1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2012 RisingTide Systems LLC. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/blkdev.h> 32 #include <linux/spinlock.h> 33 #include <linux/kthread.h> 34 #include <linux/in.h> 35 #include <linux/cdrom.h> 36 #include <linux/module.h> 37 #include <linux/ratelimit.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_tcq.h> 44 45 #include <target/target_core_base.h> 46 #include <target/target_core_backend.h> 47 #include <target/target_core_fabric.h> 48 #include <target/target_core_configfs.h> 49 50 #include "target_core_internal.h" 51 #include "target_core_alua.h" 52 #include "target_core_pr.h" 53 #include "target_core_ua.h" 54 55 static struct workqueue_struct *target_completion_wq; 56 static struct kmem_cache *se_sess_cache; 57 struct kmem_cache *se_ua_cache; 58 struct kmem_cache *t10_pr_reg_cache; 59 struct kmem_cache *t10_alua_lu_gp_cache; 60 struct kmem_cache *t10_alua_lu_gp_mem_cache; 61 struct kmem_cache *t10_alua_tg_pt_gp_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 63 64 static void transport_complete_task_attr(struct se_cmd *cmd); 65 static void transport_handle_queue_full(struct se_cmd *cmd, 66 struct se_device *dev); 67 static int transport_generic_get_mem(struct se_cmd *cmd); 68 static int target_get_sess_cmd(struct se_session *, struct se_cmd *, bool); 69 static void transport_put_cmd(struct se_cmd *cmd); 70 static void target_complete_ok_work(struct work_struct *work); 71 72 int init_se_kmem_caches(void) 73 { 74 se_sess_cache = kmem_cache_create("se_sess_cache", 75 sizeof(struct se_session), __alignof__(struct se_session), 76 0, NULL); 77 if (!se_sess_cache) { 78 pr_err("kmem_cache_create() for struct se_session" 79 " failed\n"); 80 goto out; 81 } 82 se_ua_cache = kmem_cache_create("se_ua_cache", 83 sizeof(struct se_ua), __alignof__(struct se_ua), 84 0, NULL); 85 if (!se_ua_cache) { 86 pr_err("kmem_cache_create() for struct se_ua failed\n"); 87 goto out_free_sess_cache; 88 } 89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 90 sizeof(struct t10_pr_registration), 91 __alignof__(struct t10_pr_registration), 0, NULL); 92 if (!t10_pr_reg_cache) { 93 pr_err("kmem_cache_create() for struct t10_pr_registration" 94 " failed\n"); 95 goto out_free_ua_cache; 96 } 97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 99 0, NULL); 100 if (!t10_alua_lu_gp_cache) { 101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 102 " failed\n"); 103 goto out_free_pr_reg_cache; 104 } 105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 106 sizeof(struct t10_alua_lu_gp_member), 107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 108 if (!t10_alua_lu_gp_mem_cache) { 109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 110 "cache failed\n"); 111 goto out_free_lu_gp_cache; 112 } 113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 114 sizeof(struct t10_alua_tg_pt_gp), 115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 116 if (!t10_alua_tg_pt_gp_cache) { 117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 118 "cache failed\n"); 119 goto out_free_lu_gp_mem_cache; 120 } 121 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 122 "t10_alua_tg_pt_gp_mem_cache", 123 sizeof(struct t10_alua_tg_pt_gp_member), 124 __alignof__(struct t10_alua_tg_pt_gp_member), 125 0, NULL); 126 if (!t10_alua_tg_pt_gp_mem_cache) { 127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 128 "mem_t failed\n"); 129 goto out_free_tg_pt_gp_cache; 130 } 131 132 target_completion_wq = alloc_workqueue("target_completion", 133 WQ_MEM_RECLAIM, 0); 134 if (!target_completion_wq) 135 goto out_free_tg_pt_gp_mem_cache; 136 137 return 0; 138 139 out_free_tg_pt_gp_mem_cache: 140 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 141 out_free_tg_pt_gp_cache: 142 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 143 out_free_lu_gp_mem_cache: 144 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 145 out_free_lu_gp_cache: 146 kmem_cache_destroy(t10_alua_lu_gp_cache); 147 out_free_pr_reg_cache: 148 kmem_cache_destroy(t10_pr_reg_cache); 149 out_free_ua_cache: 150 kmem_cache_destroy(se_ua_cache); 151 out_free_sess_cache: 152 kmem_cache_destroy(se_sess_cache); 153 out: 154 return -ENOMEM; 155 } 156 157 void release_se_kmem_caches(void) 158 { 159 destroy_workqueue(target_completion_wq); 160 kmem_cache_destroy(se_sess_cache); 161 kmem_cache_destroy(se_ua_cache); 162 kmem_cache_destroy(t10_pr_reg_cache); 163 kmem_cache_destroy(t10_alua_lu_gp_cache); 164 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 165 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 166 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 167 } 168 169 /* This code ensures unique mib indexes are handed out. */ 170 static DEFINE_SPINLOCK(scsi_mib_index_lock); 171 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 172 173 /* 174 * Allocate a new row index for the entry type specified 175 */ 176 u32 scsi_get_new_index(scsi_index_t type) 177 { 178 u32 new_index; 179 180 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 181 182 spin_lock(&scsi_mib_index_lock); 183 new_index = ++scsi_mib_index[type]; 184 spin_unlock(&scsi_mib_index_lock); 185 186 return new_index; 187 } 188 189 void transport_subsystem_check_init(void) 190 { 191 int ret; 192 static int sub_api_initialized; 193 194 if (sub_api_initialized) 195 return; 196 197 ret = request_module("target_core_iblock"); 198 if (ret != 0) 199 pr_err("Unable to load target_core_iblock\n"); 200 201 ret = request_module("target_core_file"); 202 if (ret != 0) 203 pr_err("Unable to load target_core_file\n"); 204 205 ret = request_module("target_core_pscsi"); 206 if (ret != 0) 207 pr_err("Unable to load target_core_pscsi\n"); 208 209 sub_api_initialized = 1; 210 } 211 212 struct se_session *transport_init_session(void) 213 { 214 struct se_session *se_sess; 215 216 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 217 if (!se_sess) { 218 pr_err("Unable to allocate struct se_session from" 219 " se_sess_cache\n"); 220 return ERR_PTR(-ENOMEM); 221 } 222 INIT_LIST_HEAD(&se_sess->sess_list); 223 INIT_LIST_HEAD(&se_sess->sess_acl_list); 224 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 225 spin_lock_init(&se_sess->sess_cmd_lock); 226 kref_init(&se_sess->sess_kref); 227 228 return se_sess; 229 } 230 EXPORT_SYMBOL(transport_init_session); 231 232 /* 233 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 234 */ 235 void __transport_register_session( 236 struct se_portal_group *se_tpg, 237 struct se_node_acl *se_nacl, 238 struct se_session *se_sess, 239 void *fabric_sess_ptr) 240 { 241 unsigned char buf[PR_REG_ISID_LEN]; 242 243 se_sess->se_tpg = se_tpg; 244 se_sess->fabric_sess_ptr = fabric_sess_ptr; 245 /* 246 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 247 * 248 * Only set for struct se_session's that will actually be moving I/O. 249 * eg: *NOT* discovery sessions. 250 */ 251 if (se_nacl) { 252 /* 253 * If the fabric module supports an ISID based TransportID, 254 * save this value in binary from the fabric I_T Nexus now. 255 */ 256 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 257 memset(&buf[0], 0, PR_REG_ISID_LEN); 258 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 259 &buf[0], PR_REG_ISID_LEN); 260 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 261 } 262 kref_get(&se_nacl->acl_kref); 263 264 spin_lock_irq(&se_nacl->nacl_sess_lock); 265 /* 266 * The se_nacl->nacl_sess pointer will be set to the 267 * last active I_T Nexus for each struct se_node_acl. 268 */ 269 se_nacl->nacl_sess = se_sess; 270 271 list_add_tail(&se_sess->sess_acl_list, 272 &se_nacl->acl_sess_list); 273 spin_unlock_irq(&se_nacl->nacl_sess_lock); 274 } 275 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 276 277 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 278 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 279 } 280 EXPORT_SYMBOL(__transport_register_session); 281 282 void transport_register_session( 283 struct se_portal_group *se_tpg, 284 struct se_node_acl *se_nacl, 285 struct se_session *se_sess, 286 void *fabric_sess_ptr) 287 { 288 unsigned long flags; 289 290 spin_lock_irqsave(&se_tpg->session_lock, flags); 291 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 292 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 293 } 294 EXPORT_SYMBOL(transport_register_session); 295 296 static void target_release_session(struct kref *kref) 297 { 298 struct se_session *se_sess = container_of(kref, 299 struct se_session, sess_kref); 300 struct se_portal_group *se_tpg = se_sess->se_tpg; 301 302 se_tpg->se_tpg_tfo->close_session(se_sess); 303 } 304 305 void target_get_session(struct se_session *se_sess) 306 { 307 kref_get(&se_sess->sess_kref); 308 } 309 EXPORT_SYMBOL(target_get_session); 310 311 void target_put_session(struct se_session *se_sess) 312 { 313 struct se_portal_group *tpg = se_sess->se_tpg; 314 315 if (tpg->se_tpg_tfo->put_session != NULL) { 316 tpg->se_tpg_tfo->put_session(se_sess); 317 return; 318 } 319 kref_put(&se_sess->sess_kref, target_release_session); 320 } 321 EXPORT_SYMBOL(target_put_session); 322 323 static void target_complete_nacl(struct kref *kref) 324 { 325 struct se_node_acl *nacl = container_of(kref, 326 struct se_node_acl, acl_kref); 327 328 complete(&nacl->acl_free_comp); 329 } 330 331 void target_put_nacl(struct se_node_acl *nacl) 332 { 333 kref_put(&nacl->acl_kref, target_complete_nacl); 334 } 335 336 void transport_deregister_session_configfs(struct se_session *se_sess) 337 { 338 struct se_node_acl *se_nacl; 339 unsigned long flags; 340 /* 341 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 342 */ 343 se_nacl = se_sess->se_node_acl; 344 if (se_nacl) { 345 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 346 if (se_nacl->acl_stop == 0) 347 list_del(&se_sess->sess_acl_list); 348 /* 349 * If the session list is empty, then clear the pointer. 350 * Otherwise, set the struct se_session pointer from the tail 351 * element of the per struct se_node_acl active session list. 352 */ 353 if (list_empty(&se_nacl->acl_sess_list)) 354 se_nacl->nacl_sess = NULL; 355 else { 356 se_nacl->nacl_sess = container_of( 357 se_nacl->acl_sess_list.prev, 358 struct se_session, sess_acl_list); 359 } 360 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 361 } 362 } 363 EXPORT_SYMBOL(transport_deregister_session_configfs); 364 365 void transport_free_session(struct se_session *se_sess) 366 { 367 kmem_cache_free(se_sess_cache, se_sess); 368 } 369 EXPORT_SYMBOL(transport_free_session); 370 371 void transport_deregister_session(struct se_session *se_sess) 372 { 373 struct se_portal_group *se_tpg = se_sess->se_tpg; 374 struct target_core_fabric_ops *se_tfo; 375 struct se_node_acl *se_nacl; 376 unsigned long flags; 377 bool comp_nacl = true; 378 379 if (!se_tpg) { 380 transport_free_session(se_sess); 381 return; 382 } 383 se_tfo = se_tpg->se_tpg_tfo; 384 385 spin_lock_irqsave(&se_tpg->session_lock, flags); 386 list_del(&se_sess->sess_list); 387 se_sess->se_tpg = NULL; 388 se_sess->fabric_sess_ptr = NULL; 389 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 390 391 /* 392 * Determine if we need to do extra work for this initiator node's 393 * struct se_node_acl if it had been previously dynamically generated. 