1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3  * Filename:  target_core_transport.c
4  *
5  * This file contains the Generic Target Engine Core.
6  *
7  * (c) Copyright 2002-2013 Datera, Inc.
8  *
9  * Nicholas A. Bellinger <nab@kernel.org>
10  *
11  ******************************************************************************/
12 
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30 
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34 
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42 
43 static struct workqueue_struct *target_completion_wq;
44 static struct workqueue_struct *target_submission_wq;
45 static struct kmem_cache *se_sess_cache;
46 struct kmem_cache *se_ua_cache;
47 struct kmem_cache *t10_pr_reg_cache;
48 struct kmem_cache *t10_alua_lu_gp_cache;
49 struct kmem_cache *t10_alua_lu_gp_mem_cache;
50 struct kmem_cache *t10_alua_tg_pt_gp_cache;
51 struct kmem_cache *t10_alua_lba_map_cache;
52 struct kmem_cache *t10_alua_lba_map_mem_cache;
53 
54 static void transport_complete_task_attr(struct se_cmd *cmd);
55 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
56 static void transport_handle_queue_full(struct se_cmd *cmd,
57 		struct se_device *dev, int err, bool write_pending);
58 static void target_complete_ok_work(struct work_struct *work);
59 
60 int init_se_kmem_caches(void)
61 {
62 	se_sess_cache = kmem_cache_create("se_sess_cache",
63 			sizeof(struct se_session), __alignof__(struct se_session),
64 			0, NULL);
65 	if (!se_sess_cache) {
66 		pr_err("kmem_cache_create() for struct se_session"
67 				" failed\n");
68 		goto out;
69 	}
70 	se_ua_cache = kmem_cache_create("se_ua_cache",
71 			sizeof(struct se_ua), __alignof__(struct se_ua),
72 			0, NULL);
73 	if (!se_ua_cache) {
74 		pr_err("kmem_cache_create() for struct se_ua failed\n");
75 		goto out_free_sess_cache;
76 	}
77 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
78 			sizeof(struct t10_pr_registration),
79 			__alignof__(struct t10_pr_registration), 0, NULL);
80 	if (!t10_pr_reg_cache) {
81 		pr_err("kmem_cache_create() for struct t10_pr_registration"
82 				" failed\n");
83 		goto out_free_ua_cache;
84 	}
85 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
86 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
87 			0, NULL);
88 	if (!t10_alua_lu_gp_cache) {
89 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 				" failed\n");
91 		goto out_free_pr_reg_cache;
92 	}
93 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
94 			sizeof(struct t10_alua_lu_gp_member),
95 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
96 	if (!t10_alua_lu_gp_mem_cache) {
97 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 				"cache failed\n");
99 		goto out_free_lu_gp_cache;
100 	}
101 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
102 			sizeof(struct t10_alua_tg_pt_gp),
103 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
104 	if (!t10_alua_tg_pt_gp_cache) {
105 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 				"cache failed\n");
107 		goto out_free_lu_gp_mem_cache;
108 	}
109 	t10_alua_lba_map_cache = kmem_cache_create(
110 			"t10_alua_lba_map_cache",
111 			sizeof(struct t10_alua_lba_map),
112 			__alignof__(struct t10_alua_lba_map), 0, NULL);
113 	if (!t10_alua_lba_map_cache) {
114 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 				"cache failed\n");
116 		goto out_free_tg_pt_gp_cache;
117 	}
118 	t10_alua_lba_map_mem_cache = kmem_cache_create(
119 			"t10_alua_lba_map_mem_cache",
120 			sizeof(struct t10_alua_lba_map_member),
121 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
122 	if (!t10_alua_lba_map_mem_cache) {
123 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 				"cache failed\n");
125 		goto out_free_lba_map_cache;
126 	}
127 
128 	target_completion_wq = alloc_workqueue("target_completion",
129 					       WQ_MEM_RECLAIM, 0);
130 	if (!target_completion_wq)
131 		goto out_free_lba_map_mem_cache;
132 
133 	target_submission_wq = alloc_workqueue("target_submission",
134 					       WQ_MEM_RECLAIM, 0);
135 	if (!target_submission_wq)
136 		goto out_free_completion_wq;
137 
138 	return 0;
139 
140 out_free_completion_wq:
141 	destroy_workqueue(target_completion_wq);
142 out_free_lba_map_mem_cache:
143 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
144 out_free_lba_map_cache:
145 	kmem_cache_destroy(t10_alua_lba_map_cache);
146 out_free_tg_pt_gp_cache:
147 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148 out_free_lu_gp_mem_cache:
149 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150 out_free_lu_gp_cache:
151 	kmem_cache_destroy(t10_alua_lu_gp_cache);
152 out_free_pr_reg_cache:
153 	kmem_cache_destroy(t10_pr_reg_cache);
154 out_free_ua_cache:
155 	kmem_cache_destroy(se_ua_cache);
156 out_free_sess_cache:
157 	kmem_cache_destroy(se_sess_cache);
158 out:
159 	return -ENOMEM;
160 }
161 
162 void release_se_kmem_caches(void)
163 {
164 	destroy_workqueue(target_submission_wq);
165 	destroy_workqueue(target_completion_wq);
166 	kmem_cache_destroy(se_sess_cache);
167 	kmem_cache_destroy(se_ua_cache);
168 	kmem_cache_destroy(t10_pr_reg_cache);
169 	kmem_cache_destroy(t10_alua_lu_gp_cache);
170 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 	kmem_cache_destroy(t10_alua_lba_map_cache);
173 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
174 }
175 
176 /* This code ensures unique mib indexes are handed out. */
177 static DEFINE_SPINLOCK(scsi_mib_index_lock);
178 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
179 
180 /*
181  * Allocate a new row index for the entry type specified
182  */
183 u32 scsi_get_new_index(scsi_index_t type)
184 {
185 	u32 new_index;
186 
187 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
188 
189 	spin_lock(&scsi_mib_index_lock);
190 	new_index = ++scsi_mib_index[type];
191 	spin_unlock(&scsi_mib_index_lock);
192 
193 	return new_index;
194 }
195 
196 void transport_subsystem_check_init(void)
197 {
198 	int ret;
199 	static int sub_api_initialized;
200 
201 	if (sub_api_initialized)
202 		return;
203 
204 	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
205 	if (ret != 0)
206 		pr_err("Unable to load target_core_iblock\n");
207 
208 	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_file\n");
211 
212 	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_pscsi\n");
215 
216 	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_user\n");
219 
220 	sub_api_initialized = 1;
221 }
222 
223 static void target_release_cmd_refcnt(struct percpu_ref *ref)
224 {
225 	struct target_cmd_counter *cmd_cnt  = container_of(ref,
226 							   typeof(*cmd_cnt),
227 							   refcnt);
228 	wake_up(&cmd_cnt->refcnt_wq);
229 }
230 
231 struct target_cmd_counter *target_alloc_cmd_counter(void)
232 {
233 	struct target_cmd_counter *cmd_cnt;
234 	int rc;
235 
236 	cmd_cnt = kzalloc(sizeof(*cmd_cnt), GFP_KERNEL);
237 	if (!cmd_cnt)
238 		return NULL;
239 
240 	init_completion(&cmd_cnt->stop_done);
241 	init_waitqueue_head(&cmd_cnt->refcnt_wq);
242 	atomic_set(&cmd_cnt->stopped, 0);
243 
244 	rc = percpu_ref_init(&cmd_cnt->refcnt, target_release_cmd_refcnt, 0,
245 			     GFP_KERNEL);
246 	if (rc)
247 		goto free_cmd_cnt;
248 
249 	return cmd_cnt;
250 
251 free_cmd_cnt:
252 	kfree(cmd_cnt);
253 	return NULL;
254 }
255 EXPORT_SYMBOL_GPL(target_alloc_cmd_counter);
256 
257 void target_free_cmd_counter(struct target_cmd_counter *cmd_cnt)
258 {
259 	/*
260 	 * Drivers like loop do not call target_stop_session during session
261 	 * shutdown so we have to drop the ref taken at init time here.
262 	 */
263 	if (!atomic_read(&cmd_cnt->stopped))
264 		percpu_ref_put(&cmd_cnt->refcnt);
265 
266 	percpu_ref_exit(&cmd_cnt->refcnt);
267 }
268 EXPORT_SYMBOL_GPL(target_free_cmd_counter);
269 
270 /**
271  * transport_init_session - initialize a session object
272  * @se_sess: Session object pointer.
273  *
274  * The caller must have zero-initialized @se_sess before calling this function.
275  */
276 void transport_init_session(struct se_session *se_sess)
277 {
278 	INIT_LIST_HEAD(&se_sess->sess_list);
279 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
280 	spin_lock_init(&se_sess->sess_cmd_lock);
281 }
282 EXPORT_SYMBOL(transport_init_session);
283 
284 /**
285  * transport_alloc_session - allocate a session object and initialize it
286  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
287  */
288 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
289 {
290 	struct se_session *se_sess;
291 
292 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
293 	if (!se_sess) {
294 		pr_err("Unable to allocate struct se_session from"
295 				" se_sess_cache\n");
296 		return ERR_PTR(-ENOMEM);
297 	}
298 	transport_init_session(se_sess);
299 	se_sess->sup_prot_ops = sup_prot_ops;
300 
301 	return se_sess;
302 }
303 EXPORT_SYMBOL(transport_alloc_session);
304 
305 /**
306  * transport_alloc_session_tags - allocate target driver private data
307  * @se_sess:  Session pointer.
308  * @tag_num:  Maximum number of in-flight commands between initiator and target.
309  * @tag_size: Size in bytes of the private data a target driver associates with
310  *	      each command.
311  */
312 int transport_alloc_session_tags(struct se_session *se_sess,
313 			         unsigned int tag_num, unsigned int tag_size)
314 {
315 	int rc;
316 
317 	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
318 					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
319 	if (!se_sess->sess_cmd_map) {
320 		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
321 		return -ENOMEM;
322 	}
323 
324 	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
325 			false, GFP_KERNEL, NUMA_NO_NODE);
326 	if (rc < 0) {
327 		pr_err("Unable to init se_sess->sess_tag_pool,"
328 			" tag_num: %u\n", tag_num);
329 		kvfree(se_sess->sess_cmd_map);
330 		se_sess->sess_cmd_map = NULL;
331 		return -ENOMEM;
332 	}
333 
334 	return 0;
335 }
336 EXPORT_SYMBOL(transport_alloc_session_tags);
337 
338 /**
339  * transport_init_session_tags - allocate a session and target driver private data
340  * @tag_num:  Maximum number of in-flight commands between initiator and target.
341  * @tag_size: Size in bytes of the private data a target driver associates with
342  *	      each command.
343  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
344  */
345 static struct se_session *
346 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
347 			    enum target_prot_op sup_prot_ops)
348 {
349 	struct se_session *se_sess;
350 	int rc;
351 
352 	if (tag_num != 0 && !tag_size) {
353 		pr_err("init_session_tags called with percpu-ida tag_num:"
354 		       " %u, but zero tag_size\n", tag_num);
355 		return ERR_PTR(-EINVAL);
356 	}
357 	if (!tag_num && tag_size) {
358 		pr_err("init_session_tags called with percpu-ida tag_size:"
359 		       " %u, but zero tag_num\n", tag_size);
360 		return ERR_PTR(-EINVAL);
361 	}
362 
363 	se_sess = transport_alloc_session(sup_prot_ops);
364 	if (IS_ERR(se_sess))
365 		return se_sess;
366 
367 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
368 	if (rc < 0) {
369 		transport_free_session(se_sess);
370 		return ERR_PTR(-ENOMEM);
371 	}
372 
373 	return se_sess;
374 }
375 
376 /*
377  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
378  */
379 void __transport_register_session(
380 	struct se_portal_group *se_tpg,
381 	struct se_node_acl *se_nacl,
382 	struct se_session *se_sess,
383 	void *fabric_sess_ptr)
384 {
385 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
386 	unsigned char buf[PR_REG_ISID_LEN];
387 	unsigned long flags;
388 
389 	se_sess->se_tpg = se_tpg;
390 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
391 	/*
392 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
393 	 *
394 	 * Only set for struct se_session's that will actually be moving I/O.
395 	 * eg: *NOT* discovery sessions.
396 	 */
397 	if (se_nacl) {
398 		/*
399 		 *
400 		 * Determine if fabric allows for T10-PI feature bits exposed to
401 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
402 		 *
403 		 * If so, then always save prot_type on a per se_node_acl node
404 		 * basis and re-instate the previous sess_prot_type to avoid
405 		 * disabling PI from below any previously initiator side
406 		 * registered LUNs.
407 		 */
408 		if (se_nacl->saved_prot_type)
409 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
410 		else if (tfo->tpg_check_prot_fabric_only)
411 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
412 					tfo->tpg_check_prot_fabric_only(se_tpg);
413 		/*
414 		 * If the fabric module supports an ISID based TransportID,
415 		 * save this value in binary from the fabric I_T Nexus now.
416 		 */
417 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
418 			memset(&buf[0], 0, PR_REG_ISID_LEN);
419 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
420 					&buf[0], PR_REG_ISID_LEN);
421 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
422 		}
423 
424 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
425 		/*
426 		 * The se_nacl->nacl_sess pointer will be set to the
427 		 * last active I_T Nexus for each struct se_node_acl.
428 		 */
429 		se_nacl->nacl_sess = se_sess;
430 
431 		list_add_tail(&se_sess->sess_acl_list,
432 			      &se_nacl->acl_sess_list);
433 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
434 	}
435 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
436 
437 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
438 		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
439 }
440 EXPORT_SYMBOL(__transport_register_session);
441 
442 void transport_register_session(
443 	struct se_portal_group *se_tpg,
444 	struct se_node_acl *se_nacl,
445 	struct se_session *se_sess,
446 	void *fabric_sess_ptr)
447 {
448 	unsigned long flags;
449 
450 	spin_lock_irqsave(&se_tpg->session_lock, flags);
451 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
452 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
453 }
454 EXPORT_SYMBOL(transport_register_session);
455 
456 struct se_session *
457 target_setup_session(struct se_portal_group *tpg,
458 		     unsigned int tag_num, unsigned int tag_size,
459 		     enum target_prot_op prot_op,
460 		     const char *initiatorname, void *private,
461 		     int (*callback)(struct se_portal_group *,
462 				     struct se_session *, void *))
463 {
464 	struct target_cmd_counter *cmd_cnt;
465 	struct se_session *sess;
466 	int rc;
467 
468 	cmd_cnt = target_alloc_cmd_counter();
469 	if (!cmd_cnt)
470 		return ERR_PTR(-ENOMEM);
471 	/*
472 	 * If the fabric driver is using percpu-ida based pre allocation
473 	 * of I/O descriptor tags, go ahead and perform that setup now..
