1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static void transport_handle_queue_full(struct se_cmd *cmd, 68 struct se_device *dev); 69 static int transport_put_cmd(struct se_cmd *cmd); 70 static void target_complete_ok_work(struct work_struct *work); 71 72 int init_se_kmem_caches(void) 73 { 74 se_sess_cache = kmem_cache_create("se_sess_cache", 75 sizeof(struct se_session), __alignof__(struct se_session), 76 0, NULL); 77 if (!se_sess_cache) { 78 pr_err("kmem_cache_create() for struct se_session" 79 " failed\n"); 80 goto out; 81 } 82 se_ua_cache = kmem_cache_create("se_ua_cache", 83 sizeof(struct se_ua), __alignof__(struct se_ua), 84 0, NULL); 85 if (!se_ua_cache) { 86 pr_err("kmem_cache_create() for struct se_ua failed\n"); 87 goto out_free_sess_cache; 88 } 89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 90 sizeof(struct t10_pr_registration), 91 __alignof__(struct t10_pr_registration), 0, NULL); 92 if (!t10_pr_reg_cache) { 93 pr_err("kmem_cache_create() for struct t10_pr_registration" 94 " failed\n"); 95 goto out_free_ua_cache; 96 } 97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 99 0, NULL); 100 if (!t10_alua_lu_gp_cache) { 101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 102 " failed\n"); 103 goto out_free_pr_reg_cache; 104 } 105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 106 sizeof(struct t10_alua_lu_gp_member), 107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 108 if (!t10_alua_lu_gp_mem_cache) { 109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 110 "cache failed\n"); 111 goto out_free_lu_gp_cache; 112 } 113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 114 sizeof(struct t10_alua_tg_pt_gp), 115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 116 if (!t10_alua_tg_pt_gp_cache) { 117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 118 "cache failed\n"); 119 goto out_free_lu_gp_mem_cache; 120 } 121 t10_alua_lba_map_cache = kmem_cache_create( 122 "t10_alua_lba_map_cache", 123 sizeof(struct t10_alua_lba_map), 124 __alignof__(struct t10_alua_lba_map), 0, NULL); 125 if (!t10_alua_lba_map_cache) { 126 pr_err("kmem_cache_create() for t10_alua_lba_map_" 127 "cache failed\n"); 128 goto out_free_tg_pt_gp_cache; 129 } 130 t10_alua_lba_map_mem_cache = kmem_cache_create( 131 "t10_alua_lba_map_mem_cache", 132 sizeof(struct t10_alua_lba_map_member), 133 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 134 if (!t10_alua_lba_map_mem_cache) { 135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 136 "cache failed\n"); 137 goto out_free_lba_map_cache; 138 } 139 140 target_completion_wq = alloc_workqueue("target_completion", 141 WQ_MEM_RECLAIM, 0); 142 if (!target_completion_wq) 143 goto out_free_lba_map_mem_cache; 144 145 return 0; 146 147 out_free_lba_map_mem_cache: 148 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 149 out_free_lba_map_cache: 150 kmem_cache_destroy(t10_alua_lba_map_cache); 151 out_free_tg_pt_gp_cache: 152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 153 out_free_lu_gp_mem_cache: 154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 155 out_free_lu_gp_cache: 156 kmem_cache_destroy(t10_alua_lu_gp_cache); 157 out_free_pr_reg_cache: 158 kmem_cache_destroy(t10_pr_reg_cache); 159 out_free_ua_cache: 160 kmem_cache_destroy(se_ua_cache); 161 out_free_sess_cache: 162 kmem_cache_destroy(se_sess_cache); 163 out: 164 return -ENOMEM; 165 } 166 167 void release_se_kmem_caches(void) 168 { 169 destroy_workqueue(target_completion_wq); 170 kmem_cache_destroy(se_sess_cache); 171 kmem_cache_destroy(se_ua_cache); 172 kmem_cache_destroy(t10_pr_reg_cache); 173 kmem_cache_destroy(t10_alua_lu_gp_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 176 kmem_cache_destroy(t10_alua_lba_map_cache); 177 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 178 } 179 180 /* This code ensures unique mib indexes are handed out. */ 181 static DEFINE_SPINLOCK(scsi_mib_index_lock); 182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 183 184 /* 185 * Allocate a new row index for the entry type specified 186 */ 187 u32 scsi_get_new_index(scsi_index_t type) 188 { 189 u32 new_index; 190 191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 192 193 spin_lock(&scsi_mib_index_lock); 194 new_index = ++scsi_mib_index[type]; 195 spin_unlock(&scsi_mib_index_lock); 196 197 return new_index; 198 } 199 200 void transport_subsystem_check_init(void) 201 { 202 int ret; 203 static int sub_api_initialized; 204 205 if (sub_api_initialized) 206 return; 207 208 ret = request_module("target_core_iblock"); 209 if (ret != 0) 210 pr_err("Unable to load target_core_iblock\n"); 211 212 ret = request_module("target_core_file"); 213 if (ret != 0) 214 pr_err("Unable to load target_core_file\n"); 215 216 ret = request_module("target_core_pscsi"); 217 if (ret != 0) 218 pr_err("Unable to load target_core_pscsi\n"); 219 220 ret = request_module("target_core_user"); 221 if (ret != 0) 222 pr_err("Unable to load target_core_user\n"); 223 224 sub_api_initialized = 1; 225 } 226 227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 228 { 229 struct se_session *se_sess; 230 231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 232 if (!se_sess) { 233 pr_err("Unable to allocate struct se_session from" 234 " se_sess_cache\n"); 235 return ERR_PTR(-ENOMEM); 236 } 237 INIT_LIST_HEAD(&se_sess->sess_list); 238 INIT_LIST_HEAD(&se_sess->sess_acl_list); 239 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 240 INIT_LIST_HEAD(&se_sess->sess_wait_list); 241 spin_lock_init(&se_sess->sess_cmd_lock); 242 kref_init(&se_sess->sess_kref); 243 se_sess->sup_prot_ops = sup_prot_ops; 244 245 return se_sess; 246 } 247 EXPORT_SYMBOL(transport_init_session); 248 249 int transport_alloc_session_tags(struct se_session *se_sess, 250 unsigned int tag_num, unsigned int tag_size) 251 { 252 int rc; 253 254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 256 if (!se_sess->sess_cmd_map) { 257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 258 if (!se_sess->sess_cmd_map) { 259 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 260 return -ENOMEM; 261 } 262 } 263 264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 265 if (rc < 0) { 266 pr_err("Unable to init se_sess->sess_tag_pool," 267 " tag_num: %u\n", tag_num); 268 kvfree(se_sess->sess_cmd_map); 269 se_sess->sess_cmd_map = NULL; 270 return -ENOMEM; 271 } 272 273 return 0; 274 } 275 EXPORT_SYMBOL(transport_alloc_session_tags); 276 277 struct se_session *transport_init_session_tags(unsigned int tag_num, 278 unsigned int tag_size, 279 enum target_prot_op sup_prot_ops) 280 { 281 struct se_session *se_sess; 282 int rc; 283 284 se_sess = transport_init_session(sup_prot_ops); 285 if (IS_ERR(se_sess)) 286 return se_sess; 287 288 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 289 if (rc < 0) { 290 transport_free_session(se_sess); 291 return ERR_PTR(-ENOMEM); 292 } 293 294 return se_sess; 295 } 296 EXPORT_SYMBOL(transport_init_session_tags); 297 298 /* 299 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 300 */ 301 void __transport_register_session( 302 struct se_portal_group *se_tpg, 303 struct se_node_acl *se_nacl, 304 struct se_session *se_sess, 305 void *fabric_sess_ptr) 306 { 307 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 308 unsigned char buf[PR_REG_ISID_LEN]; 309 310 se_sess->se_tpg = se_tpg; 311 se_sess->fabric_sess_ptr = fabric_sess_ptr; 312 /* 313 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 314 * 315 * Only set for struct se_session's that will actually be moving I/O. 316 * eg: *NOT* discovery sessions. 317 */ 318 if (se_nacl) { 319 /* 320 * 321 * Determine if fabric allows for T10-PI feature bits exposed to 322 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 323 * 324 * If so, then always save prot_type on a per se_node_acl node 325 * basis and re-instate the previous sess_prot_type to avoid 326 * disabling PI from below any previously initiator side 327 * registered LUNs. 328 */ 329 if (se_nacl->saved_prot_type) 330 se_sess->sess_prot_type = se_nacl->saved_prot_type; 331 else if (tfo->tpg_check_prot_fabric_only) 332 se_sess->sess_prot_type = se_nacl->saved_prot_type = 333 tfo->tpg_check_prot_fabric_only(se_tpg); 334 /* 335 * If the fabric module supports an ISID based TransportID, 336 * save this value in binary from the fabric I_T Nexus now. 337 */ 338 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 339 memset(&buf[0], 0, PR_REG_ISID_LEN); 340 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 341 &buf[0], PR_REG_ISID_LEN); 342 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 343 } 344 345 spin_lock_irq(&se_nacl->nacl_sess_lock); 346 /* 347 * The se_nacl->nacl_sess pointer will be set to the 348 * last active I_T Nexus for each struct se_node_acl. 349 */ 350 se_nacl->nacl_sess = se_sess; 351 352 list_add_tail(&se_sess->sess_acl_list, 353 &se_nacl->acl_sess_list); 354 spin_unlock_irq(&se_nacl->nacl_sess_lock); 355 } 356 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 357 358 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 359 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 360 } 361 EXPORT_SYMBOL(__transport_register_session); 362 363 void transport_register_session( 364 struct se_portal_group *se_tpg, 365 struct se_node_acl *se_nacl, 366 struct se_session *se_sess, 367 void *fabric_sess_ptr) 368 { 369 unsigned long flags; 370 371 spin_lock_irqsave(&se_tpg->session_lock, flags); 372 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 373 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 374 } 375 EXPORT_SYMBOL(transport_register_session); 376 377 static void target_release_session(struct kref *kref) 378 { 379 struct se_session *se_sess = container_of(kref, 380 struct se_session, sess_kref); 381 struct se_portal_group *se_tpg = se_sess->se_tpg; 382 383 se_tpg->se_tpg_tfo->close_session(se_sess); 384 } 385 386 int target_get_session(struct se_session *se_sess) 387 { 388 return kref_get_unless_zero(&se_sess->sess_kref); 389 } 390 EXPORT_SYMBOL(target_get_session); 391 392 void target_put_session(struct se_session *se_sess) 393 { 394 kref_put(&se_sess->sess_kref, target_release_session); 395 } 396 EXPORT_SYMBOL(target_put_session); 397 398 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 399 { 400 struct se_session *se_sess; 401 ssize_t len = 0; 402 403 spin_lock_bh(&se_tpg->session_lock); 404 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 405 if (!se_sess->se_node_acl) 406 continue; 407 if (!se_sess->se_node_acl->dynamic_node_acl) 408 continue; 409 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 410 break; 411 412 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 413 se_sess->se_node_acl->initiatorname); 414 len += 1; /* Include NULL terminator */ 415 } 416 spin_unlock_bh(&se_tpg->session_lock); 417 418 return len; 419 } 420 EXPORT_SYMBOL(target_show_dynamic_sessions); 421 422 static void target_complete_nacl(struct kref *kref) 423 { 424 struct se_node_acl *nacl = container_of(kref, 425 struct se_node_acl, acl_kref); 426 427 complete(&nacl->acl_free_comp); 428 } 429 430 void target_put_nacl(struct se_node_acl *nacl) 431 { 432 kref_put(&nacl->acl_kref, target_complete_nacl); 433 } 434 EXPORT_SYMBOL(target_put_nacl); 435 436 void transport_deregister_session_configfs(struct se_session *se_sess) 437 { 438 struct se_node_acl *se_nacl; 439 unsigned long flags; 440 /* 441 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 442 */ 443 se_nacl = se_sess->se_node_acl; 444 if (se_nacl) { 445 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 446 if (se_nacl->acl_stop == 0) 447 list_del(&se_sess->sess_acl_list); 448 /* 449 * If the session list is empty, then clear the pointer. 