (ret) 1196 return ret; 1197 1198 ret = target_check_reservation(cmd); 1199 if (ret) { 1200 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1201 return ret; 1202 } 1203 1204 ret = dev->transport->parse_cdb(cmd); 1205 if (ret) 1206 return ret; 1207 1208 ret = transport_check_alloc_task_attr(cmd); 1209 if (ret) 1210 return ret; 1211 1212 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1213 1214 spin_lock(&cmd->se_lun->lun_sep_lock); 1215 if (cmd->se_lun->lun_sep) 1216 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1217 spin_unlock(&cmd->se_lun->lun_sep_lock); 1218 return 0; 1219 } 1220 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1221 1222 /* 1223 * Used by fabric module frontends to queue tasks directly. 1224 * Many only be used from process context only 1225 */ 1226 int transport_handle_cdb_direct( 1227 struct se_cmd *cmd) 1228 { 1229 sense_reason_t ret; 1230 1231 if (!cmd->se_lun) { 1232 dump_stack(); 1233 pr_err("cmd->se_lun is NULL\n"); 1234 return -EINVAL; 1235 } 1236 if (in_interrupt()) { 1237 dump_stack(); 1238 pr_err("transport_generic_handle_cdb cannot be called" 1239 " from interrupt context\n"); 1240 return -EINVAL; 1241 } 1242 /* 1243 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1244 * outstanding descriptors are handled correctly during shutdown via 1245 * transport_wait_for_tasks() 1246 * 1247 * Also, we don't take cmd->t_state_lock here as we only expect 1248 * this to be called for initial descriptor submission. 1249 */ 1250 cmd->t_state = TRANSPORT_NEW_CMD; 1251 cmd->transport_state |= CMD_T_ACTIVE; 1252 1253 /* 1254 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1255 * so follow TRANSPORT_NEW_CMD processing thread context usage 1256 * and call transport_generic_request_failure() if necessary.. 1257 */ 1258 ret = transport_generic_new_cmd(cmd); 1259 if (ret) 1260 transport_generic_request_failure(cmd, ret); 1261 return 0; 1262 } 1263 EXPORT_SYMBOL(transport_handle_cdb_direct); 1264 1265 sense_reason_t 1266 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1267 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1268 { 1269 if (!sgl || !sgl_count) 1270 return 0; 1271 1272 /* 1273 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1274 * scatterlists already have been set to follow what the fabric 1275 * passes for the original expected data transfer length. 1276 */ 1277 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1278 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1279 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1280 return TCM_INVALID_CDB_FIELD; 1281 } 1282 1283 cmd->t_data_sg = sgl; 1284 cmd->t_data_nents = sgl_count; 1285 1286 if (sgl_bidi && sgl_bidi_count) { 1287 cmd->t_bidi_data_sg = sgl_bidi; 1288 cmd->t_bidi_data_nents = sgl_bidi_count; 1289 } 1290 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1291 return 0; 1292 } 1293 1294 /* 1295 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1296 * se_cmd + use pre-allocated SGL memory. 1297 * 1298 * @se_cmd: command descriptor to submit 1299 * @se_sess: associated se_sess for endpoint 1300 * @cdb: pointer to SCSI CDB 1301 * @sense: pointer to SCSI sense buffer 1302 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1303 * @data_length: fabric expected data transfer length 1304 * @task_addr: SAM task attribute 1305 * @data_dir: DMA data direction 1306 * @flags: flags for command submission from target_sc_flags_tables 1307 * @sgl: struct scatterlist memory for unidirectional mapping 1308 * @sgl_count: scatterlist count for unidirectional mapping 1309 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1310 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1311 * @sgl_prot: struct scatterlist memory protection information 1312 * @sgl_prot_count: scatterlist count for protection information 1313 * 1314 * Returns non zero to signal active I/O shutdown failure. All other 1315 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1316 * but still return zero here. 1317 * 1318 * This may only be called from process context, and also currently 1319 * assumes internal allocation of fabric payload buffer by target-core. 1320 */ 1321 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1322 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1323 u32 data_length, int task_attr, int data_dir, int flags, 1324 struct scatterlist *sgl, u32 sgl_count, 1325 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1326 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1327 { 1328 struct se_portal_group *se_tpg; 1329 sense_reason_t rc; 1330 int ret; 1331 1332 se_tpg = se_sess->se_tpg; 1333 BUG_ON(!se_tpg); 1334 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1335 BUG_ON(in_interrupt()); 1336 /* 1337 * Initialize se_cmd for target operation. From this point 1338 * exceptions are handled by sending exception status via 1339 * target_core_fabric_ops->queue_status() callback 1340 */ 1341 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1342 data_length, data_dir, task_attr, sense); 1343 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1344 se_cmd->unknown_data_length = 1; 1345 /* 1346 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1347 * se_sess->sess_cmd_list. A second kref_get here is necessary 1348 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1349 * kref_put() to happen during fabric packet acknowledgement. 1350 */ 1351 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1352 if (ret) 1353 return ret; 1354 /* 1355 * Signal bidirectional data payloads to target-core 1356 */ 1357 if (flags & TARGET_SCF_BIDI_OP) 1358 se_cmd->se_cmd_flags |= SCF_BIDI; 1359 /* 1360 * Locate se_lun pointer and attach it to struct se_cmd 1361 */ 1362 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1363 if (rc) { 1364 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1365 target_put_sess_cmd(se_sess, se_cmd); 1366 return 0; 1367 } 1368 /* 1369 * Save pointers for SGLs containing protection information, 1370 * if present. 1371 */ 1372 if (sgl_prot_count) { 1373 se_cmd->t_prot_sg = sgl_prot; 1374 se_cmd->t_prot_nents = sgl_prot_count; 1375 } 1376 1377 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1378 if (rc != 0) { 1379 transport_generic_request_failure(se_cmd, rc); 1380 return 0; 1381 } 1382 /* 1383 * When a non zero sgl_count has been passed perform SGL passthrough 1384 * mapping for pre-allocated fabric memory instead of having target 1385 * core perform an internal SGL allocation.. 