474 	 */
475 	if (tag_num != 0)
476 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
477 	else
478 		sess = transport_alloc_session(prot_op);
479 
480 	if (IS_ERR(sess)) {
481 		rc = PTR_ERR(sess);
482 		goto free_cnt;
483 	}
484 	sess->cmd_cnt = cmd_cnt;
485 
486 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
487 					(unsigned char *)initiatorname);
488 	if (!sess->se_node_acl) {
489 		rc = -EACCES;
490 		goto free_sess;
491 	}
492 	/*
493 	 * Go ahead and perform any remaining fabric setup that is
494 	 * required before transport_register_session().
495 	 */
496 	if (callback != NULL) {
497 		rc = callback(tpg, sess, private);
498 		if (rc)
499 			goto free_sess;
500 	}
501 
502 	transport_register_session(tpg, sess->se_node_acl, sess, private);
503 	return sess;
504 
505 free_sess:
506 	transport_free_session(sess);
507 free_cnt:
508 	target_free_cmd_counter(cmd_cnt);
509 	return ERR_PTR(rc);
510 }
511 EXPORT_SYMBOL(target_setup_session);
512 
513 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
514 {
515 	struct se_session *se_sess;
516 	ssize_t len = 0;
517 
518 	spin_lock_bh(&se_tpg->session_lock);
519 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
520 		if (!se_sess->se_node_acl)
521 			continue;
522 		if (!se_sess->se_node_acl->dynamic_node_acl)
523 			continue;
524 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
525 			break;
526 
527 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
528 				se_sess->se_node_acl->initiatorname);
529 		len += 1; /* Include NULL terminator */
530 	}
531 	spin_unlock_bh(&se_tpg->session_lock);
532 
533 	return len;
534 }
535 EXPORT_SYMBOL(target_show_dynamic_sessions);
536 
537 static void target_complete_nacl(struct kref *kref)
538 {
539 	struct se_node_acl *nacl = container_of(kref,
540 				struct se_node_acl, acl_kref);
541 	struct se_portal_group *se_tpg = nacl->se_tpg;
542 
543 	if (!nacl->dynamic_stop) {
544 		complete(&nacl->acl_free_comp);
545 		return;
546 	}
547 
548 	mutex_lock(&se_tpg->acl_node_mutex);
549 	list_del_init(&nacl->acl_list);
550 	mutex_unlock(&se_tpg->acl_node_mutex);
551 
552 	core_tpg_wait_for_nacl_pr_ref(nacl);
553 	core_free_device_list_for_node(nacl, se_tpg);
554 	kfree(nacl);
555 }
556 
557 void target_put_nacl(struct se_node_acl *nacl)
558 {
559 	kref_put(&nacl->acl_kref, target_complete_nacl);
560 }
561 EXPORT_SYMBOL(target_put_nacl);
562 
563 void transport_deregister_session_configfs(struct se_session *se_sess)
564 {
565 	struct se_node_acl *se_nacl;
566 	unsigned long flags;
567 	/*
568 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
569 	 */
570 	se_nacl = se_sess->se_node_acl;
571 	if (se_nacl) {
572 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
573 		if (!list_empty(&se_sess->sess_acl_list))
574 			list_del_init(&se_sess->sess_acl_list);
575 		/*
576 		 * If the session list is empty, then clear the pointer.
577 		 * Otherwise, set the struct se_session pointer from the tail
578 		 * element of the per struct se_node_acl active session list.
579 		 */
580 		if (list_empty(&se_nacl->acl_sess_list))
581 			se_nacl->nacl_sess = NULL;
582 		else {
583 			se_nacl->nacl_sess = container_of(
584 					se_nacl->acl_sess_list.prev,
585 					struct se_session, sess_acl_list);
586 		}
587 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
588 	}
589 }
590 EXPORT_SYMBOL(transport_deregister_session_configfs);
591 
592 void transport_free_session(struct se_session *se_sess)
593 {
594 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
595 
596 	/*
597 	 * Drop the se_node_acl->nacl_kref obtained from within
598 	 * core_tpg_get_initiator_node_acl().
599 	 */
600 	if (se_nacl) {
601 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
602 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
603 		unsigned long flags;
604 
605 		se_sess->se_node_acl = NULL;
606 
607 		/*
608 		 * Also determine if we need to drop the extra ->cmd_kref if
609 		 * it had been previously dynamically generated, and
610 		 * the endpoint is not caching dynamic ACLs.
611 		 */
612 		mutex_lock(&se_tpg->acl_node_mutex);
613 		if (se_nacl->dynamic_node_acl &&
614 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
615 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
616 			if (list_empty(&se_nacl->acl_sess_list))
617 				se_nacl->dynamic_stop = true;
618 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
619 
620 			if (se_nacl->dynamic_stop)
621 				list_del_init(&se_nacl->acl_list);
622 		}
623 		mutex_unlock(&se_tpg->acl_node_mutex);
624 
625 		if (se_nacl->dynamic_stop)
626 			target_put_nacl(se_nacl);
627 
628 		target_put_nacl(se_nacl);
629 	}
630 	if (se_sess->sess_cmd_map) {
631 		sbitmap_queue_free(&se_sess->sess_tag_pool);
632 		kvfree(se_sess->sess_cmd_map);
633 	}
634 	if (se_sess->cmd_cnt)
635 		target_free_cmd_counter(se_sess->cmd_cnt);
636 	kmem_cache_free(se_sess_cache, se_sess);
637 }
638 EXPORT_SYMBOL(transport_free_session);
639 
640 static int target_release_res(struct se_device *dev, void *data)
641 {
642 	struct se_session *sess = data;
643 
644 	if (dev->reservation_holder == sess)
645 		target_release_reservation(dev);
646 	return 0;
647 }
648 
649 void transport_deregister_session(struct se_session *se_sess)
650 {
651 	struct se_portal_group *se_tpg = se_sess->se_tpg;
652 	unsigned long flags;
653 
654 	if (!se_tpg) {
655 		transport_free_session(se_sess);
656 		return;
657 	}
658 
659 	spin_lock_irqsave(&se_tpg->session_lock, flags);
660 	list_del(&se_sess->sess_list);
661 	se_sess->se_tpg = NULL;
662 	se_sess->fabric_sess_ptr = NULL;
663 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
664 
665 	/*
666 	 * Since the session is being removed, release SPC-2
667 	 * reservations held by the session that is disappearing.
668 	 */
669 	target_for_each_device(target_release_res, se_sess);
670 
671 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
672 		se_tpg->se_tpg_tfo->fabric_name);
673 	/*
674 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
675 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
676 	 * removal context from within transport_free_session() code.
677 	 *
678 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
679 	 * to release all remaining generate_node_acl=1 created ACL resources.
680 	 */
681 
682 	transport_free_session(se_sess);
683 }
684 EXPORT_SYMBOL(transport_deregister_session);
685 
686 void target_remove_session(struct se_session *se_sess)
687 {
688 	transport_deregister_session_configfs(se_sess);
689 	transport_deregister_session(se_sess);
690 }
691 EXPORT_SYMBOL(target_remove_session);
692 
693 static void target_remove_from_state_list(struct se_cmd *cmd)
694 {
695 	struct se_device *dev = cmd->se_dev;
696 	unsigned long flags;
697 
698 	if (!dev)
699 		return;
700 
701 	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
702 	if (cmd->state_active) {
703 		list_del(&cmd->state_list);
704 		cmd->state_active = false;
705 	}
706 	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
707 }
708 
709 static void target_remove_from_tmr_list(struct se_cmd *cmd)
710 {
711 	struct se_device *dev = NULL;
712 	unsigned long flags;
713 
714 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
715 		dev = cmd->se_tmr_req->tmr_dev;
716 
717 	if (dev) {
718 		spin_lock_irqsave(&dev->se_tmr_lock, flags);
719 		if (cmd->se_tmr_req->tmr_dev)
720 			list_del_init(&cmd->se_tmr_req->tmr_list);
721 		spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
722 	}
723 }
724 /*
725  * This function is called by the target core after the target core has
726  * finished processing a SCSI command or SCSI TMF. Both the regular command
727  * processing code and the code for aborting commands can call this
728  * function. CMD_T_STOP is set if and only if another thread is waiting
729  * inside transport_wait_for_tasks() for t_transport_stop_comp.
730  */
731 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
732 {
733 	unsigned long flags;
734 
735 	spin_lock_irqsave(&cmd->t_state_lock, flags);
736 	/*
737 	 * Determine if frontend context caller is requesting the stopping of
738 	 * this command for frontend exceptions.
739 	 */
740 	if (cmd->transport_state & CMD_T_STOP) {
741 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
742 			__func__, __LINE__, cmd->tag);
743 
744 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745 
746 		complete_all(&cmd->t_transport_stop_comp);
747 		return 1;
748 	}
749 	cmd->transport_state &= ~CMD_T_ACTIVE;
750 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
751 
752 	/*
753 	 * Some fabric modules like tcm_loop can release their internally
754 	 * allocated I/O reference and struct se_cmd now.
755 	 *
756 	 * Fabric modules are expected to return '1' here if the se_cmd being
757 	 * passed is released at this point, or zero if not being released.
758 	 */
759 	return cmd->se_tfo->check_stop_free(cmd);
760 }
761 
762 static void transport_lun_remove_cmd(struct se_cmd *cmd)
763 {
764 	struct se_lun *lun = cmd->se_lun;
765 
766 	if (!lun)
767 		return;
768 
769 	target_remove_from_state_list(cmd);
770 	target_remove_from_tmr_list(cmd);
771 
772 	if (cmpxchg(&cmd->lun_ref_active, true, false))
773 		percpu_ref_put(&lun->lun_ref);
774 
775 	/*
776 	 * Clear struct se_cmd->se_lun before the handoff to FE.
777 	 */
778 	cmd->se_lun = NULL;
779 }
780 
781 static void target_complete_failure_work(struct work_struct *work)
782 {
783 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
784 
785 	transport_generic_request_failure(cmd, cmd->sense_reason);
786 }
787 
788 /*
789  * Used when asking transport to copy Sense Data from the underlying
790  * Linux/SCSI struct scsi_cmnd
791  */
792 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
793 {
794 	struct se_device *dev = cmd->se_dev;
795 
796 	WARN_ON(!cmd->se_lun);
797 
798 	if (!dev)
799 		return NULL;
800 
801 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
802 		return NULL;
803 
804 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
805 
806 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
807 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
808 	return cmd->sense_buffer;
809 }
810 
811 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
812 {
813 	unsigned char *cmd_sense_buf;
814 	unsigned long flags;
815 
816 	spin_lock_irqsave(&cmd->t_state_lock, flags);
817 	cmd_sense_buf = transport_get_sense_buffer(cmd);
818 	if (!cmd_sense_buf) {
819 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
820 		return;
821 	}
822 
823 	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
824 	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
825 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
826 }
827 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
828 
829 static void target_handle_abort(struct se_cmd *cmd)
830 {
831 	bool tas = cmd->transport_state & CMD_T_TAS;
832 	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
833 	int ret;
834 
835 	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
836 
837 	if (tas) {
838 		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
839 			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
840 			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
841 				 cmd->t_task_cdb[0], cmd->tag);
842 			trace_target_cmd_complete(cmd);
843 			ret = cmd->se_tfo->queue_status(cmd);
844 			if (ret) {
845 				transport_handle_queue_full(cmd, cmd->se_dev,
846 							    ret, false);
847 				return;
848 			}
849 		} else {
850 			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
851 			cmd->se_tfo->queue_tm_rsp(cmd);
852 		}
853 	} else {
854 		/*
855 		 * Allow the fabric driver to unmap any resources before
856 		 * releasing the descriptor via TFO->release_cmd().
857 		 */
858 		cmd->se_tfo->aborted_task(cmd);
859 		if (ack_kref)
860 			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
861 		/*
862 		 * To do: establish a unit attention condition on the I_T
863 		 * nexus associated with cmd. See also the paragraph "Aborting
864 		 * commands" in SAM.
