1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <asm/unaligned.h> 38 #include <net/sock.h> 39 #include <net/tcp.h> 40 #include <scsi/scsi.h> 41 #include <scsi/scsi_cmnd.h> 42 #include <scsi/scsi_tcq.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 #include <target/target_core_configfs.h> 48 49 #include "target_core_internal.h" 50 #include "target_core_alua.h" 51 #include "target_core_pr.h" 52 #include "target_core_ua.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/target.h> 56 57 static struct workqueue_struct *target_completion_wq; 58 static struct kmem_cache *se_sess_cache; 59 struct kmem_cache *se_ua_cache; 60 struct kmem_cache *t10_pr_reg_cache; 61 struct kmem_cache *t10_alua_lu_gp_cache; 62 struct kmem_cache *t10_alua_lu_gp_mem_cache; 63 struct kmem_cache *t10_alua_tg_pt_gp_cache; 64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 65 struct kmem_cache *t10_alua_lba_map_cache; 66 struct kmem_cache *t10_alua_lba_map_mem_cache; 67 68 static void transport_complete_task_attr(struct se_cmd *cmd); 69 static void transport_handle_queue_full(struct se_cmd *cmd, 70 struct se_device *dev); 71 static int transport_put_cmd(struct se_cmd *cmd); 72 static void target_complete_ok_work(struct work_struct *work); 73 74 int init_se_kmem_caches(void) 75 { 76 se_sess_cache = kmem_cache_create("se_sess_cache", 77 sizeof(struct se_session), __alignof__(struct se_session), 78 0, NULL); 79 if (!se_sess_cache) { 80 pr_err("kmem_cache_create() for struct se_session" 81 " failed\n"); 82 goto out; 83 } 84 se_ua_cache = kmem_cache_create("se_ua_cache", 85 sizeof(struct se_ua), __alignof__(struct se_ua), 86 0, NULL); 87 if (!se_ua_cache) { 88 pr_err("kmem_cache_create() for struct se_ua failed\n"); 89 goto out_free_sess_cache; 90 } 91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 92 sizeof(struct t10_pr_registration), 93 __alignof__(struct t10_pr_registration), 0, NULL); 94 if (!t10_pr_reg_cache) { 95 pr_err("kmem_cache_create() for struct t10_pr_registration" 96 " failed\n"); 97 goto out_free_ua_cache; 98 } 99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 101 0, NULL); 102 if (!t10_alua_lu_gp_cache) { 103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 104 " failed\n"); 105 goto out_free_pr_reg_cache; 106 } 107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 108 sizeof(struct t10_alua_lu_gp_member), 109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 110 if (!t10_alua_lu_gp_mem_cache) { 111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 112 "cache failed\n"); 113 goto out_free_lu_gp_cache; 114 } 115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 116 sizeof(struct t10_alua_tg_pt_gp), 117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 118 if (!t10_alua_tg_pt_gp_cache) { 119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 120 "cache failed\n"); 121 goto out_free_lu_gp_mem_cache; 122 } 123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 124 "t10_alua_tg_pt_gp_mem_cache", 125 sizeof(struct t10_alua_tg_pt_gp_member), 126 __alignof__(struct t10_alua_tg_pt_gp_member), 127 0, NULL); 128 if (!t10_alua_tg_pt_gp_mem_cache) { 129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 130 "mem_t failed\n"); 131 goto out_free_tg_pt_gp_cache; 132 } 133 t10_alua_lba_map_cache = kmem_cache_create( 134 "t10_alua_lba_map_cache", 135 sizeof(struct t10_alua_lba_map), 136 __alignof__(struct t10_alua_lba_map), 0, NULL); 137 if (!t10_alua_lba_map_cache) { 138 pr_err("kmem_cache_create() for t10_alua_lba_map_" 139 "cache failed\n"); 140 goto out_free_tg_pt_gp_mem_cache; 141 } 142 t10_alua_lba_map_mem_cache = kmem_cache_create( 143 "t10_alua_lba_map_mem_cache", 144 sizeof(struct t10_alua_lba_map_member), 145 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 146 if (!t10_alua_lba_map_mem_cache) { 147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 148 "cache failed\n"); 149 goto out_free_lba_map_cache; 150 } 151 152 target_completion_wq = alloc_workqueue("target_completion", 153 WQ_MEM_RECLAIM, 0); 154 if (!target_completion_wq) 155 goto out_free_lba_map_mem_cache; 156 157 return 0; 158 159 out_free_lba_map_mem_cache: 160 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 161 out_free_lba_map_cache: 162 kmem_cache_destroy(t10_alua_lba_map_cache); 163 out_free_tg_pt_gp_mem_cache: 164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 165 out_free_tg_pt_gp_cache: 166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 167 out_free_lu_gp_mem_cache: 168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 169 out_free_lu_gp_cache: 170 kmem_cache_destroy(t10_alua_lu_gp_cache); 171 out_free_pr_reg_cache: 172 kmem_cache_destroy(t10_pr_reg_cache); 173 out_free_ua_cache: 174 kmem_cache_destroy(se_ua_cache); 175 out_free_sess_cache: 176 kmem_cache_destroy(se_sess_cache); 177 out: 178 return -ENOMEM; 179 } 180 181 void release_se_kmem_caches(void) 182 { 183 destroy_workqueue(target_completion_wq); 184 kmem_cache_destroy(se_sess_cache); 185 kmem_cache_destroy(se_ua_cache); 186 kmem_cache_destroy(t10_pr_reg_cache); 187 kmem_cache_destroy(t10_alua_lu_gp_cache); 188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 191 kmem_cache_destroy(t10_alua_lba_map_cache); 192 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 193 } 194 195 /* This code ensures unique mib indexes are handed out. */ 196 static DEFINE_SPINLOCK(scsi_mib_index_lock); 197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 198 199 /* 200 * Allocate a new row index for the entry type specified 201 */ 202 u32 scsi_get_new_index(scsi_index_t type) 203 { 204 u32 new_index; 205 206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 207 208 spin_lock(&scsi_mib_index_lock); 209 new_index = ++scsi_mib_index[type]; 210 spin_unlock(&scsi_mib_index_lock); 211 212 return new_index; 213 } 214 215 void transport_subsystem_check_init(void) 216 { 217 int ret; 218 static int sub_api_initialized; 219 220 if (sub_api_initialized) 221 return; 222 223 ret = request_module("target_core_iblock"); 224 if (ret != 0) 225 pr_err("Unable to load target_core_iblock\n"); 226 227 ret = request_module("target_core_file"); 228 if (ret != 0) 229 pr_err("Unable to load target_core_file\n"); 230 231 ret = request_module("target_core_pscsi"); 232 if (ret != 0) 233 pr_err("Unable to load target_core_pscsi\n"); 234 235 sub_api_initialized = 1; 236 } 237 238 struct se_session *transport_init_session(void) 239 { 240 struct se_session *se_sess; 241 242 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 243 if (!se_sess) { 244 pr_err("Unable to allocate struct se_session from" 245 " se_sess_cache\n"); 246 return ERR_PTR(-ENOMEM); 247 } 248 INIT_LIST_HEAD(&se_sess->sess_list); 249 INIT_LIST_HEAD(&se_sess->sess_acl_list); 250 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 251 INIT_LIST_HEAD(&se_sess->sess_wait_list); 252 spin_lock_init(&se_sess->sess_cmd_lock); 253 kref_init(&se_sess->sess_kref); 254 255 return se_sess; 256 } 257 EXPORT_SYMBOL(transport_init_session); 258 259 int transport_alloc_session_tags(struct se_session *se_sess, 260 unsigned int tag_num, unsigned int tag_size) 261 { 262 int rc; 263 264 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 265 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 266 if (!se_sess->sess_cmd_map) { 267 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 268 if (!se_sess->sess_cmd_map) { 269 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 270 return -ENOMEM; 271 } 272 } 273 274 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 275 if (rc < 0) { 276 pr_err("Unable to init se_sess->sess_tag_pool," 277 " tag_num: %u\n", tag_num); 278 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 279 vfree(se_sess->sess_cmd_map); 280 else 281 kfree(se_sess->sess_cmd_map); 282 se_sess->sess_cmd_map = NULL; 283 return -ENOMEM; 284 } 285 286 return 0; 287 } 288 EXPORT_SYMBOL(transport_alloc_session_tags); 289 290 struct se_session *transport_init_session_tags(unsigned int tag_num, 291 unsigned int tag_size) 292 { 293 struct se_session *se_sess; 294 int rc; 295 296 se_sess = transport_init_session(); 297 if (IS_ERR(se_sess)) 298 return se_sess; 299 300 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 301 if (rc < 0) { 302 transport_free_session(se_sess); 303 return ERR_PTR(-ENOMEM); 304 } 305 306 return se_sess; 307 } 308 EXPORT_SYMBOL(transport_init_session_tags); 309 310 /* 311 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 312 */ 313 void __transport_register_session( 314 struct se_portal_group *se_tpg, 315 struct se_node_acl *se_nacl, 316 struct se_session *se_sess, 317 void *fabric_sess_ptr) 318 { 319 unsigned char buf[PR_REG_ISID_LEN]; 320 321 se_sess->se_tpg = se_tpg; 322 se_sess->fabric_sess_ptr = fabric_sess_ptr; 323 /* 324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 325 * 326 * Only set for struct se_session's that will actually be moving I/O. 327 * eg: *NOT* discovery sessions. 328 */ 329 if (se_nacl) { 330 /* 331 * If the fabric module supports an ISID based TransportID, 332 * save this value in binary from the fabric I_T Nexus now. 333 */ 334 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 335 memset(&buf[0], 0, PR_REG_ISID_LEN); 336 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 337 &buf[0], PR_REG_ISID_LEN); 338 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 339 } 340 kref_get(&se_nacl->acl_kref); 341 342 spin_lock_irq(&se_nacl->nacl_sess_lock); 343 /* 344 * The se_nacl->nacl_sess pointer will be set to the 345 * last active I_T Nexus for each struct se_node_acl. 346 */ 347 se_nacl->nacl_sess = se_sess; 348 349 list_add_tail(&se_sess->sess_acl_list, 350 &se_nacl->acl_sess_list); 351 spin_unlock_irq(&se_nacl->nacl_sess_lock); 352 } 353 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 354 355 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 356 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 357 } 358 EXPORT_SYMBOL(__transport_register_session); 359 360 void transport_register_session( 361 struct se_portal_group *se_tpg, 362 struct se_node_acl *se_nacl, 363 struct se_session *se_sess, 364 void *fabric_sess_ptr) 365 { 366 unsigned long flags; 367 368 spin_lock_irqsave(&se_tpg->session_lock, flags); 369 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 370 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 371 } 372 EXPORT_SYMBOL(transport_register_session); 373 374 static void target_release_session(struct kref *kref) 375 { 376 struct se_session *se_sess = container_of(kref, 377 struct se_session, sess_kref); 378 struct se_portal_group *se_tpg = se_sess->se_tpg; 379 380 se_tpg->se_tpg_tfo->close_session(se_sess); 381 } 382 383 void target_get_session(struct se_session *se_sess) 384 { 385 kref_get(&se_sess->sess_kref); 386 } 387 EXPORT_SYMBOL(target_get_session); 388 389 void target_put_session(struct se_session *se_sess) 390 { 391 struct se_portal_group *tpg = se_sess->se_tpg; 392 393 if (tpg->se_tpg_tfo->put_session != NULL) { 394 tpg->se_tpg_tfo->put_session(se_sess); 395 return; 396 } 397 kref_put(&se_sess->sess_kref, target_release_session); 398 } 399 EXPORT_SYMBOL(target_put_session); 400 401 static void target_complete_nacl(struct kref *kref) 402 { 403 struct se_node_acl *nacl = container_of(kref, 404 struct se_node_acl, acl_kref); 405 406 complete(&nacl->acl_free_comp); 407 } 408 409 void target_put_nacl(struct se_node_acl *nacl) 410 { 411 kref_put(&nacl->acl_kref, target_complete_nacl); 412 } 413 414 void transport_deregister_session_configfs(struct se_session *se_sess) 415 { 416 struct se_node_acl *se_nacl; 417 unsigned long flags; 418 /* 419 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 420 */ 421 se_nacl = se_sess->se_node_acl; 422 if (se_nacl) { 423 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 424 if (se_nacl->acl_stop == 0) 425 list_del(&se_sess->sess_acl_list); 426 /* 427 * If the session list is empty, then clear the pointer. 