1386 */ 1387 if (sgl_count != 0) { 1388 BUG_ON(!sgl); 1389 1390 /* 1391 * A work-around for tcm_loop as some userspace code via 1392 * scsi-generic do not memset their associated read buffers, 1393 * so go ahead and do that here for type non-data CDBs. Also 1394 * note that this is currently guaranteed to be a single SGL 1395 * for this case by target core in target_setup_cmd_from_cdb() 1396 * -> transport_generic_cmd_sequencer(). 1397 */ 1398 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1399 se_cmd->data_direction == DMA_FROM_DEVICE) { 1400 unsigned char *buf = NULL; 1401 1402 if (sgl) 1403 buf = kmap(sg_page(sgl)) + sgl->offset; 1404 1405 if (buf) { 1406 memset(buf, 0, sgl->length); 1407 kunmap(sg_page(sgl)); 1408 } 1409 } 1410 1411 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1412 sgl_bidi, sgl_bidi_count); 1413 if (rc != 0) { 1414 transport_generic_request_failure(se_cmd, rc); 1415 return 0; 1416 } 1417 } 1418 1419 /* 1420 * Check if we need to delay processing because of ALUA 1421 * Active/NonOptimized primary access state.. 1422 */ 1423 core_alua_check_nonop_delay(se_cmd); 1424 1425 transport_handle_cdb_direct(se_cmd); 1426 return 0; 1427 } 1428 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1429 1430 /* 1431 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1432 * 1433 * @se_cmd: command descriptor to submit 1434 * @se_sess: associated se_sess for endpoint 1435 * @cdb: pointer to SCSI CDB 1436 * @sense: pointer to SCSI sense buffer 1437 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1438 * @data_length: fabric expected data transfer length 1439 * @task_addr: SAM task attribute 1440 * @data_dir: DMA data direction 1441 * @flags: flags for command submission from target_sc_flags_tables 1442 * 1443 * Returns non zero to signal active I/O shutdown failure. All other 1444 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1445 * but still return zero here. 1446 * 1447 * This may only be called from process context, and also currently 1448 * assumes internal allocation of fabric payload buffer by target-core. 1449 * 1450 * It also assumes interal target core SGL memory allocation. 1451 */ 1452 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1453 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1454 u32 data_length, int task_attr, int data_dir, int flags) 1455 { 1456 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1457 unpacked_lun, data_length, task_attr, data_dir, 1458 flags, NULL, 0, NULL, 0, NULL, 0); 1459 } 1460 EXPORT_SYMBOL(target_submit_cmd); 1461 1462 static void target_complete_tmr_failure(struct work_struct *work) 1463 { 1464 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1465 1466 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1467 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1468 1469 transport_cmd_check_stop_to_fabric(se_cmd); 1470 } 1471 1472 /** 1473 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1474 * for TMR CDBs 1475 * 1476 * @se_cmd: command descriptor to submit 1477 * @se_sess: associated se_sess for endpoint 1478 * @sense: pointer to SCSI sense buffer 1479 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1480 * @fabric_context: fabric context for TMR req 1481 * @tm_type: Type of TM request 1482 * @gfp: gfp type for caller 1483 * @tag: referenced task tag for TMR_ABORT_TASK 1484 * @flags: submit cmd flags 1485 * 1486 * Callable from all contexts. 1487 **/ 1488 1489 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1490 unsigned char *sense, u32 unpacked_lun, 1491 void *fabric_tmr_ptr, unsigned char tm_type, 1492 gfp_t gfp, unsigned int tag, int flags) 1493 { 1494 struct se_portal_group *se_tpg; 1495 int ret; 1496 1497 se_tpg = se_sess->se_tpg; 1498 BUG_ON(!se_tpg); 1499 1500 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1501 0, DMA_NONE, MSG_SIMPLE_TAG, sense); 1502 /* 1503 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1504 * allocation failure. 1505 */ 1506 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1507 if (ret < 0) 1508 return -ENOMEM; 1509 1510 if (tm_type == TMR_ABORT_TASK) 1511 se_cmd->se_tmr_req->ref_task_tag = tag; 1512 1513 /* See target_submit_cmd for commentary */ 1514 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1515 if (ret) { 1516 core_tmr_release_req(se_cmd->se_tmr_req); 1517 return ret; 1518 } 1519 1520 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1521 if (ret) { 1522 /* 1523 * For callback during failure handling, push this work off 1524 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1525 */ 1526 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1527 schedule_work(&se_cmd->work); 1528 return 0; 1529 } 1530 transport_generic_handle_tmr(se_cmd); 1531 return 0; 1532 } 1533 EXPORT_SYMBOL(target_submit_tmr); 1534 1535 /* 1536 * If the cmd is active, request it to be stopped and sleep until it 1537 * has completed. 1538 */ 1539 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1540 { 1541 bool was_active = false; 1542 1543 if (cmd->transport_state & CMD_T_BUSY) { 1544 cmd->transport_state |= CMD_T_REQUEST_STOP; 1545 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1546 1547 pr_debug("cmd %p waiting to complete\n", cmd); 1548 wait_for_completion(&cmd->task_stop_comp); 1549 pr_debug("cmd %p stopped successfully\n", cmd); 1550 1551 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1552 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1553 cmd->transport_state &= ~CMD_T_BUSY; 1554 was_active = true; 1555 } 1556 1557 return was_active; 1558 } 1559 1560 /* 1561 * Handle SAM-esque emulation for generic transport request failures. 1562 */ 1563 void transport_generic_request_failure(struct se_cmd *cmd, 1564 sense_reason_t sense_reason) 1565 { 1566 int ret = 0; 1567 1568 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1569 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1570 cmd->t_task_cdb[0]); 1571 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1572 cmd->se_tfo->get_cmd_state(cmd), 1573 cmd->t_state, sense_reason); 1574 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1575 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1576 (cmd->transport_state & CMD_T_STOP) != 0, 1577 (cmd->transport_state & CMD_T_SENT) != 0); 1578 1579 /* 1580 * For SAM Task Attribute emulation for failed struct se_cmd 1581 */ 1582 transport_complete_task_attr(cmd); 1583 /* 1584 * Handle special case for COMPARE_AND_WRITE failure, where the 1585 * callback is expected to drop the per device ->caw_mutex. 