865 		 */
866 	}
867 
868 	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
869 
870 	transport_lun_remove_cmd(cmd);
871 
872 	transport_cmd_check_stop_to_fabric(cmd);
873 }
874 
875 static void target_abort_work(struct work_struct *work)
876 {
877 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
878 
879 	target_handle_abort(cmd);
880 }
881 
882 static bool target_cmd_interrupted(struct se_cmd *cmd)
883 {
884 	int post_ret;
885 
886 	if (cmd->transport_state & CMD_T_ABORTED) {
887 		if (cmd->transport_complete_callback)
888 			cmd->transport_complete_callback(cmd, false, &post_ret);
889 		INIT_WORK(&cmd->work, target_abort_work);
890 		queue_work(target_completion_wq, &cmd->work);
891 		return true;
892 	} else if (cmd->transport_state & CMD_T_STOP) {
893 		if (cmd->transport_complete_callback)
894 			cmd->transport_complete_callback(cmd, false, &post_ret);
895 		complete_all(&cmd->t_transport_stop_comp);
896 		return true;
897 	}
898 
899 	return false;
900 }
901 
902 /* May be called from interrupt context so must not sleep. */
903 void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
904 				    sense_reason_t sense_reason)
905 {
906 	struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
907 	int success, cpu;
908 	unsigned long flags;
909 
910 	if (target_cmd_interrupted(cmd))
911 		return;
912 
913 	cmd->scsi_status = scsi_status;
914 	cmd->sense_reason = sense_reason;
915 
916 	spin_lock_irqsave(&cmd->t_state_lock, flags);
917 	switch (cmd->scsi_status) {
918 	case SAM_STAT_CHECK_CONDITION:
919 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
920 			success = 1;
921 		else
922 			success = 0;
923 		break;
924 	default:
925 		success = 1;
926 		break;
927 	}
928 
929 	cmd->t_state = TRANSPORT_COMPLETE;
930 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
931 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
932 
933 	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
934 		  target_complete_failure_work);
935 
936 	if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
937 		cpu = cmd->cpuid;
938 	else
939 		cpu = wwn->cmd_compl_affinity;
940 
941 	queue_work_on(cpu, target_completion_wq, &cmd->work);
942 }
943 EXPORT_SYMBOL(target_complete_cmd_with_sense);
944 
945 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
946 {
947 	target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
948 			      TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
949 			      TCM_NO_SENSE);
950 }
951 EXPORT_SYMBOL(target_complete_cmd);
952 
953 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
954 {
955 	if (length < cmd->data_length) {
956 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
957 			cmd->residual_count += cmd->data_length - length;
958 		} else {
959 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
960 			cmd->residual_count = cmd->data_length - length;
961 		}
962 
963 		cmd->data_length = length;
964 	}
965 }
966 EXPORT_SYMBOL(target_set_cmd_data_length);
967 
968 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
969 {
970 	if (scsi_status == SAM_STAT_GOOD ||
971 	    cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
972 		target_set_cmd_data_length(cmd, length);
973 	}
974 
975 	target_complete_cmd(cmd, scsi_status);
976 }
977 EXPORT_SYMBOL(target_complete_cmd_with_length);
978 
979 static void target_add_to_state_list(struct se_cmd *cmd)
980 {
981 	struct se_device *dev = cmd->se_dev;
982 	unsigned long flags;
983 
984 	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
985 	if (!cmd->state_active) {
986 		list_add_tail(&cmd->state_list,
987 			      &dev->queues[cmd->cpuid].state_list);
988 		cmd->state_active = true;
989 	}
990 	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
991 }
992 
993 /*
994  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
995  */
996 static void transport_write_pending_qf(struct se_cmd *cmd);
997 static void transport_complete_qf(struct se_cmd *cmd);
998 
999 void target_qf_do_work(struct work_struct *work)
1000 {
1001 	struct se_device *dev = container_of(work, struct se_device,
1002 					qf_work_queue);
1003 	LIST_HEAD(qf_cmd_list);
1004 	struct se_cmd *cmd, *cmd_tmp;
1005 
1006 	spin_lock_irq(&dev->qf_cmd_lock);
1007 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
1008 	spin_unlock_irq(&dev->qf_cmd_lock);
1009 
1010 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
1011 		list_del(&cmd->se_qf_node);
1012 		atomic_dec_mb(&dev->dev_qf_count);
1013 
1014 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
1015 			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
1016 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
1017 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
1018 			: "UNKNOWN");
1019 
1020 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
1021 			transport_write_pending_qf(cmd);
1022 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
1023 			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
1024 			transport_complete_qf(cmd);
1025 	}
1026 }
1027 
1028 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1029 {
1030 	switch (cmd->data_direction) {
1031 	case DMA_NONE:
1032 		return "NONE";
1033 	case DMA_FROM_DEVICE:
1034 		return "READ";
1035 	case DMA_TO_DEVICE:
1036 		return "WRITE";
1037 	case DMA_BIDIRECTIONAL:
1038 		return "BIDI";
1039 	default:
1040 		break;
1041 	}
1042 
1043 	return "UNKNOWN";
1044 }
1045 
1046 void transport_dump_dev_state(
1047 	struct se_device *dev,
1048 	char *b,
1049 	int *bl)
1050 {
1051 	*bl += sprintf(b + *bl, "Status: ");
1052 	if (dev->export_count)
1053 		*bl += sprintf(b + *bl, "ACTIVATED");
1054 	else
1055 		*bl += sprintf(b + *bl, "DEACTIVATED");
1056 
1057 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
1058 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
1059 		dev->dev_attrib.block_size,
1060 		dev->dev_attrib.hw_max_sectors);
1061 	*bl += sprintf(b + *bl, "        ");
1062 }
1063 
1064 void transport_dump_vpd_proto_id(
1065 	struct t10_vpd *vpd,
1066 	unsigned char *p_buf,
1067 	int p_buf_len)
1068 {
1069 	unsigned char buf[VPD_TMP_BUF_SIZE];
1070 	int len;
1071 
1072 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1073 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1074 
1075 	switch (vpd->protocol_identifier) {
1076 	case 0x00:
1077 		sprintf(buf+len, "Fibre Channel\n");
1078 		break;
1079 	case 0x10:
1080 		sprintf(buf+len, "Parallel SCSI\n");
1081 		break;
1082 	case 0x20:
1083 		sprintf(buf+len, "SSA\n");
1084 		break;
1085 	case 0x30:
1086 		sprintf(buf+len, "IEEE 1394\n");
1087 		break;
1088 	case 0x40:
1089 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1090 				" Protocol\n");
1091 		break;
1092 	case 0x50:
1093 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1094 		break;
1095 	case 0x60:
1096 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1097 		break;
1098 	case 0x70:
1099 		sprintf(buf+len, "Automation/Drive Interface Transport"
1100 				" Protocol\n");
1101 		break;
1102 	case 0x80:
1103 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1104 		break;
1105 	default:
1106 		sprintf(buf+len, "Unknown 0x%02x\n",
1107 				vpd->protocol_identifier);
1108 		break;
1109 	}
1110 
1111 	if (p_buf)
1112 		strncpy(p_buf, buf, p_buf_len);
1113 	else
1114 		pr_debug("%s", buf);
1115 }
1116 
1117 void
1118 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1119 {
1120 	/*
1121 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1122 	 *
1123 	 * from spc3r23.pdf section 7.5.1
1124 	 */
1125 	 if (page_83[1] & 0x80) {
1126 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1127 		vpd->protocol_identifier_set = 1;
1128 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1129 	}
1130 }
1131 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1132 
1133 int transport_dump_vpd_assoc(
1134 	struct t10_vpd *vpd,
1135 	unsigned char *p_buf,
1136 	int p_buf_len)
1137 {
1138 	unsigned char buf[VPD_TMP_BUF_SIZE];
1139 	int ret = 0;
1140 	int len;
1141 
1142 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1143 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1144 
1145 	switch (vpd->association) {
1146 	case 0x00:
1147 		sprintf(buf+len, "addressed logical unit\n");
1148 		break;
1149 	case 0x10:
1150 		sprintf(buf+len, "target port\n");
1151 		break;
1152 	case 0x20:
1153 		sprintf(buf+len, "SCSI target device\n");
1154 		break;
1155 	default:
1156 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1157 		ret = -EINVAL;
1158 		break;
1159 	}
1160 
1161 	if (p_buf)
1162 		strncpy(p_buf, buf, p_buf_len);
1163 	else
1164 		pr_debug("%s", buf);
1165 
1166 	return ret;
1167 }
1168 
1169 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1170 {
1171 	/*
1172 	 * The VPD identification association..
1173 	 *
1174 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1175 	 */
1176 	vpd->association = (page_83[1] & 0x30);
1177 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1178 }
1179 EXPORT_SYMBOL(transport_set_vpd_assoc);
1180 
1181 int transport_dump_vpd_ident_type(
1182 	struct t10_vpd *vpd,
1183 	unsigned char *p_buf,
1184 	int p_buf_len)
1185 {
1186 	unsigned char buf[VPD_TMP_BUF_SIZE];
1187 	int ret = 0;
1188 	int len;
1189 
1190 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1191 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1192 
1193 	switch (vpd->device_identifier_type) {
1194 	case 0x00:
1195 		sprintf(buf+len, "Vendor specific\n");
1196 		break;
1197 	case 0x01:
1198 		sprintf(buf+len, "T10 Vendor ID based\n");
1199 		break;
1200 	case 0x02:
1201 		sprintf(buf+len, "EUI-64 based\n");
1202 		break;
1203 	case 0x03:
1204 		sprintf(buf+len, "NAA\n");
1205 		break;
1206 	case 0x04:
1207 		sprintf(buf+len, "Relative target port identifier\n");
1208 		break;
1209 	case 0x08:
1210 		sprintf(buf+len, "SCSI name string\n");
1211 		break;
1212 	default:
1213 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1214 				vpd->device_identifier_type);
1215 		ret = -EINVAL;
1216 		break;
1217 	}
1218 
1219 	if (p_buf) {
1220 		if (p_buf_len < strlen(buf)+1)
1221 			return -EINVAL;
1222 		strncpy(p_buf, buf, p_buf_len);
1223 	} else {
1224 		pr_debug("%s", buf);
1225 	}
1226 
1227 	return ret;
1228 }
1229 
1230 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1231 {
1232 	/*
1233 	 * The VPD identifier type..
1234 	 *
1235 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1236 	 */
1237 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1238 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1239 }
1240 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1241 
1242 int transport_dump_vpd_ident(
1243 	struct t10_vpd *vpd,
1244 	unsigned char *p_buf,
1245 	int p_buf_len)
1246 {
1247 	unsigned char buf[VPD_TMP_BUF_SIZE];
1248 	int ret = 0;
1249 
1250 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1251 
1252 	switch (vpd->device_identifier_code_set) {
1253 	case 0x01: /* Binary */
1254 		snprintf(buf, sizeof(buf),
1255 			"T10 VPD Binary Device Identifier: %s\n",
1256 			&vpd->device_identifier[0]);
1257 		break;
1258 	case 0x02: /* ASCII */
1259 		snprintf(buf, sizeof(buf),
1260 			"T10 VPD ASCII Device Identifier: %s\n",
1261 			&vpd->device_identifier[0]);
1262 		break;
1263 	case 0x03: /* UTF-8 */
1264 		snprintf(buf, sizeof(buf),
1265 			"T10 VPD UTF-8 Device Identifier: %s\n",
1266 			&vpd->device_identifier[0]);
1267 		break;
1268 	default:
1269 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1270 			" 0x%02x", vpd->device_identifier_code_set);
1271 		ret = -EINVAL;
1272 		break;
1273 	}
1274 
1275 	if (p_buf)
1276 		strncpy(p_buf, buf, p_buf_len);
1277 	else
1278 		pr_debug("%s", buf);
1279 
1280 	return ret;
1281 }
1282 
1283 int
1284 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1285 {
1286 	static const char hex_str[] = "0123456789abcdef";
1287 	int j = 0, i = 4; /* offset to start of the identifier */
1288 
1289 	/*
1290 	 * The VPD Code Set (encoding)
1291 	 *
1292 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1293 	 */
1294 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1295 	switch (vpd->device_identifier_code_set) {
1296 	case 0x01: /* Binary */
1297 		vpd->device_identifier[j++] =
1298 				hex_str[vpd->device_identifier_type];
1299 		while (i < (4 + page_83[3])) {
1300 			vpd->device_identifier[j++] =
1301 				hex_str[(page_83[i] & 0xf0) >> 4];
1302 			vpd->device_identifier[j++] =
1303 				hex_str[page_83[i] & 0x0f];
1304 			i++;
1305 		}
1306 		break;
1307 	case 0x02: /* ASCII */
1308 	case 0x03: /* UTF-8 */
1309 		while (i < (4 + page_83[3]))
1310 			vpd->device_identifier[j++] = page_83[i++];
1311 		break;
1312 	default:
1313 		break;
1314 	}
1315 
1316 	return transport_dump_vpd_ident(vpd, NULL, 0);
1317 }
1318 EXPORT_SYMBOL(transport_set_vpd_ident);
1319 
1320 static sense_reason_t
1321 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1322 			       unsigned int size)
1323 {
1324 	u32 mtl;
1325 
1326 	if (!cmd->se_tfo->max_data_sg_nents)
1327 		return TCM_NO_SENSE;
1328 	/*
1329 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1330 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1331 	 * residual_count and reduce original cmd->data_length to maximum
1332 	 * length based on single PAGE_SIZE entry scatter-lists.
1333 	 */
1334 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1335 	if (cmd->data_length > mtl) {
1336 		/*
1337 		 * If an existing CDB overflow is present, calculate new residual
1338 		 * based on CDB size minus fabric maximum transfer length.
1339 		 *
1340 		 * If an existing CDB underflow is present, calculate new residual
1341 		 * based on original cmd->data_length minus fabric maximum transfer
1342 		 * length.
1343 		 *
1344 		 * Otherwise, set the underflow residual based on cmd->data_length
1345 		 * minus fabric maximum transfer length.
1346 		 */
1347 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1348 			cmd->residual_count = (size - mtl);
1349 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1350 			u32 orig_dl = size + cmd->residual_count;
1351 			cmd->residual_count = (orig_dl - mtl);
1352 		} else {
1353 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1354 			cmd->residual_count = (cmd->data_length - mtl);
1355 		}
1356 		cmd->data_length = mtl;
1357 		/*
1358 		 * Reset sbc_check_prot() calculated protection payload
1359 		 * length based upon the new smaller MTL.
1360 		 */
1361 		if (cmd->prot_length) {
1362 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1363 			cmd->prot_length = dev->prot_length * sectors;
1364 		}
1365 	}
1366 	return TCM_NO_SENSE;
1367 }
1368 
1369 /**
1370  * target_cmd_size_check - Check whether there will be a residual.
1371  * @cmd: SCSI command.
1372  * @size: Data buffer size derived from CDB. The data buffer size provided by
1373  *   the SCSI transport driver is available in @cmd->data_length.
1374  *
1375  * Compare the data buffer size from the CDB with the data buffer limit from the transport
1376  * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1377  *
1378  * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1379  *
1380  * Return: TCM_NO_SENSE
1381  */
1382 sense_reason_t
1383 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1384 {
1385 	struct se_device *dev = cmd->se_dev;
1386 
1387 	if (cmd->unknown_data_length) {
1388 		cmd->data_length = size;
1389 	} else if (size != cmd->data_length) {
1390 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1391 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1392 			" 0x%02x\n", cmd->se_tfo->fabric_name,
1393 				cmd->data_length, size, cmd->t_task_cdb[0]);
1394 		/*
1395 		 * For READ command for the overflow case keep the existing
1396 		 * fabric provided ->data_length. Otherwise for the underflow
1397 		 * case, reset ->data_length to the smaller SCSI expected data
1398 		 * transfer length.
1399 		 */
1400 		if (size > cmd->data_length) {
1401 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1402 			cmd->residual_count = (size - cmd->data_length);
1403 		} else {
1404 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1405 			cmd->residual_count = (cmd->data_length - size);
1406 			/*
1407 			 * Do not truncate ->data_length for WRITE command to
1408 			 * dump all payload
1409 			 */
1410 			if (cmd->data_direction == DMA_FROM_DEVICE) {
1411 				cmd->data_length = size;
1412 			}
1413 		}
1414 
1415 		if (cmd->data_direction == DMA_TO_DEVICE) {
1416 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1417 				pr_err_ratelimited("Rejecting underflow/overflow"
1418 						   " for WRITE data CDB\n");
1419 				return TCM_INVALID_FIELD_IN_COMMAND_IU;
1420 			}
1421 			/*
1422 			 * Some fabric drivers like iscsi-target still expect to
1423 			 * always reject overflow writes.  Reject this case until
1424 			 * full fabric driver level support for overflow writes
1425 			 * is introduced tree-wide.