428 * Otherwise, set the struct se_session pointer from the tail 429 * element of the per struct se_node_acl active session list. 430 */ 431 if (list_empty(&se_nacl->acl_sess_list)) 432 se_nacl->nacl_sess = NULL; 433 else { 434 se_nacl->nacl_sess = container_of( 435 se_nacl->acl_sess_list.prev, 436 struct se_session, sess_acl_list); 437 } 438 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 439 } 440 } 441 EXPORT_SYMBOL(transport_deregister_session_configfs); 442 443 void transport_free_session(struct se_session *se_sess) 444 { 445 if (se_sess->sess_cmd_map) { 446 percpu_ida_destroy(&se_sess->sess_tag_pool); 447 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 448 vfree(se_sess->sess_cmd_map); 449 else 450 kfree(se_sess->sess_cmd_map); 451 } 452 kmem_cache_free(se_sess_cache, se_sess); 453 } 454 EXPORT_SYMBOL(transport_free_session); 455 456 void transport_deregister_session(struct se_session *se_sess) 457 { 458 struct se_portal_group *se_tpg = se_sess->se_tpg; 459 struct target_core_fabric_ops *se_tfo; 460 struct se_node_acl *se_nacl; 461 unsigned long flags; 462 bool comp_nacl = true; 463 464 if (!se_tpg) { 465 transport_free_session(se_sess); 466 return; 467 } 468 se_tfo = se_tpg->se_tpg_tfo; 469 470 spin_lock_irqsave(&se_tpg->session_lock, flags); 471 list_del(&se_sess->sess_list); 472 se_sess->se_tpg = NULL; 473 se_sess->fabric_sess_ptr = NULL; 474 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 475 476 /* 477 * Determine if we need to do extra work for this initiator node's 478 * struct se_node_acl if it had been previously dynamically generated. 479 */ 480 se_nacl = se_sess->se_node_acl; 481 482 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 483 if (se_nacl && se_nacl->dynamic_node_acl) { 484 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 485 list_del(&se_nacl->acl_list); 486 se_tpg->num_node_acls--; 487 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 488 core_tpg_wait_for_nacl_pr_ref(se_nacl); 489 core_free_device_list_for_node(se_nacl, se_tpg); 490 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 491 492 comp_nacl = false; 493 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 494 } 495 } 496 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 497 498 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 499 se_tpg->se_tpg_tfo->get_fabric_name()); 500 /* 501 * If last kref is dropping now for an explicit NodeACL, awake sleeping 502 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 503 * removal context. 504 */ 505 if (se_nacl && comp_nacl == true) 506 target_put_nacl(se_nacl); 507 508 transport_free_session(se_sess); 509 } 510 EXPORT_SYMBOL(transport_deregister_session); 511 512 /* 513 * Called with cmd->t_state_lock held. 514 */ 515 static void target_remove_from_state_list(struct se_cmd *cmd) 516 { 517 struct se_device *dev = cmd->se_dev; 518 unsigned long flags; 519 520 if (!dev) 521 return; 522 523 if (cmd->transport_state & CMD_T_BUSY) 524 return; 525 526 spin_lock_irqsave(&dev->execute_task_lock, flags); 527 if (cmd->state_active) { 528 list_del(&cmd->state_list); 529 cmd->state_active = false; 530 } 531 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 532 } 533 534 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 535 bool write_pending) 536 { 537 unsigned long flags; 538 539 spin_lock_irqsave(&cmd->t_state_lock, flags); 540 if (write_pending) 541 cmd->t_state = TRANSPORT_WRITE_PENDING; 542 543 if (remove_from_lists) { 544 target_remove_from_state_list(cmd); 545 546 /* 547 * Clear struct se_cmd->se_lun before the handoff to FE. 548 */ 549 cmd->se_lun = NULL; 550 } 551 552 /* 553 * Determine if frontend context caller is requesting the stopping of 554 * this command for frontend exceptions. 555 */ 556 if (cmd->transport_state & CMD_T_STOP) { 557 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 558 __func__, __LINE__, 559 cmd->se_tfo->get_task_tag(cmd)); 560 561 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 562 563 complete(&cmd->t_transport_stop_comp); 564 return 1; 565 } 566 567 cmd->transport_state &= ~CMD_T_ACTIVE; 568 if (remove_from_lists) { 569 /* 570 * Some fabric modules like tcm_loop can release 571 * their internally allocated I/O reference now and 572 * struct se_cmd now. 573 * 574 * Fabric modules are expected to return '1' here if the 575 * se_cmd being passed is released at this point, 576 * or zero if not being released. 577 */ 578 if (cmd->se_tfo->check_stop_free != NULL) { 579 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 580 return cmd->se_tfo->check_stop_free(cmd); 581 } 582 } 583 584 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 585 return 0; 586 } 587 588 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 589 { 590 return transport_cmd_check_stop(cmd, true, false); 591 } 592 593 static void transport_lun_remove_cmd(struct se_cmd *cmd) 594 { 595 struct se_lun *lun = cmd->se_lun; 596 597 if (!lun) 598 return; 599 600 if (cmpxchg(&cmd->lun_ref_active, true, false)) 601 percpu_ref_put(&lun->lun_ref); 602 } 603 604 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 605 { 606 if (transport_cmd_check_stop_to_fabric(cmd)) 607 return; 608 if (remove) 609 transport_put_cmd(cmd); 610 } 611 612 static void target_complete_failure_work(struct work_struct *work) 613 { 614 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 615 616 transport_generic_request_failure(cmd, 617 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 618 } 619 620 /* 621 * Used when asking transport to copy Sense Data from the underlying 622 * Linux/SCSI struct scsi_cmnd 623 */ 624 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 625 { 626 struct se_device *dev = cmd->se_dev; 627 628 WARN_ON(!cmd->se_lun); 629 630 if (!dev) 631 return NULL; 632 633 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 634 return NULL; 635 636 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 637 638 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 639 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 640 return cmd->sense_buffer; 641 } 642 643 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 644 { 645 struct se_device *dev = cmd->se_dev; 646 int success = scsi_status == GOOD; 647 unsigned long flags; 648 649 cmd->scsi_status = scsi_status; 650 651 652 spin_lock_irqsave(&cmd->t_state_lock, flags); 653 cmd->transport_state &= ~CMD_T_BUSY; 654 655 if (dev && dev->transport->transport_complete) { 656 dev->transport->transport_complete(cmd, 657 cmd->t_data_sg, 658 transport_get_sense_buffer(cmd)); 659 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 660 success = 1; 661 } 662 663 /* 664 * See if we are waiting to complete for an exception condition. 665 */ 666 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 667 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 668 complete(&cmd->task_stop_comp); 669 return; 670 } 671 672 /* 673 * Check for case where an explicit ABORT_TASK has been received 674 * and transport_wait_for_tasks() will be waiting for completion.. 675 */ 676 if (cmd->transport_state & CMD_T_ABORTED && 677 cmd->transport_state & CMD_T_STOP) { 678 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 679 complete(&cmd->t_transport_stop_comp); 680 return; 681 } else if (!success) { 682 INIT_WORK(&cmd->work, target_complete_failure_work); 683 } else { 684 INIT_WORK(&cmd->work, target_complete_ok_work); 685 } 686 687 cmd->t_state = TRANSPORT_COMPLETE; 688 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 689 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 690 691 queue_work(target_completion_wq, &cmd->work); 692 } 693 EXPORT_SYMBOL(target_complete_cmd); 694 695 static void target_add_to_state_list(struct se_cmd *cmd) 696 { 697 struct se_device *dev = cmd->se_dev; 698 unsigned long flags; 699 700 spin_lock_irqsave(&dev->execute_task_lock, flags); 701 if (!cmd->state_active) { 702 list_add_tail(&cmd->state_list, &dev->state_list); 703 cmd->state_active = true; 704 } 705 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 706 } 707 708 /* 709 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 710 */ 711 static void transport_write_pending_qf(struct se_cmd *cmd); 712 static void transport_complete_qf(struct se_cmd *cmd); 713 714 void target_qf_do_work(struct work_struct *work) 715 { 716 struct se_device *dev = container_of(work, struct se_device, 717 qf_work_queue); 718 LIST_HEAD(qf_cmd_list); 719 struct se_cmd *cmd, *cmd_tmp; 720 721 spin_lock_irq(&dev->qf_cmd_lock); 722 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 723 spin_unlock_irq(&dev->qf_cmd_lock); 724 725 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 726 list_del(&cmd->se_qf_node); 727 atomic_dec(&dev->dev_qf_count); 728 smp_mb__after_atomic_dec(); 729 730 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 731 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 732 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 733 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 734 : "UNKNOWN"); 735 736 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 737 transport_write_pending_qf(cmd); 738 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 739 transport_complete_qf(cmd); 740 } 741 } 742 743 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 744 { 745 switch (cmd->data_direction) { 746 case DMA_NONE: 747 return "NONE"; 748 case DMA_FROM_DEVICE: 749 return "READ"; 750 case DMA_TO_DEVICE: 751 return "WRITE"; 752 case DMA_BIDIRECTIONAL: 753 return "BIDI"; 754 default: 755 break; 756 } 757 758 return "UNKNOWN"; 759 } 760 761 void transport_dump_dev_state( 762 struct se_device *dev, 763 char *b, 764 int *bl) 765 { 766 *bl += sprintf(b + *bl, "Status: "); 767 if (dev->export_count) 768 *bl += sprintf(b + *bl, "ACTIVATED"); 769 else 