394 */ 395 se_nacl = se_sess->se_node_acl; 396 397 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 398 if (se_nacl && se_nacl->dynamic_node_acl) { 399 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 400 list_del(&se_nacl->acl_list); 401 se_tpg->num_node_acls--; 402 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 403 core_tpg_wait_for_nacl_pr_ref(se_nacl); 404 core_free_device_list_for_node(se_nacl, se_tpg); 405 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 406 407 comp_nacl = false; 408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 409 } 410 } 411 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 412 413 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 414 se_tpg->se_tpg_tfo->get_fabric_name()); 415 /* 416 * If last kref is dropping now for an explict NodeACL, awake sleeping 417 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 418 * removal context. 419 */ 420 if (se_nacl && comp_nacl == true) 421 target_put_nacl(se_nacl); 422 423 transport_free_session(se_sess); 424 } 425 EXPORT_SYMBOL(transport_deregister_session); 426 427 /* 428 * Called with cmd->t_state_lock held. 429 */ 430 static void target_remove_from_state_list(struct se_cmd *cmd) 431 { 432 struct se_device *dev = cmd->se_dev; 433 unsigned long flags; 434 435 if (!dev) 436 return; 437 438 if (cmd->transport_state & CMD_T_BUSY) 439 return; 440 441 spin_lock_irqsave(&dev->execute_task_lock, flags); 442 if (cmd->state_active) { 443 list_del(&cmd->state_list); 444 cmd->state_active = false; 445 } 446 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 447 } 448 449 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists) 450 { 451 unsigned long flags; 452 453 spin_lock_irqsave(&cmd->t_state_lock, flags); 454 /* 455 * Determine if IOCTL context caller in requesting the stopping of this 456 * command for LUN shutdown purposes. 457 */ 458 if (cmd->transport_state & CMD_T_LUN_STOP) { 459 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 460 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 461 462 cmd->transport_state &= ~CMD_T_ACTIVE; 463 if (remove_from_lists) 464 target_remove_from_state_list(cmd); 465 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 466 467 complete(&cmd->transport_lun_stop_comp); 468 return 1; 469 } 470 471 if (remove_from_lists) { 472 target_remove_from_state_list(cmd); 473 474 /* 475 * Clear struct se_cmd->se_lun before the handoff to FE. 476 */ 477 cmd->se_lun = NULL; 478 } 479 480 /* 481 * Determine if frontend context caller is requesting the stopping of 482 * this command for frontend exceptions. 483 */ 484 if (cmd->transport_state & CMD_T_STOP) { 485 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 486 __func__, __LINE__, 487 cmd->se_tfo->get_task_tag(cmd)); 488 489 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 490 491 complete(&cmd->t_transport_stop_comp); 492 return 1; 493 } 494 495 cmd->transport_state &= ~CMD_T_ACTIVE; 496 if (remove_from_lists) { 497 /* 498 * Some fabric modules like tcm_loop can release 499 * their internally allocated I/O reference now and 500 * struct se_cmd now. 501 * 502 * Fabric modules are expected to return '1' here if the 503 * se_cmd being passed is released at this point, 504 * or zero if not being released. 505 */ 506 if (cmd->se_tfo->check_stop_free != NULL) { 507 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 508 return cmd->se_tfo->check_stop_free(cmd); 509 } 510 } 511 512 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 513 return 0; 514 } 515 516 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 517 { 518 return transport_cmd_check_stop(cmd, true); 519 } 520 521 static void transport_lun_remove_cmd(struct se_cmd *cmd) 522 { 523 struct se_lun *lun = cmd->se_lun; 524 unsigned long flags; 525 526 if (!lun) 527 return; 528 529 spin_lock_irqsave(&cmd->t_state_lock, flags); 530 if (cmd->transport_state & CMD_T_DEV_ACTIVE) { 531 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 532 target_remove_from_state_list(cmd); 533 } 534 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 535 536 spin_lock_irqsave(&lun->lun_cmd_lock, flags); 537 if (!list_empty(&cmd->se_lun_node)) 538 list_del_init(&cmd->se_lun_node); 539 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); 540 } 541 542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 543 { 544 if (transport_cmd_check_stop_to_fabric(cmd)) 545 return; 546 if (remove) 547 transport_put_cmd(cmd); 548 } 549 550 static void target_complete_failure_work(struct work_struct *work) 551 { 552 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 553 554 transport_generic_request_failure(cmd, 555 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 556 } 557 558 /* 559 * Used when asking transport to copy Sense Data from the underlying 560 * Linux/SCSI struct scsi_cmnd 561 */ 562 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 563 { 564 struct se_device *dev = cmd->se_dev; 565 566 WARN_ON(!cmd->se_lun); 567 568 if (!dev) 569 return NULL; 570 571 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 572 return NULL; 573 574 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 575 576 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 577 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 578 return cmd->sense_buffer; 579 } 580 581 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 582 { 583 struct se_device *dev = cmd->se_dev; 584 int success = scsi_status == GOOD; 585 unsigned long flags; 586 587 cmd->scsi_status = scsi_status; 588 589 590 spin_lock_irqsave(&cmd->t_state_lock, flags); 591 cmd->transport_state &= ~CMD_T_BUSY; 592 593 if (dev && dev->transport->transport_complete) { 594 dev->transport->transport_complete(cmd, 595 cmd->t_data_sg, 596 transport_get_sense_buffer(cmd)); 597 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 598 success = 1; 599 } 600 601 /* 602 * See if we are waiting to complete for an exception condition. 603 */ 604 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 605 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 606 complete(&cmd->task_stop_comp); 607 return; 608 } 609 610 if (!success) 611 cmd->transport_state |= CMD_T_FAILED; 612 613 /* 614 * Check for case where an explict ABORT_TASK has been received 615 * and transport_wait_for_tasks() will be waiting for completion.. 616 */ 617 if (cmd->transport_state & CMD_T_ABORTED && 618 cmd->transport_state & CMD_T_STOP) { 619 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 620 complete(&cmd->t_transport_stop_comp); 621 return; 622 } else if (cmd->transport_state & CMD_T_FAILED) { 623 INIT_WORK(&cmd->work, target_complete_failure_work); 624 } else { 625 INIT_WORK(&cmd->work, target_complete_ok_work); 626 } 627 628 cmd->t_state = TRANSPORT_COMPLETE; 629 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 630 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 631 632 queue_work(target_completion_wq, &cmd->work); 633 } 634 EXPORT_SYMBOL(target_complete_cmd); 635 636 static void target_add_to_state_list(struct se_cmd *cmd) 637 { 638 struct se_device *dev = cmd->se_dev; 639 unsigned long flags; 640 641 spin_lock_irqsave(&dev->execute_task_lock, flags); 642 if (!cmd->state_active) { 643 list_add_tail(&cmd->state_list, &dev->state_list); 644 cmd->state_active = true; 645 } 646 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 647 } 648 649 /* 650 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 651 */ 652 static void transport_write_pending_qf(struct se_cmd *cmd); 653 static void transport_complete_qf(struct se_cmd *cmd); 654 655 void target_qf_do_work(struct work_struct *work) 656 { 657 struct se_device *dev = container_of(work, struct se_device, 658 qf_work_queue); 659 LIST_HEAD(qf_cmd_list); 660 struct se_cmd *cmd, *cmd_tmp; 661 662 spin_lock_irq(&dev->qf_cmd_lock); 663 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 664 spin_unlock_irq(&dev->qf_cmd_lock); 665 666 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 667 list_del(&cmd->se_qf_node); 668 atomic_dec(&dev->dev_qf_count); 669 smp_mb__after_atomic_dec(); 670 671 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 672 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 673 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 674 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 675 : "UNKNOWN"); 676 677 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 678 transport_write_pending_qf(cmd); 679 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 680 transport_complete_qf(cmd); 681 } 682 } 683 684 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 685 { 686 switch (cmd->data_direction) { 687 case DMA_NONE: 688 return "NONE"; 689 case DMA_FROM_DEVICE: 690 return "READ"; 691 case DMA_TO_DEVICE: 692 return "WRITE"; 693 case DMA_BIDIRECTIONAL: 694 return "BIDI"; 695 default: 696 break; 697 } 698 699 return "UNKNOWN"; 700 } 701 702 void transport_dump_dev_state( 703 struct se_device *dev, 704 char *b, 705 int *bl) 706 { 707 *bl += sprintf(b + *bl, "Status: "); 708 if (dev->export_count) 709 *bl += sprintf(b + *bl, "ACTIVATED"); 710 else 711 *bl += sprintf(b + *bl, "DEACTIVATED"); 712 713 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 714 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 715 dev->dev_attrib.block_size, 716 dev->dev_attrib.hw_max_sectors); 717 *bl += sprintf(b + *bl, " "); 718 } 719 720 void transport_dump_vpd_proto_id( 721 struct t10_vpd *vpd, 722 unsigned char *p_buf, 723 int p_buf_len) 724 { 725 unsigned char buf[VPD_TMP_BUF_SIZE]; 726 int len; 727 728 memset(buf, 0, VPD_TMP_BUF_SIZE); 729 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 730 731 switch (vpd->protocol_identifier) { 732 case 0x00: 733 sprintf(buf+len, "Fibre Channel\n"); 734 break; 735 case 0x10: 736 sprintf(buf+len, "Parallel SCSI\n"); 737 break; 738 case 0x20: 739 sprintf(buf+len, "SSA\n"); 740 break; 741 case 0x30: 742 sprintf(buf+len, "IEEE 1394\n"); 743 break; 744 case 0x40: 745 sprintf(buf+len, "SCSI Remote Direct Memory Access" 746 " Protocol\n"); 747 break; 748 case 0x50: 749 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 750 break; 751 case 0x60: 752 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 753 break; 754 case 0x70: 755 sprintf(buf+len, "Automation/Drive Interface Transport" 756 " Protocol\n"); 757 break; 758 case 0x80: 759 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 760 break; 761 default: 762 sprintf(buf+len, "Unknown 0x%02x\n", 763 vpd->protocol_identifier); 764 break; 765 } 766 767 if (p_buf) 768 strncpy(p_buf, buf, p_buf_len); 769 else 770 pr_debug("%s", buf); 771 } 772 773 void 774 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 775 { 776 /* 777 * Check if the Protocol Identifier Valid (PIV) bit is set.. 778 * 779 * from spc3r23.pdf section 7.5.1 780 */ 781 if (page_83[1] & 0x80) { 782 vpd->protocol_identifier = (page_83[0] & 0xf0); 783 vpd->protocol_identifier_set = 1; 784 transport_dump_vpd_proto_id(vpd, NULL, 0); 785 } 786 } 787 EXPORT_SYMBOL(transport_set_vpd_proto_id); 788 789 int transport_dump_vpd_assoc( 790 struct t10_vpd *vpd, 791 unsigned char *p_buf, 792 int p_buf_len) 793 { 794 unsigned char buf[VPD_TMP_BUF_SIZE]; 795 int ret = 0; 796 int len; 797 798 memset(buf, 0, VPD_TMP_BUF_SIZE); 799 len = sprintf(buf, "T10 VPD Identifier Association: "); 800 801 switch (vpd->association) { 802 case 0x00: 803 sprintf(buf+len, "addressed logical unit\n"); 804 break; 805 case 0x10: 806 sprintf(buf+len, "target port\n"); 807 break; 808 case 0x20: 809 sprintf(buf+len, "SCSI target device\n"); 810 break; 811 default: 812 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 813 ret = -EINVAL; 814 break; 815 } 816 817 if (p_buf) 818 strncpy(p_buf, buf, p_buf_len); 819 else 820 pr_debug("%s", buf); 821 822 return ret; 823 } 824 825 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 826 { 827 /* 828 * The VPD identification association.. 