1426 			 */
1427 			if (size > cmd->data_length) {
1428 				pr_err_ratelimited("Rejecting overflow for"
1429 						   " WRITE control CDB\n");
1430 				return TCM_INVALID_CDB_FIELD;
1431 			}
1432 		}
1433 	}
1434 
1435 	return target_check_max_data_sg_nents(cmd, dev, size);
1436 
1437 }
1438 
1439 /*
1440  * Used by fabric modules containing a local struct se_cmd within their
1441  * fabric dependent per I/O descriptor.
1442  *
1443  * Preserves the value of @cmd->tag.
1444  */
1445 void __target_init_cmd(struct se_cmd *cmd,
1446 		       const struct target_core_fabric_ops *tfo,
1447 		       struct se_session *se_sess, u32 data_length,
1448 		       int data_direction, int task_attr,
1449 		       unsigned char *sense_buffer, u64 unpacked_lun,
1450 		       struct target_cmd_counter *cmd_cnt)
1451 {
1452 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1453 	INIT_LIST_HEAD(&cmd->se_qf_node);
1454 	INIT_LIST_HEAD(&cmd->state_list);
1455 	init_completion(&cmd->t_transport_stop_comp);
1456 	cmd->free_compl = NULL;
1457 	cmd->abrt_compl = NULL;
1458 	spin_lock_init(&cmd->t_state_lock);
1459 	INIT_WORK(&cmd->work, NULL);
1460 	kref_init(&cmd->cmd_kref);
1461 
1462 	cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1463 	cmd->se_tfo = tfo;
1464 	cmd->se_sess = se_sess;
1465 	cmd->data_length = data_length;
1466 	cmd->data_direction = data_direction;
1467 	cmd->sam_task_attr = task_attr;
1468 	cmd->sense_buffer = sense_buffer;
1469 	cmd->orig_fe_lun = unpacked_lun;
1470 	cmd->cmd_cnt = cmd_cnt;
1471 
1472 	if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1473 		cmd->cpuid = raw_smp_processor_id();
1474 
1475 	cmd->state_active = false;
1476 }
1477 EXPORT_SYMBOL(__target_init_cmd);
1478 
1479 static sense_reason_t
1480 transport_check_alloc_task_attr(struct se_cmd *cmd)
1481 {
1482 	struct se_device *dev = cmd->se_dev;
1483 
1484 	/*
1485 	 * Check if SAM Task Attribute emulation is enabled for this
1486 	 * struct se_device storage object
1487 	 */
1488 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1489 		return 0;
1490 
1491 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1492 		pr_debug("SAM Task Attribute ACA"
1493 			" emulation is not supported\n");
1494 		return TCM_INVALID_CDB_FIELD;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 sense_reason_t
1501 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1502 {
1503 	sense_reason_t ret;
1504 
1505 	/*
1506 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1507 	 * for VARIABLE_LENGTH_CMD
1508 	 */
1509 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1510 		pr_err("Received SCSI CDB with command_size: %d that"
1511 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1512 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1513 		ret = TCM_INVALID_CDB_FIELD;
1514 		goto err;
1515 	}
1516 	/*
1517 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1518 	 * allocate the additional extended CDB buffer now..  Otherwise
1519 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1520 	 */
1521 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1522 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1523 		if (!cmd->t_task_cdb) {
1524 			pr_err("Unable to allocate cmd->t_task_cdb"
1525 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1526 				scsi_command_size(cdb),
1527 				(unsigned long)sizeof(cmd->__t_task_cdb));
1528 			ret = TCM_OUT_OF_RESOURCES;
1529 			goto err;
1530 		}
1531 	}
1532 	/*
1533 	 * Copy the original CDB into cmd->
1534 	 */
1535 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1536 
1537 	trace_target_sequencer_start(cmd);
1538 	return 0;
1539 
1540 err:
1541 	/*
1542 	 * Copy the CDB here to allow trace_target_cmd_complete() to
1543 	 * print the cdb to the trace buffers.
1544 	 */
1545 	memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1546 					 (unsigned int)TCM_MAX_COMMAND_SIZE));
1547 	return ret;
1548 }
1549 EXPORT_SYMBOL(target_cmd_init_cdb);
1550 
1551 sense_reason_t
1552 target_cmd_parse_cdb(struct se_cmd *cmd)
1553 {
1554 	struct se_device *dev = cmd->se_dev;
1555 	sense_reason_t ret;
1556 
1557 	ret = dev->transport->parse_cdb(cmd);
1558 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1559 		pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1560 				     cmd->se_tfo->fabric_name,
1561 				     cmd->se_sess->se_node_acl->initiatorname,
1562 				     cmd->t_task_cdb[0]);
1563 	if (ret)
1564 		return ret;
1565 
1566 	ret = transport_check_alloc_task_attr(cmd);
1567 	if (ret)
1568 		return ret;
1569 
1570 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1571 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1572 	return 0;
1573 }
1574 EXPORT_SYMBOL(target_cmd_parse_cdb);
1575 
1576 /*
1577  * Used by fabric module frontends to queue tasks directly.
1578  * May only be used from process context.
1579  */
1580 int transport_handle_cdb_direct(
1581 	struct se_cmd *cmd)
1582 {
1583 	sense_reason_t ret;
1584 
1585 	might_sleep();
1586 
1587 	if (!cmd->se_lun) {
1588 		dump_stack();
1589 		pr_err("cmd->se_lun is NULL\n");
1590 		return -EINVAL;
1591 	}
1592 
1593 	/*
1594 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1595 	 * outstanding descriptors are handled correctly during shutdown via
1596 	 * transport_wait_for_tasks()
1597 	 *
1598 	 * Also, we don't take cmd->t_state_lock here as we only expect
1599 	 * this to be called for initial descriptor submission.
1600 	 */
1601 	cmd->t_state = TRANSPORT_NEW_CMD;
1602 	cmd->transport_state |= CMD_T_ACTIVE;
1603 
1604 	/*
1605 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1606 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1607 	 * and call transport_generic_request_failure() if necessary..
1608 	 */
1609 	ret = transport_generic_new_cmd(cmd);
1610 	if (ret)
1611 		transport_generic_request_failure(cmd, ret);
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL(transport_handle_cdb_direct);
1615 
1616 sense_reason_t
1617 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1618 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1619 {
1620 	if (!sgl || !sgl_count)
1621 		return 0;
1622 
1623 	/*
1624 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1625 	 * scatterlists already have been set to follow what the fabric
1626 	 * passes for the original expected data transfer length.
1627 	 */
1628 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1629 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1630 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1631 		return TCM_INVALID_CDB_FIELD;
1632 	}
1633 
1634 	cmd->t_data_sg = sgl;
1635 	cmd->t_data_nents = sgl_count;
1636 	cmd->t_bidi_data_sg = sgl_bidi;
1637 	cmd->t_bidi_data_nents = sgl_bidi_count;
1638 
1639 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1640 	return 0;
1641 }
1642 
1643 /**
1644  * target_init_cmd - initialize se_cmd
1645  * @se_cmd: command descriptor to init
1646  * @se_sess: associated se_sess for endpoint
1647  * @sense: pointer to SCSI sense buffer
1648  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1649  * @data_length: fabric expected data transfer length
1650  * @task_attr: SAM task attribute
1651  * @data_dir: DMA data direction
1652  * @flags: flags for command submission from target_sc_flags_tables
1653  *
1654  * Task tags are supported if the caller has set @se_cmd->tag.
1655  *
1656  * Returns:
1657  *	- less than zero to signal active I/O shutdown failure.
1658  *	- zero on success.
1659  *
1660  * If the fabric driver calls target_stop_session, then it must check the
1661  * return code and handle failures. This will never fail for other drivers,
1662  * and the return code can be ignored.
1663  */
1664 int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1665 		    unsigned char *sense, u64 unpacked_lun,
1666 		    u32 data_length, int task_attr, int data_dir, int flags)
1667 {
1668 	struct se_portal_group *se_tpg;
1669 
1670 	se_tpg = se_sess->se_tpg;
1671 	BUG_ON(!se_tpg);
1672 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1673 
1674 	if (flags & TARGET_SCF_USE_CPUID)
1675 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1676 	/*
1677 	 * Signal bidirectional data payloads to target-core
1678 	 */
1679 	if (flags & TARGET_SCF_BIDI_OP)
1680 		se_cmd->se_cmd_flags |= SCF_BIDI;
1681 
1682 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1683 		se_cmd->unknown_data_length = 1;
1684 	/*
1685 	 * Initialize se_cmd for target operation.  From this point
1686 	 * exceptions are handled by sending exception status via
1687 	 * target_core_fabric_ops->queue_status() callback
1688 	 */
1689 	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1690 			  data_dir, task_attr, sense, unpacked_lun,
1691 			  se_sess->cmd_cnt);
1692 
1693 	/*
1694 	 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1695 	 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1696 	 * kref_put() to happen during fabric packet acknowledgement.
1697 	 */
1698 	return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1699 }
1700 EXPORT_SYMBOL_GPL(target_init_cmd);
1701 
1702 /**
1703  * target_submit_prep - prepare cmd for submission
1704  * @se_cmd: command descriptor to prep
1705  * @cdb: pointer to SCSI CDB
1706  * @sgl: struct scatterlist memory for unidirectional mapping
1707  * @sgl_count: scatterlist count for unidirectional mapping
1708  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1709  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1710  * @sgl_prot: struct scatterlist memory protection information
1711  * @sgl_prot_count: scatterlist count for protection information
1712  * @gfp: gfp allocation type
1713  *
1714  * Returns:
1715  *	- less than zero to signal failure.
1716  *	- zero on success.
1717  *
1718  * If failure is returned, lio will the callers queue_status to complete
1719  * the cmd.
1720  */
1721 int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1722 		       struct scatterlist *sgl, u32 sgl_count,
1723 		       struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1724 		       struct scatterlist *sgl_prot, u32 sgl_prot_count,
1725 		       gfp_t gfp)
1726 {
1727 	sense_reason_t rc;
1728 
1729 	rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1730 	if (rc)
1731 		goto send_cc_direct;
1732 
1733 	/*
1734 	 * Locate se_lun pointer and attach it to struct se_cmd
1735 	 */
1736 	rc = transport_lookup_cmd_lun(se_cmd);
1737 	if (rc)
1738 		goto send_cc_direct;
1739 
1740 	rc = target_cmd_parse_cdb(se_cmd);
1741 	if (rc != 0)
1742 		goto generic_fail;
1743 
1744 	/*
1745 	 * Save pointers for SGLs containing protection information,
1746 	 * if present.
1747 	 */
1748 	if (sgl_prot_count) {
1749 		se_cmd->t_prot_sg = sgl_prot;
1750 		se_cmd->t_prot_nents = sgl_prot_count;
1751 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1752 	}
1753 
1754 	/*
1755 	 * When a non zero sgl_count has been passed perform SGL passthrough
1756 	 * mapping for pre-allocated fabric memory instead of having target
1757 	 * core perform an internal SGL allocation..
1758 	 */
1759 	if (sgl_count != 0) {
1760 		BUG_ON(!sgl);
1761 
1762 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1763 				sgl_bidi, sgl_bidi_count);
1764 		if (rc != 0)
1765 			goto generic_fail;
1766 	}
1767 
1768 	return 0;
1769 
1770 send_cc_direct:
1771 	transport_send_check_condition_and_sense(se_cmd, rc, 0);
1772 	target_put_sess_cmd(se_cmd);
1773 	return -EIO;
1774 
1775 generic_fail:
1776 	transport_generic_request_failure(se_cmd, rc);
1777 	return -EIO;
1778 }
1779 EXPORT_SYMBOL_GPL(target_submit_prep);
1780 
1781 /**
1782  * target_submit - perform final initialization and submit cmd to LIO core
1783  * @se_cmd: command descriptor to submit
1784  *
1785  * target_submit_prep must have been called on the cmd, and this must be
1786  * called from process context.
1787  */
1788 void target_submit(struct se_cmd *se_cmd)
1789 {
1790 	struct scatterlist *sgl = se_cmd->t_data_sg;
1791 	unsigned char *buf = NULL;
1792 
1793 	might_sleep();
1794 
1795 	if (se_cmd->t_data_nents != 0) {
1796 		BUG_ON(!sgl);
1797 		/*
1798 		 * A work-around for tcm_loop as some userspace code via
1799 		 * scsi-generic do not memset their associated read buffers,
1800 		 * so go ahead and do that here for type non-data CDBs.  Also
1801 		 * note that this is currently guaranteed to be a single SGL
1802 		 * for this case by target core in target_setup_cmd_from_cdb()
1803 		 * -> transport_generic_cmd_sequencer().
1804 		 */
1805 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1806 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1807 			if (sgl)
1808 				buf = kmap(sg_page(sgl)) + sgl->offset;
1809 
1810 			if (buf) {
1811 				memset(buf, 0, sgl->length);
1812 				kunmap(sg_page(sgl));
1813 			}
1814 		}
1815 
1816 	}
1817 
1818 	/*
1819 	 * Check if we need to delay processing because of ALUA
1820 	 * Active/NonOptimized primary access state..
1821 	 */
1822 	core_alua_check_nonop_delay(se_cmd);
1823 
1824 	transport_handle_cdb_direct(se_cmd);
1825 }
1826 EXPORT_SYMBOL_GPL(target_submit);
1827 
1828 /**
1829  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1830  *
1831  * @se_cmd: command descriptor to submit
1832  * @se_sess: associated se_sess for endpoint
1833  * @cdb: pointer to SCSI CDB
1834  * @sense: pointer to SCSI sense buffer
1835  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1836  * @data_length: fabric expected data transfer length
1837  * @task_attr: SAM task attribute
1838  * @data_dir: DMA data direction
1839  * @flags: flags for command submission from target_sc_flags_tables
1840  *
1841  * Task tags are supported if the caller has set @se_cmd->tag.
1842  *
1843  * This may only be called from process context, and also currently
1844  * assumes internal allocation of fabric payload buffer by target-core.
1845  *
1846  * It also assumes interal target core SGL memory allocation.
