1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3  * Filename:  target_core_transport.c
4  *
5  * This file contains the Generic Target Engine Core.
6  *
7  * (c) Copyright 2002-2013 Datera, Inc.
8  *
9  * Nicholas A. Bellinger <nab@kernel.org>
10  *
11  ******************************************************************************/
12 
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30 
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34 
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42 
43 static struct workqueue_struct *target_completion_wq;
44 static struct workqueue_struct *target_submission_wq;
45 static struct kmem_cache *se_sess_cache;
46 struct kmem_cache *se_ua_cache;
47 struct kmem_cache *t10_pr_reg_cache;
48 struct kmem_cache *t10_alua_lu_gp_cache;
49 struct kmem_cache *t10_alua_lu_gp_mem_cache;
50 struct kmem_cache *t10_alua_tg_pt_gp_cache;
51 struct kmem_cache *t10_alua_lba_map_cache;
52 struct kmem_cache *t10_alua_lba_map_mem_cache;
53 
54 static void transport_complete_task_attr(struct se_cmd *cmd);
55 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
56 static void transport_handle_queue_full(struct se_cmd *cmd,
57 		struct se_device *dev, int err, bool write_pending);
58 static void target_complete_ok_work(struct work_struct *work);
59 
60 int init_se_kmem_caches(void)
61 {
62 	se_sess_cache = kmem_cache_create("se_sess_cache",
63 			sizeof(struct se_session), __alignof__(struct se_session),
64 			0, NULL);
65 	if (!se_sess_cache) {
66 		pr_err("kmem_cache_create() for struct se_session"
67 				" failed\n");
68 		goto out;
69 	}
70 	se_ua_cache = kmem_cache_create("se_ua_cache",
71 			sizeof(struct se_ua), __alignof__(struct se_ua),
72 			0, NULL);
73 	if (!se_ua_cache) {
74 		pr_err("kmem_cache_create() for struct se_ua failed\n");
75 		goto out_free_sess_cache;
76 	}
77 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
78 			sizeof(struct t10_pr_registration),
79 			__alignof__(struct t10_pr_registration), 0, NULL);
80 	if (!t10_pr_reg_cache) {
81 		pr_err("kmem_cache_create() for struct t10_pr_registration"
82 				" failed\n");
83 		goto out_free_ua_cache;
84 	}
85 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
86 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
87 			0, NULL);
88 	if (!t10_alua_lu_gp_cache) {
89 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 				" failed\n");
91 		goto out_free_pr_reg_cache;
92 	}
93 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
94 			sizeof(struct t10_alua_lu_gp_member),
95 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
96 	if (!t10_alua_lu_gp_mem_cache) {
97 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 				"cache failed\n");
99 		goto out_free_lu_gp_cache;
100 	}
101 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
102 			sizeof(struct t10_alua_tg_pt_gp),
103 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
104 	if (!t10_alua_tg_pt_gp_cache) {
105 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 				"cache failed\n");
107 		goto out_free_lu_gp_mem_cache;
108 	}
109 	t10_alua_lba_map_cache = kmem_cache_create(
110 			"t10_alua_lba_map_cache",
111 			sizeof(struct t10_alua_lba_map),
112 			__alignof__(struct t10_alua_lba_map), 0, NULL);
113 	if (!t10_alua_lba_map_cache) {
114 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 				"cache failed\n");
116 		goto out_free_tg_pt_gp_cache;
117 	}
118 	t10_alua_lba_map_mem_cache = kmem_cache_create(
119 			"t10_alua_lba_map_mem_cache",
120 			sizeof(struct t10_alua_lba_map_member),
121 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
122 	if (!t10_alua_lba_map_mem_cache) {
123 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 				"cache failed\n");
125 		goto out_free_lba_map_cache;
126 	}
127 