829 * 830 * from spc3r23.pdf Section 7.6.3.1 Table 297 831 */ 832 vpd->association = (page_83[1] & 0x30); 833 return transport_dump_vpd_assoc(vpd, NULL, 0); 834 } 835 EXPORT_SYMBOL(transport_set_vpd_assoc); 836 837 int transport_dump_vpd_ident_type( 838 struct t10_vpd *vpd, 839 unsigned char *p_buf, 840 int p_buf_len) 841 { 842 unsigned char buf[VPD_TMP_BUF_SIZE]; 843 int ret = 0; 844 int len; 845 846 memset(buf, 0, VPD_TMP_BUF_SIZE); 847 len = sprintf(buf, "T10 VPD Identifier Type: "); 848 849 switch (vpd->device_identifier_type) { 850 case 0x00: 851 sprintf(buf+len, "Vendor specific\n"); 852 break; 853 case 0x01: 854 sprintf(buf+len, "T10 Vendor ID based\n"); 855 break; 856 case 0x02: 857 sprintf(buf+len, "EUI-64 based\n"); 858 break; 859 case 0x03: 860 sprintf(buf+len, "NAA\n"); 861 break; 862 case 0x04: 863 sprintf(buf+len, "Relative target port identifier\n"); 864 break; 865 case 0x08: 866 sprintf(buf+len, "SCSI name string\n"); 867 break; 868 default: 869 sprintf(buf+len, "Unsupported: 0x%02x\n", 870 vpd->device_identifier_type); 871 ret = -EINVAL; 872 break; 873 } 874 875 if (p_buf) { 876 if (p_buf_len < strlen(buf)+1) 877 return -EINVAL; 878 strncpy(p_buf, buf, p_buf_len); 879 } else { 880 pr_debug("%s", buf); 881 } 882 883 return ret; 884 } 885 886 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 887 { 888 /* 889 * The VPD identifier type.. 890 * 891 * from spc3r23.pdf Section 7.6.3.1 Table 298 892 */ 893 vpd->device_identifier_type = (page_83[1] & 0x0f); 894 return transport_dump_vpd_ident_type(vpd, NULL, 0); 895 } 896 EXPORT_SYMBOL(transport_set_vpd_ident_type); 897 898 int transport_dump_vpd_ident( 899 struct t10_vpd *vpd, 900 unsigned char *p_buf, 901 int p_buf_len) 902 { 903 unsigned char buf[VPD_TMP_BUF_SIZE]; 904 int ret = 0; 905 906 memset(buf, 0, VPD_TMP_BUF_SIZE); 907 908 switch (vpd->device_identifier_code_set) { 909 case 0x01: /* Binary */ 910 snprintf(buf, sizeof(buf), 911 "T10 VPD Binary Device Identifier: %s\n", 912 &vpd->device_identifier[0]); 913 break; 914 case 0x02: /* ASCII */ 915 snprintf(buf, sizeof(buf), 916 "T10 VPD ASCII Device Identifier: %s\n", 917 &vpd->device_identifier[0]); 918 break; 919 case 0x03: /* UTF-8 */ 920 snprintf(buf, sizeof(buf), 921 "T10 VPD UTF-8 Device Identifier: %s\n", 922 &vpd->device_identifier[0]); 923 break; 924 default: 925 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 926 " 0x%02x", vpd->device_identifier_code_set); 927 ret = -EINVAL; 928 break; 929 } 930 931 if (p_buf) 932 strncpy(p_buf, buf, p_buf_len); 933 else 934 pr_debug("%s", buf); 935 936 return ret; 937 } 938 939 int 940 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 941 { 942 static const char hex_str[] = "0123456789abcdef"; 943 int j = 0, i = 4; /* offset to start of the identifier */ 944 945 /* 946 * The VPD Code Set (encoding) 947 * 948 * from spc3r23.pdf Section 7.6.3.1 Table 296 949 */ 950 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 951 switch (vpd->device_identifier_code_set) { 952 case 0x01: /* Binary */ 953 vpd->device_identifier[j++] = 954 hex_str[vpd->device_identifier_type]; 955 while (i < (4 + page_83[3])) { 956 vpd->device_identifier[j++] = 957 hex_str[(page_83[i] & 0xf0) >> 4]; 958 vpd->device_identifier[j++] = 959 hex_str[page_83[i] & 0x0f]; 960 i++; 961 } 962 break; 963 case 0x02: /* ASCII */ 964 case 0x03: /* UTF-8 */ 965 while (i < (4 + page_83[3])) 966 vpd->device_identifier[j++] = page_83[i++]; 967 break; 968 default: 969 break; 970 } 971 972 return transport_dump_vpd_ident(vpd, NULL, 0); 973 } 974 EXPORT_SYMBOL(transport_set_vpd_ident); 975 976 sense_reason_t 977 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 978 { 979 struct se_device *dev = cmd->se_dev; 980 981 if (cmd->unknown_data_length) { 982 cmd->data_length = size; 983 } else if (size != cmd->data_length) { 984 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 985 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 986 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 987 cmd->data_length, size, cmd->t_task_cdb[0]); 988 989 if (cmd->data_direction == DMA_TO_DEVICE) { 990 pr_err("Rejecting underflow/overflow" 991 " WRITE data\n"); 992 return TCM_INVALID_CDB_FIELD; 993 } 994 /* 995 * Reject READ_* or WRITE_* with overflow/underflow for 996 * type SCF_SCSI_DATA_CDB. 997 */ 998 if (dev->dev_attrib.block_size != 512) { 999 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1000 " CDB on non 512-byte sector setup subsystem" 1001 " plugin: %s\n", dev->transport->name); 1002 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1003 return TCM_INVALID_CDB_FIELD; 1004 } 1005 /* 1006 * For the overflow case keep the existing fabric provided 1007 * ->data_length. Otherwise for the underflow case, reset 1008 * ->data_length to the smaller SCSI expected data transfer 1009 * length. 1010 */ 1011 if (size > cmd->data_length) { 1012 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1013 cmd->residual_count = (size - cmd->data_length); 1014 } else { 1015 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1016 cmd->residual_count = (cmd->data_length - size); 1017 cmd->data_length = size; 1018 } 1019 } 1020 1021 return 0; 1022 1023 } 1024 1025 /* 1026 * Used by fabric modules containing a local struct se_cmd within their 1027 * fabric dependent per I/O descriptor. 1028 */ 1029 void transport_init_se_cmd( 1030 struct se_cmd *cmd, 1031 struct target_core_fabric_ops *tfo, 1032 struct se_session *se_sess, 1033 u32 data_length, 1034 int data_direction, 1035 int task_attr, 1036 unsigned char *sense_buffer) 1037 { 1038 INIT_LIST_HEAD(&cmd->se_lun_node); 1039 INIT_LIST_HEAD(&cmd->se_delayed_node); 1040 INIT_LIST_HEAD(&cmd->se_qf_node); 1041 INIT_LIST_HEAD(&cmd->se_cmd_list); 1042 INIT_LIST_HEAD(&cmd->state_list); 1043 init_completion(&cmd->transport_lun_fe_stop_comp); 1044 init_completion(&cmd->transport_lun_stop_comp); 1045 init_completion(&cmd->t_transport_stop_comp); 1046 init_completion(&cmd->cmd_wait_comp); 1047 init_completion(&cmd->task_stop_comp); 1048 spin_lock_init(&cmd->t_state_lock); 1049 cmd->transport_state = CMD_T_DEV_ACTIVE; 1050 1051 cmd->se_tfo = tfo; 1052 cmd->se_sess = se_sess; 1053 cmd->data_length = data_length; 1054 cmd->data_direction = data_direction; 1055 cmd->sam_task_attr = task_attr; 1056 cmd->sense_buffer = sense_buffer; 1057 1058 cmd->state_active = false; 1059 } 1060 EXPORT_SYMBOL(transport_init_se_cmd); 1061 1062 static sense_reason_t 1063 transport_check_alloc_task_attr(struct se_cmd *cmd) 1064 { 1065 struct se_device *dev = cmd->se_dev; 1066 1067 /* 1068 * Check if SAM Task Attribute emulation is enabled for this 1069 * struct se_device storage object 1070 */ 1071 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1072 return 0; 1073 1074 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1075 pr_debug("SAM Task Attribute ACA" 1076 " emulation is not supported\n"); 1077 return TCM_INVALID_CDB_FIELD; 1078 } 1079 /* 1080 * Used to determine when ORDERED commands should go from 1081 * Dormant to Active status. 1082 */ 1083 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1084 smp_mb__after_atomic_inc(); 1085 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1086 cmd->se_ordered_id, cmd->sam_task_attr, 1087 dev->transport->name); 1088 return 0; 1089 } 1090 1091 sense_reason_t 1092 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1093 { 1094 struct se_device *dev = cmd->se_dev; 1095 unsigned long flags; 1096 sense_reason_t ret; 1097 1098 /* 1099 * Ensure that the received CDB is less than the max (252 + 8) bytes 1100 * for VARIABLE_LENGTH_CMD 1101 */ 1102 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1103 pr_err("Received SCSI CDB with command_size: %d that" 1104 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1105 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1106 return TCM_INVALID_CDB_FIELD; 1107 } 1108 /* 1109 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1110 * allocate the additional extended CDB buffer now.. Otherwise 1111 * setup the pointer from __t_task_cdb to t_task_cdb. 1112 */ 1113 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1114 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1115 GFP_KERNEL); 1116 if (!cmd->t_task_cdb) { 1117 pr_err("Unable to allocate cmd->t_task_cdb" 1118 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1119 scsi_command_size(cdb), 1120 (unsigned long)sizeof(cmd->__t_task_cdb)); 1121 return TCM_OUT_OF_RESOURCES; 1122 } 1123 } else 1124 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1125 /* 1126 * Copy the original CDB into cmd-> 1127 */ 1128 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1129 1130 /* 1131 * Check for an existing UNIT ATTENTION condition 1132 */ 1133 ret = target_scsi3_ua_check(cmd); 1134 if (ret) 1135 return ret; 1136 1137 ret = target_alua_state_check(cmd); 1138 if (ret) 1139 return ret; 1140 1141 ret = target_check_reservation(cmd); 1142 if (ret) 1143 return ret; 1144 1145 ret = dev->transport->parse_cdb(cmd); 1146 if (ret) 1147 return ret; 1148 1149 ret = transport_check_alloc_task_attr(cmd); 1150 if (ret) 1151 return ret; 1152 1153 spin_lock_irqsave(&cmd->t_state_lock, flags); 1154 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1155 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1156 1157 spin_lock(&cmd->se_lun->lun_sep_lock); 1158 if (cmd->se_lun->lun_sep) 1159 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1160 spin_unlock(&cmd->se_lun->lun_sep_lock); 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1164 1165 /* 1166 * Used by fabric module frontends to queue tasks directly. 