1586 */ 1587 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1588 cmd->transport_complete_callback) 1589 cmd->transport_complete_callback(cmd); 1590 1591 switch (sense_reason) { 1592 case TCM_NON_EXISTENT_LUN: 1593 case TCM_UNSUPPORTED_SCSI_OPCODE: 1594 case TCM_INVALID_CDB_FIELD: 1595 case TCM_INVALID_PARAMETER_LIST: 1596 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1597 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1598 case TCM_UNKNOWN_MODE_PAGE: 1599 case TCM_WRITE_PROTECTED: 1600 case TCM_ADDRESS_OUT_OF_RANGE: 1601 case TCM_CHECK_CONDITION_ABORT_CMD: 1602 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1603 case TCM_CHECK_CONDITION_NOT_READY: 1604 break; 1605 case TCM_OUT_OF_RESOURCES: 1606 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1607 break; 1608 case TCM_RESERVATION_CONFLICT: 1609 /* 1610 * No SENSE Data payload for this case, set SCSI Status 1611 * and queue the response to $FABRIC_MOD. 1612 * 1613 * Uses linux/include/scsi/scsi.h SAM status codes defs 1614 */ 1615 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1616 /* 1617 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1618 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1619 * CONFLICT STATUS. 1620 * 1621 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1622 */ 1623 if (cmd->se_sess && 1624 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1625 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1626 cmd->orig_fe_lun, 0x2C, 1627 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1628 1629 trace_target_cmd_complete(cmd); 1630 ret = cmd->se_tfo-> queue_status(cmd); 1631 if (ret == -EAGAIN || ret == -ENOMEM) 1632 goto queue_full; 1633 goto check_stop; 1634 default: 1635 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1636 cmd->t_task_cdb[0], sense_reason); 1637 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1638 break; 1639 } 1640 1641 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1642 if (ret == -EAGAIN || ret == -ENOMEM) 1643 goto queue_full; 1644 1645 check_stop: 1646 transport_lun_remove_cmd(cmd); 1647 if (!transport_cmd_check_stop_to_fabric(cmd)) 1648 ; 1649 return; 1650 1651 queue_full: 1652 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1653 transport_handle_queue_full(cmd, cmd->se_dev); 1654 } 1655 EXPORT_SYMBOL(transport_generic_request_failure); 1656 1657 void __target_execute_cmd(struct se_cmd *cmd) 1658 { 1659 sense_reason_t ret; 1660 1661 if (cmd->execute_cmd) { 1662 ret = cmd->execute_cmd(cmd); 1663 if (ret) { 1664 spin_lock_irq(&cmd->t_state_lock); 1665 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1666 spin_unlock_irq(&cmd->t_state_lock); 1667 1668 transport_generic_request_failure(cmd, ret); 1669 } 1670 } 1671 } 1672 1673 static bool target_handle_task_attr(struct se_cmd *cmd) 1674 { 1675 struct se_device *dev = cmd->se_dev; 1676 1677 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1678 return false; 1679 1680 /* 1681 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1682 * to allow the passed struct se_cmd list of tasks to the front of the list. 1683 */ 1684 switch (cmd->sam_task_attr) { 1685 case MSG_HEAD_TAG: 1686 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1687 "se_ordered_id: %u\n", 1688 cmd->t_task_cdb[0], cmd->se_ordered_id); 1689 return false; 1690 case MSG_ORDERED_TAG: 1691 atomic_inc(&dev->dev_ordered_sync); 1692 smp_mb__after_atomic_inc(); 1693 1694 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1695 " se_ordered_id: %u\n", 1696 cmd->t_task_cdb[0], cmd->se_ordered_id); 1697 1698 /* 1699 * Execute an ORDERED command if no other older commands 1700 * exist that need to be completed first. 1701 */ 1702 if (!atomic_read(&dev->simple_cmds)) 1703 return false; 1704 break; 1705 default: 1706 /* 1707 * For SIMPLE and UNTAGGED Task Attribute commands 1708 */ 1709 atomic_inc(&dev->simple_cmds); 1710 smp_mb__after_atomic_inc(); 1711 break; 1712 } 1713 1714 if (atomic_read(&dev->dev_ordered_sync) == 0) 1715 return false; 1716 1717 spin_lock(&dev->delayed_cmd_lock); 1718 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1719 spin_unlock(&dev->delayed_cmd_lock); 1720 1721 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1722 " delayed CMD list, se_ordered_id: %u\n", 1723 cmd->t_task_cdb[0], cmd->sam_task_attr, 1724 cmd->se_ordered_id); 1725 return true; 1726 } 1727 1728 void target_execute_cmd(struct se_cmd *cmd) 1729 { 1730 /* 1731 * If the received CDB has aleady been aborted stop processing it here. 1732 */ 1733 if (transport_check_aborted_status(cmd, 1)) 1734 return; 1735 1736 /* 1737 * Determine if frontend context caller is requesting the stopping of 1738 * this command for frontend exceptions. 1739 */ 1740 spin_lock_irq(&cmd->t_state_lock); 1741 if (cmd->transport_state & CMD_T_STOP) { 1742 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1743 __func__, __LINE__, 1744 cmd->se_tfo->get_task_tag(cmd)); 1745 1746 spin_unlock_irq(&cmd->t_state_lock); 1747 complete(&cmd->t_transport_stop_comp); 1748 return; 1749 } 1750 1751 cmd->t_state = TRANSPORT_PROCESSING; 1752 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1753 spin_unlock_irq(&cmd->t_state_lock); 1754 1755 if (target_handle_task_attr(cmd)) { 1756 spin_lock_irq(&cmd->t_state_lock); 1757 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT; 1758 spin_unlock_irq(&cmd->t_state_lock); 1759 return; 1760 } 1761 1762 __target_execute_cmd(cmd); 1763 } 1764 EXPORT_SYMBOL(target_execute_cmd); 1765 1766 /* 1767 * Process all commands up to the last received ORDERED task attribute which 1768 * requires another blocking boundary 1769 */ 1770 static void target_restart_delayed_cmds(struct se_device *dev) 1771 { 1772 for (;;) { 1773 struct se_cmd *cmd; 1774 1775 spin_lock(&dev->delayed_cmd_lock); 1776 if (list_empty(&dev->delayed_cmd_list)) { 1777 spin_unlock(&dev->delayed_cmd_lock); 1778 break; 1779 } 1780 1781 cmd = list_entry(dev->delayed_cmd_list.next, 1782 struct se_cmd, se_delayed_node); 1783 list_del(&cmd->se_delayed_node); 1784 spin_unlock(&dev->delayed_cmd_lock); 1785 1786 __target_execute_cmd(cmd); 1787 1788 if (cmd->sam_task_attr == MSG_ORDERED_TAG) 1789 break; 1790 } 1791 } 1792 1793 /* 1794 * Called from I/O completion to determine which dormant/delayed 1795 * and ordered cmds need to have their tasks added to the execution queue. 