128 	target_completion_wq = alloc_workqueue("target_completion",
129 					       WQ_MEM_RECLAIM, 0);
130 	if (!target_completion_wq)
131 		goto out_free_lba_map_mem_cache;
132 
133 	target_submission_wq = alloc_workqueue("target_submission",
134 					       WQ_MEM_RECLAIM, 0);
135 	if (!target_submission_wq)
136 		goto out_free_completion_wq;
137 
138 	return 0;
139 
140 out_free_completion_wq:
141 	destroy_workqueue(target_completion_wq);
142 out_free_lba_map_mem_cache:
143 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
144 out_free_lba_map_cache:
145 	kmem_cache_destroy(t10_alua_lba_map_cache);
146 out_free_tg_pt_gp_cache:
147 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148 out_free_lu_gp_mem_cache:
149 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150 out_free_lu_gp_cache:
151 	kmem_cache_destroy(t10_alua_lu_gp_cache);
152 out_free_pr_reg_cache:
153 	kmem_cache_destroy(t10_pr_reg_cache);
154 out_free_ua_cache:
155 	kmem_cache_destroy(se_ua_cache);
156 out_free_sess_cache:
157 	kmem_cache_destroy(se_sess_cache);
158 out:
159 	return -ENOMEM;
160 }
161 
162 void release_se_kmem_caches(void)
163 {
164 	destroy_workqueue(target_submission_wq);
165 	destroy_workqueue(target_completion_wq);
166 	kmem_cache_destroy(se_sess_cache);
167 	kmem_cache_destroy(se_ua_cache);
168 	kmem_cache_destroy(t10_pr_reg_cache);
169 	kmem_cache_destroy(t10_alua_lu_gp_cache);
170 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 	kmem_cache_destroy(t10_alua_lba_map_cache);
173 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
174 }
175 
176 /* This code ensures unique mib indexes are handed out. */
177 static DEFINE_SPINLOCK(scsi_mib_index_lock);
178 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
179 
180 /*
181  * Allocate a new row index for the entry type specified
182  */
183 u32 scsi_get_new_index(scsi_index_t type)
184 {
185 	u32 new_index;
186 
187 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
188 
189 	spin_lock(&scsi_mib_index_lock);
190 	new_index = ++scsi_mib_index[type];
191 	spin_unlock(&scsi_mib_index_lock);
192 
193 	return new_index;
194 }
195 
196 void transport_subsystem_check_init(void)
197 {
198 	int ret;
199 	static int sub_api_initialized;
200 
201 	if (sub_api_initialized)
202 		return;
203 
204 	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
205 	if (ret != 0)
206 		pr_err("Unable to load target_core_iblock\n");
207 
208 	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_file\n");
211 
212 	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_pscsi\n");
215 
216 	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_user\n");
219 
220 	sub_api_initialized = 1;
221 }
222 
223 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
224 {
225 	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
226 
227 	wake_up(&sess->cmd_count_wq);
228 }
229 
230 /**
231  * transport_init_session - initialize a session object
232  * @se_sess: Session object pointer.
233  *
234  * The caller must have zero-initialized @se_sess before calling this function.
235  */
236 int transport_init_session(struct se_session *se_sess)
237 {
238 	INIT_LIST_HEAD(&se_sess->sess_list);
239 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 	spin_lock_init(&se_sess->sess_cmd_lock);
241 	init_waitqueue_head(&se_sess->cmd_count_wq);
242 	init_completion(&se_sess->stop_done);
243 	atomic_set(&se_sess->stopped, 0);
244 	return percpu_ref_init(&se_sess->cmd_count,
245 			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
246 }
247 EXPORT_SYMBOL(transport_init_session);
248 
249 void transport_uninit_session(struct se_session *se_sess)
250 {
251 	/*
252 	 * Drivers like iscsi and loop do not call target_stop_session
253 	 * during session shutdown so we have to drop the ref taken at init
254 	 * time here.