1167 * Many only be used from process context only 1168 */ 1169 int transport_handle_cdb_direct( 1170 struct se_cmd *cmd) 1171 { 1172 sense_reason_t ret; 1173 1174 if (!cmd->se_lun) { 1175 dump_stack(); 1176 pr_err("cmd->se_lun is NULL\n"); 1177 return -EINVAL; 1178 } 1179 if (in_interrupt()) { 1180 dump_stack(); 1181 pr_err("transport_generic_handle_cdb cannot be called" 1182 " from interrupt context\n"); 1183 return -EINVAL; 1184 } 1185 /* 1186 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1187 * outstanding descriptors are handled correctly during shutdown via 1188 * transport_wait_for_tasks() 1189 * 1190 * Also, we don't take cmd->t_state_lock here as we only expect 1191 * this to be called for initial descriptor submission. 1192 */ 1193 cmd->t_state = TRANSPORT_NEW_CMD; 1194 cmd->transport_state |= CMD_T_ACTIVE; 1195 1196 /* 1197 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1198 * so follow TRANSPORT_NEW_CMD processing thread context usage 1199 * and call transport_generic_request_failure() if necessary.. 1200 */ 1201 ret = transport_generic_new_cmd(cmd); 1202 if (ret) 1203 transport_generic_request_failure(cmd, ret); 1204 return 0; 1205 } 1206 EXPORT_SYMBOL(transport_handle_cdb_direct); 1207 1208 static sense_reason_t 1209 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1210 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1211 { 1212 if (!sgl || !sgl_count) 1213 return 0; 1214 1215 /* 1216 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1217 * scatterlists already have been set to follow what the fabric 1218 * passes for the original expected data transfer length. 1219 */ 1220 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1221 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1222 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1223 return TCM_INVALID_CDB_FIELD; 1224 } 1225 1226 cmd->t_data_sg = sgl; 1227 cmd->t_data_nents = sgl_count; 1228 1229 if (sgl_bidi && sgl_bidi_count) { 1230 cmd->t_bidi_data_sg = sgl_bidi; 1231 cmd->t_bidi_data_nents = sgl_bidi_count; 1232 } 1233 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1234 return 0; 1235 } 1236 1237 /* 1238 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1239 * se_cmd + use pre-allocated SGL memory. 1240 * 1241 * @se_cmd: command descriptor to submit 1242 * @se_sess: associated se_sess for endpoint 1243 * @cdb: pointer to SCSI CDB 1244 * @sense: pointer to SCSI sense buffer 1245 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1246 * @data_length: fabric expected data transfer length 1247 * @task_addr: SAM task attribute 1248 * @data_dir: DMA data direction 1249 * @flags: flags for command submission from target_sc_flags_tables 1250 * @sgl: struct scatterlist memory for unidirectional mapping 1251 * @sgl_count: scatterlist count for unidirectional mapping 1252 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1253 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1254 * 1255 * Returns non zero to signal active I/O shutdown failure. All other 1256 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1257 * but still return zero here. 1258 * 1259 * This may only be called from process context, and also currently 1260 * assumes internal allocation of fabric payload buffer by target-core. 1261 */ 1262 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1263 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1264 u32 data_length, int task_attr, int data_dir, int flags, 1265 struct scatterlist *sgl, u32 sgl_count, 1266 struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1267 { 1268 struct se_portal_group *se_tpg; 1269 sense_reason_t rc; 1270 int ret; 1271 1272 se_tpg = se_sess->se_tpg; 1273 BUG_ON(!se_tpg); 1274 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1275 BUG_ON(in_interrupt()); 1276 /* 1277 * Initialize se_cmd for target operation. From this point 1278 * exceptions are handled by sending exception status via 1279 * target_core_fabric_ops->queue_status() callback 1280 */ 1281 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1282 data_length, data_dir, task_attr, sense); 1283 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1284 se_cmd->unknown_data_length = 1; 1285 /* 1286 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1287 * se_sess->sess_cmd_list. A second kref_get here is necessary 1288 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1289 * kref_put() to happen during fabric packet acknowledgement. 1290 */ 1291 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1292 if (ret) 1293 return ret; 1294 /* 1295 * Signal bidirectional data payloads to target-core 1296 */ 1297 if (flags & TARGET_SCF_BIDI_OP) 1298 se_cmd->se_cmd_flags |= SCF_BIDI; 1299 /* 1300 * Locate se_lun pointer and attach it to struct se_cmd 1301 */ 1302 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1303 if (rc) { 1304 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1305 target_put_sess_cmd(se_sess, se_cmd); 1306 return 0; 1307 } 1308 1309 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1310 if (rc != 0) { 1311 transport_generic_request_failure(se_cmd, rc); 1312 return 0; 1313 } 1314 /* 1315 * When a non zero sgl_count has been passed perform SGL passthrough 1316 * mapping for pre-allocated fabric memory instead of having target 1317 * core perform an internal SGL allocation.. 1318 */ 1319 if (sgl_count != 0) { 1320 BUG_ON(!sgl); 1321 1322 /* 1323 * A work-around for tcm_loop as some userspace code via 1324 * scsi-generic do not memset their associated read buffers, 1325 * so go ahead and do that here for type non-data CDBs. Also 1326 * note that this is currently guaranteed to be a single SGL 1327 * for this case by target core in target_setup_cmd_from_cdb() 1328 * -> transport_generic_cmd_sequencer(). 1329 */ 1330 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1331 se_cmd->data_direction == DMA_FROM_DEVICE) { 1332 unsigned char *buf = NULL; 1333 1334 if (sgl) 1335 buf = kmap(sg_page(sgl)) + sgl->offset; 1336 1337 if (buf) { 1338 memset(buf, 0, sgl->length); 1339 kunmap(sg_page(sgl)); 1340 } 1341 } 1342 1343 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1344 sgl_bidi, sgl_bidi_count); 1345 if (rc != 0) { 1346 transport_generic_request_failure(se_cmd, rc); 1347 return 0; 1348 } 1349 } 1350 /* 1351 * Check if we need to delay processing because of ALUA 1352 * Active/NonOptimized primary access state.. 1353 */ 1354 core_alua_check_nonop_delay(se_cmd); 1355 1356 transport_handle_cdb_direct(se_cmd); 1357 return 0; 1358 } 1359 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1360 1361 /* 1362 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1363 * 1364 * @se_cmd: command descriptor to submit 1365 * @se_sess: associated se_sess for endpoint 1366 * @cdb: pointer to SCSI CDB 1367 * @sense: pointer to SCSI sense buffer 1368 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1369 * @data_length: fabric expected data transfer length 1370 * @task_addr: SAM task attribute 1371 * @data_dir: DMA data direction 1372 * @flags: flags for command submission from target_sc_flags_tables 1373 * 1374 * Returns non zero to signal active I/O shutdown failure. All other 1375 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1376 * but still return zero here. 1377 * 1378 * This may only be called from process context, and also currently 1379 * assumes internal allocation of fabric payload buffer by target-core. 1380 * 1381 * It also assumes interal target core SGL memory allocation. 1382 */ 1383 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1384 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1385 u32 data_length, int task_attr, int data_dir, int flags) 1386 { 1387 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1388 unpacked_lun, data_length, task_attr, data_dir, 1389 flags, NULL, 0, NULL, 0); 1390 } 1391 EXPORT_SYMBOL(target_submit_cmd); 1392 1393 static void target_complete_tmr_failure(struct work_struct *work) 1394 { 1395 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1396 1397 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1398 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1399 1400 transport_cmd_check_stop_to_fabric(se_cmd); 1401 } 1402 1403 /** 1404 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1405 * for TMR CDBs 1406 * 1407 * @se_cmd: command descriptor to submit 1408 * @se_sess: associated se_sess for endpoint 1409 * @sense: pointer to SCSI sense buffer 1410 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1411 * @fabric_context: fabric context for TMR req 1412 * @tm_type: Type of TM request 1413 * @gfp: gfp type for caller 1414 * @tag: referenced task tag for TMR_ABORT_TASK 1415 * @flags: submit cmd flags 1416 * 1417 * Callable from all contexts. 1418 **/ 1419 1420 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1421 unsigned char *sense, u32 unpacked_lun, 1422 void *fabric_tmr_ptr, unsigned char tm_type, 1423 gfp_t gfp, unsigned int tag, int flags) 1424 { 1425 struct se_portal_group *se_tpg; 1426 int ret; 1427 1428 se_tpg = se_sess->se_tpg; 1429 BUG_ON(!se_tpg); 1430 1431 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1432 0, DMA_NONE, MSG_SIMPLE_TAG, sense); 1433 /* 1434 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1435 * allocation failure. 1436 */ 1437 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1438 if (ret < 0) 1439 return -ENOMEM; 1440 1441 if (tm_type == TMR_ABORT_TASK) 1442 se_cmd->se_tmr_req->ref_task_tag = tag; 1443 1444 /* See target_submit_cmd for commentary */ 1445 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1446 if (ret) { 1447 core_tmr_release_req(se_cmd->se_tmr_req); 1448 return ret; 1449 } 1450 1451 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1452 if (ret) { 1453 /* 1454 * For callback during failure handling, push this work off 1455 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1456 */ 1457 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1458 schedule_work(&se_cmd->work); 1459 return 0; 1460 } 1461 transport_generic_handle_tmr(se_cmd); 1462 return 0; 1463 } 1464 EXPORT_SYMBOL(target_submit_tmr); 1465 1466 /* 1467 * If the cmd is active, request it to be stopped and sleep until it 1468 * has completed. 1469 */ 1470 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1471 { 1472 bool was_active = false; 1473 1474 if (cmd->transport_state & CMD_T_BUSY) { 1475 cmd->transport_state |= CMD_T_REQUEST_STOP; 1476 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1477 1478 pr_debug("cmd %p waiting to complete\n", cmd); 1479 wait_for_completion(&cmd->task_stop_comp); 1480 pr_debug("cmd %p stopped successfully\n", cmd); 1481 1482 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1483 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1484 cmd->transport_state &= ~CMD_T_BUSY; 1485 was_active = true; 1486 } 1487 1488 return was_active; 1489 } 1490 1491 /* 1492 * Handle SAM-esque emulation for generic transport request failures. 