450 * Otherwise, set the struct se_session pointer from the tail 451 * element of the per struct se_node_acl active session list. 452 */ 453 if (list_empty(&se_nacl->acl_sess_list)) 454 se_nacl->nacl_sess = NULL; 455 else { 456 se_nacl->nacl_sess = container_of( 457 se_nacl->acl_sess_list.prev, 458 struct se_session, sess_acl_list); 459 } 460 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 461 } 462 } 463 EXPORT_SYMBOL(transport_deregister_session_configfs); 464 465 void transport_free_session(struct se_session *se_sess) 466 { 467 struct se_node_acl *se_nacl = se_sess->se_node_acl; 468 /* 469 * Drop the se_node_acl->nacl_kref obtained from within 470 * core_tpg_get_initiator_node_acl(). 471 */ 472 if (se_nacl) { 473 se_sess->se_node_acl = NULL; 474 target_put_nacl(se_nacl); 475 } 476 if (se_sess->sess_cmd_map) { 477 percpu_ida_destroy(&se_sess->sess_tag_pool); 478 kvfree(se_sess->sess_cmd_map); 479 } 480 kmem_cache_free(se_sess_cache, se_sess); 481 } 482 EXPORT_SYMBOL(transport_free_session); 483 484 void transport_deregister_session(struct se_session *se_sess) 485 { 486 struct se_portal_group *se_tpg = se_sess->se_tpg; 487 const struct target_core_fabric_ops *se_tfo; 488 struct se_node_acl *se_nacl; 489 unsigned long flags; 490 bool drop_nacl = false; 491 492 if (!se_tpg) { 493 transport_free_session(se_sess); 494 return; 495 } 496 se_tfo = se_tpg->se_tpg_tfo; 497 498 spin_lock_irqsave(&se_tpg->session_lock, flags); 499 list_del(&se_sess->sess_list); 500 se_sess->se_tpg = NULL; 501 se_sess->fabric_sess_ptr = NULL; 502 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 503 504 /* 505 * Determine if we need to do extra work for this initiator node's 506 * struct se_node_acl if it had been previously dynamically generated. 507 */ 508 se_nacl = se_sess->se_node_acl; 509 510 mutex_lock(&se_tpg->acl_node_mutex); 511 if (se_nacl && se_nacl->dynamic_node_acl) { 512 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 513 list_del(&se_nacl->acl_list); 514 drop_nacl = true; 515 } 516 } 517 mutex_unlock(&se_tpg->acl_node_mutex); 518 519 if (drop_nacl) { 520 core_tpg_wait_for_nacl_pr_ref(se_nacl); 521 core_free_device_list_for_node(se_nacl, se_tpg); 522 se_sess->se_node_acl = NULL; 523 kfree(se_nacl); 524 } 525 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 526 se_tpg->se_tpg_tfo->get_fabric_name()); 527 /* 528 * If last kref is dropping now for an explicit NodeACL, awake sleeping 529 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 530 * removal context from within transport_free_session() code. 531 */ 532 533 transport_free_session(se_sess); 534 } 535 EXPORT_SYMBOL(transport_deregister_session); 536 537 /* 538 * Called with cmd->t_state_lock held. 539 */ 540 static void target_remove_from_state_list(struct se_cmd *cmd) 541 { 542 struct se_device *dev = cmd->se_dev; 543 unsigned long flags; 544 545 if (!dev) 546 return; 547 548 if (cmd->transport_state & CMD_T_BUSY) 549 return; 550 551 spin_lock_irqsave(&dev->execute_task_lock, flags); 552 if (cmd->state_active) { 553 list_del(&cmd->state_list); 554 cmd->state_active = false; 555 } 556 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 557 } 558 559 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 560 bool write_pending) 561 { 562 unsigned long flags; 563 564 spin_lock_irqsave(&cmd->t_state_lock, flags); 565 if (write_pending) 566 cmd->t_state = TRANSPORT_WRITE_PENDING; 567 568 if (remove_from_lists) { 569 target_remove_from_state_list(cmd); 570 571 /* 572 * Clear struct se_cmd->se_lun before the handoff to FE. 573 */ 574 cmd->se_lun = NULL; 575 } 576 577 /* 578 * Determine if frontend context caller is requesting the stopping of 579 * this command for frontend exceptions. 580 */ 581 if (cmd->transport_state & CMD_T_STOP) { 582 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 583 __func__, __LINE__, cmd->tag); 584 585 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 586 587 complete_all(&cmd->t_transport_stop_comp); 588 return 1; 589 } 590 591 cmd->transport_state &= ~CMD_T_ACTIVE; 592 if (remove_from_lists) { 593 /* 594 * Some fabric modules like tcm_loop can release 595 * their internally allocated I/O reference now and 596 * struct se_cmd now. 597 * 598 * Fabric modules are expected to return '1' here if the 599 * se_cmd being passed is released at this point, 600 * or zero if not being released. 601 */ 602 if (cmd->se_tfo->check_stop_free != NULL) { 603 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 604 return cmd->se_tfo->check_stop_free(cmd); 605 } 606 } 607 608 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 609 return 0; 610 } 611 612 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 613 { 614 return transport_cmd_check_stop(cmd, true, false); 615 } 616 617 static void transport_lun_remove_cmd(struct se_cmd *cmd) 618 { 619 struct se_lun *lun = cmd->se_lun; 620 621 if (!lun) 622 return; 623 624 if (cmpxchg(&cmd->lun_ref_active, true, false)) 625 percpu_ref_put(&lun->lun_ref); 626 } 627 628 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 629 { 630 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 631 transport_lun_remove_cmd(cmd); 632 /* 633 * Allow the fabric driver to unmap any resources before 634 * releasing the descriptor via TFO->release_cmd() 635 */ 636 if (remove) 637 cmd->se_tfo->aborted_task(cmd); 638 639 if (transport_cmd_check_stop_to_fabric(cmd)) 640 return; 641 if (remove) 642 transport_put_cmd(cmd); 643 } 644 645 static void target_complete_failure_work(struct work_struct *work) 646 { 647 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 648 649 transport_generic_request_failure(cmd, 650 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 651 } 652 653 /* 654 * Used when asking transport to copy Sense Data from the underlying 655 * Linux/SCSI struct scsi_cmnd 656 */ 657 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 658 { 659 struct se_device *dev = cmd->se_dev; 660 661 WARN_ON(!cmd->se_lun); 662 663 if (!dev) 664 return NULL; 665 666 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 667 return NULL; 668 669 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 670 671 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 672 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 673 return cmd->sense_buffer; 674 } 675 676 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 677 { 678 struct se_device *dev = cmd->se_dev; 679 int success = scsi_status == GOOD; 680 unsigned long flags; 681 682 cmd->scsi_status = scsi_status; 683 684 685 spin_lock_irqsave(&cmd->t_state_lock, flags); 686 cmd->transport_state &= ~CMD_T_BUSY; 687 688 if (dev && dev->transport->transport_complete) { 689 dev->transport->transport_complete(cmd, 690 cmd->t_data_sg, 691 transport_get_sense_buffer(cmd)); 692 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 693 success = 1; 694 } 695 696 /* 697 * See if we are waiting to complete for an exception condition. 698 */ 699 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 700 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 701 complete(&cmd->task_stop_comp); 702 return; 703 } 704 705 /* 706 * Check for case where an explicit ABORT_TASK has been received 707 * and transport_wait_for_tasks() will be waiting for completion.. 708 */ 709 if (cmd->transport_state & CMD_T_ABORTED && 710 cmd->transport_state & CMD_T_STOP) { 711 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 712 complete_all(&cmd->t_transport_stop_comp); 713 return; 714 } else if (!success) { 715 INIT_WORK(&cmd->work, target_complete_failure_work); 716 } else { 717 INIT_WORK(&cmd->work, target_complete_ok_work); 718 } 719 720 cmd->t_state = TRANSPORT_COMPLETE; 721 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 722 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 723 724 if (cmd->cpuid == -1) 725 queue_work(target_completion_wq, &cmd->work); 726 else 727 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 728 } 729 EXPORT_SYMBOL(target_complete_cmd); 730 731 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 732 { 733 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 734 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 735 cmd->residual_count += cmd->data_length - length; 736 } else { 737 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 738 cmd->residual_count = cmd->data_length - length; 739 } 740 741 cmd->data_length = length; 742 } 743 744 target_complete_cmd(cmd, scsi_status); 745 } 746 EXPORT_SYMBOL(target_complete_cmd_with_length); 747 748 static void target_add_to_state_list(struct se_cmd *cmd) 749 { 750 struct se_device *dev = cmd->se_dev; 751 unsigned long flags; 752 753 spin_lock_irqsave(&dev->execute_task_lock, flags); 754 if (!cmd->state_active) { 755 list_add_tail(&cmd->state_list, &dev->state_list); 756 cmd->state_active = true; 757 } 758 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 759 } 760 761 /* 762 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 763 */ 764 static void transport_write_pending_qf(struct se_cmd *cmd); 765 static void transport_complete_qf(struct se_cmd *cmd); 766 767 void target_qf_do_work(struct work_struct *work) 768 { 769 struct se_device *dev = container_of(work, struct se_device, 770 qf_work_queue); 771 LIST_HEAD(qf_cmd_list); 772 struct se_cmd *cmd, *cmd_tmp; 773 774 spin_lock_irq(&dev->qf_cmd_lock); 775 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 776 spin_unlock_irq(&dev->qf_cmd_lock); 777 778 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 779 list_del(&cmd->se_qf_node); 780 atomic_dec_mb(&dev->dev_qf_count); 781 782 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 783 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 784 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 785 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 786 : "UNKNOWN"); 787 788 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 789 transport_write_pending_qf(cmd); 790 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 791 transport_complete_qf(cmd); 792 } 793 } 794 795 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 796 { 797 switch (cmd->data_direction) { 798 case DMA_NONE: 799 return "NONE"; 800 case DMA_FROM_DEVICE: 801 return "READ"; 