255 	 */
256 	if (!atomic_read(&se_sess->stopped))
257 		percpu_ref_put(&se_sess->cmd_count);
258 
259 	percpu_ref_exit(&se_sess->cmd_count);
260 }
261 
262 /**
263  * transport_alloc_session - allocate a session object and initialize it
264  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
265  */
266 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
267 {
268 	struct se_session *se_sess;
269 	int ret;
270 
271 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
272 	if (!se_sess) {
273 		pr_err("Unable to allocate struct se_session from"
274 				" se_sess_cache\n");
275 		return ERR_PTR(-ENOMEM);
276 	}
277 	ret = transport_init_session(se_sess);
278 	if (ret < 0) {
279 		kmem_cache_free(se_sess_cache, se_sess);
280 		return ERR_PTR(ret);
281 	}
282 	se_sess->sup_prot_ops = sup_prot_ops;
283 
284 	return se_sess;
285 }
286 EXPORT_SYMBOL(transport_alloc_session);
287 
288 /**
289  * transport_alloc_session_tags - allocate target driver private data
290  * @se_sess:  Session pointer.
291  * @tag_num:  Maximum number of in-flight commands between initiator and target.
292  * @tag_size: Size in bytes of the private data a target driver associates with
293  *	      each command.
294  */
295 int transport_alloc_session_tags(struct se_session *se_sess,
296 			         unsigned int tag_num, unsigned int tag_size)
297 {
298 	int rc;
299 
300 	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
301 					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
302 	if (!se_sess->sess_cmd_map) {
303 		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
304 		return -ENOMEM;
305 	}
306 
307 	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
308 			false, GFP_KERNEL, NUMA_NO_NODE);
309 	if (rc < 0) {
310 		pr_err("Unable to init se_sess->sess_tag_pool,"
311 			" tag_num: %u\n", tag_num);
312 		kvfree(se_sess->sess_cmd_map);
313 		se_sess->sess_cmd_map = NULL;
314 		return -ENOMEM;
315 	}
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(transport_alloc_session_tags);
320 
321 /**
322  * transport_init_session_tags - allocate a session and target driver private data
323  * @tag_num:  Maximum number of in-flight commands between initiator and target.
324  * @tag_size: Size in bytes of the private data a target driver associates with
325  *	      each command.
326  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
327  */
328 static struct se_session *
329 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
330 			    enum target_prot_op sup_prot_ops)
331 {
332 	struct se_session *se_sess;
333 	int rc;
334 
335 	if (tag_num != 0 && !tag_size) {
336 		pr_err("init_session_tags called with percpu-ida tag_num:"
337 		       " %u, but zero tag_size\n", tag_num);
338 		return ERR_PTR(-EINVAL);
339 	}
340 	if (!tag_num && tag_size) {
341 		pr_err("init_session_tags called with percpu-ida tag_size:"
342 		       " %u, but zero tag_num\n", tag_size);
343 		return ERR_PTR(-EINVAL);
344 	}
345 
346 	se_sess = transport_alloc_session(sup_prot_ops);
347 	if (IS_ERR(se_sess))
348 		return se_sess;
349 
350 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
351 	if (rc < 0) {
352 		transport_free_session(se_sess);
353 		return ERR_PTR(-ENOMEM);
354 	}
355 
356 	return se_sess;
357 }
358 
359 /*
360  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
361  */
362 void __transport_register_session(
363 	struct se_portal_group *se_tpg,
364 	struct se_node_acl *se_nacl,
365 	struct se_session *se_sess,
366 	void *fabric_sess_ptr)
367 {
368 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
369 	unsigned char buf[PR_REG_ISID_LEN];
370 	unsigned long flags;
371 
372 	se_sess->se_tpg = se_tpg;
373 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
374 	/*
375 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
376 	 *
377 	 * Only set for struct se_session's that will actually be moving I/O.
378 	 * eg: *NOT* discovery sessions.
379 	 */
380 	if (se_nacl) {
381 		/*
382 		 *
383 		 * Determine if fabric allows for T10-PI feature bits exposed to
384 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
385 		 *
386 		 * If so, then always save prot_type on a per se_node_acl node
387 		 * basis and re-instate the previous sess_prot_type to avoid
388 		 * disabling PI from below any previously initiator side
389 		 * registered LUNs.