1493 */ 1494 void transport_generic_request_failure(struct se_cmd *cmd, 1495 sense_reason_t sense_reason) 1496 { 1497 int ret = 0; 1498 1499 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1500 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1501 cmd->t_task_cdb[0]); 1502 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1503 cmd->se_tfo->get_cmd_state(cmd), 1504 cmd->t_state, sense_reason); 1505 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1506 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1507 (cmd->transport_state & CMD_T_STOP) != 0, 1508 (cmd->transport_state & CMD_T_SENT) != 0); 1509 1510 /* 1511 * For SAM Task Attribute emulation for failed struct se_cmd 1512 */ 1513 transport_complete_task_attr(cmd); 1514 1515 switch (sense_reason) { 1516 case TCM_NON_EXISTENT_LUN: 1517 case TCM_UNSUPPORTED_SCSI_OPCODE: 1518 case TCM_INVALID_CDB_FIELD: 1519 case TCM_INVALID_PARAMETER_LIST: 1520 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1521 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1522 case TCM_UNKNOWN_MODE_PAGE: 1523 case TCM_WRITE_PROTECTED: 1524 case TCM_ADDRESS_OUT_OF_RANGE: 1525 case TCM_CHECK_CONDITION_ABORT_CMD: 1526 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1527 case TCM_CHECK_CONDITION_NOT_READY: 1528 break; 1529 case TCM_OUT_OF_RESOURCES: 1530 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1531 break; 1532 case TCM_RESERVATION_CONFLICT: 1533 /* 1534 * No SENSE Data payload for this case, set SCSI Status 1535 * and queue the response to $FABRIC_MOD. 1536 * 1537 * Uses linux/include/scsi/scsi.h SAM status codes defs 1538 */ 1539 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1540 /* 1541 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1542 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1543 * CONFLICT STATUS. 1544 * 1545 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1546 */ 1547 if (cmd->se_sess && 1548 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1549 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1550 cmd->orig_fe_lun, 0x2C, 1551 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1552 1553 ret = cmd->se_tfo->queue_status(cmd); 1554 if (ret == -EAGAIN || ret == -ENOMEM) 1555 goto queue_full; 1556 goto check_stop; 1557 default: 1558 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1559 cmd->t_task_cdb[0], sense_reason); 1560 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1561 break; 1562 } 1563 1564 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1565 if (ret == -EAGAIN || ret == -ENOMEM) 1566 goto queue_full; 1567 1568 check_stop: 1569 transport_lun_remove_cmd(cmd); 1570 if (!transport_cmd_check_stop_to_fabric(cmd)) 1571 ; 1572 return; 1573 1574 queue_full: 1575 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1576 transport_handle_queue_full(cmd, cmd->se_dev); 1577 } 1578 EXPORT_SYMBOL(transport_generic_request_failure); 1579 1580 static void __target_execute_cmd(struct se_cmd *cmd) 1581 { 1582 sense_reason_t ret; 1583 1584 spin_lock_irq(&cmd->t_state_lock); 1585 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT); 1586 spin_unlock_irq(&cmd->t_state_lock); 1587 1588 if (cmd->execute_cmd) { 1589 ret = cmd->execute_cmd(cmd); 1590 if (ret) { 1591 spin_lock_irq(&cmd->t_state_lock); 1592 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1593 spin_unlock_irq(&cmd->t_state_lock); 1594 1595 transport_generic_request_failure(cmd, ret); 1596 } 1597 } 1598 } 1599 1600 static bool target_handle_task_attr(struct se_cmd *cmd) 1601 { 1602 struct se_device *dev = cmd->se_dev; 1603 1604 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1605 return false; 1606 1607 /* 1608 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1609 * to allow the passed struct se_cmd list of tasks to the front of the list. 1610 */ 1611 switch (cmd->sam_task_attr) { 1612 case MSG_HEAD_TAG: 1613 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1614 "se_ordered_id: %u\n", 1615 cmd->t_task_cdb[0], cmd->se_ordered_id); 1616 return false; 1617 case MSG_ORDERED_TAG: 1618 atomic_inc(&dev->dev_ordered_sync); 1619 smp_mb__after_atomic_inc(); 1620 1621 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1622 " se_ordered_id: %u\n", 1623 cmd->t_task_cdb[0], cmd->se_ordered_id); 1624 1625 /* 1626 * Execute an ORDERED command if no other older commands 1627 * exist that need to be completed first. 1628 */ 1629 if (!atomic_read(&dev->simple_cmds)) 1630 return false; 1631 break; 1632 default: 1633 /* 1634 * For SIMPLE and UNTAGGED Task Attribute commands 1635 */ 1636 atomic_inc(&dev->simple_cmds); 1637 smp_mb__after_atomic_inc(); 1638 break; 1639 } 1640 1641 if (atomic_read(&dev->dev_ordered_sync) == 0) 1642 return false; 1643 1644 spin_lock(&dev->delayed_cmd_lock); 1645 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1646 spin_unlock(&dev->delayed_cmd_lock); 1647 1648 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1649 " delayed CMD list, se_ordered_id: %u\n", 1650 cmd->t_task_cdb[0], cmd->sam_task_attr, 1651 cmd->se_ordered_id); 1652 return true; 1653 } 1654 1655 void target_execute_cmd(struct se_cmd *cmd) 1656 { 1657 /* 1658 * If the received CDB has aleady been aborted stop processing it here. 1659 */ 1660 if (transport_check_aborted_status(cmd, 1)) { 1661 complete(&cmd->transport_lun_stop_comp); 1662 return; 1663 } 1664 1665 /* 1666 * Determine if IOCTL context caller in requesting the stopping of this 1667 * command for LUN shutdown purposes. 1668 */ 1669 spin_lock_irq(&cmd->t_state_lock); 1670 if (cmd->transport_state & CMD_T_LUN_STOP) { 1671 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 1672 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 1673 1674 cmd->transport_state &= ~CMD_T_ACTIVE; 1675 spin_unlock_irq(&cmd->t_state_lock); 1676 complete(&cmd->transport_lun_stop_comp); 1677 return; 1678 } 1679 /* 1680 * Determine if frontend context caller is requesting the stopping of 1681 * this command for frontend exceptions. 1682 */ 1683 if (cmd->transport_state & CMD_T_STOP) { 1684 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1685 __func__, __LINE__, 1686 cmd->se_tfo->get_task_tag(cmd)); 1687 1688 spin_unlock_irq(&cmd->t_state_lock); 1689 complete(&cmd->t_transport_stop_comp); 1690 return; 1691 } 1692 1693 cmd->t_state = TRANSPORT_PROCESSING; 1694 cmd->transport_state |= CMD_T_ACTIVE; 1695 spin_unlock_irq(&cmd->t_state_lock); 1696 1697 if (!target_handle_task_attr(cmd)) 1698 __target_execute_cmd(cmd); 1699 } 1700 EXPORT_SYMBOL(target_execute_cmd); 1701 1702 /* 1703 * Process all commands up to the last received ORDERED task attribute which 1704 * requires another blocking boundary 1705 */ 1706 static void target_restart_delayed_cmds(struct se_device *dev) 1707 { 1708 for (;;) { 1709 struct se_cmd *cmd; 1710 1711 spin_lock(&dev->delayed_cmd_lock); 1712 if (list_empty(&dev->delayed_cmd_list)) { 1713 spin_unlock(&dev->delayed_cmd_lock); 1714 break; 1715 } 1716 1717 cmd = list_entry(dev->delayed_cmd_list.next, 1718 struct se_cmd, se_delayed_node); 1719 list_del(&cmd->se_delayed_node); 1720 spin_unlock(&dev->delayed_cmd_lock); 1721 1722 __target_execute_cmd(cmd); 1723 1724 if (cmd->sam_task_attr == MSG_ORDERED_TAG) 1725 break; 1726 } 1727 } 1728 1729 /* 1730 * Called from I/O completion to determine which dormant/delayed 1731 * and ordered cmds need to have their tasks added to the execution queue. 1732 */ 1733 static void transport_complete_task_attr(struct se_cmd *cmd) 1734 { 1735 struct se_device *dev = cmd->se_dev; 1736 1737 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1738 return; 1739 1740 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 1741 atomic_dec(&dev->simple_cmds); 1742 smp_mb__after_atomic_dec(); 1743 dev->dev_cur_ordered_id++; 1744 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1745 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1746 cmd->se_ordered_id); 1747 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 1748 dev->dev_cur_ordered_id++; 1749 pr_debug("Incremented dev_cur_ordered_id: %u for" 1750 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1751 cmd->se_ordered_id); 1752 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 1753 atomic_dec(&dev->dev_ordered_sync); 1754 smp_mb__after_atomic_dec(); 1755 1756 dev->dev_cur_ordered_id++; 1757 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1758 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1759 } 1760 1761 target_restart_delayed_cmds(dev); 1762 } 1763 1764 static void transport_complete_qf(struct se_cmd *cmd) 1765 { 1766 int ret = 0; 1767 1768 transport_complete_task_attr(cmd); 1769 1770 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1771 ret = cmd->se_tfo->queue_status(cmd); 1772 if (ret) 1773 goto out; 1774 } 1775 1776 switch (cmd->data_direction) { 1777 case DMA_FROM_DEVICE: 1778 ret = cmd->se_tfo->queue_data_in(cmd); 1779 break; 1780 case DMA_TO_DEVICE: 1781 if (cmd->t_bidi_data_sg) { 1782 ret = cmd->se_tfo->queue_data_in(cmd); 1783 if (ret < 0) 1784 break; 1785 } 1786 /* Fall through for DMA_TO_DEVICE */ 1787 case DMA_NONE: 1788 ret = cmd->se_tfo->queue_status(cmd); 1789 break; 1790 default: 1791 break; 1792 } 1793 1794 out: 1795 if (ret < 0) { 1796 transport_handle_queue_full(cmd, cmd->se_dev); 1797 return; 1798 } 1799 transport_lun_remove_cmd(cmd); 1800 transport_cmd_check_stop_to_fabric(cmd); 1801 } 1802 1803 static void transport_handle_queue_full( 1804 struct se_cmd *cmd, 1805 struct se_device *dev) 1806 { 1807 spin_lock_irq(&dev->qf_cmd_lock); 1808 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1809 atomic_inc(&dev->dev_qf_count); 1810 smp_mb__after_atomic_inc(); 1811 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1812 1813 schedule_work(&cmd->se_dev->qf_work_queue); 1814 } 1815 1816 static void target_complete_ok_work(struct work_struct *work) 1817 { 1818 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1819 int ret; 1820 1821 /* 1822 * Check if we need to move delayed/dormant tasks from cmds on the 1823 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1824 * Attribute. 1825 */ 1826 transport_complete_task_attr(cmd); 1827 1828 /* 1829 * Check to schedule QUEUE_FULL work, or execute an existing 1830 * cmd->transport_qf_callback() 1831 */ 1832 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 1833 schedule_work(&cmd->se_dev->qf_work_queue); 1834 1835 /* 1836 * Check if we need to send a sense buffer from 1837 * the struct se_cmd in question. 1838 */ 1839 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1840 WARN_ON(!cmd->scsi_status); 1841 ret = transport_send_check_condition_and_sense( 1842 cmd, 0, 1); 1843 if (ret == -EAGAIN || ret == -ENOMEM) 1844 goto queue_full; 1845 1846 transport_lun_remove_cmd(cmd); 1847 transport_cmd_check_stop_to_fabric(cmd); 1848 return; 1849 } 1850 /* 1851 * Check for a callback, used by amongst other things 1852 * XDWRITE_READ_10 emulation. 