1847  *
1848  * This function must only be used by drivers that do their own
1849  * sync during shutdown and does not use target_stop_session. If there
1850  * is a failure this function will call into the fabric driver's
1851  * queue_status with a CHECK_CONDITION.
1852  */
1853 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1854 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1855 		u32 data_length, int task_attr, int data_dir, int flags)
1856 {
1857 	int rc;
1858 
1859 	rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1860 			     task_attr, data_dir, flags);
1861 	WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1862 	if (rc)
1863 		return;
1864 
1865 	if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1866 			       GFP_KERNEL))
1867 		return;
1868 
1869 	target_submit(se_cmd);
1870 }
1871 EXPORT_SYMBOL(target_submit_cmd);
1872 
1873 
1874 static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1875 {
1876 	struct se_dev_plug *se_plug;
1877 
1878 	if (!se_dev->transport->plug_device)
1879 		return NULL;
1880 
1881 	se_plug = se_dev->transport->plug_device(se_dev);
1882 	if (!se_plug)
1883 		return NULL;
1884 
1885 	se_plug->se_dev = se_dev;
1886 	/*
1887 	 * We have a ref to the lun at this point, but the cmds could
1888 	 * complete before we unplug, so grab a ref to the se_device so we
1889 	 * can call back into the backend.
1890 	 */
1891 	config_group_get(&se_dev->dev_group);
1892 	return se_plug;
1893 }
1894 
1895 static void target_unplug_device(struct se_dev_plug *se_plug)
1896 {
1897 	struct se_device *se_dev = se_plug->se_dev;
1898 
1899 	se_dev->transport->unplug_device(se_plug);
1900 	config_group_put(&se_dev->dev_group);
1901 }
1902 
1903 void target_queued_submit_work(struct work_struct *work)
1904 {
1905 	struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1906 	struct se_cmd *se_cmd, *next_cmd;
1907 	struct se_dev_plug *se_plug = NULL;
1908 	struct se_device *se_dev = NULL;
1909 	struct llist_node *cmd_list;
1910 
1911 	cmd_list = llist_del_all(&sq->cmd_list);
1912 	if (!cmd_list)
1913 		/* Previous call took what we were queued to submit */
1914 		return;
1915 
1916 	cmd_list = llist_reverse_order(cmd_list);
1917 	llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1918 		if (!se_dev) {
1919 			se_dev = se_cmd->se_dev;
1920 			se_plug = target_plug_device(se_dev);
1921 		}
1922 
1923 		target_submit(se_cmd);
1924 	}
1925 
1926 	if (se_plug)
1927 		target_unplug_device(se_plug);
1928 }
1929 
1930 /**
1931  * target_queue_submission - queue the cmd to run on the LIO workqueue
1932  * @se_cmd: command descriptor to submit
1933  */
1934 void target_queue_submission(struct se_cmd *se_cmd)
1935 {
1936 	struct se_device *se_dev = se_cmd->se_dev;
1937 	int cpu = se_cmd->cpuid;
1938 	struct se_cmd_queue *sq;
1939 
1940 	sq = &se_dev->queues[cpu].sq;
1941 	llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1942 	queue_work_on(cpu, target_submission_wq, &sq->work);
1943 }
1944 EXPORT_SYMBOL_GPL(target_queue_submission);
1945 
1946 static void target_complete_tmr_failure(struct work_struct *work)
1947 {
1948 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1949 
1950 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1951 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1952 
1953 	transport_lun_remove_cmd(se_cmd);
1954 	transport_cmd_check_stop_to_fabric(se_cmd);
1955 }
1956 
1957 /**
1958  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1959  *                     for TMR CDBs
1960  *
1961  * @se_cmd: command descriptor to submit
1962  * @se_sess: associated se_sess for endpoint
1963  * @sense: pointer to SCSI sense buffer
1964  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1965  * @fabric_tmr_ptr: fabric context for TMR req
1966  * @tm_type: Type of TM request
1967  * @gfp: gfp type for caller
1968  * @tag: referenced task tag for TMR_ABORT_TASK
1969  * @flags: submit cmd flags
1970  *
1971  * Callable from all contexts.
1972  **/
1973 
1974 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1975 		unsigned char *sense, u64 unpacked_lun,
1976 		void *fabric_tmr_ptr, unsigned char tm_type,
1977 		gfp_t gfp, u64 tag, int flags)
1978 {
1979 	struct se_portal_group *se_tpg;
1980 	int ret;
1981 
1982 	se_tpg = se_sess->se_tpg;
1983 	BUG_ON(!se_tpg);
1984 
1985 	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1986 			  0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun,
1987 			  se_sess->cmd_cnt);
1988 	/*
1989 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1990 	 * allocation failure.
1991 	 */
1992 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1993 	if (ret < 0)
1994 		return -ENOMEM;
1995 
1996 	if (tm_type == TMR_ABORT_TASK)
1997 		se_cmd->se_tmr_req->ref_task_tag = tag;
1998 
1999 	/* See target_submit_cmd for commentary */
2000 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
2001 	if (ret) {
2002 		core_tmr_release_req(se_cmd->se_tmr_req);
2003 		return ret;
2004 	}
2005 
2006 	ret = transport_lookup_tmr_lun(se_cmd);
2007 	if (ret)
2008 		goto failure;
2009 
2010 	transport_generic_handle_tmr(se_cmd);
2011 	return 0;
2012 
2013 	/*
2014 	 * For callback during failure handling, push this work off
2015 	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
2016 	 */
2017 failure:
2018 	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
2019 	schedule_work(&se_cmd->work);
2020 	return 0;
2021 }
2022 EXPORT_SYMBOL(target_submit_tmr);
2023 
2024 /*
2025  * Handle SAM-esque emulation for generic transport request failures.
2026  */
2027 void transport_generic_request_failure(struct se_cmd *cmd,
2028 		sense_reason_t sense_reason)
2029 {
2030 	int ret = 0, post_ret;
2031 
2032 	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2033 		 sense_reason);
2034 	target_show_cmd("-----[ ", cmd);
2035 
2036 	/*
2037 	 * For SAM Task Attribute emulation for failed struct se_cmd
2038 	 */
2039 	transport_complete_task_attr(cmd);
2040 
2041 	if (cmd->transport_complete_callback)
2042 		cmd->transport_complete_callback(cmd, false, &post_ret);
2043 
2044 	if (cmd->transport_state & CMD_T_ABORTED) {
2045 		INIT_WORK(&cmd->work, target_abort_work);
2046 		queue_work(target_completion_wq, &cmd->work);
2047 		return;
2048 	}
2049 
2050 	switch (sense_reason) {
2051 	case TCM_NON_EXISTENT_LUN:
2052 	case TCM_UNSUPPORTED_SCSI_OPCODE:
2053 	case TCM_INVALID_CDB_FIELD:
2054 	case TCM_INVALID_PARAMETER_LIST:
2055 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
2056 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2057 	case TCM_UNKNOWN_MODE_PAGE:
2058 	case TCM_WRITE_PROTECTED:
2059 	case TCM_ADDRESS_OUT_OF_RANGE:
2060 	case TCM_CHECK_CONDITION_ABORT_CMD:
2061 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2062 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2063 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2064 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2065 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2066 	case TCM_TOO_MANY_TARGET_DESCS:
2067 	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2068 	case TCM_TOO_MANY_SEGMENT_DESCS:
2069 	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2070 	case TCM_INVALID_FIELD_IN_COMMAND_IU:
2071 	case TCM_ALUA_TG_PT_STANDBY:
2072 	case TCM_ALUA_TG_PT_UNAVAILABLE:
2073 	case TCM_ALUA_STATE_TRANSITION:
2074 	case TCM_ALUA_OFFLINE:
2075 		break;
2076 	case TCM_OUT_OF_RESOURCES:
2077 		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2078 		goto queue_status;
2079 	case TCM_LUN_BUSY:
2080 		cmd->scsi_status = SAM_STAT_BUSY;
2081 		goto queue_status;
2082 	case TCM_RESERVATION_CONFLICT:
2083 		/*
2084 		 * No SENSE Data payload for this case, set SCSI Status
2085 		 * and queue the response to $FABRIC_MOD.
2086 		 *
2087 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
2088 		 */
2089 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2090 		/*
2091 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2092 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2093 		 * CONFLICT STATUS.
2094 		 *
2095 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2096 		 */
2097 		if (cmd->se_sess &&
2098 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2099 					== TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2100 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2101 					       cmd->orig_fe_lun, 0x2C,
2102 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2103 		}
2104 
2105 		goto queue_status;
2106 	default:
2107 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2108 			cmd->t_task_cdb[0], sense_reason);
2109 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2110 		break;
2111 	}
2112 
2113 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2114 	if (ret)
2115 		goto queue_full;
2116 
2117 check_stop:
2118 	transport_lun_remove_cmd(cmd);
2119 	transport_cmd_check_stop_to_fabric(cmd);
2120 	return;
2121 
2122 queue_status:
2123 	trace_target_cmd_complete(cmd);
2124 	ret = cmd->se_tfo->queue_status(cmd);
2125 	if (!ret)
2126 		goto check_stop;
2127 queue_full:
2128 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2129 }
2130 EXPORT_SYMBOL(transport_generic_request_failure);
2131 
2132 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2133 {
2134 	sense_reason_t ret;
2135 
2136 	if (!cmd->execute_cmd) {
2137 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2138 		goto err;
2139 	}
2140 	if (do_checks) {
2141 		/*
2142 		 * Check for an existing UNIT ATTENTION condition after
2143 		 * target_handle_task_attr() has done SAM task attr
2144 		 * checking, and possibly have already defered execution
2145 		 * out to target_restart_delayed_cmds() context.
2146 		 */
2147 		ret = target_scsi3_ua_check(cmd);
2148 		if (ret)
2149 			goto err;
2150 
2151 		ret = target_alua_state_check(cmd);
2152 		if (ret)
2153 			goto err;
2154 
2155 		ret = target_check_reservation(cmd);
2156 		if (ret) {
2157 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2158 			goto err;
2159 		}
2160 	}
2161 
2162 	ret = cmd->execute_cmd(cmd);
2163 	if (!ret)
2164 		return;
2165 err:
2166 	spin_lock_irq(&cmd->t_state_lock);
2167 	cmd->transport_state &= ~CMD_T_SENT;
2168 	spin_unlock_irq(&cmd->t_state_lock);
2169 
2170 	transport_generic_request_failure(cmd, ret);
2171 }
2172 
2173 static int target_write_prot_action(struct se_cmd *cmd)
2174 {
2175 	u32 sectors;
2176 	/*
2177 	 * Perform WRITE_INSERT of PI using software emulation when backend
2178 	 * device has PI enabled, if the transport has not already generated
2179 	 * PI using hardware WRITE_INSERT offload.
2180 	 */
2181 	switch (cmd->prot_op) {
2182 	case TARGET_PROT_DOUT_INSERT:
2183 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2184 			sbc_dif_generate(cmd);
2185 		break;
2186 	case TARGET_PROT_DOUT_STRIP:
2187 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2188 			break;
2189 
2190 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2191 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2192 					     sectors, 0, cmd->t_prot_sg, 0);
2193 		if (unlikely(cmd->pi_err)) {
2194 			spin_lock_irq(&cmd->t_state_lock);
2195 			cmd->transport_state &= ~CMD_T_SENT;
2196 			spin_unlock_irq(&cmd->t_state_lock);
2197 			transport_generic_request_failure(cmd, cmd->pi_err);
2198 			return -1;
2199 		}
2200 		break;
2201 	default:
2202 		break;
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 static bool target_handle_task_attr(struct se_cmd *cmd)
2209 {
2210 	struct se_device *dev = cmd->se_dev;
2211 
2212 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2213 		return false;
2214 
2215 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2216 
2217 	/*
2218 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2219 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
2220 	 */
2221 	switch (cmd->sam_task_attr) {
2222 	case TCM_HEAD_TAG:
2223 		atomic_inc_mb(&dev->non_ordered);
2224 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2225 			 cmd->t_task_cdb[0]);
2226 		return false;
2227 	case TCM_ORDERED_TAG:
2228 		atomic_inc_mb(&dev->delayed_cmd_count);
2229 
2230 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2231 			 cmd->t_task_cdb[0]);
2232 		break;
2233 	default:
2234 		/*
2235 		 * For SIMPLE and UNTAGGED Task Attribute commands
2236 		 */
2237 		atomic_inc_mb(&dev->non_ordered);
2238 
2239 		if (atomic_read(&dev->delayed_cmd_count) == 0)
2240 			return false;
2241 		break;
2242 	}
2243 
2244 	if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
2245 		atomic_inc_mb(&dev->delayed_cmd_count);
2246 		/*
2247 		 * We will account for this when we dequeue from the delayed
2248 		 * list.
2249 		 */
2250 		atomic_dec_mb(&dev->non_ordered);
2251 	}
2252 
2253 	spin_lock_irq(&cmd->t_state_lock);
2254 	cmd->transport_state &= ~CMD_T_SENT;
2255 	spin_unlock_irq(&cmd->t_state_lock);
2256 
2257 	spin_lock(&dev->delayed_cmd_lock);
2258 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2259 	spin_unlock(&dev->delayed_cmd_lock);
2260 
2261 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2262 		cmd->t_task_cdb[0], cmd->sam_task_attr);
2263 	/*
2264 	 * We may have no non ordered cmds when this function started or we
2265 	 * could have raced with the last simple/head cmd completing, so kick
2266 	 * the delayed handler here.
2267 	 */
2268 	schedule_work(&dev->delayed_cmd_work);
2269 	return true;
2270 }
2271 
2272 void target_execute_cmd(struct se_cmd *cmd)
2273 {
2274 	/*
2275 	 * Determine if frontend context caller is requesting the stopping of
2276 	 * this command for frontend exceptions.
2277 	 *
2278 	 * If the received CDB has already been aborted stop processing it here.