390 		 */
391 		if (se_nacl->saved_prot_type)
392 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
393 		else if (tfo->tpg_check_prot_fabric_only)
394 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
395 					tfo->tpg_check_prot_fabric_only(se_tpg);
396 		/*
397 		 * If the fabric module supports an ISID based TransportID,
398 		 * save this value in binary from the fabric I_T Nexus now.
399 		 */
400 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
401 			memset(&buf[0], 0, PR_REG_ISID_LEN);
402 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
403 					&buf[0], PR_REG_ISID_LEN);
404 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
405 		}
406 
407 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
408 		/*
409 		 * The se_nacl->nacl_sess pointer will be set to the
410 		 * last active I_T Nexus for each struct se_node_acl.
411 		 */
412 		se_nacl->nacl_sess = se_sess;
413 
414 		list_add_tail(&se_sess->sess_acl_list,
415 			      &se_nacl->acl_sess_list);
416 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
417 	}
418 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
419 
420 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
421 		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
422 }
423 EXPORT_SYMBOL(__transport_register_session);
424 
425 void transport_register_session(
426 	struct se_portal_group *se_tpg,
427 	struct se_node_acl *se_nacl,
428 	struct se_session *se_sess,
429 	void *fabric_sess_ptr)
430 {
431 	unsigned long flags;
432 
433 	spin_lock_irqsave(&se_tpg->session_lock, flags);
434 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
435 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
436 }
437 EXPORT_SYMBOL(transport_register_session);
438 
439 struct se_session *
440 target_setup_session(struct se_portal_group *tpg,
441 		     unsigned int tag_num, unsigned int tag_size,
442 		     enum target_prot_op prot_op,
443 		     const char *initiatorname, void *private,
444 		     int (*callback)(struct se_portal_group *,
445 				     struct se_session *, void *))
446 {
447 	struct se_session *sess;
448 
449 	/*
450 	 * If the fabric driver is using percpu-ida based pre allocation
451 	 * of I/O descriptor tags, go ahead and perform that setup now..
452 	 */
453 	if (tag_num != 0)
454 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
455 	else
456 		sess = transport_alloc_session(prot_op);
457 
458 	if (IS_ERR(sess))
459 		return sess;
460 
461 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
462 					(unsigned char *)initiatorname);
463 	if (!sess->se_node_acl) {
464 		transport_free_session(sess);
465 		return ERR_PTR(-EACCES);
466 	}
467 	/*
468 	 * Go ahead and perform any remaining fabric setup that is
469 	 * required before transport_register_session().
470 	 */
471 	if (callback != NULL) {
472 		int rc = callback(tpg, sess, private);
473 		if (rc) {
474 			transport_free_session(sess);
475 			return ERR_PTR(rc);
476 		}
477 	}
478 
479 	transport_register_session(tpg, sess->se_node_acl, sess, private);
480 	return sess;
481 }
482 EXPORT_SYMBOL(target_setup_session);
483 
484 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
485 {
486 	struct se_session *se_sess;
487 	ssize_t len = 0;
488 
489 	spin_lock_bh(&se_tpg->session_lock);
490 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
491 		if (!se_sess->se_node_acl)
492 			continue;
493 		if (!se_sess->se_node_acl->dynamic_node_acl)
494 			continue;
495 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
496 			break;
497 
498 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
499 				se_sess->se_node_acl->initiatorname);
500 		len += 1; /* Include NULL terminator */
501 	}
502 	spin_unlock_bh(&se_tpg->session_lock);
503 
504 	return len;
505 }
506 EXPORT_SYMBOL(target_show_dynamic_sessions);
507 
508 static void target_complete_nacl(struct kref *kref)
509 {
510 	struct se_node_acl *nacl = container_of(kref,
511 				struct se_node_acl, acl_kref);
512 	struct se_portal_group *se_tpg = nacl->se_tpg;
513 
514 	if (!nacl->dynamic_stop) {
515 		complete(&nacl->acl_free_comp);
516 		return;
517 	}
518 
519 	mutex_lock(&se_tpg->acl_node_mutex);
520 	list_del_init(&nacl->acl_list);
521 	mutex_unlock(&se_tpg->acl_node_mutex);
522 
523 	core_tpg_wait_for_nacl_pr_ref(nacl);
524 	core_free_device_list_for_node(nacl, se_tpg);
525 	kfree(nacl);
526 }
527 
528 void target_put_nacl(struct se_node_acl *nacl)
529 {
530 	kref_put(&nacl->acl_kref, target_complete_nacl);
531 }
532 EXPORT_SYMBOL(target_put_nacl);
533 
534 void transport_deregister_session_configfs(struct se_session *se_sess)
535 {
536 	struct se_node_acl *se_nacl;
537 	unsigned long flags;
538 	/*
539 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
540 	 */
541 	se_nacl = se_sess->se_node_acl;
542 	if (se_nacl) {
543 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
544 		if (!list_empty(&se_sess->sess_acl_list))
545 			list_del_init(&se_sess->sess_acl_list);
546 		/*
547 		 * If the session list is empty, then clear the pointer.