770 *bl += sprintf(b + *bl, "DEACTIVATED"); 771 772 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 773 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 774 dev->dev_attrib.block_size, 775 dev->dev_attrib.hw_max_sectors); 776 *bl += sprintf(b + *bl, " "); 777 } 778 779 void transport_dump_vpd_proto_id( 780 struct t10_vpd *vpd, 781 unsigned char *p_buf, 782 int p_buf_len) 783 { 784 unsigned char buf[VPD_TMP_BUF_SIZE]; 785 int len; 786 787 memset(buf, 0, VPD_TMP_BUF_SIZE); 788 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 789 790 switch (vpd->protocol_identifier) { 791 case 0x00: 792 sprintf(buf+len, "Fibre Channel\n"); 793 break; 794 case 0x10: 795 sprintf(buf+len, "Parallel SCSI\n"); 796 break; 797 case 0x20: 798 sprintf(buf+len, "SSA\n"); 799 break; 800 case 0x30: 801 sprintf(buf+len, "IEEE 1394\n"); 802 break; 803 case 0x40: 804 sprintf(buf+len, "SCSI Remote Direct Memory Access" 805 " Protocol\n"); 806 break; 807 case 0x50: 808 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 809 break; 810 case 0x60: 811 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 812 break; 813 case 0x70: 814 sprintf(buf+len, "Automation/Drive Interface Transport" 815 " Protocol\n"); 816 break; 817 case 0x80: 818 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 819 break; 820 default: 821 sprintf(buf+len, "Unknown 0x%02x\n", 822 vpd->protocol_identifier); 823 break; 824 } 825 826 if (p_buf) 827 strncpy(p_buf, buf, p_buf_len); 828 else 829 pr_debug("%s", buf); 830 } 831 832 void 833 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 834 { 835 /* 836 * Check if the Protocol Identifier Valid (PIV) bit is set.. 837 * 838 * from spc3r23.pdf section 7.5.1 839 */ 840 if (page_83[1] & 0x80) { 841 vpd->protocol_identifier = (page_83[0] & 0xf0); 842 vpd->protocol_identifier_set = 1; 843 transport_dump_vpd_proto_id(vpd, NULL, 0); 844 } 845 } 846 EXPORT_SYMBOL(transport_set_vpd_proto_id); 847 848 int transport_dump_vpd_assoc( 849 struct t10_vpd *vpd, 850 unsigned char *p_buf, 851 int p_buf_len) 852 { 853 unsigned char buf[VPD_TMP_BUF_SIZE]; 854 int ret = 0; 855 int len; 856 857 memset(buf, 0, VPD_TMP_BUF_SIZE); 858 len = sprintf(buf, "T10 VPD Identifier Association: "); 859 860 switch (vpd->association) { 861 case 0x00: 862 sprintf(buf+len, "addressed logical unit\n"); 863 break; 864 case 0x10: 865 sprintf(buf+len, "target port\n"); 866 break; 867 case 0x20: 868 sprintf(buf+len, "SCSI target device\n"); 869 break; 870 default: 871 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 872 ret = -EINVAL; 873 break; 874 } 875 876 if (p_buf) 877 strncpy(p_buf, buf, p_buf_len); 878 else 879 pr_debug("%s", buf); 880 881 return ret; 882 } 883 884 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 885 { 886 /* 887 * The VPD identification association.. 888 * 889 * from spc3r23.pdf Section 7.6.3.1 Table 297 890 */ 891 vpd->association = (page_83[1] & 0x30); 892 return transport_dump_vpd_assoc(vpd, NULL, 0); 893 } 894 EXPORT_SYMBOL(transport_set_vpd_assoc); 895 896 int transport_dump_vpd_ident_type( 897 struct t10_vpd *vpd, 898 unsigned char *p_buf, 899 int p_buf_len) 900 { 901 unsigned char buf[VPD_TMP_BUF_SIZE]; 902 int ret = 0; 903 int len; 904 905 memset(buf, 0, VPD_TMP_BUF_SIZE); 906 len = sprintf(buf, "T10 VPD Identifier Type: "); 907 908 switch (vpd->device_identifier_type) { 909 case 0x00: 910 sprintf(buf+len, "Vendor specific\n"); 911 break; 912 case 0x01: 913 sprintf(buf+len, "T10 Vendor ID based\n"); 914 break; 915 case 0x02: 916 sprintf(buf+len, "EUI-64 based\n"); 917 break; 918 case 0x03: 919 sprintf(buf+len, "NAA\n"); 920 break; 921 case 0x04: 922 sprintf(buf+len, "Relative target port identifier\n"); 923 break; 924 case 0x08: 925 sprintf(buf+len, "SCSI name string\n"); 926 break; 927 default: 928 sprintf(buf+len, "Unsupported: 0x%02x\n", 929 vpd->device_identifier_type); 930 ret = -EINVAL; 931 break; 932 } 933 934 if (p_buf) { 935 if (p_buf_len < strlen(buf)+1) 936 return -EINVAL; 937 strncpy(p_buf, buf, p_buf_len); 938 } else { 939 pr_debug("%s", buf); 940 } 941 942 return ret; 943 } 944 945 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 946 { 947 /* 948 * The VPD identifier type.. 949 * 950 * from spc3r23.pdf Section 7.6.3.1 Table 298 951 */ 952 vpd->device_identifier_type = (page_83[1] & 0x0f); 953 return transport_dump_vpd_ident_type(vpd, NULL, 0); 954 } 955 EXPORT_SYMBOL(transport_set_vpd_ident_type); 956 957 int transport_dump_vpd_ident( 958 struct t10_vpd *vpd, 959 unsigned char *p_buf, 960 int p_buf_len) 961 { 962 unsigned char buf[VPD_TMP_BUF_SIZE]; 963 int ret = 0; 964 965 memset(buf, 0, VPD_TMP_BUF_SIZE); 966 967 switch (vpd->device_identifier_code_set) { 968 case 0x01: /* Binary */ 969 snprintf(buf, sizeof(buf), 970 "T10 VPD Binary Device Identifier: %s\n", 971 &vpd->device_identifier[0]); 972 break; 973 case 0x02: /* ASCII */ 974 snprintf(buf, sizeof(buf), 975 "T10 VPD ASCII Device Identifier: %s\n", 976 &vpd->device_identifier[0]); 977 break; 978 case 0x03: /* UTF-8 */ 979 snprintf(buf, sizeof(buf), 980 "T10 VPD UTF-8 Device Identifier: %s\n", 981 &vpd->device_identifier[0]); 982 break; 983 default: 984 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 985 " 0x%02x", vpd->device_identifier_code_set); 986 ret = -EINVAL; 987 break; 988 } 989 990 if (p_buf) 991 strncpy(p_buf, buf, p_buf_len); 992 else 993 pr_debug("%s", buf); 994 995 return ret; 996 } 997 998 int 999 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1000 { 1001 static const char hex_str[] = "0123456789abcdef"; 1002 int j = 0, i = 4; /* offset to start of the identifier */ 1003 1004 /* 1005 * The VPD Code Set (encoding) 1006 * 1007 * from spc3r23.pdf Section 7.6.3.1 Table 296 1008 */ 1009 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1010 switch (vpd->device_identifier_code_set) { 1011 case 0x01: /* Binary */ 1012 vpd->device_identifier[j++] = 1013 hex_str[vpd->device_identifier_type]; 1014 while (i < (4 + page_83[3])) { 1015 vpd->device_identifier[j++] = 1016 hex_str[(page_83[i] & 0xf0) >> 4]; 1017 vpd->device_identifier[j++] = 1018 hex_str[page_83[i] & 0x0f]; 1019 i++; 1020 } 1021 break; 1022 case 0x02: /* ASCII */ 1023 case 0x03: /* UTF-8 */ 1024 while (i < (4 + page_83[3])) 1025 vpd->device_identifier[j++] = page_83[i++]; 1026 break; 1027 default: 1028 break; 1029 } 1030 1031 return transport_dump_vpd_ident(vpd, NULL, 0); 1032 } 1033 EXPORT_SYMBOL(transport_set_vpd_ident); 1034 1035 sense_reason_t 1036 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1037 { 1038 struct se_device *dev = cmd->se_dev; 1039 1040 if (cmd->unknown_data_length) { 1041 cmd->data_length = size; 1042 } else if (size != cmd->data_length) { 1043 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1044 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1045 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1046 cmd->data_length, size, cmd->t_task_cdb[0]); 1047 1048 if (cmd->data_direction == DMA_TO_DEVICE) { 1049 pr_err("Rejecting underflow/overflow" 1050 " WRITE data\n"); 1051 return TCM_INVALID_CDB_FIELD; 1052 } 1053 /* 1054 * Reject READ_* or WRITE_* with overflow/underflow for 1055 * type SCF_SCSI_DATA_CDB. 1056 */ 1057 if (dev->dev_attrib.block_size != 512) { 1058 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1059 " CDB on non 512-byte sector setup subsystem" 1060 " plugin: %s\n", dev->transport->name); 1061 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1062 return TCM_INVALID_CDB_FIELD; 1063 } 1064 /* 1065 * For the overflow case keep the existing fabric provided 1066 * ->data_length. Otherwise for the underflow case, reset 1067 * ->data_length to the smaller SCSI expected data transfer 1068 * length. 1069 */ 1070 if (size > cmd->data_length) { 1071 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1072 cmd->residual_count = (size - cmd->data_length); 1073 } else { 1074 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1075 cmd->residual_count = (cmd->data_length - size); 1076 cmd->data_length = size; 1077 } 1078 } 1079 1080 return 0; 1081 1082 } 1083 1084 /* 1085 * Used by fabric modules containing a local struct se_cmd within their 1086 * fabric dependent per I/O descriptor. 1087 */ 1088 void transport_init_se_cmd( 1089 struct se_cmd *cmd, 1090 struct target_core_fabric_ops *tfo, 1091 struct se_session *se_sess, 1092 u32 data_length, 1093 int data_direction, 1094 int task_attr, 1095 unsigned char *sense_buffer) 1096 { 1097 INIT_LIST_HEAD(&cmd->se_delayed_node); 1098 INIT_LIST_HEAD(&cmd->se_qf_node); 1099 INIT_LIST_HEAD(&cmd->se_cmd_list); 1100 INIT_LIST_HEAD(&cmd->state_list); 1101 init_completion(&cmd->t_transport_stop_comp); 1102 init_completion(&cmd->cmd_wait_comp); 1103 init_completion(&cmd->task_stop_comp); 1104 spin_lock_init(&cmd->t_state_lock); 1105 cmd->transport_state = CMD_T_DEV_ACTIVE; 1106 1107 cmd->se_tfo = tfo; 1108 cmd->se_sess = se_sess; 1109 cmd->data_length = data_length; 1110 cmd->data_direction = data_direction; 1111 cmd->sam_task_attr = task_attr; 1112 cmd->sense_buffer = sense_buffer; 1113 1114 cmd->state_active = false; 1115 } 1116 EXPORT_SYMBOL(transport_init_se_cmd); 1117 1118 static sense_reason_t 1119 transport_check_alloc_task_attr(struct se_cmd *cmd) 1120 { 1121 struct se_device *dev = cmd->se_dev; 1122 1123 /* 1124 * Check if SAM Task Attribute emulation is enabled for this 1125 * struct se_device storage object 1126 */ 1127 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1128 return 0; 1129 1130 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1131 pr_debug("SAM Task Attribute ACA" 1132 " emulation is not supported\n"); 1133 return TCM_INVALID_CDB_FIELD; 1134 } 1135 /* 1136 * Used to determine when ORDERED commands should go from 1137 * Dormant to Active status. 