802 case DMA_TO_DEVICE: 803 return "WRITE"; 804 case DMA_BIDIRECTIONAL: 805 return "BIDI"; 806 default: 807 break; 808 } 809 810 return "UNKNOWN"; 811 } 812 813 void transport_dump_dev_state( 814 struct se_device *dev, 815 char *b, 816 int *bl) 817 { 818 *bl += sprintf(b + *bl, "Status: "); 819 if (dev->export_count) 820 *bl += sprintf(b + *bl, "ACTIVATED"); 821 else 822 *bl += sprintf(b + *bl, "DEACTIVATED"); 823 824 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 825 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 826 dev->dev_attrib.block_size, 827 dev->dev_attrib.hw_max_sectors); 828 *bl += sprintf(b + *bl, " "); 829 } 830 831 void transport_dump_vpd_proto_id( 832 struct t10_vpd *vpd, 833 unsigned char *p_buf, 834 int p_buf_len) 835 { 836 unsigned char buf[VPD_TMP_BUF_SIZE]; 837 int len; 838 839 memset(buf, 0, VPD_TMP_BUF_SIZE); 840 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 841 842 switch (vpd->protocol_identifier) { 843 case 0x00: 844 sprintf(buf+len, "Fibre Channel\n"); 845 break; 846 case 0x10: 847 sprintf(buf+len, "Parallel SCSI\n"); 848 break; 849 case 0x20: 850 sprintf(buf+len, "SSA\n"); 851 break; 852 case 0x30: 853 sprintf(buf+len, "IEEE 1394\n"); 854 break; 855 case 0x40: 856 sprintf(buf+len, "SCSI Remote Direct Memory Access" 857 " Protocol\n"); 858 break; 859 case 0x50: 860 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 861 break; 862 case 0x60: 863 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 864 break; 865 case 0x70: 866 sprintf(buf+len, "Automation/Drive Interface Transport" 867 " Protocol\n"); 868 break; 869 case 0x80: 870 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 871 break; 872 default: 873 sprintf(buf+len, "Unknown 0x%02x\n", 874 vpd->protocol_identifier); 875 break; 876 } 877 878 if (p_buf) 879 strncpy(p_buf, buf, p_buf_len); 880 else 881 pr_debug("%s", buf); 882 } 883 884 void 885 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 886 { 887 /* 888 * Check if the Protocol Identifier Valid (PIV) bit is set.. 889 * 890 * from spc3r23.pdf section 7.5.1 891 */ 892 if (page_83[1] & 0x80) { 893 vpd->protocol_identifier = (page_83[0] & 0xf0); 894 vpd->protocol_identifier_set = 1; 895 transport_dump_vpd_proto_id(vpd, NULL, 0); 896 } 897 } 898 EXPORT_SYMBOL(transport_set_vpd_proto_id); 899 900 int transport_dump_vpd_assoc( 901 struct t10_vpd *vpd, 902 unsigned char *p_buf, 903 int p_buf_len) 904 { 905 unsigned char buf[VPD_TMP_BUF_SIZE]; 906 int ret = 0; 907 int len; 908 909 memset(buf, 0, VPD_TMP_BUF_SIZE); 910 len = sprintf(buf, "T10 VPD Identifier Association: "); 911 912 switch (vpd->association) { 913 case 0x00: 914 sprintf(buf+len, "addressed logical unit\n"); 915 break; 916 case 0x10: 917 sprintf(buf+len, "target port\n"); 918 break; 919 case 0x20: 920 sprintf(buf+len, "SCSI target device\n"); 921 break; 922 default: 923 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 924 ret = -EINVAL; 925 break; 926 } 927 928 if (p_buf) 929 strncpy(p_buf, buf, p_buf_len); 930 else 931 pr_debug("%s", buf); 932 933 return ret; 934 } 935 936 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 937 { 938 /* 939 * The VPD identification association.. 940 * 941 * from spc3r23.pdf Section 7.6.3.1 Table 297 942 */ 943 vpd->association = (page_83[1] & 0x30); 944 return transport_dump_vpd_assoc(vpd, NULL, 0); 945 } 946 EXPORT_SYMBOL(transport_set_vpd_assoc); 947 948 int transport_dump_vpd_ident_type( 949 struct t10_vpd *vpd, 950 unsigned char *p_buf, 951 int p_buf_len) 952 { 953 unsigned char buf[VPD_TMP_BUF_SIZE]; 954 int ret = 0; 955 int len; 956 957 memset(buf, 0, VPD_TMP_BUF_SIZE); 958 len = sprintf(buf, "T10 VPD Identifier Type: "); 959 960 switch (vpd->device_identifier_type) { 961 case 0x00: 962 sprintf(buf+len, "Vendor specific\n"); 963 break; 964 case 0x01: 965 sprintf(buf+len, "T10 Vendor ID based\n"); 966 break; 967 case 0x02: 968 sprintf(buf+len, "EUI-64 based\n"); 969 break; 970 case 0x03: 971 sprintf(buf+len, "NAA\n"); 972 break; 973 case 0x04: 974 sprintf(buf+len, "Relative target port identifier\n"); 975 break; 976 case 0x08: 977 sprintf(buf+len, "SCSI name string\n"); 978 break; 979 default: 980 sprintf(buf+len, "Unsupported: 0x%02x\n", 981 vpd->device_identifier_type); 982 ret = -EINVAL; 983 break; 984 } 985 986 if (p_buf) { 987 if (p_buf_len < strlen(buf)+1) 988 return -EINVAL; 989 strncpy(p_buf, buf, p_buf_len); 990 } else { 991 pr_debug("%s", buf); 992 } 993 994 return ret; 995 } 996 997 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 998 { 999 /* 1000 * The VPD identifier type.. 1001 * 1002 * from spc3r23.pdf Section 7.6.3.1 Table 298 1003 */ 1004 vpd->device_identifier_type = (page_83[1] & 0x0f); 1005 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1006 } 1007 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1008 1009 int transport_dump_vpd_ident( 1010 struct t10_vpd *vpd, 1011 unsigned char *p_buf, 1012 int p_buf_len) 1013 { 1014 unsigned char buf[VPD_TMP_BUF_SIZE]; 1015 int ret = 0; 1016 1017 memset(buf, 0, VPD_TMP_BUF_SIZE); 1018 1019 switch (vpd->device_identifier_code_set) { 1020 case 0x01: /* Binary */ 1021 snprintf(buf, sizeof(buf), 1022 "T10 VPD Binary Device Identifier: %s\n", 1023 &vpd->device_identifier[0]); 1024 break; 1025 case 0x02: /* ASCII */ 1026 snprintf(buf, sizeof(buf), 1027 "T10 VPD ASCII Device Identifier: %s\n", 1028 &vpd->device_identifier[0]); 1029 break; 1030 case 0x03: /* UTF-8 */ 1031 snprintf(buf, sizeof(buf), 1032 "T10 VPD UTF-8 Device Identifier: %s\n", 1033 &vpd->device_identifier[0]); 1034 break; 1035 default: 1036 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1037 " 0x%02x", vpd->device_identifier_code_set); 1038 ret = -EINVAL; 1039 break; 1040 } 1041 1042 if (p_buf) 1043 strncpy(p_buf, buf, p_buf_len); 1044 else 1045 pr_debug("%s", buf); 1046 1047 return ret; 1048 } 1049 1050 int 1051 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1052 { 1053 static const char hex_str[] = "0123456789abcdef"; 1054 int j = 0, i = 4; /* offset to start of the identifier */ 1055 1056 /* 1057 * The VPD Code Set (encoding) 1058 * 1059 * from spc3r23.pdf Section 7.6.3.1 Table 296 1060 */ 1061 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1062 switch (vpd->device_identifier_code_set) { 1063 case 0x01: /* Binary */ 1064 vpd->device_identifier[j++] = 1065 hex_str[vpd->device_identifier_type]; 1066 while (i < (4 + page_83[3])) { 1067 vpd->device_identifier[j++] = 1068 hex_str[(page_83[i] & 0xf0) >> 4]; 1069 vpd->device_identifier[j++] = 1070 hex_str[page_83[i] & 0x0f]; 1071 i++; 1072 } 1073 break; 1074 case 0x02: /* ASCII */ 1075 case 0x03: /* UTF-8 */ 1076 while (i < (4 + page_83[3])) 1077 vpd->device_identifier[j++] = page_83[i++]; 1078 break; 1079 default: 1080 break; 1081 } 1082 1083 return transport_dump_vpd_ident(vpd, NULL, 0); 1084 } 1085 EXPORT_SYMBOL(transport_set_vpd_ident); 1086 1087 static sense_reason_t 1088 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1089 unsigned int size) 1090 { 1091 u32 mtl; 1092 1093 if (!cmd->se_tfo->max_data_sg_nents) 1094 return TCM_NO_SENSE; 1095 /* 1096 * Check if fabric enforced maximum SGL entries per I/O descriptor 1097 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1098 * residual_count and reduce original cmd->data_length to maximum 1099 * length based on single PAGE_SIZE entry scatter-lists. 1100 */ 1101 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1102 if (cmd->data_length > mtl) { 1103 /* 1104 * If an existing CDB overflow is present, calculate new residual 1105 * based on CDB size minus fabric maximum transfer length. 1106 * 1107 * If an existing CDB underflow is present, calculate new residual 1108 * based on original cmd->data_length minus fabric maximum transfer 1109 * length. 1110 * 1111 * Otherwise, set the underflow residual based on cmd->data_length 1112 * minus fabric maximum transfer length. 1113 */ 1114 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1115 cmd->residual_count = (size - mtl); 1116 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1117 u32 orig_dl = size + cmd->residual_count; 1118 cmd->residual_count = (orig_dl - mtl); 1119 } else { 1120 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1121 cmd->residual_count = (cmd->data_length - mtl); 1122 } 1123 cmd->data_length = mtl; 1124 /* 1125 * Reset sbc_check_prot() calculated protection payload 1126 * length based upon the new smaller MTL. 1127 */ 1128 if (cmd->prot_length) { 1129 u32 sectors = (mtl / dev->dev_attrib.block_size); 1130 cmd->prot_length = dev->prot_length * sectors; 1131 } 1132 } 1133 return TCM_NO_SENSE; 1134 } 1135 1136 sense_reason_t 1137 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1138 { 1139 struct se_device *dev = cmd->se_dev; 1140 1141 if (cmd->unknown_data_length) { 1142 cmd->data_length = size; 1143 } else if (size != cmd->data_length) { 1144 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1145 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1146 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1147 cmd->data_length, size, cmd->t_task_cdb[0]); 1148 1149 if (cmd->data_direction == DMA_TO_DEVICE && 1150 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1151 pr_err("Rejecting underflow/overflow WRITE data\n"); 1152 return TCM_INVALID_CDB_FIELD; 1153 } 1154 /* 1155 * Reject READ_* or WRITE_* with overflow/underflow for 1156 * type SCF_SCSI_DATA_CDB. 1157 */ 1158 if (dev->dev_attrib.block_size != 512) { 1159 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1160 " CDB on non 512-byte sector setup subsystem" 1161 " plugin: %s\n", dev->transport->name); 1162 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1163 return TCM_INVALID_CDB_FIELD; 1164 } 1165 /* 1166 * For the overflow case keep the existing fabric provided 1167 * ->data_length. Otherwise for the underflow case, reset 1168 * ->data_length to the smaller SCSI expected data transfer 1169 * length. 1170 */ 1171 if (size > cmd->data_length) { 1172 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1173 cmd->residual_count = (size - cmd->data_length); 1174 } else { 1175 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1176 cmd->residual_count = (cmd->data_length - size); 1177 cmd->data_length = size; 1178 } 1179 } 1180 1181 return target_check_max_data_sg_nents(cmd, dev, size); 1182 1183 } 1184 1185 /* 1186 * Used by fabric modules containing a local struct se_cmd within their 1187 * fabric dependent per I/O descriptor. 