1796 */ 1797 static void transport_complete_task_attr(struct se_cmd *cmd) 1798 { 1799 struct se_device *dev = cmd->se_dev; 1800 1801 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1802 return; 1803 1804 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 1805 atomic_dec(&dev->simple_cmds); 1806 smp_mb__after_atomic_dec(); 1807 dev->dev_cur_ordered_id++; 1808 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1809 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1810 cmd->se_ordered_id); 1811 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 1812 dev->dev_cur_ordered_id++; 1813 pr_debug("Incremented dev_cur_ordered_id: %u for" 1814 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1815 cmd->se_ordered_id); 1816 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 1817 atomic_dec(&dev->dev_ordered_sync); 1818 smp_mb__after_atomic_dec(); 1819 1820 dev->dev_cur_ordered_id++; 1821 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1822 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1823 } 1824 1825 target_restart_delayed_cmds(dev); 1826 } 1827 1828 static void transport_complete_qf(struct se_cmd *cmd) 1829 { 1830 int ret = 0; 1831 1832 transport_complete_task_attr(cmd); 1833 1834 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1835 trace_target_cmd_complete(cmd); 1836 ret = cmd->se_tfo->queue_status(cmd); 1837 if (ret) 1838 goto out; 1839 } 1840 1841 switch (cmd->data_direction) { 1842 case DMA_FROM_DEVICE: 1843 trace_target_cmd_complete(cmd); 1844 ret = cmd->se_tfo->queue_data_in(cmd); 1845 break; 1846 case DMA_TO_DEVICE: 1847 if (cmd->se_cmd_flags & SCF_BIDI) { 1848 ret = cmd->se_tfo->queue_data_in(cmd); 1849 if (ret < 0) 1850 break; 1851 } 1852 /* Fall through for DMA_TO_DEVICE */ 1853 case DMA_NONE: 1854 trace_target_cmd_complete(cmd); 1855 ret = cmd->se_tfo->queue_status(cmd); 1856 break; 1857 default: 1858 break; 1859 } 1860 1861 out: 1862 if (ret < 0) { 1863 transport_handle_queue_full(cmd, cmd->se_dev); 1864 return; 1865 } 1866 transport_lun_remove_cmd(cmd); 1867 transport_cmd_check_stop_to_fabric(cmd); 1868 } 1869 1870 static void transport_handle_queue_full( 1871 struct se_cmd *cmd, 1872 struct se_device *dev) 1873 { 1874 spin_lock_irq(&dev->qf_cmd_lock); 1875 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1876 atomic_inc(&dev->dev_qf_count); 1877 smp_mb__after_atomic_inc(); 1878 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1879 1880 schedule_work(&cmd->se_dev->qf_work_queue); 1881 } 1882 1883 static void target_complete_ok_work(struct work_struct *work) 1884 { 1885 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1886 int ret; 1887 1888 /* 1889 * Check if we need to move delayed/dormant tasks from cmds on the 1890 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1891 * Attribute. 1892 */ 1893 transport_complete_task_attr(cmd); 1894 1895 /* 1896 * Check to schedule QUEUE_FULL work, or execute an existing 1897 * cmd->transport_qf_callback() 1898 */ 1899 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 1900 schedule_work(&cmd->se_dev->qf_work_queue); 1901 1902 /* 1903 * Check if we need to send a sense buffer from 1904 * the struct se_cmd in question. 1905 */ 1906 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1907 WARN_ON(!cmd->scsi_status); 1908 ret = transport_send_check_condition_and_sense( 1909 cmd, 0, 1); 1910 if (ret == -EAGAIN || ret == -ENOMEM) 1911 goto queue_full; 1912 1913 transport_lun_remove_cmd(cmd); 1914 transport_cmd_check_stop_to_fabric(cmd); 1915 return; 1916 } 1917 /* 1918 * Check for a callback, used by amongst other things 1919 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 1920 */ 1921 if (cmd->transport_complete_callback) { 1922 sense_reason_t rc; 1923 1924 rc = cmd->transport_complete_callback(cmd); 1925 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) { 1926 return; 1927 } else if (rc) { 1928 ret = transport_send_check_condition_and_sense(cmd, 1929 rc, 0); 1930 if (ret == -EAGAIN || ret == -ENOMEM) 1931 goto queue_full; 1932 1933 transport_lun_remove_cmd(cmd); 1934 transport_cmd_check_stop_to_fabric(cmd); 1935 return; 1936 } 1937 } 1938 1939 switch (cmd->data_direction) { 1940 case DMA_FROM_DEVICE: 1941 spin_lock(&cmd->se_lun->lun_sep_lock); 1942 if (cmd->se_lun->lun_sep) { 1943 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1944 cmd->data_length; 1945 } 1946 spin_unlock(&cmd->se_lun->lun_sep_lock); 1947 1948 trace_target_cmd_complete(cmd); 1949 ret = cmd->se_tfo->queue_data_in(cmd); 1950 if (ret == -EAGAIN || ret == -ENOMEM) 1951 goto queue_full; 1952 break; 1953 case DMA_TO_DEVICE: 1954 spin_lock(&cmd->se_lun->lun_sep_lock); 1955 if (cmd->se_lun->lun_sep) { 1956 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 1957 cmd->data_length; 1958 } 1959 spin_unlock(&cmd->se_lun->lun_sep_lock); 1960 /* 1961 * Check if we need to send READ payload for BIDI-COMMAND 1962 */ 1963 if (cmd->se_cmd_flags & SCF_BIDI) { 1964 spin_lock(&cmd->se_lun->lun_sep_lock); 1965 if (cmd->se_lun->lun_sep) { 1966 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1967 cmd->data_length; 1968 } 1969 spin_unlock(&cmd->se_lun->lun_sep_lock); 1970 ret = cmd->se_tfo->queue_data_in(cmd); 1971 if (ret == -EAGAIN || ret == -ENOMEM) 1972 goto queue_full; 1973 break; 1974 } 1975 /* Fall through for DMA_TO_DEVICE */ 1976 case DMA_NONE: 1977 trace_target_cmd_complete(cmd); 1978 ret = cmd->se_tfo->queue_status(cmd); 1979 if (ret == -EAGAIN || ret == -ENOMEM) 1980 goto queue_full; 1981 break; 1982 default: 1983 break; 1984 } 1985 1986 transport_lun_remove_cmd(cmd); 1987 transport_cmd_check_stop_to_fabric(cmd); 1988 return; 1989 1990 queue_full: 1991 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 1992 " data_direction: %d\n", cmd, cmd->data_direction); 1993 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1994 transport_handle_queue_full(cmd, cmd->se_dev); 1995 } 1996 1997 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 1998 { 1999 struct scatterlist *sg; 2000 int count; 2001 2002 for_each_sg(sgl, sg, nents, count) 2003 __free_page(sg_page(sg)); 2004 2005 kfree(sgl); 2006 } 2007 2008 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2009 { 2010 /* 2011 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2012 * emulation, and free + reset pointers if necessary.. 2013 */ 2014 if (!cmd->t_data_sg_orig) 2015 return; 2016 2017 kfree(cmd->t_data_sg); 2018 cmd->t_data_sg = cmd->t_data_sg_orig; 2019 cmd->t_data_sg_orig = NULL; 2020 cmd->t_data_nents = cmd->t_data_nents_orig; 2021 cmd->t_data_nents_orig = 0; 2022 } 2023 2024 static inline void transport_free_pages(struct se_cmd *cmd) 2025 { 2026 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2027 transport_reset_sgl_orig(cmd); 2028 return; 2029 } 2030 transport_reset_sgl_orig(cmd); 2031 2032 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2033 cmd->t_data_sg = NULL; 2034 cmd->t_data_nents = 0; 2035 2036 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2037 cmd->t_bidi_data_sg = NULL; 2038 cmd->t_bidi_data_nents = 0; 2039 } 2040 2041 /** 2042 * transport_release_cmd - free a command 2043 * @cmd: command to free 2044 * 2045 * This routine unconditionally frees a command, and reference counting 2046 * or list removal must be done in the caller. 