1138 */ 1139 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1140 smp_mb__after_atomic_inc(); 1141 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1142 cmd->se_ordered_id, cmd->sam_task_attr, 1143 dev->transport->name); 1144 return 0; 1145 } 1146 1147 sense_reason_t 1148 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1149 { 1150 struct se_device *dev = cmd->se_dev; 1151 sense_reason_t ret; 1152 1153 /* 1154 * Ensure that the received CDB is less than the max (252 + 8) bytes 1155 * for VARIABLE_LENGTH_CMD 1156 */ 1157 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1158 pr_err("Received SCSI CDB with command_size: %d that" 1159 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1160 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1161 return TCM_INVALID_CDB_FIELD; 1162 } 1163 /* 1164 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1165 * allocate the additional extended CDB buffer now.. Otherwise 1166 * setup the pointer from __t_task_cdb to t_task_cdb. 1167 */ 1168 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1169 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1170 GFP_KERNEL); 1171 if (!cmd->t_task_cdb) { 1172 pr_err("Unable to allocate cmd->t_task_cdb" 1173 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1174 scsi_command_size(cdb), 1175 (unsigned long)sizeof(cmd->__t_task_cdb)); 1176 return TCM_OUT_OF_RESOURCES; 1177 } 1178 } else 1179 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1180 /* 1181 * Copy the original CDB into cmd-> 1182 */ 1183 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1184 1185 trace_target_sequencer_start(cmd); 1186 1187 /* 1188 * Check for an existing UNIT ATTENTION condition 1189 */ 1190 ret = target_scsi3_ua_check(cmd); 1191 if (ret) 1192 return ret; 1193 1194 ret = target_alua_state_check(cmd); 1195 if (ret) 1196 return ret; 1197 1198 ret = target_check_reservation(cmd); 1199 if (ret) { 1200 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1201 return ret; 1202 } 1203 1204 ret = dev->transport->parse_cdb(cmd); 1205 if (ret) 1206 return ret; 1207 1208 ret = transport_check_alloc_task_attr(cmd); 1209 if (ret) 1210 return ret; 1211 1212 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1213 1214 spin_lock(&cmd->se_lun->lun_sep_lock); 1215 if (cmd->se_lun->lun_sep) 1216 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1217 spin_unlock(&cmd->se_lun->lun_sep_lock); 1218 return 0; 1219 } 1220 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1221 1222 /* 1223 * Used by fabric module frontends to queue tasks directly. 1224 * Many only be used from process context only 1225 */ 1226 int transport_handle_cdb_direct( 1227 struct se_cmd *cmd) 1228 { 1229 sense_reason_t ret; 1230 1231 if (!cmd->se_lun) { 1232 dump_stack(); 1233 pr_err("cmd->se_lun is NULL\n"); 1234 return -EINVAL; 1235 } 1236 if (in_interrupt()) { 1237 dump_stack(); 1238 pr_err("transport_generic_handle_cdb cannot be called" 1239 " from interrupt context\n"); 1240 return -EINVAL; 1241 } 1242 /* 1243 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1244 * outstanding descriptors are handled correctly during shutdown via 1245 * transport_wait_for_tasks() 1246 * 1247 * Also, we don't take cmd->t_state_lock here as we only expect 1248 * this to be called for initial descriptor submission. 1249 */ 1250 cmd->t_state = TRANSPORT_NEW_CMD; 1251 cmd->transport_state |= CMD_T_ACTIVE; 1252 1253 /* 1254 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1255 * so follow TRANSPORT_NEW_CMD processing thread context usage 1256 * and call transport_generic_request_failure() if necessary.. 1257 */ 1258 ret = transport_generic_new_cmd(cmd); 1259 if (ret) 1260 transport_generic_request_failure(cmd, ret); 1261 return 0; 1262 } 1263 EXPORT_SYMBOL(transport_handle_cdb_direct); 1264 1265 sense_reason_t 1266 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1267 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1268 { 1269 if (!sgl || !sgl_count) 1270 return 0; 1271 1272 /* 1273 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1274 * scatterlists already have been set to follow what the fabric 1275 * passes for the original expected data transfer length. 1276 */ 1277 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1278 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1279 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1280 return TCM_INVALID_CDB_FIELD; 1281 } 1282 1283 cmd->t_data_sg = sgl; 1284 cmd->t_data_nents = sgl_count; 1285 1286 if (sgl_bidi && sgl_bidi_count) { 1287 cmd->t_bidi_data_sg = sgl_bidi; 1288 cmd->t_bidi_data_nents = sgl_bidi_count; 1289 } 1290 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1291 return 0; 1292 } 1293 1294 /* 1295 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1296 * se_cmd + use pre-allocated SGL memory. 1297 * 1298 * @se_cmd: command descriptor to submit 1299 * @se_sess: associated se_sess for endpoint 1300 * @cdb: pointer to SCSI CDB 1301 * @sense: pointer to SCSI sense buffer 1302 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1303 * @data_length: fabric expected data transfer length 1304 * @task_addr: SAM task attribute 1305 * @data_dir: DMA data direction 1306 * @flags: flags for command submission from target_sc_flags_tables 1307 * @sgl: struct scatterlist memory for unidirectional mapping 1308 * @sgl_count: scatterlist count for unidirectional mapping 1309 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1310 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1311 * @sgl_prot: struct scatterlist memory protection information 1312 * @sgl_prot_count: scatterlist count for protection information 1313 * 1314 * Returns non zero to signal active I/O shutdown failure. All other 1315 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1316 * but still return zero here. 1317 * 1318 * This may only be called from process context, and also currently 1319 * assumes internal allocation of fabric payload buffer by target-core. 1320 */ 1321 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1322 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1323 u32 data_length, int task_attr, int data_dir, int flags, 1324 struct scatterlist *sgl, u32 sgl_count, 1325 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1326 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1327 { 1328 struct se_portal_group *se_tpg; 1329 sense_reason_t rc; 1330 int ret; 1331 1332 se_tpg = se_sess->se_tpg; 1333 BUG_ON(!se_tpg); 1334 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1335 BUG_ON(in_interrupt()); 1336 /* 1337 * Initialize se_cmd for target operation. From this point 1338 * exceptions are handled by sending exception status via 1339 * target_core_fabric_ops->queue_status() callback 1340 */ 1341 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1342 data_length, data_dir, task_attr, sense); 1343 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1344 se_cmd->unknown_data_length = 1; 1345 /* 1346 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1347 * se_sess->sess_cmd_list. A second kref_get here is necessary 1348 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1349 * kref_put() to happen during fabric packet acknowledgement. 1350 */ 1351 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1352 if (ret) 1353 return ret; 1354 /* 1355 * Signal bidirectional data payloads to target-core 1356 */ 1357 if (flags & TARGET_SCF_BIDI_OP) 1358 se_cmd->se_cmd_flags |= SCF_BIDI; 1359 /* 1360 * Locate se_lun pointer and attach it to struct se_cmd 1361 */ 1362 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1363 if (rc) { 1364 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1365 target_put_sess_cmd(se_sess, se_cmd); 1366 return 0; 1367 } 1368 /* 1369 * Save pointers for SGLs containing protection information, 1370 * if present. 1371 */ 1372 if (sgl_prot_count) { 1373 se_cmd->t_prot_sg = sgl_prot; 1374 se_cmd->t_prot_nents = sgl_prot_count; 1375 } 1376 1377 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1378 if (rc != 0) { 1379 transport_generic_request_failure(se_cmd, rc); 1380 return 0; 1381 } 1382 /* 1383 * When a non zero sgl_count has been passed perform SGL passthrough 1384 * mapping for pre-allocated fabric memory instead of having target 1385 * core perform an internal SGL allocation.. 1386 */ 1387 if (sgl_count != 0) { 1388 BUG_ON(!sgl); 1389 1390 /* 1391 * A work-around for tcm_loop as some userspace code via 1392 * scsi-generic do not memset their associated read buffers, 1393 * so go ahead and do that here for type non-data CDBs. Also 1394 * note that this is currently guaranteed to be a single SGL 1395 * for this case by target core in target_setup_cmd_from_cdb() 1396 * -> transport_generic_cmd_sequencer(). 1397 */ 1398 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1399 se_cmd->data_direction == DMA_FROM_DEVICE) { 1400 unsigned char *buf = NULL; 1401 1402 if (sgl) 1403 buf = kmap(sg_page(sgl)) + sgl->offset; 1404 1405 if (buf) { 1406 memset(buf, 0, sgl->length); 1407 kunmap(sg_page(sgl)); 1408 } 1409 } 1410 1411 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1412 sgl_bidi, sgl_bidi_count); 1413 if (rc != 0) { 1414 transport_generic_request_failure(se_cmd, rc); 1415 return 0; 1416 } 1417 } 1418 1419 /* 1420 * Check if we need to delay processing because of ALUA 1421 * Active/NonOptimized primary access state.. 1422 */ 1423 core_alua_check_nonop_delay(se_cmd); 1424 1425 transport_handle_cdb_direct(se_cmd); 1426 return 0; 1427 } 1428 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1429 1430 /* 1431 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1432 * 1433 * @se_cmd: command descriptor to submit 1434 * @se_sess: associated se_sess for endpoint 1435 * @cdb: pointer to SCSI CDB 1436 * @sense: pointer to SCSI sense buffer 1437 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1438 * @data_length: fabric expected data transfer length 1439 * @task_addr: SAM task attribute 1440 * @data_dir: DMA data direction 1441 * @flags: flags for command submission from target_sc_flags_tables 1442 * 1443 * Returns non zero to signal active I/O shutdown failure. All other 1444 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1445 * but still return zero here. 1446 * 1447 * This may only be called from process context, and also currently 1448 * assumes internal allocation of fabric payload buffer by target-core. 1449 * 1450 * It also assumes interal target core SGL memory allocation. 1451 */ 1452 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1453 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1454 u32 data_length, int task_attr, int data_dir, int flags) 1455 { 1456 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1457 unpacked_lun, data_length, task_attr, data_dir, 1458 flags, NULL, 0, NULL, 0, NULL, 0); 1459 } 1460 EXPORT_SYMBOL(target_submit_cmd); 1461 1462 static void target_complete_tmr_failure(struct work_struct *work) 1463 { 1464 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1465 1466 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1467 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1468 1469 transport_cmd_check_stop_to_fabric(se_cmd); 1470 } 1471 1472 /** 1473 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1474 * for TMR CDBs 1475 * 1476 * @se_cmd: command descriptor to submit 1477 * @se_sess: associated se_sess for endpoint 1478 * @sense: pointer to SCSI sense buffer 1479 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1480 * @fabric_context: fabric context for TMR req 1481 * @tm_type: Type of TM request 1482 * @gfp: gfp type for caller 1483 * @tag: referenced task tag for TMR_ABORT_TASK 1484 * @flags: submit cmd flags 1485 * 1486 * Callable from all contexts. 