2279 	 */
2280 	if (target_cmd_interrupted(cmd))
2281 		return;
2282 
2283 	spin_lock_irq(&cmd->t_state_lock);
2284 	cmd->t_state = TRANSPORT_PROCESSING;
2285 	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2286 	spin_unlock_irq(&cmd->t_state_lock);
2287 
2288 	if (target_write_prot_action(cmd))
2289 		return;
2290 
2291 	if (target_handle_task_attr(cmd))
2292 		return;
2293 
2294 	__target_execute_cmd(cmd, true);
2295 }
2296 EXPORT_SYMBOL(target_execute_cmd);
2297 
2298 /*
2299  * Process all commands up to the last received ORDERED task attribute which
2300  * requires another blocking boundary
2301  */
2302 void target_do_delayed_work(struct work_struct *work)
2303 {
2304 	struct se_device *dev = container_of(work, struct se_device,
2305 					     delayed_cmd_work);
2306 
2307 	spin_lock(&dev->delayed_cmd_lock);
2308 	while (!dev->ordered_sync_in_progress) {
2309 		struct se_cmd *cmd;
2310 
2311 		if (list_empty(&dev->delayed_cmd_list))
2312 			break;
2313 
2314 		cmd = list_entry(dev->delayed_cmd_list.next,
2315 				 struct se_cmd, se_delayed_node);
2316 
2317 		if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2318 			/*
2319 			 * Check if we started with:
2320 			 * [ordered] [simple] [ordered]
2321 			 * and we are now at the last ordered so we have to wait
2322 			 * for the simple cmd.
2323 			 */
2324 			if (atomic_read(&dev->non_ordered) > 0)
2325 				break;
2326 
2327 			dev->ordered_sync_in_progress = true;
2328 		}
2329 
2330 		list_del(&cmd->se_delayed_node);
2331 		atomic_dec_mb(&dev->delayed_cmd_count);
2332 		spin_unlock(&dev->delayed_cmd_lock);
2333 
2334 		if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2335 			atomic_inc_mb(&dev->non_ordered);
2336 
2337 		cmd->transport_state |= CMD_T_SENT;
2338 
2339 		__target_execute_cmd(cmd, true);
2340 
2341 		spin_lock(&dev->delayed_cmd_lock);
2342 	}
2343 	spin_unlock(&dev->delayed_cmd_lock);
2344 }
2345 
2346 /*
2347  * Called from I/O completion to determine which dormant/delayed
2348  * and ordered cmds need to have their tasks added to the execution queue.
2349  */
2350 static void transport_complete_task_attr(struct se_cmd *cmd)
2351 {
2352 	struct se_device *dev = cmd->se_dev;
2353 
2354 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2355 		return;
2356 
2357 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2358 		goto restart;
2359 
2360 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2361 		atomic_dec_mb(&dev->non_ordered);
2362 		dev->dev_cur_ordered_id++;
2363 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2364 		atomic_dec_mb(&dev->non_ordered);
2365 		dev->dev_cur_ordered_id++;
2366 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2367 			 dev->dev_cur_ordered_id);
2368 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2369 		spin_lock(&dev->delayed_cmd_lock);
2370 		dev->ordered_sync_in_progress = false;
2371 		spin_unlock(&dev->delayed_cmd_lock);
2372 
2373 		dev->dev_cur_ordered_id++;
2374 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2375 			 dev->dev_cur_ordered_id);
2376 	}
2377 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2378 
2379 restart:
2380 	if (atomic_read(&dev->delayed_cmd_count) > 0)
2381 		schedule_work(&dev->delayed_cmd_work);
2382 }
2383 
2384 static void transport_complete_qf(struct se_cmd *cmd)
2385 {
2386 	int ret = 0;
2387 
2388 	transport_complete_task_attr(cmd);
2389 	/*
2390 	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2391 	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2392 	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2393 	 * if a scsi_status is not already set.
2394 	 *
2395 	 * If a fabric driver ->queue_status() has returned non zero, always
2396 	 * keep retrying no matter what..
2397 	 */
2398 	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2399 		if (cmd->scsi_status)
2400 			goto queue_status;
2401 
2402 		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2403 		goto queue_status;
2404 	}
2405 
2406 	/*
2407 	 * Check if we need to send a sense buffer from
2408 	 * the struct se_cmd in question. We do NOT want
2409 	 * to take this path of the IO has been marked as
2410 	 * needing to be treated like a "normal read". This
2411 	 * is the case if it's a tape read, and either the
2412 	 * FM, EOM, or ILI bits are set, but there is no
2413 	 * sense data.
2414 	 */
2415 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2416 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2417 		goto queue_status;
2418 
2419 	switch (cmd->data_direction) {
2420 	case DMA_FROM_DEVICE:
2421 		/* queue status if not treating this as a normal read */
2422 		if (cmd->scsi_status &&
2423 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2424 			goto queue_status;
2425 
2426 		trace_target_cmd_complete(cmd);
2427 		ret = cmd->se_tfo->queue_data_in(cmd);
2428 		break;
2429 	case DMA_TO_DEVICE:
2430 		if (cmd->se_cmd_flags & SCF_BIDI) {
2431 			ret = cmd->se_tfo->queue_data_in(cmd);
2432 			break;
2433 		}
2434 		fallthrough;
2435 	case DMA_NONE:
2436 queue_status:
2437 		trace_target_cmd_complete(cmd);
2438 		ret = cmd->se_tfo->queue_status(cmd);
2439 		break;
2440 	default:
2441 		break;
2442 	}
2443 
2444 	if (ret < 0) {
2445 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2446 		return;
2447 	}
2448 	transport_lun_remove_cmd(cmd);
2449 	transport_cmd_check_stop_to_fabric(cmd);
2450 }
2451 
2452 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2453 					int err, bool write_pending)
2454 {
2455 	/*
2456 	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2457 	 * ->queue_data_in() callbacks from new process context.
2458 	 *
2459 	 * Otherwise for other errors, transport_complete_qf() will send
2460 	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2461 	 * retry associated fabric driver data-transfer callbacks.
2462 	 */
2463 	if (err == -EAGAIN || err == -ENOMEM) {
2464 		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2465 						 TRANSPORT_COMPLETE_QF_OK;
2466 	} else {
2467 		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2468 		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2469 	}
2470 
2471 	spin_lock_irq(&dev->qf_cmd_lock);
2472 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2473 	atomic_inc_mb(&dev->dev_qf_count);
2474 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2475 
2476 	schedule_work(&cmd->se_dev->qf_work_queue);
2477 }
2478 
2479 static bool target_read_prot_action(struct se_cmd *cmd)
2480 {
2481 	switch (cmd->prot_op) {
2482 	case TARGET_PROT_DIN_STRIP:
2483 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2484 			u32 sectors = cmd->data_length >>
2485 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2486 
2487 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2488 						     sectors, 0, cmd->t_prot_sg,
2489 						     0);
2490 			if (cmd->pi_err)
2491 				return true;
2492 		}
2493 		break;
2494 	case TARGET_PROT_DIN_INSERT:
2495 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2496 			break;
2497 
2498 		sbc_dif_generate(cmd);
2499 		break;
2500 	default:
2501 		break;
2502 	}
2503 
2504 	return false;
2505 }
2506 
2507 static void target_complete_ok_work(struct work_struct *work)
2508 {
2509 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2510 	int ret;
2511 
2512 	/*
2513 	 * Check if we need to move delayed/dormant tasks from cmds on the
2514 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2515 	 * Attribute.
2516 	 */
2517 	transport_complete_task_attr(cmd);
2518 
2519 	/*
2520 	 * Check to schedule QUEUE_FULL work, or execute an existing
2521 	 * cmd->transport_qf_callback()
2522 	 */
2523 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2524 		schedule_work(&cmd->se_dev->qf_work_queue);
2525 
2526 	/*
2527 	 * Check if we need to send a sense buffer from
2528 	 * the struct se_cmd in question. We do NOT want
2529 	 * to take this path of the IO has been marked as
2530 	 * needing to be treated like a "normal read". This
2531 	 * is the case if it's a tape read, and either the
2532 	 * FM, EOM, or ILI bits are set, but there is no
2533 	 * sense data.
2534 	 */
2535 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2536 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2537 		WARN_ON(!cmd->scsi_status);
2538 		ret = transport_send_check_condition_and_sense(
2539 					cmd, 0, 1);
2540 		if (ret)
2541 			goto queue_full;
2542 
2543 		transport_lun_remove_cmd(cmd);
2544 		transport_cmd_check_stop_to_fabric(cmd);
2545 		return;
2546 	}
2547 	/*
2548 	 * Check for a callback, used by amongst other things
2549 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2550 	 */
2551 	if (cmd->transport_complete_callback) {
2552 		sense_reason_t rc;
2553 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2554 		bool zero_dl = !(cmd->data_length);
2555 		int post_ret = 0;
2556 
2557 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2558 		if (!rc && !post_ret) {
2559 			if (caw && zero_dl)
2560 				goto queue_rsp;
2561 
2562 			return;
2563 		} else if (rc) {
2564 			ret = transport_send_check_condition_and_sense(cmd,
2565 						rc, 0);
2566 			if (ret)
2567 				goto queue_full;
2568 
2569 			transport_lun_remove_cmd(cmd);
2570 			transport_cmd_check_stop_to_fabric(cmd);
2571 			return;
2572 		}
2573 	}
2574 
2575 queue_rsp:
2576 	switch (cmd->data_direction) {
2577 	case DMA_FROM_DEVICE:
2578 		/*
2579 		 * if this is a READ-type IO, but SCSI status
2580 		 * is set, then skip returning data and just
2581 		 * return the status -- unless this IO is marked
2582 		 * as needing to be treated as a normal read,
2583 		 * in which case we want to go ahead and return
2584 		 * the data. This happens, for example, for tape
2585 		 * reads with the FM, EOM, or ILI bits set, with
2586 		 * no sense data.
2587 		 */
2588 		if (cmd->scsi_status &&
2589 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2590 			goto queue_status;
2591 
2592 		atomic_long_add(cmd->data_length,
2593 				&cmd->se_lun->lun_stats.tx_data_octets);
2594 		/*
2595 		 * Perform READ_STRIP of PI using software emulation when
2596 		 * backend had PI enabled, if the transport will not be
2597 		 * performing hardware READ_STRIP offload.
2598 		 */
2599 		if (target_read_prot_action(cmd)) {
2600 			ret = transport_send_check_condition_and_sense(cmd,
2601 						cmd->pi_err, 0);
2602 			if (ret)
2603 				goto queue_full;
2604 
2605 			transport_lun_remove_cmd(cmd);
2606 			transport_cmd_check_stop_to_fabric(cmd);
2607 			return;
2608 		}
2609 
2610 		trace_target_cmd_complete(cmd);
2611 		ret = cmd->se_tfo->queue_data_in(cmd);
2612 		if (ret)
2613 			goto queue_full;
2614 		break;
2615 	case DMA_TO_DEVICE:
2616 		atomic_long_add(cmd->data_length,
2617 				&cmd->se_lun->lun_stats.rx_data_octets);
2618 		/*
2619 		 * Check if we need to send READ payload for BIDI-COMMAND
2620 		 */
2621 		if (cmd->se_cmd_flags & SCF_BIDI) {
2622 			atomic_long_add(cmd->data_length,
2623 					&cmd->se_lun->lun_stats.tx_data_octets);
2624 			ret = cmd->se_tfo->queue_data_in(cmd);
2625 			if (ret)
2626 				goto queue_full;
2627 			break;
2628 		}
2629 		fallthrough;
2630 	case DMA_NONE:
2631 queue_status:
2632 		trace_target_cmd_complete(cmd);
2633 		ret = cmd->se_tfo->queue_status(cmd);
2634 		if (ret)
2635 			goto queue_full;
2636 		break;
2637 	default:
2638 		break;
2639 	}
2640 
2641 	transport_lun_remove_cmd(cmd);
2642 	transport_cmd_check_stop_to_fabric(cmd);
2643 	return;
2644 
2645 queue_full:
2646 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2647 		" data_direction: %d\n", cmd, cmd->data_direction);
2648 
2649 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2650 }
2651 
2652 void target_free_sgl(struct scatterlist *sgl, int nents)
2653 {
2654 	sgl_free_n_order(sgl, nents, 0);
2655 }
2656 EXPORT_SYMBOL(target_free_sgl);
2657 
2658 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2659 {
2660 	/*
2661 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2662 	 * emulation, and free + reset pointers if necessary..
2663 	 */
2664 	if (!cmd->t_data_sg_orig)
2665 		return;
2666 
2667 	kfree(cmd->t_data_sg);
2668 	cmd->t_data_sg = cmd->t_data_sg_orig;
2669 	cmd->t_data_sg_orig = NULL;
2670 	cmd->t_data_nents = cmd->t_data_nents_orig;
2671 	cmd->t_data_nents_orig = 0;
2672 }
2673 
2674 static inline void transport_free_pages(struct se_cmd *cmd)
2675 {
2676 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2677 		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2678 		cmd->t_prot_sg = NULL;
2679 		cmd->t_prot_nents = 0;
2680 	}
2681 
2682 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2683 		/*
2684 		 * Release special case READ buffer payload required for
2685 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2686 		 */
2687 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2688 			target_free_sgl(cmd->t_bidi_data_sg,
2689 					   cmd->t_bidi_data_nents);
2690 			cmd->t_bidi_data_sg = NULL;
2691 			cmd->t_bidi_data_nents = 0;
2692 		}
2693 		transport_reset_sgl_orig(cmd);
2694 		return;
2695 	}
2696 	transport_reset_sgl_orig(cmd);
2697 
2698 	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2699 	cmd->t_data_sg = NULL;
2700 	cmd->t_data_nents = 0;
2701 
2702 	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2703 	cmd->t_bidi_data_sg = NULL;
2704 	cmd->t_bidi_data_nents = 0;
2705 }
2706 
2707 void *transport_kmap_data_sg(struct se_cmd *cmd)
2708 {
2709 	struct scatterlist *sg = cmd->t_data_sg;
2710 	struct page **pages;
2711 	int i;
2712 
2713 	/*
2714 	 * We need to take into account a possible offset here for fabrics like
2715 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2716 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2717 	 */
2718 	if (!cmd->t_data_nents)
2719 		return NULL;
2720 
2721 	BUG_ON(!sg);
2722 	if (cmd->t_data_nents == 1)
2723 		return kmap(sg_page(sg)) + sg->offset;
2724 
2725 	/* >1 page. use vmap */
2726 	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2727 	if (!pages)
2728 		return NULL;
2729 
2730 	/* convert sg[] to pages[] */
2731 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2732 		pages[i] = sg_page(sg);
2733 	}
2734 
2735 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2736 	kfree(pages);
2737 	if (!cmd->t_data_vmap)
2738 		return NULL;
2739 
2740 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2741 }
2742 EXPORT_SYMBOL(transport_kmap_data_sg);
2743 
2744 void transport_kunmap_data_sg(struct se_cmd *cmd)
2745 {
2746 	if (!cmd->t_data_nents) {
2747 		return;
2748 	} else if (cmd->t_data_nents == 1) {
2749 		kunmap(sg_page(cmd->t_data_sg));
2750 		return;
2751 	}
2752 
2753 	vunmap(cmd->t_data_vmap);
2754 	cmd->t_data_vmap = NULL;
2755 }
2756 EXPORT_SYMBOL(transport_kunmap_data_sg);
2757 
2758 int
2759 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2760 		 bool zero_page, bool chainable)
2761 {
2762 	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2763 
2764 	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2765 	return *sgl ? 0 : -ENOMEM;
2766 }
2767 EXPORT_SYMBOL(target_alloc_sgl);
2768 
2769 /*
2770  * Allocate any required resources to execute the command.  For writes we
2771  * might not have the payload yet, so notify the fabric via a call to
2772  * ->write_pending instead. Otherwise place it on the execution queue.