2047 */ 2048 static int transport_release_cmd(struct se_cmd *cmd) 2049 { 2050 BUG_ON(!cmd->se_tfo); 2051 2052 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2053 core_tmr_release_req(cmd->se_tmr_req); 2054 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2055 kfree(cmd->t_task_cdb); 2056 /* 2057 * If this cmd has been setup with target_get_sess_cmd(), drop 2058 * the kref and call ->release_cmd() in kref callback. 2059 */ 2060 return target_put_sess_cmd(cmd->se_sess, cmd); 2061 } 2062 2063 /** 2064 * transport_put_cmd - release a reference to a command 2065 * @cmd: command to release 2066 * 2067 * This routine releases our reference to the command and frees it if possible. 2068 */ 2069 static int transport_put_cmd(struct se_cmd *cmd) 2070 { 2071 transport_free_pages(cmd); 2072 return transport_release_cmd(cmd); 2073 } 2074 2075 void *transport_kmap_data_sg(struct se_cmd *cmd) 2076 { 2077 struct scatterlist *sg = cmd->t_data_sg; 2078 struct page **pages; 2079 int i; 2080 2081 /* 2082 * We need to take into account a possible offset here for fabrics like 2083 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2084 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2085 */ 2086 if (!cmd->t_data_nents) 2087 return NULL; 2088 2089 BUG_ON(!sg); 2090 if (cmd->t_data_nents == 1) 2091 return kmap(sg_page(sg)) + sg->offset; 2092 2093 /* >1 page. use vmap */ 2094 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2095 if (!pages) 2096 return NULL; 2097 2098 /* convert sg[] to pages[] */ 2099 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2100 pages[i] = sg_page(sg); 2101 } 2102 2103 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2104 kfree(pages); 2105 if (!cmd->t_data_vmap) 2106 return NULL; 2107 2108 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2109 } 2110 EXPORT_SYMBOL(transport_kmap_data_sg); 2111 2112 void transport_kunmap_data_sg(struct se_cmd *cmd) 2113 { 2114 if (!cmd->t_data_nents) { 2115 return; 2116 } else if (cmd->t_data_nents == 1) { 2117 kunmap(sg_page(cmd->t_data_sg)); 2118 return; 2119 } 2120 2121 vunmap(cmd->t_data_vmap); 2122 cmd->t_data_vmap = NULL; 2123 } 2124 EXPORT_SYMBOL(transport_kunmap_data_sg); 2125 2126 int 2127 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2128 bool zero_page) 2129 { 2130 struct scatterlist *sg; 2131 struct page *page; 2132 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2133 unsigned int nent; 2134 int i = 0; 2135 2136 nent = DIV_ROUND_UP(length, PAGE_SIZE); 2137 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL); 2138 if (!sg) 2139 return -ENOMEM; 2140 2141 sg_init_table(sg, nent); 2142 2143 while (length) { 2144 u32 page_len = min_t(u32, length, PAGE_SIZE); 2145 page = alloc_page(GFP_KERNEL | zero_flag); 2146 if (!page) 2147 goto out; 2148 2149 sg_set_page(&sg[i], page, page_len, 0); 2150 length -= page_len; 2151 i++; 2152 } 2153 *sgl = sg; 2154 *nents = nent; 2155 return 0; 2156 2157 out: 2158 while (i > 0) { 2159 i--; 2160 __free_page(sg_page(&sg[i])); 2161 } 2162 kfree(sg); 2163 return -ENOMEM; 2164 } 2165 2166 /* 2167 * Allocate any required resources to execute the command. For writes we 2168 * might not have the payload yet, so notify the fabric via a call to 2169 * ->write_pending instead. Otherwise place it on the execution queue. 2170 */ 2171 sense_reason_t 2172 transport_generic_new_cmd(struct se_cmd *cmd) 2173 { 2174 int ret = 0; 2175 2176 /* 2177 * Determine is the TCM fabric module has already allocated physical 2178 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2179 * beforehand. 2180 */ 2181 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2182 cmd->data_length) { 2183 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2184 2185 if ((cmd->se_cmd_flags & SCF_BIDI) || 2186 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2187 u32 bidi_length; 2188 2189 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2190 bidi_length = cmd->t_task_nolb * 2191 cmd->se_dev->dev_attrib.block_size; 2192 else 2193 bidi_length = cmd->data_length; 2194 2195 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2196 &cmd->t_bidi_data_nents, 2197 bidi_length, zero_flag); 2198 if (ret < 0) 2199 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2200 } 2201 2202 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2203 cmd->data_length, zero_flag); 2204 if (ret < 0) 2205 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2206 } 2207 /* 2208 * If this command is not a write we can execute it right here, 2209 * for write buffers we need to notify the fabric driver first 2210 * and let it call back once the write buffers are ready. 2211 */ 2212 target_add_to_state_list(cmd); 2213 if (cmd->data_direction != DMA_TO_DEVICE) { 2214 target_execute_cmd(cmd); 2215 return 0; 2216 } 2217 transport_cmd_check_stop(cmd, false, true); 2218 2219 ret = cmd->se_tfo->write_pending(cmd); 2220 if (ret == -EAGAIN || ret == -ENOMEM) 2221 goto queue_full; 2222 2223 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2224 WARN_ON(ret); 2225 2226 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2227 2228 queue_full: 2229 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2230 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2231 transport_handle_queue_full(cmd, cmd->se_dev); 2232 return 0; 2233 } 2234 EXPORT_SYMBOL(transport_generic_new_cmd); 2235 2236 static void transport_write_pending_qf(struct se_cmd *cmd) 2237 { 2238 int ret; 2239 2240 ret = cmd->se_tfo->write_pending(cmd); 2241 if (ret == -EAGAIN || ret == -ENOMEM) { 2242 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2243 cmd); 2244 transport_handle_queue_full(cmd, cmd->se_dev); 2245 } 2246 } 2247 2248 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2249 { 2250 unsigned long flags; 2251 int ret = 0; 2252 2253 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2254 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2255 transport_wait_for_tasks(cmd); 2256 2257 ret = transport_release_cmd(cmd); 2258 } else { 2259 if (wait_for_tasks) 2260 transport_wait_for_tasks(cmd); 2261 /* 2262 * Handle WRITE failure case where transport_generic_new_cmd() 2263 * has already added se_cmd to state_list, but fabric has 2264 * failed command before I/O submission. 2265 */ 2266 if (cmd->state_active) { 2267 spin_lock_irqsave(&cmd->t_state_lock, flags); 2268 target_remove_from_state_list(cmd); 2269 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2270 } 2271 2272 if (cmd->se_lun) 2273 transport_lun_remove_cmd(cmd); 2274 2275 ret = transport_put_cmd(cmd); 2276 } 2277 return ret; 2278 } 2279 EXPORT_SYMBOL(transport_generic_free_cmd); 2280 2281 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2282 * @se_sess: session to reference 2283 * @se_cmd: command descriptor to add 2284 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2285 */ 2286 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2287 bool ack_kref) 2288 { 2289 unsigned long flags; 2290 int ret = 0; 2291 2292 kref_init(&se_cmd->cmd_kref); 2293 /* 2294 * Add a second kref if the fabric caller is expecting to handle 2295 * fabric acknowledgement that requires two target_put_sess_cmd() 2296 * invocations before se_cmd descriptor release. 