1188 * 1189 * Preserves the value of @cmd->tag. 1190 */ 1191 void transport_init_se_cmd( 1192 struct se_cmd *cmd, 1193 const struct target_core_fabric_ops *tfo, 1194 struct se_session *se_sess, 1195 u32 data_length, 1196 int data_direction, 1197 int task_attr, 1198 unsigned char *sense_buffer) 1199 { 1200 INIT_LIST_HEAD(&cmd->se_delayed_node); 1201 INIT_LIST_HEAD(&cmd->se_qf_node); 1202 INIT_LIST_HEAD(&cmd->se_cmd_list); 1203 INIT_LIST_HEAD(&cmd->state_list); 1204 init_completion(&cmd->t_transport_stop_comp); 1205 init_completion(&cmd->cmd_wait_comp); 1206 init_completion(&cmd->task_stop_comp); 1207 spin_lock_init(&cmd->t_state_lock); 1208 kref_init(&cmd->cmd_kref); 1209 cmd->transport_state = CMD_T_DEV_ACTIVE; 1210 1211 cmd->se_tfo = tfo; 1212 cmd->se_sess = se_sess; 1213 cmd->data_length = data_length; 1214 cmd->data_direction = data_direction; 1215 cmd->sam_task_attr = task_attr; 1216 cmd->sense_buffer = sense_buffer; 1217 1218 cmd->state_active = false; 1219 } 1220 EXPORT_SYMBOL(transport_init_se_cmd); 1221 1222 static sense_reason_t 1223 transport_check_alloc_task_attr(struct se_cmd *cmd) 1224 { 1225 struct se_device *dev = cmd->se_dev; 1226 1227 /* 1228 * Check if SAM Task Attribute emulation is enabled for this 1229 * struct se_device storage object 1230 */ 1231 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1232 return 0; 1233 1234 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1235 pr_debug("SAM Task Attribute ACA" 1236 " emulation is not supported\n"); 1237 return TCM_INVALID_CDB_FIELD; 1238 } 1239 1240 return 0; 1241 } 1242 1243 sense_reason_t 1244 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1245 { 1246 struct se_device *dev = cmd->se_dev; 1247 sense_reason_t ret; 1248 1249 /* 1250 * Ensure that the received CDB is less than the max (252 + 8) bytes 1251 * for VARIABLE_LENGTH_CMD 1252 */ 1253 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1254 pr_err("Received SCSI CDB with command_size: %d that" 1255 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1256 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1257 return TCM_INVALID_CDB_FIELD; 1258 } 1259 /* 1260 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1261 * allocate the additional extended CDB buffer now.. Otherwise 1262 * setup the pointer from __t_task_cdb to t_task_cdb. 1263 */ 1264 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1265 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1266 GFP_KERNEL); 1267 if (!cmd->t_task_cdb) { 1268 pr_err("Unable to allocate cmd->t_task_cdb" 1269 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1270 scsi_command_size(cdb), 1271 (unsigned long)sizeof(cmd->__t_task_cdb)); 1272 return TCM_OUT_OF_RESOURCES; 1273 } 1274 } else 1275 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1276 /* 1277 * Copy the original CDB into cmd-> 1278 */ 1279 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1280 1281 trace_target_sequencer_start(cmd); 1282 1283 /* 1284 * Check for an existing UNIT ATTENTION condition 1285 */ 1286 ret = target_scsi3_ua_check(cmd); 1287 if (ret) 1288 return ret; 1289 1290 ret = target_alua_state_check(cmd); 1291 if (ret) 1292 return ret; 1293 1294 ret = target_check_reservation(cmd); 1295 if (ret) { 1296 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1297 return ret; 1298 } 1299 1300 ret = dev->transport->parse_cdb(cmd); 1301 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1302 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1303 cmd->se_tfo->get_fabric_name(), 1304 cmd->se_sess->se_node_acl->initiatorname, 1305 cmd->t_task_cdb[0]); 1306 if (ret) 1307 return ret; 1308 1309 ret = transport_check_alloc_task_attr(cmd); 1310 if (ret) 1311 return ret; 1312 1313 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1314 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1315 return 0; 1316 } 1317 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1318 1319 /* 1320 * Used by fabric module frontends to queue tasks directly. 1321 * May only be used from process context. 1322 */ 1323 int transport_handle_cdb_direct( 1324 struct se_cmd *cmd) 1325 { 1326 sense_reason_t ret; 1327 1328 if (!cmd->se_lun) { 1329 dump_stack(); 1330 pr_err("cmd->se_lun is NULL\n"); 1331 return -EINVAL; 1332 } 1333 if (in_interrupt()) { 1334 dump_stack(); 1335 pr_err("transport_generic_handle_cdb cannot be called" 1336 " from interrupt context\n"); 1337 return -EINVAL; 1338 } 1339 /* 1340 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1341 * outstanding descriptors are handled correctly during shutdown via 1342 * transport_wait_for_tasks() 1343 * 1344 * Also, we don't take cmd->t_state_lock here as we only expect 1345 * this to be called for initial descriptor submission. 1346 */ 1347 cmd->t_state = TRANSPORT_NEW_CMD; 1348 cmd->transport_state |= CMD_T_ACTIVE; 1349 1350 /* 1351 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1352 * so follow TRANSPORT_NEW_CMD processing thread context usage 1353 * and call transport_generic_request_failure() if necessary.. 1354 */ 1355 ret = transport_generic_new_cmd(cmd); 1356 if (ret) 1357 transport_generic_request_failure(cmd, ret); 1358 return 0; 1359 } 1360 EXPORT_SYMBOL(transport_handle_cdb_direct); 1361 1362 sense_reason_t 1363 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1364 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1365 { 1366 if (!sgl || !sgl_count) 1367 return 0; 1368 1369 /* 1370 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1371 * scatterlists already have been set to follow what the fabric 1372 * passes for the original expected data transfer length. 1373 */ 1374 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1375 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1376 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1377 return TCM_INVALID_CDB_FIELD; 1378 } 1379 1380 cmd->t_data_sg = sgl; 1381 cmd->t_data_nents = sgl_count; 1382 cmd->t_bidi_data_sg = sgl_bidi; 1383 cmd->t_bidi_data_nents = sgl_bidi_count; 1384 1385 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1386 return 0; 1387 } 1388 1389 /* 1390 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1391 * se_cmd + use pre-allocated SGL memory. 1392 * 1393 * @se_cmd: command descriptor to submit 1394 * @se_sess: associated se_sess for endpoint 1395 * @cdb: pointer to SCSI CDB 1396 * @sense: pointer to SCSI sense buffer 1397 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1398 * @data_length: fabric expected data transfer length 1399 * @task_addr: SAM task attribute 1400 * @data_dir: DMA data direction 1401 * @flags: flags for command submission from target_sc_flags_tables 1402 * @sgl: struct scatterlist memory for unidirectional mapping 1403 * @sgl_count: scatterlist count for unidirectional mapping 1404 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1405 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1406 * @sgl_prot: struct scatterlist memory protection information 1407 * @sgl_prot_count: scatterlist count for protection information 1408 * 1409 * Task tags are supported if the caller has set @se_cmd->tag. 1410 * 1411 * Returns non zero to signal active I/O shutdown failure. All other 1412 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1413 * but still return zero here. 1414 * 1415 * This may only be called from process context, and also currently 1416 * assumes internal allocation of fabric payload buffer by target-core. 1417 */ 1418 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1419 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1420 u32 data_length, int task_attr, int data_dir, int flags, 1421 struct scatterlist *sgl, u32 sgl_count, 1422 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1423 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1424 { 1425 struct se_portal_group *se_tpg; 1426 sense_reason_t rc; 1427 int ret; 1428 1429 se_tpg = se_sess->se_tpg; 1430 BUG_ON(!se_tpg); 1431 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1432 BUG_ON(in_interrupt()); 1433 /* 1434 * Initialize se_cmd for target operation. From this point 1435 * exceptions are handled by sending exception status via 1436 * target_core_fabric_ops->queue_status() callback 1437 */ 1438 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1439 data_length, data_dir, task_attr, sense); 1440 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1441 se_cmd->unknown_data_length = 1; 1442 /* 1443 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1444 * se_sess->sess_cmd_list. A second kref_get here is necessary 1445 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1446 * kref_put() to happen during fabric packet acknowledgement. 1447 */ 1448 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1449 if (ret) 1450 return ret; 1451 /* 1452 * Signal bidirectional data payloads to target-core 1453 */ 1454 if (flags & TARGET_SCF_BIDI_OP) 1455 se_cmd->se_cmd_flags |= SCF_BIDI; 1456 /* 1457 * Locate se_lun pointer and attach it to struct se_cmd 1458 */ 1459 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1460 if (rc) { 1461 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1462 target_put_sess_cmd(se_cmd); 1463 return 0; 1464 } 1465 1466 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1467 if (rc != 0) { 1468 transport_generic_request_failure(se_cmd, rc); 1469 return 0; 1470 } 1471 1472 /* 1473 * Save pointers for SGLs containing protection information, 1474 * if present. 1475 */ 1476 if (sgl_prot_count) { 1477 se_cmd->t_prot_sg = sgl_prot; 1478 se_cmd->t_prot_nents = sgl_prot_count; 1479 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1480 } 1481 1482 /* 1483 * When a non zero sgl_count has been passed perform SGL passthrough 1484 * mapping for pre-allocated fabric memory instead of having target 1485 * core perform an internal SGL allocation.. 1486 */ 1487 if (sgl_count != 0) { 1488 BUG_ON(!sgl); 1489 1490 /* 1491 * A work-around for tcm_loop as some userspace code via 1492 * scsi-generic do not memset their associated read buffers, 1493 * so go ahead and do that here for type non-data CDBs. Also 1494 * note that this is currently guaranteed to be a single SGL 1495 * for this case by target core in target_setup_cmd_from_cdb() 1496 * -> transport_generic_cmd_sequencer(). 1497 */ 1498 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1499 se_cmd->data_direction == DMA_FROM_DEVICE) { 1500 unsigned char *buf = NULL; 1501 1502 if (sgl) 1503 buf = kmap(sg_page(sgl)) + sgl->offset; 1504 1505 if (buf) { 1506 memset(buf, 0, sgl->length); 1507 kunmap(sg_page(sgl)); 1508 } 1509 } 1510 1511 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1512 sgl_bidi, sgl_bidi_count); 1513 if (rc != 0) { 1514 transport_generic_request_failure(se_cmd, rc); 1515 return 0; 1516 } 1517 } 1518 1519 /* 1520 * Check if we need to delay processing because of ALUA 1521 * Active/NonOptimized primary access state.. 1522 */ 1523 core_alua_check_nonop_delay(se_cmd); 1524 1525 transport_handle_cdb_direct(se_cmd); 1526 return 0; 1527 } 1528 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1529 1530 /* 1531 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1532 * 1533 * @se_cmd: command descriptor to submit 1534 * @se_sess: associated se_sess for endpoint 1535 * @cdb: pointer to SCSI CDB 1536 * @sense: pointer to SCSI sense buffer 1537 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1538 * @data_length: fabric expected data transfer length 1539 * @task_addr: SAM task attribute 1540 * @data_dir: DMA data direction 1541 * @flags: flags for command submission from target_sc_flags_tables 1542 * 1543 * Task tags are supported if the caller has set @se_cmd->tag. 1544 * 1545 * Returns non zero to signal active I/O shutdown failure. All other 1546 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1547 * but still return zero here. 1548 * 1549 * This may only be called from process context, and also currently 1550 * assumes internal allocation of fabric payload buffer by target-core. 1551 * 1552 * It also assumes interal target core SGL memory allocation. 