1487 **/ 1488 1489 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1490 unsigned char *sense, u32 unpacked_lun, 1491 void *fabric_tmr_ptr, unsigned char tm_type, 1492 gfp_t gfp, unsigned int tag, int flags) 1493 { 1494 struct se_portal_group *se_tpg; 1495 int ret; 1496 1497 se_tpg = se_sess->se_tpg; 1498 BUG_ON(!se_tpg); 1499 1500 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1501 0, DMA_NONE, MSG_SIMPLE_TAG, sense); 1502 /* 1503 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1504 * allocation failure. 1505 */ 1506 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1507 if (ret < 0) 1508 return -ENOMEM; 1509 1510 if (tm_type == TMR_ABORT_TASK) 1511 se_cmd->se_tmr_req->ref_task_tag = tag; 1512 1513 /* See target_submit_cmd for commentary */ 1514 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1515 if (ret) { 1516 core_tmr_release_req(se_cmd->se_tmr_req); 1517 return ret; 1518 } 1519 1520 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1521 if (ret) { 1522 /* 1523 * For callback during failure handling, push this work off 1524 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1525 */ 1526 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1527 schedule_work(&se_cmd->work); 1528 return 0; 1529 } 1530 transport_generic_handle_tmr(se_cmd); 1531 return 0; 1532 } 1533 EXPORT_SYMBOL(target_submit_tmr); 1534 1535 /* 1536 * If the cmd is active, request it to be stopped and sleep until it 1537 * has completed. 1538 */ 1539 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1540 { 1541 bool was_active = false; 1542 1543 if (cmd->transport_state & CMD_T_BUSY) { 1544 cmd->transport_state |= CMD_T_REQUEST_STOP; 1545 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1546 1547 pr_debug("cmd %p waiting to complete\n", cmd); 1548 wait_for_completion(&cmd->task_stop_comp); 1549 pr_debug("cmd %p stopped successfully\n", cmd); 1550 1551 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1552 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1553 cmd->transport_state &= ~CMD_T_BUSY; 1554 was_active = true; 1555 } 1556 1557 return was_active; 1558 } 1559 1560 /* 1561 * Handle SAM-esque emulation for generic transport request failures. 1562 */ 1563 void transport_generic_request_failure(struct se_cmd *cmd, 1564 sense_reason_t sense_reason) 1565 { 1566 int ret = 0; 1567 1568 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1569 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1570 cmd->t_task_cdb[0]); 1571 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1572 cmd->se_tfo->get_cmd_state(cmd), 1573 cmd->t_state, sense_reason); 1574 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1575 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1576 (cmd->transport_state & CMD_T_STOP) != 0, 1577 (cmd->transport_state & CMD_T_SENT) != 0); 1578 1579 /* 1580 * For SAM Task Attribute emulation for failed struct se_cmd 1581 */ 1582 transport_complete_task_attr(cmd); 1583 /* 1584 * Handle special case for COMPARE_AND_WRITE failure, where the 1585 * callback is expected to drop the per device ->caw_mutex. 1586 */ 1587 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1588 cmd->transport_complete_callback) 1589 cmd->transport_complete_callback(cmd); 1590 1591 switch (sense_reason) { 1592 case TCM_NON_EXISTENT_LUN: 1593 case TCM_UNSUPPORTED_SCSI_OPCODE: 1594 case TCM_INVALID_CDB_FIELD: 1595 case TCM_INVALID_PARAMETER_LIST: 1596 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1597 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1598 case TCM_UNKNOWN_MODE_PAGE: 1599 case TCM_WRITE_PROTECTED: 1600 case TCM_ADDRESS_OUT_OF_RANGE: 1601 case TCM_CHECK_CONDITION_ABORT_CMD: 1602 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1603 case TCM_CHECK_CONDITION_NOT_READY: 1604 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1605 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1606 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1607 break; 1608 case TCM_OUT_OF_RESOURCES: 1609 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1610 break; 1611 case TCM_RESERVATION_CONFLICT: 1612 /* 1613 * No SENSE Data payload for this case, set SCSI Status 1614 * and queue the response to $FABRIC_MOD. 1615 * 1616 * Uses linux/include/scsi/scsi.h SAM status codes defs 1617 */ 1618 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1619 /* 1620 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1621 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1622 * CONFLICT STATUS. 1623 * 1624 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1625 */ 1626 if (cmd->se_sess && 1627 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1628 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1629 cmd->orig_fe_lun, 0x2C, 1630 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1631 1632 trace_target_cmd_complete(cmd); 1633 ret = cmd->se_tfo-> queue_status(cmd); 1634 if (ret == -EAGAIN || ret == -ENOMEM) 1635 goto queue_full; 1636 goto check_stop; 1637 default: 1638 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1639 cmd->t_task_cdb[0], sense_reason); 1640 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1641 break; 1642 } 1643 1644 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1645 if (ret == -EAGAIN || ret == -ENOMEM) 1646 goto queue_full; 1647 1648 check_stop: 1649 transport_lun_remove_cmd(cmd); 1650 if (!transport_cmd_check_stop_to_fabric(cmd)) 1651 ; 1652 return; 1653 1654 queue_full: 1655 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1656 transport_handle_queue_full(cmd, cmd->se_dev); 1657 } 1658 EXPORT_SYMBOL(transport_generic_request_failure); 1659 1660 void __target_execute_cmd(struct se_cmd *cmd) 1661 { 1662 sense_reason_t ret; 1663 1664 if (cmd->execute_cmd) { 1665 ret = cmd->execute_cmd(cmd); 1666 if (ret) { 1667 spin_lock_irq(&cmd->t_state_lock); 1668 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1669 spin_unlock_irq(&cmd->t_state_lock); 1670 1671 transport_generic_request_failure(cmd, ret); 1672 } 1673 } 1674 } 1675 1676 static bool target_handle_task_attr(struct se_cmd *cmd) 1677 { 1678 struct se_device *dev = cmd->se_dev; 1679 1680 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1681 return false; 1682 1683 /* 1684 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1685 * to allow the passed struct se_cmd list of tasks to the front of the list. 1686 */ 1687 switch (cmd->sam_task_attr) { 1688 case MSG_HEAD_TAG: 1689 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1690 "se_ordered_id: %u\n", 1691 cmd->t_task_cdb[0], cmd->se_ordered_id); 1692 return false; 1693 case MSG_ORDERED_TAG: 1694 atomic_inc(&dev->dev_ordered_sync); 1695 smp_mb__after_atomic_inc(); 1696 1697 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1698 " se_ordered_id: %u\n", 1699 cmd->t_task_cdb[0], cmd->se_ordered_id); 1700 1701 /* 1702 * Execute an ORDERED command if no other older commands 1703 * exist that need to be completed first. 1704 */ 1705 if (!atomic_read(&dev->simple_cmds)) 1706 return false; 1707 break; 1708 default: 1709 /* 1710 * For SIMPLE and UNTAGGED Task Attribute commands 1711 */ 1712 atomic_inc(&dev->simple_cmds); 1713 smp_mb__after_atomic_inc(); 1714 break; 1715 } 1716 1717 if (atomic_read(&dev->dev_ordered_sync) == 0) 1718 return false; 1719 1720 spin_lock(&dev->delayed_cmd_lock); 1721 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1722 spin_unlock(&dev->delayed_cmd_lock); 1723 1724 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1725 " delayed CMD list, se_ordered_id: %u\n", 1726 cmd->t_task_cdb[0], cmd->sam_task_attr, 1727 cmd->se_ordered_id); 1728 return true; 1729 } 1730 1731 void target_execute_cmd(struct se_cmd *cmd) 1732 { 1733 /* 1734 * If the received CDB has aleady been aborted stop processing it here. 1735 */ 1736 if (transport_check_aborted_status(cmd, 1)) 1737 return; 1738 1739 /* 1740 * Determine if frontend context caller is requesting the stopping of 1741 * this command for frontend exceptions. 1742 */ 1743 spin_lock_irq(&cmd->t_state_lock); 1744 if (cmd->transport_state & CMD_T_STOP) { 1745 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1746 __func__, __LINE__, 1747 cmd->se_tfo->get_task_tag(cmd)); 1748 1749 spin_unlock_irq(&cmd->t_state_lock); 1750 complete(&cmd->t_transport_stop_comp); 1751 return; 1752 } 1753 1754 cmd->t_state = TRANSPORT_PROCESSING; 1755 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1756 spin_unlock_irq(&cmd->t_state_lock); 1757 1758 if (target_handle_task_attr(cmd)) { 1759 spin_lock_irq(&cmd->t_state_lock); 1760 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT; 1761 spin_unlock_irq(&cmd->t_state_lock); 1762 return; 1763 } 1764 1765 __target_execute_cmd(cmd); 1766 } 1767 EXPORT_SYMBOL(target_execute_cmd); 1768 1769 /* 1770 * Process all commands up to the last received ORDERED task attribute which 1771 * requires another blocking boundary 1772 */ 1773 static void target_restart_delayed_cmds(struct se_device *dev) 1774 { 1775 for (;;) { 1776 struct se_cmd *cmd; 1777 1778 spin_lock(&dev->delayed_cmd_lock); 1779 if (list_empty(&dev->delayed_cmd_list)) { 1780 spin_unlock(&dev->delayed_cmd_lock); 1781 break; 1782 } 1783 1784 cmd = list_entry(dev->delayed_cmd_list.next, 1785 struct se_cmd, se_delayed_node); 1786 list_del(&cmd->se_delayed_node); 1787 spin_unlock(&dev->delayed_cmd_lock); 1788 1789 __target_execute_cmd(cmd); 1790 1791 if (cmd->sam_task_attr == MSG_ORDERED_TAG) 1792 break; 1793 } 1794 } 1795 1796 /* 1797 * Called from I/O completion to determine which dormant/delayed 1798 * and ordered cmds need to have their tasks added to the execution queue. 1799 */ 1800 static void transport_complete_task_attr(struct se_cmd *cmd) 1801 { 1802 struct se_device *dev = cmd->se_dev; 1803 1804 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1805 return; 1806 1807 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 1808 atomic_dec(&dev->simple_cmds); 1809 smp_mb__after_atomic_dec(); 1810 dev->dev_cur_ordered_id++; 1811 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1812 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1813 cmd->se_ordered_id); 1814 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 1815 dev->dev_cur_ordered_id++; 1816 pr_debug("Incremented dev_cur_ordered_id: %u for" 1817 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1818 cmd->se_ordered_id); 1819 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 1820 atomic_dec(&dev->dev_ordered_sync); 1821 smp_mb__after_atomic_dec(); 1822 1823 dev->dev_cur_ordered_id++; 1824 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1825 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1826 } 1827 1828 target_restart_delayed_cmds(dev); 1829 } 1830 1831 static void transport_complete_qf(struct se_cmd *cmd) 1832 { 1833 int ret = 0; 1834 1835 transport_complete_task_attr(cmd); 1836 1837 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1838 trace_target_cmd_complete(cmd); 1839 ret = cmd->se_tfo->queue_status(cmd); 1840 if (ret) 1841 goto out; 1842 } 1843 1844 switch (cmd->data_direction) { 1845 case DMA_FROM_DEVICE: 1846 trace_target_cmd_complete(cmd); 1847 ret = cmd->se_tfo->queue_data_in(cmd); 1848 break; 1849 case DMA_TO_DEVICE: 1850 if (cmd->se_cmd_flags & SCF_BIDI) { 1851 ret = cmd->se_tfo->queue_data_in(cmd); 1852 if (ret < 0) 1853 break; 1854 } 1855 /* Fall through for DMA_TO_DEVICE */ 1856 case DMA_NONE: 1857 trace_target_cmd_complete(cmd); 1858 ret = cmd->se_tfo->queue_status(cmd); 1859 break; 1860 default: 1861 break; 1862 } 1863 1864 out: 1865 if (ret < 0) { 1866 transport_handle_queue_full(cmd, cmd->se_dev); 1867 return; 1868 } 1869 transport_lun_remove_cmd(cmd); 1870 transport_cmd_check_stop_to_fabric(cmd); 1871 } 1872 1873 static void transport_handle_queue_full( 1874 struct se_cmd *cmd, 1875 struct se_device *dev) 1876 { 1877 spin_lock_irq(&dev->qf_cmd_lock); 1878 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1879 atomic_inc(&dev->dev_qf_count); 1880 smp_mb__after_atomic_inc(); 1881 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1882 1883 schedule_work(&cmd->se_dev->qf_work_queue); 1884 } 1885 1886 static void target_complete_ok_work(struct work_struct *work) 1887 { 1888 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1889 int ret; 1890 1891 /* 1892 * Check if we need to move delayed/dormant tasks from cmds on the 1893 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1894 * Attribute. 