1853 */ 1854 if (cmd->transport_complete_callback) 1855 cmd->transport_complete_callback(cmd); 1856 1857 switch (cmd->data_direction) { 1858 case DMA_FROM_DEVICE: 1859 spin_lock(&cmd->se_lun->lun_sep_lock); 1860 if (cmd->se_lun->lun_sep) { 1861 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1862 cmd->data_length; 1863 } 1864 spin_unlock(&cmd->se_lun->lun_sep_lock); 1865 1866 ret = cmd->se_tfo->queue_data_in(cmd); 1867 if (ret == -EAGAIN || ret == -ENOMEM) 1868 goto queue_full; 1869 break; 1870 case DMA_TO_DEVICE: 1871 spin_lock(&cmd->se_lun->lun_sep_lock); 1872 if (cmd->se_lun->lun_sep) { 1873 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 1874 cmd->data_length; 1875 } 1876 spin_unlock(&cmd->se_lun->lun_sep_lock); 1877 /* 1878 * Check if we need to send READ payload for BIDI-COMMAND 1879 */ 1880 if (cmd->t_bidi_data_sg) { 1881 spin_lock(&cmd->se_lun->lun_sep_lock); 1882 if (cmd->se_lun->lun_sep) { 1883 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1884 cmd->data_length; 1885 } 1886 spin_unlock(&cmd->se_lun->lun_sep_lock); 1887 ret = cmd->se_tfo->queue_data_in(cmd); 1888 if (ret == -EAGAIN || ret == -ENOMEM) 1889 goto queue_full; 1890 break; 1891 } 1892 /* Fall through for DMA_TO_DEVICE */ 1893 case DMA_NONE: 1894 ret = cmd->se_tfo->queue_status(cmd); 1895 if (ret == -EAGAIN || ret == -ENOMEM) 1896 goto queue_full; 1897 break; 1898 default: 1899 break; 1900 } 1901 1902 transport_lun_remove_cmd(cmd); 1903 transport_cmd_check_stop_to_fabric(cmd); 1904 return; 1905 1906 queue_full: 1907 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 1908 " data_direction: %d\n", cmd, cmd->data_direction); 1909 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1910 transport_handle_queue_full(cmd, cmd->se_dev); 1911 } 1912 1913 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 1914 { 1915 struct scatterlist *sg; 1916 int count; 1917 1918 for_each_sg(sgl, sg, nents, count) 1919 __free_page(sg_page(sg)); 1920 1921 kfree(sgl); 1922 } 1923 1924 static inline void transport_free_pages(struct se_cmd *cmd) 1925 { 1926 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) 1927 return; 1928 1929 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 1930 cmd->t_data_sg = NULL; 1931 cmd->t_data_nents = 0; 1932 1933 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 1934 cmd->t_bidi_data_sg = NULL; 1935 cmd->t_bidi_data_nents = 0; 1936 } 1937 1938 /** 1939 * transport_release_cmd - free a command 1940 * @cmd: command to free 1941 * 1942 * This routine unconditionally frees a command, and reference counting 1943 * or list removal must be done in the caller. 1944 */ 1945 static void transport_release_cmd(struct se_cmd *cmd) 1946 { 1947 BUG_ON(!cmd->se_tfo); 1948 1949 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 1950 core_tmr_release_req(cmd->se_tmr_req); 1951 if (cmd->t_task_cdb != cmd->__t_task_cdb) 1952 kfree(cmd->t_task_cdb); 1953 /* 1954 * If this cmd has been setup with target_get_sess_cmd(), drop 1955 * the kref and call ->release_cmd() in kref callback. 1956 */ 1957 if (cmd->check_release != 0) { 1958 target_put_sess_cmd(cmd->se_sess, cmd); 1959 return; 1960 } 1961 cmd->se_tfo->release_cmd(cmd); 1962 } 1963 1964 /** 1965 * transport_put_cmd - release a reference to a command 1966 * @cmd: command to release 1967 * 1968 * This routine releases our reference to the command and frees it if possible. 1969 */ 1970 static void transport_put_cmd(struct se_cmd *cmd) 1971 { 1972 unsigned long flags; 1973 1974 spin_lock_irqsave(&cmd->t_state_lock, flags); 1975 if (atomic_read(&cmd->t_fe_count) && 1976 !atomic_dec_and_test(&cmd->t_fe_count)) { 1977 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1978 return; 1979 } 1980 1981 if (cmd->transport_state & CMD_T_DEV_ACTIVE) { 1982 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 1983 target_remove_from_state_list(cmd); 1984 } 1985 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1986 1987 transport_free_pages(cmd); 1988 transport_release_cmd(cmd); 1989 return; 1990 } 1991 1992 void *transport_kmap_data_sg(struct se_cmd *cmd) 1993 { 1994 struct scatterlist *sg = cmd->t_data_sg; 1995 struct page **pages; 1996 int i; 1997 1998 /* 1999 * We need to take into account a possible offset here for fabrics like 2000 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2001 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2002 */ 2003 if (!cmd->t_data_nents) 2004 return NULL; 2005 2006 BUG_ON(!sg); 2007 if (cmd->t_data_nents == 1) 2008 return kmap(sg_page(sg)) + sg->offset; 2009 2010 /* >1 page. use vmap */ 2011 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2012 if (!pages) 2013 return NULL; 2014 2015 /* convert sg[] to pages[] */ 2016 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2017 pages[i] = sg_page(sg); 2018 } 2019 2020 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2021 kfree(pages); 2022 if (!cmd->t_data_vmap) 2023 return NULL; 2024 2025 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2026 } 2027 EXPORT_SYMBOL(transport_kmap_data_sg); 2028 2029 void transport_kunmap_data_sg(struct se_cmd *cmd) 2030 { 2031 if (!cmd->t_data_nents) { 2032 return; 2033 } else if (cmd->t_data_nents == 1) { 2034 kunmap(sg_page(cmd->t_data_sg)); 2035 return; 2036 } 2037 2038 vunmap(cmd->t_data_vmap); 2039 cmd->t_data_vmap = NULL; 2040 } 2041 EXPORT_SYMBOL(transport_kunmap_data_sg); 2042 2043 static int 2044 transport_generic_get_mem(struct se_cmd *cmd) 2045 { 2046 u32 length = cmd->data_length; 2047 unsigned int nents; 2048 struct page *page; 2049 gfp_t zero_flag; 2050 int i = 0; 2051 2052 nents = DIV_ROUND_UP(length, PAGE_SIZE); 2053 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL); 2054 if (!cmd->t_data_sg) 2055 return -ENOMEM; 2056 2057 cmd->t_data_nents = nents; 2058 sg_init_table(cmd->t_data_sg, nents); 2059 2060 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO; 2061 2062 while (length) { 2063 u32 page_len = min_t(u32, length, PAGE_SIZE); 2064 page = alloc_page(GFP_KERNEL | zero_flag); 2065 if (!page) 2066 goto out; 2067 2068 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0); 2069 length -= page_len; 2070 i++; 2071 } 2072 return 0; 2073 2074 out: 2075 while (i > 0) { 2076 i--; 2077 __free_page(sg_page(&cmd->t_data_sg[i])); 2078 } 2079 kfree(cmd->t_data_sg); 2080 cmd->t_data_sg = NULL; 2081 return -ENOMEM; 2082 } 2083 2084 /* 2085 * Allocate any required resources to execute the command. For writes we 2086 * might not have the payload yet, so notify the fabric via a call to 2087 * ->write_pending instead. Otherwise place it on the execution queue. 2088 */ 2089 sense_reason_t 2090 transport_generic_new_cmd(struct se_cmd *cmd) 2091 { 2092 int ret = 0; 2093 2094 /* 2095 * Determine is the TCM fabric module has already allocated physical 2096 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2097 * beforehand. 2098 */ 2099 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2100 cmd->data_length) { 2101 ret = transport_generic_get_mem(cmd); 2102 if (ret < 0) 2103 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2104 } 2105 2106 atomic_inc(&cmd->t_fe_count); 2107 2108 /* 2109 * If this command is not a write we can execute it right here, 2110 * for write buffers we need to notify the fabric driver first 2111 * and let it call back once the write buffers are ready. 2112 */ 2113 target_add_to_state_list(cmd); 2114 if (cmd->data_direction != DMA_TO_DEVICE) { 2115 target_execute_cmd(cmd); 2116 return 0; 2117 } 2118 2119 spin_lock_irq(&cmd->t_state_lock); 2120 cmd->t_state = TRANSPORT_WRITE_PENDING; 2121 spin_unlock_irq(&cmd->t_state_lock); 2122 2123 transport_cmd_check_stop(cmd, false); 2124 2125 ret = cmd->se_tfo->write_pending(cmd); 2126 if (ret == -EAGAIN || ret == -ENOMEM) 2127 goto queue_full; 2128 2129 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2130 WARN_ON(ret); 2131 2132 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2133 2134 queue_full: 2135 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2136 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2137 transport_handle_queue_full(cmd, cmd->se_dev); 2138 return 0; 2139 } 2140 EXPORT_SYMBOL(transport_generic_new_cmd); 2141 2142 static void transport_write_pending_qf(struct se_cmd *cmd) 2143 { 2144 int ret; 2145 2146 ret = cmd->se_tfo->write_pending(cmd); 2147 if (ret == -EAGAIN || ret == -ENOMEM) { 2148 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2149 cmd); 2150 transport_handle_queue_full(cmd, cmd->se_dev); 2151 } 2152 } 2153 2154 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2155 { 2156 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2157 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2158 transport_wait_for_tasks(cmd); 2159 2160 transport_release_cmd(cmd); 2161 } else { 2162 if (wait_for_tasks) 2163 transport_wait_for_tasks(cmd); 2164 2165 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd); 2166 2167 if (cmd->se_lun) 2168 transport_lun_remove_cmd(cmd); 2169 2170 transport_put_cmd(cmd); 2171 } 2172 } 2173 EXPORT_SYMBOL(transport_generic_free_cmd); 2174 2175 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2176 * @se_sess: session to reference 2177 * @se_cmd: command descriptor to add 2178 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2179 */ 2180 static int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2181 bool ack_kref) 2182 { 2183 unsigned long flags; 2184 int ret = 0; 2185 2186 kref_init(&se_cmd->cmd_kref); 2187 /* 2188 * Add a second kref if the fabric caller is expecting to handle 2189 * fabric acknowledgement that requires two target_put_sess_cmd() 2190 * invocations before se_cmd descriptor release. 2191 */ 2192 if (ack_kref == true) { 2193 kref_get(&se_cmd->cmd_kref); 2194 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2195 } 2196 2197 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2198 if (se_sess->sess_tearing_down) { 2199 ret = -ESHUTDOWN; 2200 goto out; 2201 } 2202 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2203 se_cmd->check_release = 1; 2204 2205 out: 2206 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2207 return ret; 2208 } 2209 2210 static void target_release_cmd_kref(struct kref *kref) 2211 { 2212 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2213 struct se_session *se_sess = se_cmd->se_sess; 2214 unsigned long flags; 2215 2216 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2217 if (list_empty(&se_cmd->se_cmd_list)) { 2218 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2219 se_cmd->se_tfo->release_cmd(se_cmd); 2220 return; 2221 } 2222 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2223 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2224 complete(&se_cmd->cmd_wait_comp); 2225 return; 2226 } 2227 list_del(&se_cmd->se_cmd_list); 2228 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2229 2230 se_cmd->se_tfo->release_cmd(se_cmd); 2231 } 2232 2233 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2234 * @se_sess: session to reference 2235 * @se_cmd: command descriptor to drop 2236 */ 2237 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2238 { 2239 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2240 } 2241 EXPORT_SYMBOL(target_put_sess_cmd); 2242 2243 /* target_sess_cmd_list_set_waiting - Flag all commands in 2244 * sess_cmd_list to complete cmd_wait_comp. Set 2245 * sess_tearing_down so no more commands are queued. 