548 		 * Otherwise, set the struct se_session pointer from the tail
549 		 * element of the per struct se_node_acl active session list.
550 		 */
551 		if (list_empty(&se_nacl->acl_sess_list))
552 			se_nacl->nacl_sess = NULL;
553 		else {
554 			se_nacl->nacl_sess = container_of(
555 					se_nacl->acl_sess_list.prev,
556 					struct se_session, sess_acl_list);
557 		}
558 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
559 	}
560 }
561 EXPORT_SYMBOL(transport_deregister_session_configfs);
562 
563 void transport_free_session(struct se_session *se_sess)
564 {
565 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
566 
567 	/*
568 	 * Drop the se_node_acl->nacl_kref obtained from within
569 	 * core_tpg_get_initiator_node_acl().
570 	 */
571 	if (se_nacl) {
572 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
573 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
574 		unsigned long flags;
575 
576 		se_sess->se_node_acl = NULL;
577 
578 		/*
579 		 * Also determine if we need to drop the extra ->cmd_kref if
580 		 * it had been previously dynamically generated, and
581 		 * the endpoint is not caching dynamic ACLs.
582 		 */
583 		mutex_lock(&se_tpg->acl_node_mutex);
584 		if (se_nacl->dynamic_node_acl &&
585 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
586 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
587 			if (list_empty(&se_nacl->acl_sess_list))
588 				se_nacl->dynamic_stop = true;
589 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
590 
591 			if (se_nacl->dynamic_stop)
592 				list_del_init(&se_nacl->acl_list);
593 		}
594 		mutex_unlock(&se_tpg->acl_node_mutex);
595 
596 		if (se_nacl->dynamic_stop)
597 			target_put_nacl(se_nacl);
598 
599 		target_put_nacl(se_nacl);
600 	}
601 	if (se_sess->sess_cmd_map) {
602 		sbitmap_queue_free(&se_sess->sess_tag_pool);
603 		kvfree(se_sess->sess_cmd_map);
604 	}
605 	transport_uninit_session(se_sess);
606 	kmem_cache_free(se_sess_cache, se_sess);
607 }
608 EXPORT_SYMBOL(transport_free_session);
609 
610 static int target_release_res(struct se_device *dev, void *data)
611 {
612 	struct se_session *sess = data;
613 
614 	if (dev->reservation_holder == sess)
615 		target_release_reservation(dev);
616 	return 0;
617 }
618 
619 void transport_deregister_session(struct se_session *se_sess)
620 {
621 	struct se_portal_group *se_tpg = se_sess->se_tpg;
622 	unsigned long flags;
623 
624 	if (!se_tpg) {
625 		transport_free_session(se_sess);
626 		return;
627 	}
628 
629 	spin_lock_irqsave(&se_tpg->session_lock, flags);
630 	list_del(&se_sess->sess_list);
631 	se_sess->se_tpg = NULL;
632 	se_sess->fabric_sess_ptr = NULL;
633 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
634 
635 	/*
636 	 * Since the session is being removed, release SPC-2
637 	 * reservations held by the session that is disappearing.
638 	 */
639 	target_for_each_device(target_release_res, se_sess);
640 
641 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
642 		se_tpg->se_tpg_tfo->fabric_name);
643 	/*
644 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
645 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
646 	 * removal context from within transport_free_session() code.