2773  */
2774 sense_reason_t
2775 transport_generic_new_cmd(struct se_cmd *cmd)
2776 {
2777 	unsigned long flags;
2778 	int ret = 0;
2779 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2780 
2781 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2782 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2783 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2784 				       cmd->prot_length, true, false);
2785 		if (ret < 0)
2786 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2787 	}
2788 
2789 	/*
2790 	 * Determine if the TCM fabric module has already allocated physical
2791 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2792 	 * beforehand.
2793 	 */
2794 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2795 	    cmd->data_length) {
2796 
2797 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2798 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2799 			u32 bidi_length;
2800 
2801 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2802 				bidi_length = cmd->t_task_nolb *
2803 					      cmd->se_dev->dev_attrib.block_size;
2804 			else
2805 				bidi_length = cmd->data_length;
2806 
2807 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2808 					       &cmd->t_bidi_data_nents,
2809 					       bidi_length, zero_flag, false);
2810 			if (ret < 0)
2811 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2812 		}
2813 
2814 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2815 				       cmd->data_length, zero_flag, false);
2816 		if (ret < 0)
2817 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2818 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2819 		    cmd->data_length) {
2820 		/*
2821 		 * Special case for COMPARE_AND_WRITE with fabrics
2822 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2823 		 */
2824 		u32 caw_length = cmd->t_task_nolb *
2825 				 cmd->se_dev->dev_attrib.block_size;
2826 
2827 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2828 				       &cmd->t_bidi_data_nents,
2829 				       caw_length, zero_flag, false);
2830 		if (ret < 0)
2831 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2832 	}
2833 	/*
2834 	 * If this command is not a write we can execute it right here,
2835 	 * for write buffers we need to notify the fabric driver first
2836 	 * and let it call back once the write buffers are ready.
2837 	 */
2838 	target_add_to_state_list(cmd);
2839 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2840 		target_execute_cmd(cmd);
2841 		return 0;
2842 	}
2843 
2844 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2845 	cmd->t_state = TRANSPORT_WRITE_PENDING;
2846 	/*
2847 	 * Determine if frontend context caller is requesting the stopping of
2848 	 * this command for frontend exceptions.
2849 	 */
2850 	if (cmd->transport_state & CMD_T_STOP &&
2851 	    !cmd->se_tfo->write_pending_must_be_called) {
2852 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2853 			 __func__, __LINE__, cmd->tag);
2854 
2855 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2856 
2857 		complete_all(&cmd->t_transport_stop_comp);
2858 		return 0;
2859 	}
2860 	cmd->transport_state &= ~CMD_T_ACTIVE;
2861 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2862 
2863 	ret = cmd->se_tfo->write_pending(cmd);
2864 	if (ret)
2865 		goto queue_full;
2866 
2867 	return 0;
2868 
2869 queue_full:
2870 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2871 	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2872 	return 0;
2873 }
2874 EXPORT_SYMBOL(transport_generic_new_cmd);
2875 
2876 static void transport_write_pending_qf(struct se_cmd *cmd)
2877 {
2878 	unsigned long flags;
2879 	int ret;
2880 	bool stop;
2881 
2882 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2883 	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2884 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2885 
2886 	if (stop) {
2887 		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2888 			__func__, __LINE__, cmd->tag);
2889 		complete_all(&cmd->t_transport_stop_comp);
2890 		return;
2891 	}
2892 
2893 	ret = cmd->se_tfo->write_pending(cmd);
2894 	if (ret) {
2895 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2896 			 cmd);
2897 		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2898 	}
2899 }
2900 
2901 static bool
2902 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2903 			   unsigned long *flags);
2904 
2905 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2906 {
2907 	unsigned long flags;
2908 
2909 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2910 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2911 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2912 }
2913 
2914 /*
2915  * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2916  * finished.
2917  */
2918 void target_put_cmd_and_wait(struct se_cmd *cmd)
2919 {
2920 	DECLARE_COMPLETION_ONSTACK(compl);
2921 
2922 	WARN_ON_ONCE(cmd->abrt_compl);
2923 	cmd->abrt_compl = &compl;
2924 	target_put_sess_cmd(cmd);
2925 	wait_for_completion(&compl);
2926 }
2927 
2928 /*
2929  * This function is called by frontend drivers after processing of a command
2930  * has finished.
2931  *
2932  * The protocol for ensuring that either the regular frontend command
2933  * processing flow or target_handle_abort() code drops one reference is as
2934  * follows:
2935  * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2936  *   the frontend driver to call this function synchronously or asynchronously.
2937  *   That will cause one reference to be dropped.
2938  * - During regular command processing the target core sets CMD_T_COMPLETE
2939  *   before invoking one of the .queue_*() functions.
2940  * - The code that aborts commands skips commands and TMFs for which
2941  *   CMD_T_COMPLETE has been set.
2942  * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2943  *   commands that will be aborted.
2944  * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2945  *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2946  * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2947  *   be called and will drop a reference.
2948  * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2949  *   will be called. target_handle_abort() will drop the final reference.
2950  */
2951 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2952 {
2953 	DECLARE_COMPLETION_ONSTACK(compl);
2954 	int ret = 0;
2955 	bool aborted = false, tas = false;
2956 
2957 	if (wait_for_tasks)
2958 		target_wait_free_cmd(cmd, &aborted, &tas);
2959 
2960 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2961 		/*
2962 		 * Handle WRITE failure case where transport_generic_new_cmd()
2963 		 * has already added se_cmd to state_list, but fabric has
2964 		 * failed command before I/O submission.
2965 		 */
2966 		if (cmd->state_active)
2967 			target_remove_from_state_list(cmd);
2968 
2969 		if (cmd->se_lun)
2970 			transport_lun_remove_cmd(cmd);
2971 	}
2972 	if (aborted)
2973 		cmd->free_compl = &compl;
2974 	ret = target_put_sess_cmd(cmd);
2975 	if (aborted) {
2976 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2977 		wait_for_completion(&compl);
2978 		ret = 1;
2979 	}
2980 	return ret;
2981 }
2982 EXPORT_SYMBOL(transport_generic_free_cmd);
2983 
2984 /**
2985  * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2986  * @se_cmd:	command descriptor to add
2987  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2988  */
2989 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2990 {
2991 	int ret = 0;
2992 
2993 	/*
2994 	 * Add a second kref if the fabric caller is expecting to handle
2995 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2996 	 * invocations before se_cmd descriptor release.
2997 	 */
2998 	if (ack_kref) {
2999 		kref_get(&se_cmd->cmd_kref);
3000 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3001 	}
3002 
3003 	/*
3004 	 * Users like xcopy do not use counters since they never do a stop
3005 	 * and wait.
3006 	 */
3007 	if (se_cmd->cmd_cnt) {
3008 		if (!percpu_ref_tryget_live(&se_cmd->cmd_cnt->refcnt))
3009 			ret = -ESHUTDOWN;
3010 	}
3011 	if (ret && ack_kref)
3012 		target_put_sess_cmd(se_cmd);
3013 
3014 	return ret;
3015 }
3016 EXPORT_SYMBOL(target_get_sess_cmd);
3017 
3018 static void target_free_cmd_mem(struct se_cmd *cmd)
3019 {
3020 	transport_free_pages(cmd);
3021 
3022 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3023 		core_tmr_release_req(cmd->se_tmr_req);
3024 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
3025 		kfree(cmd->t_task_cdb);
3026 }
3027 
3028 static void target_release_cmd_kref(struct kref *kref)
3029 {
3030 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3031 	struct target_cmd_counter *cmd_cnt = se_cmd->cmd_cnt;
3032 	struct completion *free_compl = se_cmd->free_compl;
3033 	struct completion *abrt_compl = se_cmd->abrt_compl;
3034 
3035 	target_free_cmd_mem(se_cmd);
3036 	se_cmd->se_tfo->release_cmd(se_cmd);
3037 	if (free_compl)
3038 		complete(free_compl);
3039 	if (abrt_compl)
3040 		complete(abrt_compl);
3041 
3042 	if (cmd_cnt)
3043 		percpu_ref_put(&cmd_cnt->refcnt);
3044 }
3045 
3046 /**
3047  * target_put_sess_cmd - decrease the command reference count
3048  * @se_cmd:	command to drop a reference from
3049  *
3050  * Returns 1 if and only if this target_put_sess_cmd() call caused the
3051  * refcount to drop to zero. Returns zero otherwise.
3052  */
3053 int target_put_sess_cmd(struct se_cmd *se_cmd)
3054 {
3055 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3056 }
3057 EXPORT_SYMBOL(target_put_sess_cmd);
3058 
3059 static const char *data_dir_name(enum dma_data_direction d)
3060 {
3061 	switch (d) {
3062 	case DMA_BIDIRECTIONAL:	return "BIDI";
3063 	case DMA_TO_DEVICE:	return "WRITE";
3064 	case DMA_FROM_DEVICE:	return "READ";
3065 	case DMA_NONE:		return "NONE";
3066 	}
3067 
3068 	return "(?)";
3069 }
3070 
3071 static const char *cmd_state_name(enum transport_state_table t)
3072 {
3073 	switch (t) {
3074 	case TRANSPORT_NO_STATE:	return "NO_STATE";
3075 	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
3076 	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
3077 	case TRANSPORT_PROCESSING:	return "PROCESSING";
3078 	case TRANSPORT_COMPLETE:	return "COMPLETE";
3079 	case TRANSPORT_ISTATE_PROCESSING:
3080 					return "ISTATE_PROCESSING";
3081 	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
3082 	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
3083 	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
3084 	}
3085 
3086 	return "(?)";
3087 }
3088 
3089 static void target_append_str(char **str, const char *txt)
3090 {
3091 	char *prev = *str;
3092 
3093 	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3094 		kstrdup(txt, GFP_ATOMIC);
3095 	kfree(prev);
3096 }
3097 
3098 /*
3099  * Convert a transport state bitmask into a string. The caller is
3100  * responsible for freeing the returned pointer.
3101  */
3102 static char *target_ts_to_str(u32 ts)
3103 {
3104 	char *str = NULL;
3105 
3106 	if (ts & CMD_T_ABORTED)
3107 		target_append_str(&str, "aborted");
3108 	if (ts & CMD_T_ACTIVE)
3109 		target_append_str(&str, "active");
3110 	if (ts & CMD_T_COMPLETE)
3111 		target_append_str(&str, "complete");
3112 	if (ts & CMD_T_SENT)
3113 		target_append_str(&str, "sent");
3114 	if (ts & CMD_T_STOP)
3115 		target_append_str(&str, "stop");
3116 	if (ts & CMD_T_FABRIC_STOP)
3117 		target_append_str(&str, "fabric_stop");
3118 
3119 	return str;
3120 }
3121 
3122 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3123 {
3124 	switch (tmf) {
3125 	case TMR_ABORT_TASK:		return "ABORT_TASK";
3126 	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
3127 	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
3128 	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
3129 	case TMR_LUN_RESET:		return "LUN_RESET";
3130 	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
3131 	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
3132 	case TMR_LUN_RESET_PRO:		return "LUN_RESET_PRO";
3133 	case TMR_UNKNOWN:		break;
3134 	}
3135 	return "(?)";
3136 }
3137 
3138 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3139 {
3140 	char *ts_str = target_ts_to_str(cmd->transport_state);
3141 	const u8 *cdb = cmd->t_task_cdb;
3142 	struct se_tmr_req *tmf = cmd->se_tmr_req;
3143 
3144 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3145 		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3146 			 pfx, cdb[0], cdb[1], cmd->tag,
3147 			 data_dir_name(cmd->data_direction),
3148 			 cmd->se_tfo->get_cmd_state(cmd),
3149 			 cmd_state_name(cmd->t_state), cmd->data_length,
3150 			 kref_read(&cmd->cmd_kref), ts_str);
3151 	} else {
3152 		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3153 			 pfx, target_tmf_name(tmf->function), cmd->tag,
3154 			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3155 			 cmd_state_name(cmd->t_state),
3156 			 kref_read(&cmd->cmd_kref), ts_str);
3157 	}
3158 	kfree(ts_str);
3159 }
3160 EXPORT_SYMBOL(target_show_cmd);
3161 
3162 static void target_stop_cmd_counter_confirm(struct percpu_ref *ref)
3163 {
3164 	struct target_cmd_counter *cmd_cnt = container_of(ref,
3165 						struct target_cmd_counter,
3166 						refcnt);
3167 	complete_all(&cmd_cnt->stop_done);
3168 }
3169 
3170 /**
3171  * target_stop_cmd_counter - Stop new IO from being added to the counter.
3172  * @cmd_cnt: counter to stop
3173  */
3174 void target_stop_cmd_counter(struct target_cmd_counter *cmd_cnt)
3175 {
3176 	pr_debug("Stopping command counter.\n");
3177 	if (!atomic_cmpxchg(&cmd_cnt->stopped, 0, 1))
3178 		percpu_ref_kill_and_confirm(&cmd_cnt->refcnt,
3179 					    target_stop_cmd_counter_confirm);
3180 }
3181 EXPORT_SYMBOL_GPL(target_stop_cmd_counter);
3182 
3183 /**
3184  * target_stop_session - Stop new IO from being queued on the session.
3185  * @se_sess: session to stop
3186  */
3187 void target_stop_session(struct se_session *se_sess)
3188 {
3189 	target_stop_cmd_counter(se_sess->cmd_cnt);
3190 }
3191 EXPORT_SYMBOL(target_stop_session);
3192 
3193 /**
3194  * target_wait_for_cmds - Wait for outstanding cmds.