1553 */ 1554 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1555 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1556 u32 data_length, int task_attr, int data_dir, int flags) 1557 { 1558 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1559 unpacked_lun, data_length, task_attr, data_dir, 1560 flags, NULL, 0, NULL, 0, NULL, 0); 1561 } 1562 EXPORT_SYMBOL(target_submit_cmd); 1563 1564 static void target_complete_tmr_failure(struct work_struct *work) 1565 { 1566 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1567 1568 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1569 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1570 1571 transport_cmd_check_stop_to_fabric(se_cmd); 1572 } 1573 1574 /** 1575 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1576 * for TMR CDBs 1577 * 1578 * @se_cmd: command descriptor to submit 1579 * @se_sess: associated se_sess for endpoint 1580 * @sense: pointer to SCSI sense buffer 1581 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1582 * @fabric_context: fabric context for TMR req 1583 * @tm_type: Type of TM request 1584 * @gfp: gfp type for caller 1585 * @tag: referenced task tag for TMR_ABORT_TASK 1586 * @flags: submit cmd flags 1587 * 1588 * Callable from all contexts. 1589 **/ 1590 1591 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1592 unsigned char *sense, u64 unpacked_lun, 1593 void *fabric_tmr_ptr, unsigned char tm_type, 1594 gfp_t gfp, u64 tag, int flags) 1595 { 1596 struct se_portal_group *se_tpg; 1597 int ret; 1598 1599 se_tpg = se_sess->se_tpg; 1600 BUG_ON(!se_tpg); 1601 1602 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1603 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1604 /* 1605 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1606 * allocation failure. 1607 */ 1608 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1609 if (ret < 0) 1610 return -ENOMEM; 1611 1612 if (tm_type == TMR_ABORT_TASK) 1613 se_cmd->se_tmr_req->ref_task_tag = tag; 1614 1615 /* See target_submit_cmd for commentary */ 1616 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1617 if (ret) { 1618 core_tmr_release_req(se_cmd->se_tmr_req); 1619 return ret; 1620 } 1621 1622 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1623 if (ret) { 1624 /* 1625 * For callback during failure handling, push this work off 1626 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1627 */ 1628 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1629 schedule_work(&se_cmd->work); 1630 return 0; 1631 } 1632 transport_generic_handle_tmr(se_cmd); 1633 return 0; 1634 } 1635 EXPORT_SYMBOL(target_submit_tmr); 1636 1637 /* 1638 * If the cmd is active, request it to be stopped and sleep until it 1639 * has completed. 1640 */ 1641 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1642 __releases(&cmd->t_state_lock) 1643 __acquires(&cmd->t_state_lock) 1644 { 1645 bool was_active = false; 1646 1647 if (cmd->transport_state & CMD_T_BUSY) { 1648 cmd->transport_state |= CMD_T_REQUEST_STOP; 1649 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1650 1651 pr_debug("cmd %p waiting to complete\n", cmd); 1652 wait_for_completion(&cmd->task_stop_comp); 1653 pr_debug("cmd %p stopped successfully\n", cmd); 1654 1655 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1656 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1657 cmd->transport_state &= ~CMD_T_BUSY; 1658 was_active = true; 1659 } 1660 1661 return was_active; 1662 } 1663 1664 /* 1665 * Handle SAM-esque emulation for generic transport request failures. 1666 */ 1667 void transport_generic_request_failure(struct se_cmd *cmd, 1668 sense_reason_t sense_reason) 1669 { 1670 int ret = 0, post_ret = 0; 1671 1672 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" 1673 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); 1674 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1675 cmd->se_tfo->get_cmd_state(cmd), 1676 cmd->t_state, sense_reason); 1677 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1678 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1679 (cmd->transport_state & CMD_T_STOP) != 0, 1680 (cmd->transport_state & CMD_T_SENT) != 0); 1681 1682 /* 1683 * For SAM Task Attribute emulation for failed struct se_cmd 1684 */ 1685 transport_complete_task_attr(cmd); 1686 /* 1687 * Handle special case for COMPARE_AND_WRITE failure, where the 1688 * callback is expected to drop the per device ->caw_sem. 1689 */ 1690 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1691 cmd->transport_complete_callback) 1692 cmd->transport_complete_callback(cmd, false, &post_ret); 1693 1694 switch (sense_reason) { 1695 case TCM_NON_EXISTENT_LUN: 1696 case TCM_UNSUPPORTED_SCSI_OPCODE: 1697 case TCM_INVALID_CDB_FIELD: 1698 case TCM_INVALID_PARAMETER_LIST: 1699 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1700 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1701 case TCM_UNKNOWN_MODE_PAGE: 1702 case TCM_WRITE_PROTECTED: 1703 case TCM_ADDRESS_OUT_OF_RANGE: 1704 case TCM_CHECK_CONDITION_ABORT_CMD: 1705 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1706 case TCM_CHECK_CONDITION_NOT_READY: 1707 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1708 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1709 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1710 break; 1711 case TCM_OUT_OF_RESOURCES: 1712 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1713 break; 1714 case TCM_RESERVATION_CONFLICT: 1715 /* 1716 * No SENSE Data payload for this case, set SCSI Status 1717 * and queue the response to $FABRIC_MOD. 1718 * 1719 * Uses linux/include/scsi/scsi.h SAM status codes defs 1720 */ 1721 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1722 /* 1723 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1724 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1725 * CONFLICT STATUS. 1726 * 1727 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1728 */ 1729 if (cmd->se_sess && 1730 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1731 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1732 cmd->orig_fe_lun, 0x2C, 1733 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1734 } 1735 trace_target_cmd_complete(cmd); 1736 ret = cmd->se_tfo->queue_status(cmd); 1737 if (ret == -EAGAIN || ret == -ENOMEM) 1738 goto queue_full; 1739 goto check_stop; 1740 default: 1741 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1742 cmd->t_task_cdb[0], sense_reason); 1743 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1744 break; 1745 } 1746 1747 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1748 if (ret == -EAGAIN || ret == -ENOMEM) 1749 goto queue_full; 1750 1751 check_stop: 1752 transport_lun_remove_cmd(cmd); 1753 transport_cmd_check_stop_to_fabric(cmd); 1754 return; 1755 1756 queue_full: 1757 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1758 transport_handle_queue_full(cmd, cmd->se_dev); 1759 } 1760 EXPORT_SYMBOL(transport_generic_request_failure); 1761 1762 void __target_execute_cmd(struct se_cmd *cmd) 1763 { 1764 sense_reason_t ret; 1765 1766 if (cmd->execute_cmd) { 1767 ret = cmd->execute_cmd(cmd); 1768 if (ret) { 1769 spin_lock_irq(&cmd->t_state_lock); 1770 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1771 spin_unlock_irq(&cmd->t_state_lock); 1772 1773 transport_generic_request_failure(cmd, ret); 1774 } 1775 } 1776 } 1777 1778 static int target_write_prot_action(struct se_cmd *cmd) 1779 { 1780 u32 sectors; 1781 /* 1782 * Perform WRITE_INSERT of PI using software emulation when backend 1783 * device has PI enabled, if the transport has not already generated 1784 * PI using hardware WRITE_INSERT offload. 1785 */ 1786 switch (cmd->prot_op) { 1787 case TARGET_PROT_DOUT_INSERT: 1788 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1789 sbc_dif_generate(cmd); 1790 break; 1791 case TARGET_PROT_DOUT_STRIP: 1792 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1793 break; 1794 1795 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1796 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1797 sectors, 0, cmd->t_prot_sg, 0); 1798 if (unlikely(cmd->pi_err)) { 1799 spin_lock_irq(&cmd->t_state_lock); 1800 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1801 spin_unlock_irq(&cmd->t_state_lock); 1802 transport_generic_request_failure(cmd, cmd->pi_err); 1803 return -1; 1804 } 1805 break; 1806 default: 1807 break; 1808 } 1809 1810 return 0; 1811 } 1812 1813 static bool target_handle_task_attr(struct se_cmd *cmd) 1814 { 1815 struct se_device *dev = cmd->se_dev; 1816 1817 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1818 return false; 1819 1820 /* 1821 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1822 * to allow the passed struct se_cmd list of tasks to the front of the list. 1823 */ 1824 switch (cmd->sam_task_attr) { 1825 case TCM_HEAD_TAG: 1826 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1827 cmd->t_task_cdb[0]); 1828 return false; 1829 case TCM_ORDERED_TAG: 1830 atomic_inc_mb(&dev->dev_ordered_sync); 1831 1832 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1833 cmd->t_task_cdb[0]); 1834 1835 /* 1836 * Execute an ORDERED command if no other older commands 1837 * exist that need to be completed first. 1838 */ 1839 if (!atomic_read(&dev->simple_cmds)) 1840 return false; 1841 break; 1842 default: 1843 /* 1844 * For SIMPLE and UNTAGGED Task Attribute commands 1845 */ 1846 atomic_inc_mb(&dev->simple_cmds); 1847 break; 1848 } 1849 1850 if (atomic_read(&dev->dev_ordered_sync) == 0) 1851 return false; 1852 1853 spin_lock(&dev->delayed_cmd_lock); 1854 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1855 spin_unlock(&dev->delayed_cmd_lock); 1856 1857 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1858 cmd->t_task_cdb[0], cmd->sam_task_attr); 1859 return true; 1860 } 1861 1862 void target_execute_cmd(struct se_cmd *cmd) 1863 { 1864 /* 1865 * If the received CDB has aleady been aborted stop processing it here. 1866 */ 1867 if (transport_check_aborted_status(cmd, 1)) 1868 return; 1869 1870 /* 1871 * Determine if frontend context caller is requesting the stopping of 1872 * this command for frontend exceptions. 