2246 * @se_sess: session to flag 2247 */ 2248 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2249 { 2250 struct se_cmd *se_cmd; 2251 unsigned long flags; 2252 2253 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2254 2255 WARN_ON(se_sess->sess_tearing_down); 2256 se_sess->sess_tearing_down = 1; 2257 2258 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) 2259 se_cmd->cmd_wait_set = 1; 2260 2261 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2262 } 2263 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2264 2265 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2266 * @se_sess: session to wait for active I/O 2267 * @wait_for_tasks: Make extra transport_wait_for_tasks call 2268 */ 2269 void target_wait_for_sess_cmds( 2270 struct se_session *se_sess, 2271 int wait_for_tasks) 2272 { 2273 struct se_cmd *se_cmd, *tmp_cmd; 2274 bool rc = false; 2275 2276 list_for_each_entry_safe(se_cmd, tmp_cmd, 2277 &se_sess->sess_cmd_list, se_cmd_list) { 2278 list_del(&se_cmd->se_cmd_list); 2279 2280 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2281 " %d\n", se_cmd, se_cmd->t_state, 2282 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2283 2284 if (wait_for_tasks) { 2285 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d," 2286 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2287 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2288 2289 rc = transport_wait_for_tasks(se_cmd); 2290 2291 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d," 2292 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2293 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2294 } 2295 2296 if (!rc) { 2297 wait_for_completion(&se_cmd->cmd_wait_comp); 2298 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2299 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2300 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2301 } 2302 2303 se_cmd->se_tfo->release_cmd(se_cmd); 2304 } 2305 } 2306 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2307 2308 /* transport_lun_wait_for_tasks(): 2309 * 2310 * Called from ConfigFS context to stop the passed struct se_cmd to allow 2311 * an struct se_lun to be successfully shutdown. 2312 */ 2313 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) 2314 { 2315 unsigned long flags; 2316 int ret = 0; 2317 2318 /* 2319 * If the frontend has already requested this struct se_cmd to 2320 * be stopped, we can safely ignore this struct se_cmd. 2321 */ 2322 spin_lock_irqsave(&cmd->t_state_lock, flags); 2323 if (cmd->transport_state & CMD_T_STOP) { 2324 cmd->transport_state &= ~CMD_T_LUN_STOP; 2325 2326 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n", 2327 cmd->se_tfo->get_task_tag(cmd)); 2328 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2329 transport_cmd_check_stop(cmd, false); 2330 return -EPERM; 2331 } 2332 cmd->transport_state |= CMD_T_LUN_FE_STOP; 2333 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2334 2335 // XXX: audit task_flags checks. 2336 spin_lock_irqsave(&cmd->t_state_lock, flags); 2337 if ((cmd->transport_state & CMD_T_BUSY) && 2338 (cmd->transport_state & CMD_T_SENT)) { 2339 if (!target_stop_cmd(cmd, &flags)) 2340 ret++; 2341 } 2342 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2343 2344 pr_debug("ConfigFS: cmd: %p stop tasks ret:" 2345 " %d\n", cmd, ret); 2346 if (!ret) { 2347 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n", 2348 cmd->se_tfo->get_task_tag(cmd)); 2349 wait_for_completion(&cmd->transport_lun_stop_comp); 2350 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n", 2351 cmd->se_tfo->get_task_tag(cmd)); 2352 } 2353 2354 return 0; 2355 } 2356 2357 static void __transport_clear_lun_from_sessions(struct se_lun *lun) 2358 { 2359 struct se_cmd *cmd = NULL; 2360 unsigned long lun_flags, cmd_flags; 2361 /* 2362 * Do exception processing and return CHECK_CONDITION status to the 2363 * Initiator Port. 2364 */ 2365 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2366 while (!list_empty(&lun->lun_cmd_list)) { 2367 cmd = list_first_entry(&lun->lun_cmd_list, 2368 struct se_cmd, se_lun_node); 2369 list_del_init(&cmd->se_lun_node); 2370 2371 spin_lock(&cmd->t_state_lock); 2372 pr_debug("SE_LUN[%d] - Setting cmd->transport" 2373 "_lun_stop for ITT: 0x%08x\n", 2374 cmd->se_lun->unpacked_lun, 2375 cmd->se_tfo->get_task_tag(cmd)); 2376 cmd->transport_state |= CMD_T_LUN_STOP; 2377 spin_unlock(&cmd->t_state_lock); 2378 2379 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2380 2381 if (!cmd->se_lun) { 2382 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n", 2383 cmd->se_tfo->get_task_tag(cmd), 2384 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2385 BUG(); 2386 } 2387 /* 2388 * If the Storage engine still owns the iscsi_cmd_t, determine 2389 * and/or stop its context. 2390 */ 2391 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport" 2392 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun, 2393 cmd->se_tfo->get_task_tag(cmd)); 2394 2395 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) { 2396 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2397 continue; 2398 } 2399 2400 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun" 2401 "_wait_for_tasks(): SUCCESS\n", 2402 cmd->se_lun->unpacked_lun, 2403 cmd->se_tfo->get_task_tag(cmd)); 2404 2405 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2406 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) { 2407 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2408 goto check_cond; 2409 } 2410 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 2411 target_remove_from_state_list(cmd); 2412 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2413 2414 /* 2415 * The Storage engine stopped this struct se_cmd before it was 2416 * send to the fabric frontend for delivery back to the 2417 * Initiator Node. Return this SCSI CDB back with an 2418 * CHECK_CONDITION status. 2419 */ 2420 check_cond: 2421 transport_send_check_condition_and_sense(cmd, 2422 TCM_NON_EXISTENT_LUN, 0); 2423 /* 2424 * If the fabric frontend is waiting for this iscsi_cmd_t to 2425 * be released, notify the waiting thread now that LU has 2426 * finished accessing it. 2427 */ 2428 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2429 if (cmd->transport_state & CMD_T_LUN_FE_STOP) { 2430 pr_debug("SE_LUN[%d] - Detected FE stop for" 2431 " struct se_cmd: %p ITT: 0x%08x\n", 2432 lun->unpacked_lun, 2433 cmd, cmd->se_tfo->get_task_tag(cmd)); 2434 2435 spin_unlock_irqrestore(&cmd->t_state_lock, 2436 cmd_flags); 2437 transport_cmd_check_stop(cmd, false); 2438 complete(&cmd->transport_lun_fe_stop_comp); 2439 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2440 continue; 2441 } 2442 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n", 2443 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); 2444 2445 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2446 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2447 } 2448 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2449 } 2450 2451 static int transport_clear_lun_thread(void *p) 2452 { 2453 struct se_lun *lun = p; 2454 2455 __transport_clear_lun_from_sessions(lun); 2456 complete(&lun->lun_shutdown_comp); 2457 2458 return 0; 2459 } 2460 2461 int transport_clear_lun_from_sessions(struct se_lun *lun) 2462 { 2463 struct task_struct *kt; 2464 2465 kt = kthread_run(transport_clear_lun_thread, lun, 2466 "tcm_cl_%u", lun->unpacked_lun); 2467 if (IS_ERR(kt)) { 2468 pr_err("Unable to start clear_lun thread\n"); 2469 return PTR_ERR(kt); 2470 } 2471 wait_for_completion(&lun->lun_shutdown_comp); 2472 2473 return 0; 2474 } 2475 2476 /** 2477 * transport_wait_for_tasks - wait for completion to occur 2478 * @cmd: command to wait 2479 * 2480 * Called from frontend fabric context to wait for storage engine 2481 * to pause and/or release frontend generated struct se_cmd. 2482 */ 2483 bool transport_wait_for_tasks(struct se_cmd *cmd) 2484 { 2485 unsigned long flags; 2486 2487 spin_lock_irqsave(&cmd->t_state_lock, flags); 2488 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2489 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2490 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2491 return false; 2492 } 2493 2494 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2495 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2496 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2497 return false; 2498 } 2499 /* 2500 * If we are already stopped due to an external event (ie: LUN shutdown) 2501 * sleep until the connection can have the passed struct se_cmd back. 2502 * The cmd->transport_lun_stopped_sem will be upped by 2503 * transport_clear_lun_from_sessions() once the ConfigFS context caller 2504 * has completed its operation on the struct se_cmd. 2505 */ 2506 if (cmd->transport_state & CMD_T_LUN_STOP) { 2507 pr_debug("wait_for_tasks: Stopping" 2508 " wait_for_completion(&cmd->t_tasktransport_lun_fe" 2509 "_stop_comp); for ITT: 0x%08x\n", 2510 cmd->se_tfo->get_task_tag(cmd)); 2511 /* 2512 * There is a special case for WRITES where a FE exception + 2513 * LUN shutdown means ConfigFS context is still sleeping on 2514 * transport_lun_stop_comp in transport_lun_wait_for_tasks(). 2515 * We go ahead and up transport_lun_stop_comp just to be sure 2516 * here. 2517 */ 2518 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2519 complete(&cmd->transport_lun_stop_comp); 2520 wait_for_completion(&cmd->transport_lun_fe_stop_comp); 2521 spin_lock_irqsave(&cmd->t_state_lock, flags); 2522 2523 target_remove_from_state_list(cmd); 2524 /* 2525 * At this point, the frontend who was the originator of this 2526 * struct se_cmd, now owns the structure and can be released through 2527 * normal means below. 