1895 */ 1896 transport_complete_task_attr(cmd); 1897 1898 /* 1899 * Check to schedule QUEUE_FULL work, or execute an existing 1900 * cmd->transport_qf_callback() 1901 */ 1902 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 1903 schedule_work(&cmd->se_dev->qf_work_queue); 1904 1905 /* 1906 * Check if we need to send a sense buffer from 1907 * the struct se_cmd in question. 1908 */ 1909 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1910 WARN_ON(!cmd->scsi_status); 1911 ret = transport_send_check_condition_and_sense( 1912 cmd, 0, 1); 1913 if (ret == -EAGAIN || ret == -ENOMEM) 1914 goto queue_full; 1915 1916 transport_lun_remove_cmd(cmd); 1917 transport_cmd_check_stop_to_fabric(cmd); 1918 return; 1919 } 1920 /* 1921 * Check for a callback, used by amongst other things 1922 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 1923 */ 1924 if (cmd->transport_complete_callback) { 1925 sense_reason_t rc; 1926 1927 rc = cmd->transport_complete_callback(cmd); 1928 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) { 1929 return; 1930 } else if (rc) { 1931 ret = transport_send_check_condition_and_sense(cmd, 1932 rc, 0); 1933 if (ret == -EAGAIN || ret == -ENOMEM) 1934 goto queue_full; 1935 1936 transport_lun_remove_cmd(cmd); 1937 transport_cmd_check_stop_to_fabric(cmd); 1938 return; 1939 } 1940 } 1941 1942 switch (cmd->data_direction) { 1943 case DMA_FROM_DEVICE: 1944 spin_lock(&cmd->se_lun->lun_sep_lock); 1945 if (cmd->se_lun->lun_sep) { 1946 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1947 cmd->data_length; 1948 } 1949 spin_unlock(&cmd->se_lun->lun_sep_lock); 1950 1951 trace_target_cmd_complete(cmd); 1952 ret = cmd->se_tfo->queue_data_in(cmd); 1953 if (ret == -EAGAIN || ret == -ENOMEM) 1954 goto queue_full; 1955 break; 1956 case DMA_TO_DEVICE: 1957 spin_lock(&cmd->se_lun->lun_sep_lock); 1958 if (cmd->se_lun->lun_sep) { 1959 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 1960 cmd->data_length; 1961 } 1962 spin_unlock(&cmd->se_lun->lun_sep_lock); 1963 /* 1964 * Check if we need to send READ payload for BIDI-COMMAND 1965 */ 1966 if (cmd->se_cmd_flags & SCF_BIDI) { 1967 spin_lock(&cmd->se_lun->lun_sep_lock); 1968 if (cmd->se_lun->lun_sep) { 1969 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1970 cmd->data_length; 1971 } 1972 spin_unlock(&cmd->se_lun->lun_sep_lock); 1973 ret = cmd->se_tfo->queue_data_in(cmd); 1974 if (ret == -EAGAIN || ret == -ENOMEM) 1975 goto queue_full; 1976 break; 1977 } 1978 /* Fall through for DMA_TO_DEVICE */ 1979 case DMA_NONE: 1980 trace_target_cmd_complete(cmd); 1981 ret = cmd->se_tfo->queue_status(cmd); 1982 if (ret == -EAGAIN || ret == -ENOMEM) 1983 goto queue_full; 1984 break; 1985 default: 1986 break; 1987 } 1988 1989 transport_lun_remove_cmd(cmd); 1990 transport_cmd_check_stop_to_fabric(cmd); 1991 return; 1992 1993 queue_full: 1994 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 1995 " data_direction: %d\n", cmd, cmd->data_direction); 1996 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1997 transport_handle_queue_full(cmd, cmd->se_dev); 1998 } 1999 2000 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 2001 { 2002 struct scatterlist *sg; 2003 int count; 2004 2005 for_each_sg(sgl, sg, nents, count) 2006 __free_page(sg_page(sg)); 2007 2008 kfree(sgl); 2009 } 2010 2011 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2012 { 2013 /* 2014 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2015 * emulation, and free + reset pointers if necessary.. 2016 */ 2017 if (!cmd->t_data_sg_orig) 2018 return; 2019 2020 kfree(cmd->t_data_sg); 2021 cmd->t_data_sg = cmd->t_data_sg_orig; 2022 cmd->t_data_sg_orig = NULL; 2023 cmd->t_data_nents = cmd->t_data_nents_orig; 2024 cmd->t_data_nents_orig = 0; 2025 } 2026 2027 static inline void transport_free_pages(struct se_cmd *cmd) 2028 { 2029 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2030 transport_reset_sgl_orig(cmd); 2031 return; 2032 } 2033 transport_reset_sgl_orig(cmd); 2034 2035 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2036 cmd->t_data_sg = NULL; 2037 cmd->t_data_nents = 0; 2038 2039 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2040 cmd->t_bidi_data_sg = NULL; 2041 cmd->t_bidi_data_nents = 0; 2042 } 2043 2044 /** 2045 * transport_release_cmd - free a command 2046 * @cmd: command to free 2047 * 2048 * This routine unconditionally frees a command, and reference counting 2049 * or list removal must be done in the caller. 2050 */ 2051 static int transport_release_cmd(struct se_cmd *cmd) 2052 { 2053 BUG_ON(!cmd->se_tfo); 2054 2055 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2056 core_tmr_release_req(cmd->se_tmr_req); 2057 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2058 kfree(cmd->t_task_cdb); 2059 /* 2060 * If this cmd has been setup with target_get_sess_cmd(), drop 2061 * the kref and call ->release_cmd() in kref callback. 2062 */ 2063 return target_put_sess_cmd(cmd->se_sess, cmd); 2064 } 2065 2066 /** 2067 * transport_put_cmd - release a reference to a command 2068 * @cmd: command to release 2069 * 2070 * This routine releases our reference to the command and frees it if possible. 2071 */ 2072 static int transport_put_cmd(struct se_cmd *cmd) 2073 { 2074 transport_free_pages(cmd); 2075 return transport_release_cmd(cmd); 2076 } 2077 2078 void *transport_kmap_data_sg(struct se_cmd *cmd) 2079 { 2080 struct scatterlist *sg = cmd->t_data_sg; 2081 struct page **pages; 2082 int i; 2083 2084 /* 2085 * We need to take into account a possible offset here for fabrics like 2086 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2087 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2088 */ 2089 if (!cmd->t_data_nents) 2090 return NULL; 2091 2092 BUG_ON(!sg); 2093 if (cmd->t_data_nents == 1) 2094 return kmap(sg_page(sg)) + sg->offset; 2095 2096 /* >1 page. use vmap */ 2097 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2098 if (!pages) 2099 return NULL; 2100 2101 /* convert sg[] to pages[] */ 2102 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2103 pages[i] = sg_page(sg); 2104 } 2105 2106 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2107 kfree(pages); 2108 if (!cmd->t_data_vmap) 2109 return NULL; 2110 2111 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2112 } 2113 EXPORT_SYMBOL(transport_kmap_data_sg); 2114 2115 void transport_kunmap_data_sg(struct se_cmd *cmd) 2116 { 2117 if (!cmd->t_data_nents) { 2118 return; 2119 } else if (cmd->t_data_nents == 1) { 2120 kunmap(sg_page(cmd->t_data_sg)); 2121 return; 2122 } 2123 2124 vunmap(cmd->t_data_vmap); 2125 cmd->t_data_vmap = NULL; 2126 } 2127 EXPORT_SYMBOL(transport_kunmap_data_sg); 2128 2129 int 2130 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2131 bool zero_page) 2132 { 2133 struct scatterlist *sg; 2134 struct page *page; 2135 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2136 unsigned int nent; 2137 int i = 0; 2138 2139 nent = DIV_ROUND_UP(length, PAGE_SIZE); 2140 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL); 2141 if (!sg) 2142 return -ENOMEM; 2143 2144 sg_init_table(sg, nent); 2145 2146 while (length) { 2147 u32 page_len = min_t(u32, length, PAGE_SIZE); 2148 page = alloc_page(GFP_KERNEL | zero_flag); 2149 if (!page) 2150 goto out; 2151 2152 sg_set_page(&sg[i], page, page_len, 0); 2153 length -= page_len; 2154 i++; 2155 } 2156 *sgl = sg; 2157 *nents = nent; 2158 return 0; 2159 2160 out: 2161 while (i > 0) { 2162 i--; 2163 __free_page(sg_page(&sg[i])); 2164 } 2165 kfree(sg); 2166 return -ENOMEM; 2167 } 2168 2169 /* 2170 * Allocate any required resources to execute the command. For writes we 2171 * might not have the payload yet, so notify the fabric via a call to 2172 * ->write_pending instead. Otherwise place it on the execution queue. 2173 */ 2174 sense_reason_t 2175 transport_generic_new_cmd(struct se_cmd *cmd) 2176 { 2177 int ret = 0; 2178 2179 /* 2180 * Determine is the TCM fabric module has already allocated physical 2181 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2182 * beforehand. 2183 */ 2184 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2185 cmd->data_length) { 2186 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2187 2188 if ((cmd->se_cmd_flags & SCF_BIDI) || 2189 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2190 u32 bidi_length; 2191 2192 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2193 bidi_length = cmd->t_task_nolb * 2194 cmd->se_dev->dev_attrib.block_size; 2195 else 2196 bidi_length = cmd->data_length; 2197 2198 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2199 &cmd->t_bidi_data_nents, 2200 bidi_length, zero_flag); 2201 if (ret < 0) 2202 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2203 } 2204 2205 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2206 cmd->data_length, zero_flag); 2207 if (ret < 0) 2208 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2209 } 2210 /* 2211 * If this command is not a write we can execute it right here, 2212 * for write buffers we need to notify the fabric driver first 2213 * and let it call back once the write buffers are ready. 