1873 */ 1874 spin_lock_irq(&cmd->t_state_lock); 1875 if (cmd->transport_state & CMD_T_STOP) { 1876 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1877 __func__, __LINE__, cmd->tag); 1878 1879 spin_unlock_irq(&cmd->t_state_lock); 1880 complete_all(&cmd->t_transport_stop_comp); 1881 return; 1882 } 1883 1884 cmd->t_state = TRANSPORT_PROCESSING; 1885 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1886 spin_unlock_irq(&cmd->t_state_lock); 1887 1888 if (target_write_prot_action(cmd)) 1889 return; 1890 1891 if (target_handle_task_attr(cmd)) { 1892 spin_lock_irq(&cmd->t_state_lock); 1893 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT); 1894 spin_unlock_irq(&cmd->t_state_lock); 1895 return; 1896 } 1897 1898 __target_execute_cmd(cmd); 1899 } 1900 EXPORT_SYMBOL(target_execute_cmd); 1901 1902 /* 1903 * Process all commands up to the last received ORDERED task attribute which 1904 * requires another blocking boundary 1905 */ 1906 static void target_restart_delayed_cmds(struct se_device *dev) 1907 { 1908 for (;;) { 1909 struct se_cmd *cmd; 1910 1911 spin_lock(&dev->delayed_cmd_lock); 1912 if (list_empty(&dev->delayed_cmd_list)) { 1913 spin_unlock(&dev->delayed_cmd_lock); 1914 break; 1915 } 1916 1917 cmd = list_entry(dev->delayed_cmd_list.next, 1918 struct se_cmd, se_delayed_node); 1919 list_del(&cmd->se_delayed_node); 1920 spin_unlock(&dev->delayed_cmd_lock); 1921 1922 __target_execute_cmd(cmd); 1923 1924 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1925 break; 1926 } 1927 } 1928 1929 /* 1930 * Called from I/O completion to determine which dormant/delayed 1931 * and ordered cmds need to have their tasks added to the execution queue. 1932 */ 1933 static void transport_complete_task_attr(struct se_cmd *cmd) 1934 { 1935 struct se_device *dev = cmd->se_dev; 1936 1937 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1938 return; 1939 1940 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1941 atomic_dec_mb(&dev->simple_cmds); 1942 dev->dev_cur_ordered_id++; 1943 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n", 1944 dev->dev_cur_ordered_id); 1945 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1946 dev->dev_cur_ordered_id++; 1947 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 1948 dev->dev_cur_ordered_id); 1949 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1950 atomic_dec_mb(&dev->dev_ordered_sync); 1951 1952 dev->dev_cur_ordered_id++; 1953 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 1954 dev->dev_cur_ordered_id); 1955 } 1956 1957 target_restart_delayed_cmds(dev); 1958 } 1959 1960 static void transport_complete_qf(struct se_cmd *cmd) 1961 { 1962 int ret = 0; 1963 1964 transport_complete_task_attr(cmd); 1965 1966 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1967 trace_target_cmd_complete(cmd); 1968 ret = cmd->se_tfo->queue_status(cmd); 1969 goto out; 1970 } 1971 1972 switch (cmd->data_direction) { 1973 case DMA_FROM_DEVICE: 1974 trace_target_cmd_complete(cmd); 1975 ret = cmd->se_tfo->queue_data_in(cmd); 1976 break; 1977 case DMA_TO_DEVICE: 1978 if (cmd->se_cmd_flags & SCF_BIDI) { 1979 ret = cmd->se_tfo->queue_data_in(cmd); 1980 break; 1981 } 1982 /* Fall through for DMA_TO_DEVICE */ 1983 case DMA_NONE: 1984 trace_target_cmd_complete(cmd); 1985 ret = cmd->se_tfo->queue_status(cmd); 1986 break; 1987 default: 1988 break; 1989 } 1990 1991 out: 1992 if (ret < 0) { 1993 transport_handle_queue_full(cmd, cmd->se_dev); 1994 return; 1995 } 1996 transport_lun_remove_cmd(cmd); 1997 transport_cmd_check_stop_to_fabric(cmd); 1998 } 1999 2000 static void transport_handle_queue_full( 2001 struct se_cmd *cmd, 2002 struct se_device *dev) 2003 { 2004 spin_lock_irq(&dev->qf_cmd_lock); 2005 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2006 atomic_inc_mb(&dev->dev_qf_count); 2007 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2008 2009 schedule_work(&cmd->se_dev->qf_work_queue); 2010 } 2011 2012 static bool target_read_prot_action(struct se_cmd *cmd) 2013 { 2014 switch (cmd->prot_op) { 2015 case TARGET_PROT_DIN_STRIP: 2016 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2017 u32 sectors = cmd->data_length >> 2018 ilog2(cmd->se_dev->dev_attrib.block_size); 2019 2020 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2021 sectors, 0, cmd->t_prot_sg, 2022 0); 2023 if (cmd->pi_err) 2024 return true; 2025 } 2026 break; 2027 case TARGET_PROT_DIN_INSERT: 2028 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2029 break; 2030 2031 sbc_dif_generate(cmd); 2032 break; 2033 default: 2034 break; 2035 } 2036 2037 return false; 2038 } 2039 2040 static void target_complete_ok_work(struct work_struct *work) 2041 { 2042 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2043 int ret; 2044 2045 /* 2046 * Check if we need to move delayed/dormant tasks from cmds on the 2047 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2048 * Attribute. 2049 */ 2050 transport_complete_task_attr(cmd); 2051 2052 /* 2053 * Check to schedule QUEUE_FULL work, or execute an existing 2054 * cmd->transport_qf_callback() 2055 */ 2056 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2057 schedule_work(&cmd->se_dev->qf_work_queue); 2058 2059 /* 2060 * Check if we need to send a sense buffer from 2061 * the struct se_cmd in question. 2062 */ 2063 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2064 WARN_ON(!cmd->scsi_status); 2065 ret = transport_send_check_condition_and_sense( 2066 cmd, 0, 1); 2067 if (ret == -EAGAIN || ret == -ENOMEM) 2068 goto queue_full; 2069 2070 transport_lun_remove_cmd(cmd); 2071 transport_cmd_check_stop_to_fabric(cmd); 2072 return; 2073 } 2074 /* 2075 * Check for a callback, used by amongst other things 2076 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2077 */ 2078 if (cmd->transport_complete_callback) { 2079 sense_reason_t rc; 2080 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2081 bool zero_dl = !(cmd->data_length); 2082 int post_ret = 0; 2083 2084 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2085 if (!rc && !post_ret) { 2086 if (caw && zero_dl) 2087 goto queue_rsp; 2088 2089 return; 2090 } else if (rc) { 2091 ret = transport_send_check_condition_and_sense(cmd, 2092 rc, 0); 2093 if (ret == -EAGAIN || ret == -ENOMEM) 2094 goto queue_full; 2095 2096 transport_lun_remove_cmd(cmd); 2097 transport_cmd_check_stop_to_fabric(cmd); 2098 return; 2099 } 2100 } 2101 2102 queue_rsp: 2103 switch (cmd->data_direction) { 2104 case DMA_FROM_DEVICE: 2105 atomic_long_add(cmd->data_length, 2106 &cmd->se_lun->lun_stats.tx_data_octets); 2107 /* 2108 * Perform READ_STRIP of PI using software emulation when 2109 * backend had PI enabled, if the transport will not be 2110 * performing hardware READ_STRIP offload. 2111 */ 2112 if (target_read_prot_action(cmd)) { 2113 ret = transport_send_check_condition_and_sense(cmd, 2114 cmd->pi_err, 0); 2115 if (ret == -EAGAIN || ret == -ENOMEM) 2116 goto queue_full; 2117 2118 transport_lun_remove_cmd(cmd); 2119 transport_cmd_check_stop_to_fabric(cmd); 2120 return; 2121 } 2122 2123 trace_target_cmd_complete(cmd); 2124 ret = cmd->se_tfo->queue_data_in(cmd); 2125 if (ret == -EAGAIN || ret == -ENOMEM) 2126 goto queue_full; 2127 break; 2128 case DMA_TO_DEVICE: 2129 atomic_long_add(cmd->data_length, 2130 &cmd->se_lun->lun_stats.rx_data_octets); 2131 /* 2132 * Check if we need to send READ payload for BIDI-COMMAND 2133 */ 2134 if (cmd->se_cmd_flags & SCF_BIDI) { 2135 atomic_long_add(cmd->data_length, 2136 &cmd->se_lun->lun_stats.tx_data_octets); 2137 ret = cmd->se_tfo->queue_data_in(cmd); 2138 if (ret == -EAGAIN || ret == -ENOMEM) 2139 goto queue_full; 2140 break; 2141 } 2142 /* Fall through for DMA_TO_DEVICE */ 2143 case DMA_NONE: 2144 trace_target_cmd_complete(cmd); 2145 ret = cmd->se_tfo->queue_status(cmd); 2146 if (ret == -EAGAIN || ret == -ENOMEM) 2147 goto queue_full; 2148 break; 2149 default: 2150 break; 2151 } 2152 2153 transport_lun_remove_cmd(cmd); 2154 transport_cmd_check_stop_to_fabric(cmd); 2155 return; 2156 2157 queue_full: 2158 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2159 " data_direction: %d\n", cmd, cmd->data_direction); 2160 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2161 transport_handle_queue_full(cmd, cmd->se_dev); 2162 } 2163 2164 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 2165 { 2166 struct scatterlist *sg; 2167 int count; 2168 2169 for_each_sg(sgl, sg, nents, count) 2170 __free_page(sg_page(sg)); 2171 2172 kfree(sgl); 2173 } 2174 2175 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2176 { 2177 /* 2178 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2179 * emulation, and free + reset pointers if necessary.. 2180 */ 2181 if (!cmd->t_data_sg_orig) 2182 return; 2183 2184 kfree(cmd->t_data_sg); 2185 cmd->t_data_sg = cmd->t_data_sg_orig; 2186 cmd->t_data_sg_orig = NULL; 2187 cmd->t_data_nents = cmd->t_data_nents_orig; 2188 cmd->t_data_nents_orig = 0; 2189 } 2190 2191 static inline void transport_free_pages(struct se_cmd *cmd) 2192 { 2193 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2194 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2195 cmd->t_prot_sg = NULL; 2196 cmd->t_prot_nents = 0; 2197 } 2198 2199 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2200 /* 2201 * Release special case READ buffer payload required for 2202 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2203 */ 2204 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2205 transport_free_sgl(cmd->t_bidi_data_sg, 2206 cmd->t_bidi_data_nents); 2207 cmd->t_bidi_data_sg = NULL; 2208 cmd->t_bidi_data_nents = 0; 2209 } 2210 transport_reset_sgl_orig(cmd); 2211 return; 2212 } 2213 transport_reset_sgl_orig(cmd); 2214 2215 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2216 cmd->t_data_sg = NULL; 2217 cmd->t_data_nents = 0; 2218 2219 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2220 cmd->t_bidi_data_sg = NULL; 2221 cmd->t_bidi_data_nents = 0; 2222 } 2223 2224 /** 2225 * transport_release_cmd - free a command 2226 * @cmd: command to free 2227 * 2228 * This routine unconditionally frees a command, and reference counting 2229 * or list removal must be done in the caller. 2230 */ 2231 static int transport_release_cmd(struct se_cmd *cmd) 2232 { 2233 BUG_ON(!cmd->se_tfo); 2234 2235 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2236 core_tmr_release_req(cmd->se_tmr_req); 2237 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2238 kfree(cmd->t_task_cdb); 2239 /* 2240 * If this cmd has been setup with target_get_sess_cmd(), drop 2241 * the kref and call ->release_cmd() in kref callback. 2242 */ 2243 return target_put_sess_cmd(cmd); 2244 } 2245 2246 /** 2247 * transport_put_cmd - release a reference to a command 2248 * @cmd: command to release 2249 * 2250 * This routine releases our reference to the command and frees it if possible. 