2297 */ 2298 if (ack_kref == true) { 2299 kref_get(&se_cmd->cmd_kref); 2300 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2301 } 2302 2303 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2304 if (se_sess->sess_tearing_down) { 2305 ret = -ESHUTDOWN; 2306 goto out; 2307 } 2308 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2309 out: 2310 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2311 return ret; 2312 } 2313 EXPORT_SYMBOL(target_get_sess_cmd); 2314 2315 static void target_release_cmd_kref(struct kref *kref) 2316 { 2317 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2318 struct se_session *se_sess = se_cmd->se_sess; 2319 2320 if (list_empty(&se_cmd->se_cmd_list)) { 2321 spin_unlock(&se_sess->sess_cmd_lock); 2322 se_cmd->se_tfo->release_cmd(se_cmd); 2323 return; 2324 } 2325 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2326 spin_unlock(&se_sess->sess_cmd_lock); 2327 complete(&se_cmd->cmd_wait_comp); 2328 return; 2329 } 2330 list_del(&se_cmd->se_cmd_list); 2331 spin_unlock(&se_sess->sess_cmd_lock); 2332 2333 se_cmd->se_tfo->release_cmd(se_cmd); 2334 } 2335 2336 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2337 * @se_sess: session to reference 2338 * @se_cmd: command descriptor to drop 2339 */ 2340 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2341 { 2342 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2343 &se_sess->sess_cmd_lock); 2344 } 2345 EXPORT_SYMBOL(target_put_sess_cmd); 2346 2347 /* target_sess_cmd_list_set_waiting - Flag all commands in 2348 * sess_cmd_list to complete cmd_wait_comp. Set 2349 * sess_tearing_down so no more commands are queued. 2350 * @se_sess: session to flag 2351 */ 2352 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2353 { 2354 struct se_cmd *se_cmd; 2355 unsigned long flags; 2356 2357 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2358 if (se_sess->sess_tearing_down) { 2359 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2360 return; 2361 } 2362 se_sess->sess_tearing_down = 1; 2363 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2364 2365 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2366 se_cmd->cmd_wait_set = 1; 2367 2368 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2369 } 2370 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2371 2372 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2373 * @se_sess: session to wait for active I/O 2374 */ 2375 void target_wait_for_sess_cmds(struct se_session *se_sess) 2376 { 2377 struct se_cmd *se_cmd, *tmp_cmd; 2378 unsigned long flags; 2379 2380 list_for_each_entry_safe(se_cmd, tmp_cmd, 2381 &se_sess->sess_wait_list, se_cmd_list) { 2382 list_del(&se_cmd->se_cmd_list); 2383 2384 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2385 " %d\n", se_cmd, se_cmd->t_state, 2386 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2387 2388 wait_for_completion(&se_cmd->cmd_wait_comp); 2389 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2390 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2391 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2392 2393 se_cmd->se_tfo->release_cmd(se_cmd); 2394 } 2395 2396 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2397 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2398 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2399 2400 } 2401 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2402 2403 static int transport_clear_lun_ref_thread(void *p) 2404 { 2405 struct se_lun *lun = p; 2406 2407 percpu_ref_kill(&lun->lun_ref); 2408 2409 wait_for_completion(&lun->lun_ref_comp); 2410 complete(&lun->lun_shutdown_comp); 2411 2412 return 0; 2413 } 2414 2415 int transport_clear_lun_ref(struct se_lun *lun) 2416 { 2417 struct task_struct *kt; 2418 2419 kt = kthread_run(transport_clear_lun_ref_thread, lun, 2420 "tcm_cl_%u", lun->unpacked_lun); 2421 if (IS_ERR(kt)) { 2422 pr_err("Unable to start clear_lun thread\n"); 2423 return PTR_ERR(kt); 2424 } 2425 wait_for_completion(&lun->lun_shutdown_comp); 2426 2427 return 0; 2428 } 2429 2430 /** 2431 * transport_wait_for_tasks - wait for completion to occur 2432 * @cmd: command to wait 2433 * 2434 * Called from frontend fabric context to wait for storage engine 2435 * to pause and/or release frontend generated struct se_cmd. 2436 */ 2437 bool transport_wait_for_tasks(struct se_cmd *cmd) 2438 { 2439 unsigned long flags; 2440 2441 spin_lock_irqsave(&cmd->t_state_lock, flags); 2442 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2443 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2444 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2445 return false; 2446 } 2447 2448 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2449 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2450 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2451 return false; 2452 } 2453 2454 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2455 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2456 return false; 2457 } 2458 2459 cmd->transport_state |= CMD_T_STOP; 2460 2461 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2462 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2463 cmd, cmd->se_tfo->get_task_tag(cmd), 2464 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2465 2466 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2467 2468 wait_for_completion(&cmd->t_transport_stop_comp); 2469 2470 spin_lock_irqsave(&cmd->t_state_lock, flags); 2471 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2472 2473 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2474 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2475 cmd->se_tfo->get_task_tag(cmd)); 2476 2477 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2478 2479 return true; 2480 } 2481 EXPORT_SYMBOL(transport_wait_for_tasks); 2482 2483 static int transport_get_sense_codes( 2484 struct se_cmd *cmd, 2485 u8 *asc, 2486 u8 *ascq) 2487 { 2488 *asc = cmd->scsi_asc; 2489 *ascq = cmd->scsi_ascq; 2490 2491 return 0; 2492 } 2493 2494 static 2495 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector) 2496 { 2497 /* Place failed LBA in sense data information descriptor 0. */ 2498 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc; 2499 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */ 2500 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa; 2501 buffer[SPC_VALIDITY_OFFSET] = 0x80; 2502 2503 /* Descriptor Information: failing sector */ 2504 put_unaligned_be64(bad_sector, &buffer[12]); 2505 } 2506 2507 int 2508 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2509 sense_reason_t reason, int from_transport) 2510 { 2511 unsigned char *buffer = cmd->sense_buffer; 2512 unsigned long flags; 2513 u8 asc = 0, ascq = 0; 2514 2515 spin_lock_irqsave(&cmd->t_state_lock, flags); 2516 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2517 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2518 return 0; 2519 } 2520 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2521 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2522 2523 if (!reason && from_transport) 2524 goto after_reason; 2525 2526 if (!from_transport) 2527 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2528 2529 /* 2530 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2531 * SENSE KEY values from include/scsi/scsi.h 2532 */ 2533 switch (reason) { 2534 case TCM_NO_SENSE: 2535 /* CURRENT ERROR */ 2536 buffer[0] = 0x70; 2537 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2538 /* Not Ready */ 2539 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2540 /* NO ADDITIONAL SENSE INFORMATION */ 2541 buffer[SPC_ASC_KEY_OFFSET] = 0; 2542 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2543 break; 2544 case TCM_NON_EXISTENT_LUN: 2545 /* CURRENT ERROR */ 2546 buffer[0] = 0x70; 2547 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2548 /* ILLEGAL REQUEST */ 2549 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2550 /* LOGICAL UNIT NOT SUPPORTED */ 2551 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2552 break; 2553 case TCM_UNSUPPORTED_SCSI_OPCODE: 2554 case TCM_SECTOR_COUNT_TOO_MANY: 2555 /* CURRENT ERROR */ 2556 buffer[0] = 0x70; 2557 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2558 /* ILLEGAL REQUEST */ 2559 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2560 /* INVALID COMMAND OPERATION CODE */ 2561 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2562 break; 2563 case TCM_UNKNOWN_MODE_PAGE: 2564 /* CURRENT ERROR */ 2565 buffer[0] = 0x70; 2566 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2567 /* ILLEGAL REQUEST */ 2568 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2569 /* INVALID FIELD IN CDB */ 2570 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2571 break; 2572 case TCM_CHECK_CONDITION_ABORT_CMD: 2573 /* CURRENT ERROR */ 2574 buffer[0] = 0x70; 2575 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2576 /* ABORTED COMMAND */ 2577 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2578 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2579 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2580 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2581 break; 2582 case TCM_INCORRECT_AMOUNT_OF_DATA: 2583 /* CURRENT ERROR */ 2584 buffer[0] = 0x70; 2585 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2586 /* ABORTED COMMAND */ 2587 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2588 /* WRITE ERROR */ 2589 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2590 /* NOT ENOUGH UNSOLICITED DATA */ 2591 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2592 break; 2593 case TCM_INVALID_CDB_FIELD: 2594 /* CURRENT ERROR */ 2595 buffer[0] = 0x70; 2596 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2597 /* ILLEGAL REQUEST */ 2598 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2599 /* INVALID FIELD IN CDB */ 2600 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2601 break; 2602 case TCM_INVALID_PARAMETER_LIST: 2603 /* CURRENT ERROR */ 2604 buffer[0] = 0x70; 2605 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2606 /* ILLEGAL REQUEST */ 2607 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2608 /* INVALID FIELD IN PARAMETER LIST */ 2609 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2610 break; 2611 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2612 /* CURRENT ERROR */ 2613 buffer[0] = 0x70; 2614 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2615 /* ILLEGAL REQUEST */ 2616 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2617 /* PARAMETER LIST LENGTH ERROR */ 2618 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2619 break; 2620 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2621 /* CURRENT ERROR */ 2622 buffer[0] = 0x70; 2623 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2624 /* ABORTED COMMAND */ 2625 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2626 /* WRITE ERROR */ 2627 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2628 /* UNEXPECTED_UNSOLICITED_DATA */ 2629 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2630 break; 2631 case TCM_SERVICE_CRC_ERROR: 2632 /* CURRENT ERROR */ 2633 buffer[0] = 0x70; 2634 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2635 /* ABORTED COMMAND */ 2636 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2637 /* PROTOCOL SERVICE CRC ERROR */ 2638 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2639 /* N/A */ 2640 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2641 break; 2642 case TCM_SNACK_REJECTED: 2643 /* CURRENT ERROR */ 2644 buffer[0] = 0x70; 2645 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2646 /* ABORTED COMMAND */ 2647 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2648 /* READ ERROR */ 2649 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2650 /* FAILED RETRANSMISSION REQUEST */ 2651 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2652 break; 2653 case TCM_WRITE_PROTECTED: 2654 /* CURRENT ERROR */ 2655 buffer[0] = 0x70; 2656 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2657 /* DATA PROTECT */ 2658 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2659 /* WRITE PROTECTED */ 2660 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2661 break; 2662 case TCM_ADDRESS_OUT_OF_RANGE: 2663 /* CURRENT ERROR */ 2664 buffer[0] = 0x70; 2665 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2666 /* ILLEGAL REQUEST */ 2667 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2668 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2669 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2670 break; 2671 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2672 /* CURRENT ERROR */ 2673 buffer[0] = 0x70; 2674 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2675 /* UNIT ATTENTION */ 2676 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2677 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2678 buffer[SPC_ASC_KEY_OFFSET] = asc; 2679 