2214 */ 2215 target_add_to_state_list(cmd); 2216 if (cmd->data_direction != DMA_TO_DEVICE) { 2217 target_execute_cmd(cmd); 2218 return 0; 2219 } 2220 transport_cmd_check_stop(cmd, false, true); 2221 2222 ret = cmd->se_tfo->write_pending(cmd); 2223 if (ret == -EAGAIN || ret == -ENOMEM) 2224 goto queue_full; 2225 2226 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2227 WARN_ON(ret); 2228 2229 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2230 2231 queue_full: 2232 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2233 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2234 transport_handle_queue_full(cmd, cmd->se_dev); 2235 return 0; 2236 } 2237 EXPORT_SYMBOL(transport_generic_new_cmd); 2238 2239 static void transport_write_pending_qf(struct se_cmd *cmd) 2240 { 2241 int ret; 2242 2243 ret = cmd->se_tfo->write_pending(cmd); 2244 if (ret == -EAGAIN || ret == -ENOMEM) { 2245 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2246 cmd); 2247 transport_handle_queue_full(cmd, cmd->se_dev); 2248 } 2249 } 2250 2251 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2252 { 2253 unsigned long flags; 2254 int ret = 0; 2255 2256 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2257 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2258 transport_wait_for_tasks(cmd); 2259 2260 ret = transport_release_cmd(cmd); 2261 } else { 2262 if (wait_for_tasks) 2263 transport_wait_for_tasks(cmd); 2264 /* 2265 * Handle WRITE failure case where transport_generic_new_cmd() 2266 * has already added se_cmd to state_list, but fabric has 2267 * failed command before I/O submission. 2268 */ 2269 if (cmd->state_active) { 2270 spin_lock_irqsave(&cmd->t_state_lock, flags); 2271 target_remove_from_state_list(cmd); 2272 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2273 } 2274 2275 if (cmd->se_lun) 2276 transport_lun_remove_cmd(cmd); 2277 2278 ret = transport_put_cmd(cmd); 2279 } 2280 return ret; 2281 } 2282 EXPORT_SYMBOL(transport_generic_free_cmd); 2283 2284 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2285 * @se_sess: session to reference 2286 * @se_cmd: command descriptor to add 2287 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2288 */ 2289 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2290 bool ack_kref) 2291 { 2292 unsigned long flags; 2293 int ret = 0; 2294 2295 kref_init(&se_cmd->cmd_kref); 2296 /* 2297 * Add a second kref if the fabric caller is expecting to handle 2298 * fabric acknowledgement that requires two target_put_sess_cmd() 2299 * invocations before se_cmd descriptor release. 2300 */ 2301 if (ack_kref == true) { 2302 kref_get(&se_cmd->cmd_kref); 2303 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2304 } 2305 2306 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2307 if (se_sess->sess_tearing_down) { 2308 ret = -ESHUTDOWN; 2309 goto out; 2310 } 2311 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2312 out: 2313 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2314 return ret; 2315 } 2316 EXPORT_SYMBOL(target_get_sess_cmd); 2317 2318 static void target_release_cmd_kref(struct kref *kref) 2319 { 2320 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2321 struct se_session *se_sess = se_cmd->se_sess; 2322 2323 if (list_empty(&se_cmd->se_cmd_list)) { 2324 spin_unlock(&se_sess->sess_cmd_lock); 2325 se_cmd->se_tfo->release_cmd(se_cmd); 2326 return; 2327 } 2328 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2329 spin_unlock(&se_sess->sess_cmd_lock); 2330 complete(&se_cmd->cmd_wait_comp); 2331 return; 2332 } 2333 list_del(&se_cmd->se_cmd_list); 2334 spin_unlock(&se_sess->sess_cmd_lock); 2335 2336 se_cmd->se_tfo->release_cmd(se_cmd); 2337 } 2338 2339 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2340 * @se_sess: session to reference 2341 * @se_cmd: command descriptor to drop 2342 */ 2343 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2344 { 2345 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2346 &se_sess->sess_cmd_lock); 2347 } 2348 EXPORT_SYMBOL(target_put_sess_cmd); 2349 2350 /* target_sess_cmd_list_set_waiting - Flag all commands in 2351 * sess_cmd_list to complete cmd_wait_comp. Set 2352 * sess_tearing_down so no more commands are queued. 2353 * @se_sess: session to flag 2354 */ 2355 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2356 { 2357 struct se_cmd *se_cmd; 2358 unsigned long flags; 2359 2360 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2361 if (se_sess->sess_tearing_down) { 2362 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2363 return; 2364 } 2365 se_sess->sess_tearing_down = 1; 2366 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2367 2368 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2369 se_cmd->cmd_wait_set = 1; 2370 2371 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2372 } 2373 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2374 2375 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2376 * @se_sess: session to wait for active I/O 2377 */ 2378 void target_wait_for_sess_cmds(struct se_session *se_sess) 2379 { 2380 struct se_cmd *se_cmd, *tmp_cmd; 2381 unsigned long flags; 2382 2383 list_for_each_entry_safe(se_cmd, tmp_cmd, 2384 &se_sess->sess_wait_list, se_cmd_list) { 2385 list_del(&se_cmd->se_cmd_list); 2386 2387 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2388 " %d\n", se_cmd, se_cmd->t_state, 2389 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2390 2391 wait_for_completion(&se_cmd->cmd_wait_comp); 2392 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2393 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2394 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2395 2396 se_cmd->se_tfo->release_cmd(se_cmd); 2397 } 2398 2399 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2400 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2401 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2402 2403 } 2404 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2405 2406 static int transport_clear_lun_ref_thread(void *p) 2407 { 2408 struct se_lun *lun = p; 2409 2410 percpu_ref_kill(&lun->lun_ref); 2411 2412 wait_for_completion(&lun->lun_ref_comp); 2413 complete(&lun->lun_shutdown_comp); 2414 2415 return 0; 2416 } 2417 2418 int transport_clear_lun_ref(struct se_lun *lun) 2419 { 2420 struct task_struct *kt; 2421 2422 kt = kthread_run(transport_clear_lun_ref_thread, lun, 2423 "tcm_cl_%u", lun->unpacked_lun); 2424 if (IS_ERR(kt)) { 2425 pr_err("Unable to start clear_lun thread\n"); 2426 return PTR_ERR(kt); 2427 } 2428 wait_for_completion(&lun->lun_shutdown_comp); 2429 2430 return 0; 2431 } 2432 2433 /** 2434 * transport_wait_for_tasks - wait for completion to occur 2435 * @cmd: command to wait 2436 * 2437 * Called from frontend fabric context to wait for storage engine 2438 * to pause and/or release frontend generated struct se_cmd. 2439 */ 2440 bool transport_wait_for_tasks(struct se_cmd *cmd) 2441 { 2442 unsigned long flags; 2443 2444 spin_lock_irqsave(&cmd->t_state_lock, flags); 2445 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2446 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2447 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2448 return false; 2449 } 2450 2451 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2452 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2453 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2454 return false; 2455 } 2456 2457 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2458 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2459 return false; 2460 } 2461 2462 cmd->transport_state |= CMD_T_STOP; 2463 2464 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2465 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2466 cmd, cmd->se_tfo->get_task_tag(cmd), 2467 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2468 2469 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2470 2471 wait_for_completion(&cmd->t_transport_stop_comp); 2472 2473 spin_lock_irqsave(&cmd->t_state_lock, flags); 2474 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2475 2476 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2477 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2478 cmd->se_tfo->get_task_tag(cmd)); 2479 2480 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2481 2482 return true; 2483 } 2484 EXPORT_SYMBOL(transport_wait_for_tasks); 2485 2486 static int transport_get_sense_codes( 2487 struct se_cmd *cmd, 2488 u8 *asc, 2489 u8 *ascq) 2490 { 2491 *asc = cmd->scsi_asc; 2492 *ascq = cmd->scsi_ascq; 2493 2494 return 0; 2495 } 2496 2497 static 2498 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector) 2499 { 2500 /* Place failed LBA in sense data information descriptor 0. */ 2501 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc; 2502 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */ 2503 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa; 2504 buffer[SPC_VALIDITY_OFFSET] = 0x80; 2505 2506 /* Descriptor Information: failing sector */ 2507 put_unaligned_be64(bad_sector, &buffer[12]); 2508 } 2509 2510 int 2511 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2512 sense_reason_t reason, int from_transport) 2513 { 2514 unsigned char *buffer = cmd->sense_buffer; 2515 unsigned long flags; 2516 u8 asc = 0, ascq = 0; 2517 2518 spin_lock_irqsave(&cmd->t_state_lock, flags); 2519 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2520 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2521 return 0; 2522 } 2523 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2524 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2525 2526 if (!reason && from_transport) 2527 goto after_reason; 2528 2529 if (!from_transport) 2530 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2531 2532 /* 2533 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2534 * SENSE KEY values from include/scsi/scsi.h 2535 */ 2536 switch (reason) { 2537 case TCM_NO_SENSE: 2538 /* CURRENT ERROR */ 2539 buffer[0] = 0x70; 2540 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2541 /* Not Ready */ 2542 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2543 /* NO ADDITIONAL SENSE INFORMATION */ 2544 buffer[SPC_ASC_KEY_OFFSET] = 0; 2545 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2546 break; 2547 case TCM_NON_EXISTENT_LUN: 2548 /* CURRENT ERROR */ 2549 buffer[0] = 0x70; 2550 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2551 /* ILLEGAL REQUEST */ 2552 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2553 /* LOGICAL UNIT NOT SUPPORTED */ 2554 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2555 break; 2556 case TCM_UNSUPPORTED_SCSI_OPCODE: 2557 case TCM_SECTOR_COUNT_TOO_MANY: 2558 /* CURRENT ERROR */ 2559 buffer[0] = 0x70; 2560 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2561 /* ILLEGAL REQUEST */ 2562 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2563 /* INVALID COMMAND OPERATION CODE */ 2564 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2565 break; 2566 case TCM_UNKNOWN_MODE_PAGE: 2567 /* CURRENT ERROR */ 2568 buffer[0] = 0x70; 2569 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2570 /* ILLEGAL REQUEST */ 2571 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2572 /* INVALID FIELD IN CDB */ 2573 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2574 