2251 */ 2252 static int transport_put_cmd(struct se_cmd *cmd) 2253 { 2254 transport_free_pages(cmd); 2255 return transport_release_cmd(cmd); 2256 } 2257 2258 void *transport_kmap_data_sg(struct se_cmd *cmd) 2259 { 2260 struct scatterlist *sg = cmd->t_data_sg; 2261 struct page **pages; 2262 int i; 2263 2264 /* 2265 * We need to take into account a possible offset here for fabrics like 2266 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2267 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2268 */ 2269 if (!cmd->t_data_nents) 2270 return NULL; 2271 2272 BUG_ON(!sg); 2273 if (cmd->t_data_nents == 1) 2274 return kmap(sg_page(sg)) + sg->offset; 2275 2276 /* >1 page. use vmap */ 2277 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2278 if (!pages) 2279 return NULL; 2280 2281 /* convert sg[] to pages[] */ 2282 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2283 pages[i] = sg_page(sg); 2284 } 2285 2286 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2287 kfree(pages); 2288 if (!cmd->t_data_vmap) 2289 return NULL; 2290 2291 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2292 } 2293 EXPORT_SYMBOL(transport_kmap_data_sg); 2294 2295 void transport_kunmap_data_sg(struct se_cmd *cmd) 2296 { 2297 if (!cmd->t_data_nents) { 2298 return; 2299 } else if (cmd->t_data_nents == 1) { 2300 kunmap(sg_page(cmd->t_data_sg)); 2301 return; 2302 } 2303 2304 vunmap(cmd->t_data_vmap); 2305 cmd->t_data_vmap = NULL; 2306 } 2307 EXPORT_SYMBOL(transport_kunmap_data_sg); 2308 2309 int 2310 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2311 bool zero_page) 2312 { 2313 struct scatterlist *sg; 2314 struct page *page; 2315 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2316 unsigned int nent; 2317 int i = 0; 2318 2319 nent = DIV_ROUND_UP(length, PAGE_SIZE); 2320 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL); 2321 if (!sg) 2322 return -ENOMEM; 2323 2324 sg_init_table(sg, nent); 2325 2326 while (length) { 2327 u32 page_len = min_t(u32, length, PAGE_SIZE); 2328 page = alloc_page(GFP_KERNEL | zero_flag); 2329 if (!page) 2330 goto out; 2331 2332 sg_set_page(&sg[i], page, page_len, 0); 2333 length -= page_len; 2334 i++; 2335 } 2336 *sgl = sg; 2337 *nents = nent; 2338 return 0; 2339 2340 out: 2341 while (i > 0) { 2342 i--; 2343 __free_page(sg_page(&sg[i])); 2344 } 2345 kfree(sg); 2346 return -ENOMEM; 2347 } 2348 2349 /* 2350 * Allocate any required resources to execute the command. For writes we 2351 * might not have the payload yet, so notify the fabric via a call to 2352 * ->write_pending instead. Otherwise place it on the execution queue. 2353 */ 2354 sense_reason_t 2355 transport_generic_new_cmd(struct se_cmd *cmd) 2356 { 2357 int ret = 0; 2358 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2359 2360 if (cmd->prot_op != TARGET_PROT_NORMAL && 2361 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2362 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2363 cmd->prot_length, true); 2364 if (ret < 0) 2365 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2366 } 2367 2368 /* 2369 * Determine is the TCM fabric module has already allocated physical 2370 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2371 * beforehand. 2372 */ 2373 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2374 cmd->data_length) { 2375 2376 if ((cmd->se_cmd_flags & SCF_BIDI) || 2377 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2378 u32 bidi_length; 2379 2380 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2381 bidi_length = cmd->t_task_nolb * 2382 cmd->se_dev->dev_attrib.block_size; 2383 else 2384 bidi_length = cmd->data_length; 2385 2386 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2387 &cmd->t_bidi_data_nents, 2388 bidi_length, zero_flag); 2389 if (ret < 0) 2390 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2391 } 2392 2393 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2394 cmd->data_length, zero_flag); 2395 if (ret < 0) 2396 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2397 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2398 cmd->data_length) { 2399 /* 2400 * Special case for COMPARE_AND_WRITE with fabrics 2401 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2402 */ 2403 u32 caw_length = cmd->t_task_nolb * 2404 cmd->se_dev->dev_attrib.block_size; 2405 2406 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2407 &cmd->t_bidi_data_nents, 2408 caw_length, zero_flag); 2409 if (ret < 0) 2410 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2411 } 2412 /* 2413 * If this command is not a write we can execute it right here, 2414 * for write buffers we need to notify the fabric driver first 2415 * and let it call back once the write buffers are ready. 2416 */ 2417 target_add_to_state_list(cmd); 2418 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2419 target_execute_cmd(cmd); 2420 return 0; 2421 } 2422 transport_cmd_check_stop(cmd, false, true); 2423 2424 ret = cmd->se_tfo->write_pending(cmd); 2425 if (ret == -EAGAIN || ret == -ENOMEM) 2426 goto queue_full; 2427 2428 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2429 WARN_ON(ret); 2430 2431 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2432 2433 queue_full: 2434 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2435 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2436 transport_handle_queue_full(cmd, cmd->se_dev); 2437 return 0; 2438 } 2439 EXPORT_SYMBOL(transport_generic_new_cmd); 2440 2441 static void transport_write_pending_qf(struct se_cmd *cmd) 2442 { 2443 int ret; 2444 2445 ret = cmd->se_tfo->write_pending(cmd); 2446 if (ret == -EAGAIN || ret == -ENOMEM) { 2447 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2448 cmd); 2449 transport_handle_queue_full(cmd, cmd->se_dev); 2450 } 2451 } 2452 2453 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2454 { 2455 unsigned long flags; 2456 int ret = 0; 2457 2458 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2459 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2460 transport_wait_for_tasks(cmd); 2461 2462 ret = transport_release_cmd(cmd); 2463 } else { 2464 if (wait_for_tasks) 2465 transport_wait_for_tasks(cmd); 2466 /* 2467 * Handle WRITE failure case where transport_generic_new_cmd() 2468 * has already added se_cmd to state_list, but fabric has 2469 * failed command before I/O submission. 2470 */ 2471 if (cmd->state_active) { 2472 spin_lock_irqsave(&cmd->t_state_lock, flags); 2473 target_remove_from_state_list(cmd); 2474 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2475 } 2476 2477 if (cmd->se_lun) 2478 transport_lun_remove_cmd(cmd); 2479 2480 ret = transport_put_cmd(cmd); 2481 } 2482 return ret; 2483 } 2484 EXPORT_SYMBOL(transport_generic_free_cmd); 2485 2486 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2487 * @se_cmd: command descriptor to add 2488 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2489 */ 2490 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2491 { 2492 struct se_session *se_sess = se_cmd->se_sess; 2493 unsigned long flags; 2494 int ret = 0; 2495 2496 /* 2497 * Add a second kref if the fabric caller is expecting to handle 2498 * fabric acknowledgement that requires two target_put_sess_cmd() 2499 * invocations before se_cmd descriptor release. 2500 */ 2501 if (ack_kref) 2502 kref_get(&se_cmd->cmd_kref); 2503 2504 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2505 if (se_sess->sess_tearing_down) { 2506 ret = -ESHUTDOWN; 2507 goto out; 2508 } 2509 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2510 out: 2511 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2512 2513 if (ret && ack_kref) 2514 target_put_sess_cmd(se_cmd); 2515 2516 return ret; 2517 } 2518 EXPORT_SYMBOL(target_get_sess_cmd); 2519 2520 static void target_release_cmd_kref(struct kref *kref) 2521 { 2522 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2523 struct se_session *se_sess = se_cmd->se_sess; 2524 unsigned long flags; 2525 2526 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2527 if (list_empty(&se_cmd->se_cmd_list)) { 2528 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2529 se_cmd->se_tfo->release_cmd(se_cmd); 2530 return; 2531 } 2532 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2533 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2534 complete(&se_cmd->cmd_wait_comp); 2535 return; 2536 } 2537 list_del(&se_cmd->se_cmd_list); 2538 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2539 2540 se_cmd->se_tfo->release_cmd(se_cmd); 2541 } 2542 2543 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2544 * @se_cmd: command descriptor to drop 2545 */ 2546 int target_put_sess_cmd(struct se_cmd *se_cmd) 2547 { 2548 struct se_session *se_sess = se_cmd->se_sess; 2549 2550 if (!se_sess) { 2551 se_cmd->se_tfo->release_cmd(se_cmd); 2552 return 1; 2553 } 2554 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2555 } 2556 EXPORT_SYMBOL(target_put_sess_cmd); 2557 2558 /* target_sess_cmd_list_set_waiting - Flag all commands in 2559 * sess_cmd_list to complete cmd_wait_comp. Set 2560 * sess_tearing_down so no more commands are queued. 2561 * @se_sess: session to flag 2562 */ 2563 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2564 { 2565 struct se_cmd *se_cmd; 2566 unsigned long flags; 2567 2568 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2569 if (se_sess->sess_tearing_down) { 2570 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2571 return; 2572 } 2573 se_sess->sess_tearing_down = 1; 2574 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2575 2576 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2577 se_cmd->cmd_wait_set = 1; 2578 2579 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2580 } 2581 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2582 2583 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2584 * @se_sess: session to wait for active I/O 2585 */ 2586 void target_wait_for_sess_cmds(struct se_session *se_sess) 2587 { 2588 struct se_cmd *se_cmd, *tmp_cmd; 2589 unsigned long flags; 2590 2591 list_for_each_entry_safe(se_cmd, tmp_cmd, 2592 &se_sess->sess_wait_list, se_cmd_list) { 2593 list_del(&se_cmd->se_cmd_list); 2594 2595 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2596 " %d\n", se_cmd, se_cmd->t_state, 2597 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2598 2599 wait_for_completion(&se_cmd->cmd_wait_comp); 2600 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2601 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2602 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2603 2604 se_cmd->se_tfo->release_cmd(se_cmd); 2605 } 2606 2607 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2608 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2609 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2610 2611 } 2612 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2613 2614 void transport_clear_lun_ref(struct se_lun *lun) 2615 { 2616 percpu_ref_kill(&lun->lun_ref); 2617 wait_for_completion(&lun->lun_ref_comp); 2618 } 2619 2620 /** 2621 * transport_wait_for_tasks - wait for completion to occur 2622 * @cmd: command to wait 2623 * 2624 * Called from frontend fabric context to wait for storage engine 2625 * to pause and/or release frontend generated struct se_cmd. 2626 */ 2627 bool transport_wait_for_tasks(struct se_cmd *cmd) 2628 { 2629 unsigned long flags; 2630 2631 spin_lock_irqsave(&cmd->t_state_lock, flags); 