2528 */ 2529 pr_debug("wait_for_tasks: Stopped" 2530 " wait_for_completion(&cmd->t_tasktransport_lun_fe_" 2531 "stop_comp); for ITT: 0x%08x\n", 2532 cmd->se_tfo->get_task_tag(cmd)); 2533 2534 cmd->transport_state &= ~CMD_T_LUN_STOP; 2535 } 2536 2537 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2538 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2539 return false; 2540 } 2541 2542 cmd->transport_state |= CMD_T_STOP; 2543 2544 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2545 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2546 cmd, cmd->se_tfo->get_task_tag(cmd), 2547 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2548 2549 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2550 2551 wait_for_completion(&cmd->t_transport_stop_comp); 2552 2553 spin_lock_irqsave(&cmd->t_state_lock, flags); 2554 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2555 2556 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2557 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2558 cmd->se_tfo->get_task_tag(cmd)); 2559 2560 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2561 2562 return true; 2563 } 2564 EXPORT_SYMBOL(transport_wait_for_tasks); 2565 2566 static int transport_get_sense_codes( 2567 struct se_cmd *cmd, 2568 u8 *asc, 2569 u8 *ascq) 2570 { 2571 *asc = cmd->scsi_asc; 2572 *ascq = cmd->scsi_ascq; 2573 2574 return 0; 2575 } 2576 2577 int 2578 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2579 sense_reason_t reason, int from_transport) 2580 { 2581 unsigned char *buffer = cmd->sense_buffer; 2582 unsigned long flags; 2583 u8 asc = 0, ascq = 0; 2584 2585 spin_lock_irqsave(&cmd->t_state_lock, flags); 2586 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2587 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2588 return 0; 2589 } 2590 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2591 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2592 2593 if (!reason && from_transport) 2594 goto after_reason; 2595 2596 if (!from_transport) 2597 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2598 2599 /* 2600 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2601 * SENSE KEY values from include/scsi/scsi.h 2602 */ 2603 switch (reason) { 2604 case TCM_NO_SENSE: 2605 /* CURRENT ERROR */ 2606 buffer[0] = 0x70; 2607 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2608 /* Not Ready */ 2609 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2610 /* NO ADDITIONAL SENSE INFORMATION */ 2611 buffer[SPC_ASC_KEY_OFFSET] = 0; 2612 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2613 break; 2614 case TCM_NON_EXISTENT_LUN: 2615 /* CURRENT ERROR */ 2616 buffer[0] = 0x70; 2617 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2618 /* ILLEGAL REQUEST */ 2619 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2620 /* LOGICAL UNIT NOT SUPPORTED */ 2621 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2622 break; 2623 case TCM_UNSUPPORTED_SCSI_OPCODE: 2624 case TCM_SECTOR_COUNT_TOO_MANY: 2625 /* CURRENT ERROR */ 2626 buffer[0] = 0x70; 2627 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2628 /* ILLEGAL REQUEST */ 2629 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2630 /* INVALID COMMAND OPERATION CODE */ 2631 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2632 break; 2633 case TCM_UNKNOWN_MODE_PAGE: 2634 /* CURRENT ERROR */ 2635 buffer[0] = 0x70; 2636 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2637 /* ILLEGAL REQUEST */ 2638 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2639 /* INVALID FIELD IN CDB */ 2640 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2641 break; 2642 case TCM_CHECK_CONDITION_ABORT_CMD: 2643 /* CURRENT ERROR */ 2644 buffer[0] = 0x70; 2645 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2646 /* ABORTED COMMAND */ 2647 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2648 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2649 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2650 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2651 break; 2652 case TCM_INCORRECT_AMOUNT_OF_DATA: 2653 /* CURRENT ERROR */ 2654 buffer[0] = 0x70; 2655 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2656 /* ABORTED COMMAND */ 2657 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2658 /* WRITE ERROR */ 2659 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2660 /* NOT ENOUGH UNSOLICITED DATA */ 2661 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2662 break; 2663 case TCM_INVALID_CDB_FIELD: 2664 /* CURRENT ERROR */ 2665 buffer[0] = 0x70; 2666 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2667 /* ILLEGAL REQUEST */ 2668 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2669 /* INVALID FIELD IN CDB */ 2670 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2671 break; 2672 case TCM_INVALID_PARAMETER_LIST: 2673 /* CURRENT ERROR */ 2674 buffer[0] = 0x70; 2675 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2676 /* ILLEGAL REQUEST */ 2677 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2678 /* INVALID FIELD IN PARAMETER LIST */ 2679 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2680 break; 2681 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2682 /* CURRENT ERROR */ 2683 buffer[0] = 0x70; 2684 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2685 /* ILLEGAL REQUEST */ 2686 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2687 /* PARAMETER LIST LENGTH ERROR */ 2688 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2689 break; 2690 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2691 /* CURRENT ERROR */ 2692 buffer[0] = 0x70; 2693 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2694 /* ABORTED COMMAND */ 2695 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2696 /* WRITE ERROR */ 2697 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2698 /* UNEXPECTED_UNSOLICITED_DATA */ 2699 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2700 break; 2701 case TCM_SERVICE_CRC_ERROR: 2702 /* CURRENT ERROR */ 2703 buffer[0] = 0x70; 2704 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2705 /* ABORTED COMMAND */ 2706 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2707 /* PROTOCOL SERVICE CRC ERROR */ 2708 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2709 /* N/A */ 2710 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2711 break; 2712 case TCM_SNACK_REJECTED: 2713 /* CURRENT ERROR */ 2714 buffer[0] = 0x70; 2715 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2716 /* ABORTED COMMAND */ 2717 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2718 /* READ ERROR */ 2719 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2720 /* FAILED RETRANSMISSION REQUEST */ 2721 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2722 break; 2723 case TCM_WRITE_PROTECTED: 2724 /* CURRENT ERROR */ 2725 buffer[0] = 0x70; 2726 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2727 /* DATA PROTECT */ 2728 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2729 /* WRITE PROTECTED */ 2730 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2731 break; 2732 case TCM_ADDRESS_OUT_OF_RANGE: 2733 /* CURRENT ERROR */ 2734 buffer[0] = 0x70; 2735 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2736 /* ILLEGAL REQUEST */ 2737 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2738 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2739 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2740 break; 2741 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2742 /* CURRENT ERROR */ 2743 buffer[0] = 0x70; 2744 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2745 /* UNIT ATTENTION */ 2746 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2747 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2748 buffer[SPC_ASC_KEY_OFFSET] = asc; 2749 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2750 break; 2751 case TCM_CHECK_CONDITION_NOT_READY: 2752 /* CURRENT ERROR */ 2753 buffer[0] = 0x70; 2754 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2755 /* Not Ready */ 2756 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2757 transport_get_sense_codes(cmd, &asc, &ascq); 2758 buffer[SPC_ASC_KEY_OFFSET] = asc; 2759 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2760 break; 2761 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2762 default: 2763 /* CURRENT ERROR */ 2764 buffer[0] = 0x70; 2765 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2766 /* ILLEGAL REQUEST */ 2767 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2768 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2769 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2770 break; 2771 } 2772 /* 2773 * This code uses linux/include/scsi/scsi.h SAM status codes! 2774 */ 2775 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2776 /* 2777 * Automatically padded, this value is encoded in the fabric's 2778 * data_length response PDU containing the SCSI defined sense data. 2779 */ 2780 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2781 2782 after_reason: 2783 return cmd->se_tfo->queue_status(cmd); 2784 } 2785 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2786 2787 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2788 { 2789 if (!(cmd->transport_state & CMD_T_ABORTED)) 2790 return 0; 2791 2792 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 2793 return 1; 2794 2795 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2796 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2797 2798 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 2799 cmd->se_tfo->queue_status(cmd); 2800 2801 return 1; 2802 } 2803 EXPORT_SYMBOL(transport_check_aborted_status); 2804 2805 void transport_send_task_abort(struct se_cmd *cmd) 2806 { 2807 unsigned long flags; 2808 2809 spin_lock_irqsave(&cmd->t_state_lock, flags); 2810 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) { 2811 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2812 return; 2813 } 2814 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2815 2816 /* 2817 * If there are still expected incoming fabric WRITEs, we wait 2818 * until until they have completed before sending a TASK_ABORTED 2819 * response. This response with TASK_ABORTED status will be 2820 * queued back to fabric module by transport_check_aborted_status(). 2821 */ 2822 if (cmd->data_direction == DMA_TO_DEVICE) { 2823 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2824 cmd->transport_state |= CMD_T_ABORTED; 2825 smp_mb__after_atomic_inc(); 2826 } 2827 } 2828 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2829 2830 transport_lun_remove_cmd(cmd); 2831 2832 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 2833 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 2834 cmd->se_tfo->get_task_tag(cmd)); 2835 2836 cmd->se_tfo->queue_status(cmd); 2837 } 2838 2839 static void target_tmr_work(struct work_struct *work) 2840 { 2841 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2842 struct se_device *dev = cmd->se_dev; 2843 struct se_tmr_req *tmr = cmd->se_tmr_req; 2844 int ret; 2845 2846 switch (tmr->function) { 2847 case TMR_ABORT_TASK: 2848 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2849 break; 2850 case TMR_ABORT_TASK_SET: 2851 case TMR_CLEAR_ACA: 2852 case TMR_CLEAR_TASK_SET: 2853 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2854 break; 2855 case TMR_LUN_RESET: 2856 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2857 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2858 TMR_FUNCTION_REJECTED; 2859 break; 2860 case TMR_TARGET_WARM_RESET: 2861 tmr->response = TMR_FUNCTION_REJECTED; 2862 break; 2863 case TMR_TARGET_COLD_RESET: 2864 tmr->response = TMR_FUNCTION_REJECTED; 2865 break; 2866 default: 2867 pr_err("Uknown TMR function: 0x%02x.\n", 2868 tmr->function); 2869 tmr->response = TMR_FUNCTION_REJECTED; 2870 break; 2871 } 2872 2873 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2874 cmd->se_tfo->queue_tm_rsp(cmd); 2875 2876 transport_cmd_check_stop_to_fabric(cmd); 2877 } 2878 2879 int transport_generic_handle_tmr( 2880 struct se_cmd *cmd) 2881 { 2882 INIT_WORK(&cmd->work, target_tmr_work); 2883 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 2884 return 0; 2885 } 2886 EXPORT_SYMBOL(transport_generic_handle_tmr); 2887