break; 2575 case TCM_CHECK_CONDITION_ABORT_CMD: 2576 /* CURRENT ERROR */ 2577 buffer[0] = 0x70; 2578 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2579 /* ABORTED COMMAND */ 2580 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2581 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2582 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2583 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2584 break; 2585 case TCM_INCORRECT_AMOUNT_OF_DATA: 2586 /* CURRENT ERROR */ 2587 buffer[0] = 0x70; 2588 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2589 /* ABORTED COMMAND */ 2590 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2591 /* WRITE ERROR */ 2592 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2593 /* NOT ENOUGH UNSOLICITED DATA */ 2594 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2595 break; 2596 case TCM_INVALID_CDB_FIELD: 2597 /* CURRENT ERROR */ 2598 buffer[0] = 0x70; 2599 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2600 /* ILLEGAL REQUEST */ 2601 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2602 /* INVALID FIELD IN CDB */ 2603 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2604 break; 2605 case TCM_INVALID_PARAMETER_LIST: 2606 /* CURRENT ERROR */ 2607 buffer[0] = 0x70; 2608 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2609 /* ILLEGAL REQUEST */ 2610 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2611 /* INVALID FIELD IN PARAMETER LIST */ 2612 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2613 break; 2614 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2615 /* CURRENT ERROR */ 2616 buffer[0] = 0x70; 2617 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2618 /* ILLEGAL REQUEST */ 2619 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2620 /* PARAMETER LIST LENGTH ERROR */ 2621 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2622 break; 2623 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2624 /* CURRENT ERROR */ 2625 buffer[0] = 0x70; 2626 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2627 /* ABORTED COMMAND */ 2628 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2629 /* WRITE ERROR */ 2630 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2631 /* UNEXPECTED_UNSOLICITED_DATA */ 2632 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2633 break; 2634 case TCM_SERVICE_CRC_ERROR: 2635 /* CURRENT ERROR */ 2636 buffer[0] = 0x70; 2637 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2638 /* ABORTED COMMAND */ 2639 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2640 /* PROTOCOL SERVICE CRC ERROR */ 2641 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2642 /* N/A */ 2643 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2644 break; 2645 case TCM_SNACK_REJECTED: 2646 /* CURRENT ERROR */ 2647 buffer[0] = 0x70; 2648 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2649 /* ABORTED COMMAND */ 2650 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2651 /* READ ERROR */ 2652 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2653 /* FAILED RETRANSMISSION REQUEST */ 2654 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2655 break; 2656 case TCM_WRITE_PROTECTED: 2657 /* CURRENT ERROR */ 2658 buffer[0] = 0x70; 2659 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2660 /* DATA PROTECT */ 2661 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2662 /* WRITE PROTECTED */ 2663 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2664 break; 2665 case TCM_ADDRESS_OUT_OF_RANGE: 2666 /* CURRENT ERROR */ 2667 buffer[0] = 0x70; 2668 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2669 /* ILLEGAL REQUEST */ 2670 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2671 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2672 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2673 break; 2674 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2675 /* CURRENT ERROR */ 2676 buffer[0] = 0x70; 2677 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2678 /* UNIT ATTENTION */ 2679 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2680 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2681 buffer[SPC_ASC_KEY_OFFSET] = asc; 2682 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2683 break; 2684 case TCM_CHECK_CONDITION_NOT_READY: 2685 /* CURRENT ERROR */ 2686 buffer[0] = 0x70; 2687 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2688 /* Not Ready */ 2689 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2690 transport_get_sense_codes(cmd, &asc, &ascq); 2691 buffer[SPC_ASC_KEY_OFFSET] = asc; 2692 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2693 break; 2694 case TCM_MISCOMPARE_VERIFY: 2695 /* CURRENT ERROR */ 2696 buffer[0] = 0x70; 2697 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2698 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE; 2699 /* MISCOMPARE DURING VERIFY OPERATION */ 2700 buffer[SPC_ASC_KEY_OFFSET] = 0x1d; 2701 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00; 2702 break; 2703 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 2704 /* CURRENT ERROR */ 2705 buffer[0] = 0x70; 2706 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2707 /* ILLEGAL REQUEST */ 2708 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2709 /* LOGICAL BLOCK GUARD CHECK FAILED */ 2710 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2711 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01; 2712 transport_err_sector_info(buffer, cmd->bad_sector); 2713 break; 2714 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 2715 /* CURRENT ERROR */ 2716 buffer[0] = 0x70; 2717 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2718 /* ILLEGAL REQUEST */ 2719 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2720 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2721 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2722 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02; 2723 transport_err_sector_info(buffer, cmd->bad_sector); 2724 break; 2725 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 2726 /* CURRENT ERROR */ 2727 buffer[0] = 0x70; 2728 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2729 /* ILLEGAL REQUEST */ 2730 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2731 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2732 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2733 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2734 transport_err_sector_info(buffer, cmd->bad_sector); 2735 break; 2736 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2737 default: 2738 /* CURRENT ERROR */ 2739 buffer[0] = 0x70; 2740 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2741 /* 2742 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2743 * Solaris initiators. Returning NOT READY instead means the 2744 * operations will be retried a finite number of times and we 2745 * can survive intermittent errors. 2746 */ 2747 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2748 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2749 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2750 break; 2751 } 2752 /* 2753 * This code uses linux/include/scsi/scsi.h SAM status codes! 2754 */ 2755 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2756 /* 2757 * Automatically padded, this value is encoded in the fabric's 2758 * data_length response PDU containing the SCSI defined sense data. 2759 */ 2760 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2761 2762 after_reason: 2763 trace_target_cmd_complete(cmd); 2764 return cmd->se_tfo->queue_status(cmd); 2765 } 2766 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2767 2768 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2769 { 2770 if (!(cmd->transport_state & CMD_T_ABORTED)) 2771 return 0; 2772 2773 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 2774 return 1; 2775 2776 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2777 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2778 2779 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 2780 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2781 trace_target_cmd_complete(cmd); 2782 cmd->se_tfo->queue_status(cmd); 2783 2784 return 1; 2785 } 2786 EXPORT_SYMBOL(transport_check_aborted_status); 2787 2788 void transport_send_task_abort(struct se_cmd *cmd) 2789 { 2790 unsigned long flags; 2791 2792 spin_lock_irqsave(&cmd->t_state_lock, flags); 2793 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) { 2794 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2795 return; 2796 } 2797 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2798 2799 /* 2800 * If there are still expected incoming fabric WRITEs, we wait 2801 * until until they have completed before sending a TASK_ABORTED 2802 * response. This response with TASK_ABORTED status will be 2803 * queued back to fabric module by transport_check_aborted_status(). 2804 */ 2805 if (cmd->data_direction == DMA_TO_DEVICE) { 2806 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2807 cmd->transport_state |= CMD_T_ABORTED; 2808 smp_mb__after_atomic_inc(); 2809 return; 2810 } 2811 } 2812 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2813 2814 transport_lun_remove_cmd(cmd); 2815 2816 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 2817 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 2818 cmd->se_tfo->get_task_tag(cmd)); 2819 2820 trace_target_cmd_complete(cmd); 2821 cmd->se_tfo->queue_status(cmd); 2822 } 2823 2824 static void target_tmr_work(struct work_struct *work) 2825 { 2826 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2827 struct se_device *dev = cmd->se_dev; 2828 struct se_tmr_req *tmr = cmd->se_tmr_req; 2829 int ret; 2830 2831 switch (tmr->function) { 2832 case TMR_ABORT_TASK: 2833 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2834 break; 2835 case TMR_ABORT_TASK_SET: 2836 case TMR_CLEAR_ACA: 2837 case TMR_CLEAR_TASK_SET: 2838 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2839 break; 2840 case TMR_LUN_RESET: 2841 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2842 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2843 TMR_FUNCTION_REJECTED; 2844 break; 2845 case TMR_TARGET_WARM_RESET: 2846 tmr->response = TMR_FUNCTION_REJECTED; 2847 break; 2848 case TMR_TARGET_COLD_RESET: 2849 tmr->response = TMR_FUNCTION_REJECTED; 2850 break; 2851 default: 2852 pr_err("Uknown TMR function: 0x%02x.\n", 2853 tmr->function); 2854 tmr->response = TMR_FUNCTION_REJECTED; 2855 break; 2856 } 2857 2858 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2859 cmd->se_tfo->queue_tm_rsp(cmd); 2860 2861 transport_cmd_check_stop_to_fabric(cmd); 2862 } 2863 2864 int transport_generic_handle_tmr( 2865 struct se_cmd *cmd) 2866 { 2867 INIT_WORK(&cmd->work, target_tmr_work); 2868 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(transport_generic_handle_tmr); 2872