2632 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2633 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2634 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2635 return false; 2636 } 2637 2638 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2639 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2640 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2641 return false; 2642 } 2643 2644 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2645 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2646 return false; 2647 } 2648 2649 cmd->transport_state |= CMD_T_STOP; 2650 2651 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d, t_state: %d, CMD_T_STOP\n", 2652 cmd, cmd->tag, cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2653 2654 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2655 2656 wait_for_completion(&cmd->t_transport_stop_comp); 2657 2658 spin_lock_irqsave(&cmd->t_state_lock, flags); 2659 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2660 2661 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->t_transport_stop_comp) for ITT: 0x%08llx\n", 2662 cmd->tag); 2663 2664 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2665 2666 return true; 2667 } 2668 EXPORT_SYMBOL(transport_wait_for_tasks); 2669 2670 struct sense_info { 2671 u8 key; 2672 u8 asc; 2673 u8 ascq; 2674 bool add_sector_info; 2675 }; 2676 2677 static const struct sense_info sense_info_table[] = { 2678 [TCM_NO_SENSE] = { 2679 .key = NOT_READY 2680 }, 2681 [TCM_NON_EXISTENT_LUN] = { 2682 .key = ILLEGAL_REQUEST, 2683 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 2684 }, 2685 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 2686 .key = ILLEGAL_REQUEST, 2687 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2688 }, 2689 [TCM_SECTOR_COUNT_TOO_MANY] = { 2690 .key = ILLEGAL_REQUEST, 2691 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2692 }, 2693 [TCM_UNKNOWN_MODE_PAGE] = { 2694 .key = ILLEGAL_REQUEST, 2695 .asc = 0x24, /* INVALID FIELD IN CDB */ 2696 }, 2697 [TCM_CHECK_CONDITION_ABORT_CMD] = { 2698 .key = ABORTED_COMMAND, 2699 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 2700 .ascq = 0x03, 2701 }, 2702 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 2703 .key = ABORTED_COMMAND, 2704 .asc = 0x0c, /* WRITE ERROR */ 2705 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 2706 }, 2707 [TCM_INVALID_CDB_FIELD] = { 2708 .key = ILLEGAL_REQUEST, 2709 .asc = 0x24, /* INVALID FIELD IN CDB */ 2710 }, 2711 [TCM_INVALID_PARAMETER_LIST] = { 2712 .key = ILLEGAL_REQUEST, 2713 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 2714 }, 2715 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 2716 .key = ILLEGAL_REQUEST, 2717 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 2718 }, 2719 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 2720 .key = ILLEGAL_REQUEST, 2721 .asc = 0x0c, /* WRITE ERROR */ 2722 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 2723 }, 2724 [TCM_SERVICE_CRC_ERROR] = { 2725 .key = ABORTED_COMMAND, 2726 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 2727 .ascq = 0x05, /* N/A */ 2728 }, 2729 [TCM_SNACK_REJECTED] = { 2730 .key = ABORTED_COMMAND, 2731 .asc = 0x11, /* READ ERROR */ 2732 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 2733 }, 2734 [TCM_WRITE_PROTECTED] = { 2735 .key = DATA_PROTECT, 2736 .asc = 0x27, /* WRITE PROTECTED */ 2737 }, 2738 [TCM_ADDRESS_OUT_OF_RANGE] = { 2739 .key = ILLEGAL_REQUEST, 2740 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2741 }, 2742 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 2743 .key = UNIT_ATTENTION, 2744 }, 2745 [TCM_CHECK_CONDITION_NOT_READY] = { 2746 .key = NOT_READY, 2747 }, 2748 [TCM_MISCOMPARE_VERIFY] = { 2749 .key = MISCOMPARE, 2750 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 2751 .ascq = 0x00, 2752 }, 2753 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 2754 .key = ABORTED_COMMAND, 2755 .asc = 0x10, 2756 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 2757 .add_sector_info = true, 2758 }, 2759 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 2760 .key = ABORTED_COMMAND, 2761 .asc = 0x10, 2762 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2763 .add_sector_info = true, 2764 }, 2765 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 2766 .key = ABORTED_COMMAND, 2767 .asc = 0x10, 2768 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2769 .add_sector_info = true, 2770 }, 2771 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 2772 /* 2773 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2774 * Solaris initiators. Returning NOT READY instead means the 2775 * operations will be retried a finite number of times and we 2776 * can survive intermittent errors. 2777 */ 2778 .key = NOT_READY, 2779 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 2780 }, 2781 }; 2782 2783 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 2784 { 2785 const struct sense_info *si; 2786 u8 *buffer = cmd->sense_buffer; 2787 int r = (__force int)reason; 2788 u8 asc, ascq; 2789 bool desc_format = target_sense_desc_format(cmd->se_dev); 2790 2791 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 2792 si = &sense_info_table[r]; 2793 else 2794 si = &sense_info_table[(__force int) 2795 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 2796 2797 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 2798 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2799 WARN_ON_ONCE(asc == 0); 2800 } else if (si->asc == 0) { 2801 WARN_ON_ONCE(cmd->scsi_asc == 0); 2802 asc = cmd->scsi_asc; 2803 ascq = cmd->scsi_ascq; 2804 } else { 2805 asc = si->asc; 2806 ascq = si->ascq; 2807 } 2808 2809 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 2810 if (si->add_sector_info) 2811 return scsi_set_sense_information(buffer, 2812 cmd->scsi_sense_length, 2813 cmd->bad_sector); 2814 2815 return 0; 2816 } 2817 2818 int 2819 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2820 sense_reason_t reason, int from_transport) 2821 { 2822 unsigned long flags; 2823 2824 spin_lock_irqsave(&cmd->t_state_lock, flags); 2825 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2826 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2827 return 0; 2828 } 2829 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2830 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2831 2832 if (!from_transport) { 2833 int rc; 2834 2835 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2836 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2837 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2838 rc = translate_sense_reason(cmd, reason); 2839 if (rc) 2840 return rc; 2841 } 2842 2843 trace_target_cmd_complete(cmd); 2844 return cmd->se_tfo->queue_status(cmd); 2845 } 2846 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2847 2848 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2849 { 2850 if (!(cmd->transport_state & CMD_T_ABORTED)) 2851 return 0; 2852 2853 /* 2854 * If cmd has been aborted but either no status is to be sent or it has 2855 * already been sent, just return 2856 */ 2857 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) 2858 return 1; 2859 2860 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08llx\n", 2861 cmd->t_task_cdb[0], cmd->tag); 2862 2863 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 2864 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2865 trace_target_cmd_complete(cmd); 2866 cmd->se_tfo->queue_status(cmd); 2867 2868 return 1; 2869 } 2870 EXPORT_SYMBOL(transport_check_aborted_status); 2871 2872 void transport_send_task_abort(struct se_cmd *cmd) 2873 { 2874 unsigned long flags; 2875 2876 spin_lock_irqsave(&cmd->t_state_lock, flags); 2877 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 2878 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2879 return; 2880 } 2881 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2882 2883 /* 2884 * If there are still expected incoming fabric WRITEs, we wait 2885 * until until they have completed before sending a TASK_ABORTED 2886 * response. This response with TASK_ABORTED status will be 2887 * queued back to fabric module by transport_check_aborted_status(). 2888 */ 2889 if (cmd->data_direction == DMA_TO_DEVICE) { 2890 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2891 cmd->transport_state |= CMD_T_ABORTED; 2892 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 2893 return; 2894 } 2895 } 2896 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2897 2898 transport_lun_remove_cmd(cmd); 2899 2900 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 2901 cmd->t_task_cdb[0], cmd->tag); 2902 2903 trace_target_cmd_complete(cmd); 2904 cmd->se_tfo->queue_status(cmd); 2905 } 2906 2907 static void target_tmr_work(struct work_struct *work) 2908 { 2909 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2910 struct se_device *dev = cmd->se_dev; 2911 struct se_tmr_req *tmr = cmd->se_tmr_req; 2912 int ret; 2913 2914 switch (tmr->function) { 2915 case TMR_ABORT_TASK: 2916 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2917 break; 2918 case TMR_ABORT_TASK_SET: 2919 case TMR_CLEAR_ACA: 2920 case TMR_CLEAR_TASK_SET: 2921 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2922 break; 2923 case TMR_LUN_RESET: 2924 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2925 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2926 TMR_FUNCTION_REJECTED; 2927 if (tmr->response == TMR_FUNCTION_COMPLETE) { 2928 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 2929 cmd->orig_fe_lun, 0x29, 2930 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 2931 } 2932 break; 2933 case TMR_TARGET_WARM_RESET: 2934 tmr->response = TMR_FUNCTION_REJECTED; 2935 break; 2936 case TMR_TARGET_COLD_RESET: 2937 tmr->response = TMR_FUNCTION_REJECTED; 2938 break; 2939 default: 2940 pr_err("Uknown TMR function: 0x%02x.\n", 2941 tmr->function); 2942 tmr->response = TMR_FUNCTION_REJECTED; 2943 break; 2944 } 2945 2946 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2947 cmd->se_tfo->queue_tm_rsp(cmd); 2948 2949 transport_cmd_check_stop_to_fabric(cmd); 2950 } 2951 2952 int transport_generic_handle_tmr( 2953 struct se_cmd *cmd) 2954 { 2955 unsigned long flags; 2956 2957 spin_lock_irqsave(&cmd->t_state_lock, flags); 2958 cmd->transport_state |= CMD_T_ACTIVE; 2959 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2960 2961 INIT_WORK(&cmd->work, target_tmr_work); 2962 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 2963 return 0; 2964 } 2965 EXPORT_SYMBOL(transport_generic_handle_tmr); 2966 2967 bool 2968 target_check_wce(struct se_device *dev) 2969 { 2970 bool wce = false; 2971 2972 if (dev->transport->get_write_cache) 2973 wce = dev->transport->get_write_cache(dev); 2974 else if (dev->dev_attrib.emulate_write_cache > 0) 2975 wce = true; 2976 2977 return wce; 2978 } 2979 2980 bool 2981 target_check_fua(struct se_device *dev) 2982 { 2983 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 2984 } 2985