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2680 break; 2681 case TCM_CHECK_CONDITION_NOT_READY: 2682 /* CURRENT ERROR */ 2683 buffer[0] = 0x70; 2684 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2685 /* Not Ready */ 2686 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2687 transport_get_sense_codes(cmd, &asc, &ascq); 2688 buffer[SPC_ASC_KEY_OFFSET] = asc; 2689 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2690 break; 2691 case TCM_MISCOMPARE_VERIFY: 2692 /* CURRENT ERROR */ 2693 buffer[0] = 0x70; 2694 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2695 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE; 2696 /* MISCOMPARE DURING VERIFY OPERATION */ 2697 buffer[SPC_ASC_KEY_OFFSET] = 0x1d; 2698 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00; 2699 break; 2700 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 2701 /* CURRENT ERROR */ 2702 buffer[0] = 0x70; 2703 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2704 /* ILLEGAL REQUEST */ 2705 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2706 /* LOGICAL BLOCK GUARD CHECK FAILED */ 2707 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2708 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01; 2709 transport_err_sector_info(buffer, cmd->bad_sector); 2710 break; 2711 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 2712 /* CURRENT ERROR */ 2713 buffer[0] = 0x70; 2714 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2715 /* ILLEGAL REQUEST */ 2716 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2717 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2718 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2719 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02; 2720 transport_err_sector_info(buffer, cmd->bad_sector); 2721 break; 2722 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 2723 /* CURRENT ERROR */ 2724 buffer[0] = 0x70; 2725 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2726 /* ILLEGAL REQUEST */ 2727 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2728 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2729 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2730 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2731 transport_err_sector_info(buffer, cmd->bad_sector); 2732 break; 2733 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2734 default: 2735 /* CURRENT ERROR */ 2736 buffer[0] = 0x70; 2737 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2738 /* 2739 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2740 * Solaris initiators. Returning NOT READY instead means the 2741 * operations will be retried a finite number of times and we 2742 * can survive intermittent errors. 2743 */ 2744 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2745 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2746 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2747 break; 2748 } 2749 /* 2750 * This code uses linux/include/scsi/scsi.h SAM status codes! 2751 */ 2752 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2753 /* 2754 * Automatically padded, this value is encoded in the fabric's 2755 * data_length response PDU containing the SCSI defined sense data. 2756 */ 2757 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2758 2759 after_reason: 2760 trace_target_cmd_complete(cmd); 2761 return cmd->se_tfo->queue_status(cmd); 2762 } 2763 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2764 2765 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2766 { 2767 if (!(cmd->transport_state & CMD_T_ABORTED)) 2768 return 0; 2769 2770 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 2771 return 1; 2772 2773 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2774 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2775 2776 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 2777 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2778 trace_target_cmd_complete(cmd); 2779 cmd->se_tfo->queue_status(cmd); 2780 2781 return 1; 2782 } 2783 EXPORT_SYMBOL(transport_check_aborted_status); 2784 2785 void transport_send_task_abort(struct se_cmd *cmd) 2786 { 2787 unsigned long flags; 2788 2789 spin_lock_irqsave(&cmd->t_state_lock, flags); 2790 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) { 2791 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2792 return; 2793 } 2794 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2795 2796 /* 2797 * If there are still expected incoming fabric WRITEs, we wait 2798 * until until they have completed before sending a TASK_ABORTED 2799 * response. This response with TASK_ABORTED status will be 2800 * queued back to fabric module by transport_check_aborted_status(). 2801 */ 2802 if (cmd->data_direction == DMA_TO_DEVICE) { 2803 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2804 cmd->transport_state |= CMD_T_ABORTED; 2805 smp_mb__after_atomic_inc(); 2806 return; 2807 } 2808 } 2809 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2810 2811 transport_lun_remove_cmd(cmd); 2812 2813 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 2814 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 2815 cmd->se_tfo->get_task_tag(cmd)); 2816 2817 trace_target_cmd_complete(cmd); 2818 cmd->se_tfo->queue_status(cmd); 2819 } 2820 2821 static void target_tmr_work(struct work_struct *work) 2822 { 2823 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2824 struct se_device *dev = cmd->se_dev; 2825 struct se_tmr_req *tmr = cmd->se_tmr_req; 2826 int ret; 2827 2828 switch (tmr->function) { 2829 case TMR_ABORT_TASK: 2830 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2831 break; 2832 case TMR_ABORT_TASK_SET: 2833 case TMR_CLEAR_ACA: 2834 case TMR_CLEAR_TASK_SET: 2835 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2836 break; 2837 case TMR_LUN_RESET: 2838 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2839 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2840 TMR_FUNCTION_REJECTED; 2841 break; 2842 case TMR_TARGET_WARM_RESET: 2843 tmr->response = TMR_FUNCTION_REJECTED; 2844 break; 2845 case TMR_TARGET_COLD_RESET: 2846 tmr->response = TMR_FUNCTION_REJECTED; 2847 break; 2848 default: 2849 pr_err("Uknown TMR function: 0x%02x.\n", 2850 tmr->function); 2851 tmr->response = TMR_FUNCTION_REJECTED; 2852 break; 2853 } 2854 2855 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2856 cmd->se_tfo->queue_tm_rsp(cmd); 2857 2858 transport_cmd_check_stop_to_fabric(cmd); 2859 } 2860 2861 int transport_generic_handle_tmr( 2862 struct se_cmd *cmd) 2863 { 2864 INIT_WORK(&cmd->work, target_tmr_work); 2865 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 2866 return 0; 2867 } 2868 EXPORT_SYMBOL(transport_generic_handle_tmr); 2869