3195  * @cmd_cnt: counter to wait for active I/O for.
3196  */
3197 void target_wait_for_cmds(struct target_cmd_counter *cmd_cnt)
3198 {
3199 	int ret;
3200 
3201 	WARN_ON_ONCE(!atomic_read(&cmd_cnt->stopped));
3202 
3203 	do {
3204 		pr_debug("Waiting for running cmds to complete.\n");
3205 		ret = wait_event_timeout(cmd_cnt->refcnt_wq,
3206 					 percpu_ref_is_zero(&cmd_cnt->refcnt),
3207 					 180 * HZ);
3208 	} while (ret <= 0);
3209 
3210 	wait_for_completion(&cmd_cnt->stop_done);
3211 	pr_debug("Waiting for cmds done.\n");
3212 }
3213 EXPORT_SYMBOL_GPL(target_wait_for_cmds);
3214 
3215 /**
3216  * target_wait_for_sess_cmds - Wait for outstanding commands
3217  * @se_sess: session to wait for active I/O
3218  */
3219 void target_wait_for_sess_cmds(struct se_session *se_sess)
3220 {
3221 	target_wait_for_cmds(se_sess->cmd_cnt);
3222 }
3223 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3224 
3225 /*
3226  * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3227  * all references to the LUN have been released. Called during LUN shutdown.
3228  */
3229 void transport_clear_lun_ref(struct se_lun *lun)
3230 {
3231 	percpu_ref_kill(&lun->lun_ref);
3232 	wait_for_completion(&lun->lun_shutdown_comp);
3233 }
3234 
3235 static bool
3236 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3237 			   bool *aborted, bool *tas, unsigned long *flags)
3238 	__releases(&cmd->t_state_lock)
3239 	__acquires(&cmd->t_state_lock)
3240 {
3241 	lockdep_assert_held(&cmd->t_state_lock);
3242 
3243 	if (fabric_stop)
3244 		cmd->transport_state |= CMD_T_FABRIC_STOP;
3245 
3246 	if (cmd->transport_state & CMD_T_ABORTED)
3247 		*aborted = true;
3248 
3249 	if (cmd->transport_state & CMD_T_TAS)
3250 		*tas = true;
3251 
3252 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3253 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3254 		return false;
3255 
3256 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3257 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3258 		return false;
3259 
3260 	if (!(cmd->transport_state & CMD_T_ACTIVE))
3261 		return false;
3262 
3263 	if (fabric_stop && *aborted)
3264 		return false;
3265 
3266 	cmd->transport_state |= CMD_T_STOP;
3267 
3268 	target_show_cmd("wait_for_tasks: Stopping ", cmd);
3269 
3270 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3271 
3272 	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3273 					    180 * HZ))
3274 		target_show_cmd("wait for tasks: ", cmd);
3275 
3276 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3277 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3278 
3279 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3280 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3281 
3282 	return true;
3283 }
3284 
3285 /**
3286  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3287  * @cmd: command to wait on
3288  */
3289 bool transport_wait_for_tasks(struct se_cmd *cmd)
3290 {
3291 	unsigned long flags;
3292 	bool ret, aborted = false, tas = false;
3293 
3294 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3295 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3296 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3297 
3298 	return ret;
3299 }
3300 EXPORT_SYMBOL(transport_wait_for_tasks);
3301 
3302 struct sense_detail {
3303 	u8 key;
3304 	u8 asc;
3305 	u8 ascq;
3306 	bool add_sense_info;
3307 };
3308 
3309 static const struct sense_detail sense_detail_table[] = {
3310 	[TCM_NO_SENSE] = {
3311 		.key = NOT_READY
3312 	},
3313 	[TCM_NON_EXISTENT_LUN] = {
3314 		.key = ILLEGAL_REQUEST,
3315 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3316 	},
3317 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3318 		.key = ILLEGAL_REQUEST,
3319 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3320 	},
3321 	[TCM_SECTOR_COUNT_TOO_MANY] = {
3322 		.key = ILLEGAL_REQUEST,
3323 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3324 	},
3325 	[TCM_UNKNOWN_MODE_PAGE] = {
3326 		.key = ILLEGAL_REQUEST,
3327 		.asc = 0x24, /* INVALID FIELD IN CDB */
3328 	},
3329 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3330 		.key = ABORTED_COMMAND,
3331 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3332 		.ascq = 0x03,
3333 	},
3334 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3335 		.key = ABORTED_COMMAND,
3336 		.asc = 0x0c, /* WRITE ERROR */
3337 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3338 	},
3339 	[TCM_INVALID_CDB_FIELD] = {
3340 		.key = ILLEGAL_REQUEST,
3341 		.asc = 0x24, /* INVALID FIELD IN CDB */
3342 	},
3343 	[TCM_INVALID_PARAMETER_LIST] = {
3344 		.key = ILLEGAL_REQUEST,
3345 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3346 	},
3347 	[TCM_TOO_MANY_TARGET_DESCS] = {
3348 		.key = ILLEGAL_REQUEST,
3349 		.asc = 0x26,
3350 		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3351 	},
3352 	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3353 		.key = ILLEGAL_REQUEST,
3354 		.asc = 0x26,
3355 		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3356 	},
3357 	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3358 		.key = ILLEGAL_REQUEST,
3359 		.asc = 0x26,
3360 		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3361 	},
3362 	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3363 		.key = ILLEGAL_REQUEST,
3364 		.asc = 0x26,
3365 		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3366 	},
3367 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3368 		.key = ILLEGAL_REQUEST,
3369 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3370 	},
3371 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3372 		.key = ILLEGAL_REQUEST,
3373 		.asc = 0x0c, /* WRITE ERROR */
3374 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3375 	},
3376 	[TCM_SERVICE_CRC_ERROR] = {
3377 		.key = ABORTED_COMMAND,
3378 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3379 		.ascq = 0x05, /* N/A */
3380 	},
3381 	[TCM_SNACK_REJECTED] = {
3382 		.key = ABORTED_COMMAND,
3383 		.asc = 0x11, /* READ ERROR */
3384 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3385 	},
3386 	[TCM_WRITE_PROTECTED] = {
3387 		.key = DATA_PROTECT,
3388 		.asc = 0x27, /* WRITE PROTECTED */
3389 	},
3390 	[TCM_ADDRESS_OUT_OF_RANGE] = {
3391 		.key = ILLEGAL_REQUEST,
3392 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3393 	},
3394 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3395 		.key = UNIT_ATTENTION,
3396 	},
3397 	[TCM_MISCOMPARE_VERIFY] = {
3398 		.key = MISCOMPARE,
3399 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3400 		.ascq = 0x00,
3401 		.add_sense_info = true,
3402 	},
3403 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3404 		.key = ABORTED_COMMAND,
3405 		.asc = 0x10,
3406 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3407 		.add_sense_info = true,
3408 	},
3409 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3410 		.key = ABORTED_COMMAND,
3411 		.asc = 0x10,
3412 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3413 		.add_sense_info = true,
3414 	},
3415 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3416 		.key = ABORTED_COMMAND,
3417 		.asc = 0x10,
3418 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3419 		.add_sense_info = true,
3420 	},
3421 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3422 		.key = COPY_ABORTED,
3423 		.asc = 0x0d,
3424 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3425 
3426 	},
3427 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3428 		/*
3429 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3430 		 * Solaris initiators.  Returning NOT READY instead means the
3431 		 * operations will be retried a finite number of times and we
3432 		 * can survive intermittent errors.
3433 		 */
3434 		.key = NOT_READY,
3435 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3436 	},
3437 	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3438 		/*
3439 		 * From spc4r22 section5.7.7,5.7.8
3440 		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3441 		 * or a REGISTER AND IGNORE EXISTING KEY service action or
3442 		 * REGISTER AND MOVE service actionis attempted,
3443 		 * but there are insufficient device server resources to complete the
3444 		 * operation, then the command shall be terminated with CHECK CONDITION
3445 		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3446 		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3447 		 */
3448 		.key = ILLEGAL_REQUEST,
3449 		.asc = 0x55,
3450 		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3451 	},
3452 	[TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3453 		.key = ILLEGAL_REQUEST,
3454 		.asc = 0x0e,
3455 		.ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3456 	},
3457 	[TCM_ALUA_TG_PT_STANDBY] = {
3458 		.key = NOT_READY,
3459 		.asc = 0x04,
3460 		.ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3461 	},
3462 	[TCM_ALUA_TG_PT_UNAVAILABLE] = {
3463 		.key = NOT_READY,
3464 		.asc = 0x04,
3465 		.ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3466 	},
3467 	[TCM_ALUA_STATE_TRANSITION] = {
3468 		.key = NOT_READY,
3469 		.asc = 0x04,
3470 		.ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3471 	},
3472 	[TCM_ALUA_OFFLINE] = {
3473 		.key = NOT_READY,
3474 		.asc = 0x04,
3475 		.ascq = ASCQ_04H_ALUA_OFFLINE,
3476 	},
3477 };
3478 
3479 /**
3480  * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3481  * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3482  *   be stored.
3483  * @reason: LIO sense reason code. If this argument has the value
3484  *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3485  *   dequeuing a unit attention fails due to multiple commands being processed
3486  *   concurrently, set the command status to BUSY.
3487  *
3488  * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3489  */
3490 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3491 {
3492 	const struct sense_detail *sd;
3493 	u8 *buffer = cmd->sense_buffer;
3494 	int r = (__force int)reason;
3495 	u8 key, asc, ascq;
3496 	bool desc_format = target_sense_desc_format(cmd->se_dev);
3497 
3498 	if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3499 		sd = &sense_detail_table[r];
3500 	else
3501 		sd = &sense_detail_table[(__force int)
3502 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3503 
3504 	key = sd->key;
3505 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3506 		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3507 						       &ascq)) {
3508 			cmd->scsi_status = SAM_STAT_BUSY;
3509 			return;
3510 		}
3511 	} else {
3512 		WARN_ON_ONCE(sd->asc == 0);
3513 		asc = sd->asc;
3514 		ascq = sd->ascq;
3515 	}
3516 
3517 	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3518 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3519 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3520 	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3521 	if (sd->add_sense_info)
3522 		WARN_ON_ONCE(scsi_set_sense_information(buffer,
3523 							cmd->scsi_sense_length,
3524 							cmd->sense_info) < 0);
3525 }
3526 
3527 int
3528 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3529 		sense_reason_t reason, int from_transport)
3530 {
3531 	unsigned long flags;
3532 
3533 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3534 
3535 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3536 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3537 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3538 		return 0;
3539 	}
3540 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3541 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3542 
3543 	if (!from_transport)
3544 		translate_sense_reason(cmd, reason);
3545 
3546 	trace_target_cmd_complete(cmd);
3547 	return cmd->se_tfo->queue_status(cmd);
3548 }
3549 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3550 
3551 /**
3552  * target_send_busy - Send SCSI BUSY status back to the initiator
3553  * @cmd: SCSI command for which to send a BUSY reply.
3554  *
3555  * Note: Only call this function if target_submit_cmd*() failed.
3556  */
3557 int target_send_busy(struct se_cmd *cmd)
3558 {
3559 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3560 
3561 	cmd->scsi_status = SAM_STAT_BUSY;
3562 	trace_target_cmd_complete(cmd);
3563 	return cmd->se_tfo->queue_status(cmd);
3564 }
3565 EXPORT_SYMBOL(target_send_busy);
3566 
3567 static void target_tmr_work(struct work_struct *work)
3568 {
3569 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3570 	struct se_device *dev = cmd->se_dev;
3571 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3572 	int ret;
3573 
3574 	if (cmd->transport_state & CMD_T_ABORTED)
3575 		goto aborted;
3576 
3577 	switch (tmr->function) {
3578 	case TMR_ABORT_TASK:
3579 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3580 		break;
3581 	case TMR_ABORT_TASK_SET:
3582 	case TMR_CLEAR_ACA:
3583 	case TMR_CLEAR_TASK_SET:
3584 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3585 		break;
3586 	case TMR_LUN_RESET:
3587 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3588 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3589 					 TMR_FUNCTION_REJECTED;
3590 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3591 			target_dev_ua_allocate(dev, 0x29,
3592 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3593 		}
3594 		break;
3595 	case TMR_TARGET_WARM_RESET:
3596 		tmr->response = TMR_FUNCTION_REJECTED;
3597 		break;
3598 	case TMR_TARGET_COLD_RESET:
3599 		tmr->response = TMR_FUNCTION_REJECTED;
3600 		break;
3601 	default:
3602 		pr_err("Unknown TMR function: 0x%02x.\n",
3603 				tmr->function);
3604 		tmr->response = TMR_FUNCTION_REJECTED;
3605 		break;
3606 	}
3607 
3608 	if (cmd->transport_state & CMD_T_ABORTED)
3609 		goto aborted;
3610 
3611 	cmd->se_tfo->queue_tm_rsp(cmd);
3612 
3613 	transport_lun_remove_cmd(cmd);
3614 	transport_cmd_check_stop_to_fabric(cmd);
3615 	return;
3616 
3617 aborted:
3618 	target_handle_abort(cmd);
3619 }
3620 
3621 int transport_generic_handle_tmr(
3622 	struct se_cmd *cmd)
3623 {
3624 	unsigned long flags;
3625 	bool aborted = false;
3626 
3627 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3628 	if (cmd->transport_state & CMD_T_ABORTED) {
3629 		aborted = true;
3630 	} else {
3631 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3632 		cmd->transport_state |= CMD_T_ACTIVE;
3633 	}
3634 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3635 
3636 	if (aborted) {
3637 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3638 				    cmd->se_tmr_req->function,
3639 				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3640 		target_handle_abort(cmd);
3641 		return 0;
3642 	}
3643 
3644 	INIT_WORK(&cmd->work, target_tmr_work);
3645 	schedule_work(&cmd->work);
3646 	return 0;
3647 }
3648 EXPORT_SYMBOL(transport_generic_handle_tmr);
3649 
3650 bool
3651 target_check_wce(struct se_device *dev)
3652 {
3653 	bool wce = false;
3654 
3655 	if (dev->transport->get_write_cache)
3656 		wce = dev->transport->get_write_cache(dev);
3657 	else if (dev->dev_attrib.emulate_write_cache > 0)
3658 		wce = true;
3659 
3660 	return wce;
3661 }
3662 
3663 bool
3664 target_check_fua(struct se_device *dev)
3665 {
3666 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3667 }
3668