647 	 *
648 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
649 	 * to release all remaining generate_node_acl=1 created ACL resources.
650 	 */
651 
652 	transport_free_session(se_sess);
653 }
654 EXPORT_SYMBOL(transport_deregister_session);
655 
656 void target_remove_session(struct se_session *se_sess)
657 {
658 	transport_deregister_session_configfs(se_sess);
659 	transport_deregister_session(se_sess);
660 }
661 EXPORT_SYMBOL(target_remove_session);
662 
663 static void target_remove_from_state_list(struct se_cmd *cmd)
664 {
665 	struct se_device *dev = cmd->se_dev;
666 	unsigned long flags;
667 
668 	if (!dev)
669 		return;
670 
671 	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
672 	if (cmd->state_active) {
673 		list_del(&cmd->state_list);
674 		cmd->state_active = false;
675 	}
676 	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
677 }
678 
679 /*
680  * This function is called by the target core after the target core has
681  * finished processing a SCSI command or SCSI TMF. Both the regular command
682  * processing code and the code for aborting commands can call this
683  * function. CMD_T_STOP is set if and only if another thread is waiting
684  * inside transport_wait_for_tasks() for t_transport_stop_comp.
685  */
686 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
687 {
688 	unsigned long flags;
689 
690 	target_remove_from_state_list(cmd);
691 
692 	/*
693 	 * Clear struct se_cmd->se_lun before the handoff to FE.
694 	 */
695 	cmd->se_lun = NULL;
696 
697 	spin_lock_irqsave(&cmd->t_state_lock, flags);
698 	/*
699 	 * Determine if frontend context caller is requesting the stopping of
700 	 * this command for frontend exceptions.
701 	 */
702 	if (cmd->transport_state & CMD_T_STOP) {
703 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
704 			__func__, __LINE__, cmd->tag);
705 
706 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
707 
708 		complete_all(&cmd->t_transport_stop_comp);
709 		return 1;
710 	}
711 	cmd->transport_state &= ~CMD_T_ACTIVE;
712 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
713 
714 	/*
715 	 * Some fabric modules like tcm_loop can release their internally
716 	 * allocated I/O reference and struct se_cmd now.
717 	 *
718 	 * Fabric modules are expected to return '1' here if the se_cmd being
719 	 * passed is released at this point, or zero if not being released.
720 	 */
721 	return cmd->se_tfo->check_stop_free(cmd);
722 }
723 
724 static void transport_lun_remove_cmd(struct se_cmd *cmd)
725 {
726 	struct se_lun *lun = cmd->se_lun;
727 
728 	if (!lun)
729 		return;
730 
731 	if (cmpxchg(&cmd->lun_ref_active, true, false))
732 		percpu_ref_put(&lun->lun_ref);
733 }
734 
735 static void target_complete_failure_work(struct work_struct *work)
736 {
737 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
738 
739 	transport_generic_request_failure(cmd, cmd->sense_reason);
740 }
741 
742 /*
743  * Used when asking transport to copy Sense Data from the underlying
744  * Linux/SCSI struct scsi_cmnd
745  */
746 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
747 {
748 	struct se_device *dev = cmd->se_dev;
749 
750 	WARN_ON(!cmd->se_lun);
751 
752 	if (!dev)
753 		return NULL;
754 
755 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
756 		return NULL;
757 
758 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
759 
760 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
761 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
762 	return cmd->sense_buffer;
763 }
764 
765 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
766 {
767 	unsigned char *cmd_sense_buf;
768 	unsigned long flags;
769 
770 	spin_lock_irqsave(&cmd->t_state_lock, flags);
771 	cmd_sense_buf = transport_get_sense_buffer(cmd);
772 	if (!cmd_sense_buf) {
773 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
774 		return;
775 	}
776 
777 	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
778 	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
779 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
780 }
781 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
782 
783 static void target_handle_abort(struct se_cmd *cmd)
784 {
785 	bool tas = cmd->transport_state & CMD_T_TAS;
786 	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
787 	int ret;
788 
789 	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
790 
791 	if (tas) {
792 		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
793 			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
794 			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
795 				 cmd->t_task_cdb[0], cmd->tag);
796 			trace_target_cmd_complete(cmd);
797 			ret = cmd->se_tfo->queue_status(cmd);
798 			if (ret) {
799 				transport_handle_queue_full(cmd, cmd->se_dev,
800 							    ret, false);
801 				return;
802 			}
803 		} else {
804 			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
805 			cmd->se_tfo->queue_tm_rsp(cmd);
806 		}
807 	} else {
808 		/*
809 		 * Allow the fabric driver to unmap any resources before
810 		 * releasing the descriptor via TFO->release_cmd().
811 		 */
812 		cmd->se_tfo->aborted_task(cmd);
813 		if (ack_kref)
814 			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
815 		/*
816 		 * To do: establish a unit attention condition on the I_T
817 		 * nexus associated with cmd. See also the paragraph "Aborting
818 		 * commands" in SAM.
819 		 */
820 	}
821 
822 	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
823 
824 	transport_lun_remove_cmd(cmd);
825 
826 	transport_cmd_check_stop_to_fabric(cmd);
827 }
828 
829 static void target_abort_work(struct work_struct *work)
830 {
831 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
832 
833 	target_handle_abort(cmd);
834 }
835 
836 static bool target_cmd_interrupted(struct se_cmd *cmd)
837 {
838 	int post_ret;
839 
840 	if (cmd->transport_state & CMD_T_ABORTED) {
841 		if (cmd->transport_complete_callback)
842 			cmd->transport_complete_callback(cmd, false, &post_ret);
843 		INIT_WORK(&cmd->work, target_abort_work);
844 		queue_work(target_completion_wq, &cmd->work);
845 		return true;
846 	} else if (cmd->transport_state & CMD_T_STOP) {
847 		if (cmd->transport_complete_callback)
848 			cmd->transport_complete_callback(cmd, false, &post_ret);
849 		complete_all(&cmd->t_transport_stop_comp);
850 		return true;
851 	}
852 
853 	return false;
854 }
855 
856 /* May be called from interrupt context so must not sleep. */
857 void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
858 				    sense_reason_t sense_reason)
859 {
860 	struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
861 	int success, cpu;
862 	unsigned long flags;
863 
864 	if (target_cmd_interrupted(cmd))
865 		return;
866 
867 	cmd->scsi_status = scsi_status;
868 	cmd->sense_reason = sense_reason;
869 
870 	spin_lock_irqsave(&cmd->t_state_lock, flags);
871 	switch (cmd->scsi_status) {
872 	case SAM_STAT_CHECK_CONDITION:
873 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
874 			success = 1;
875 		else
876 			success = 0;
877 		break;
878 	default:
879 		success = 1;
880 		break;
881 	}
882 
883 	cmd->t_state = TRANSPORT_COMPLETE;
884 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
885 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
886 
887 	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
888 		  target_complete_failure_work);
889 
890 	if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
891 		cpu = cmd->cpuid;
892 	else
893 		cpu = wwn->cmd_compl_affinity;
894 
895 	queue_work_on(cpu, target_completion_wq, &cmd->work);
896 }
897 EXPORT_SYMBOL(target_complete_cmd_with_sense);
898 
899 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
900 {
901 	target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
902 			      TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
903 			      TCM_NO_SENSE);
904 }
905 EXPORT_SYMBOL(target_complete_cmd);
906 
907 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
908 {
909 	if (length < cmd->data_length) {
910 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
911 			cmd->residual_count += cmd->data_length - length;
912 		} else {
913 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
914 			cmd->residual_count = cmd->data_length - length;
915 		}
916 
917 		cmd->data_length = length;
918 	}
919 }
920 EXPORT_SYMBOL(target_set_cmd_data_length);
921 
922 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
923 {
924 	if (scsi_status == SAM_STAT_GOOD ||
925 	    cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
926 		target_set_cmd_data_length(cmd, length);
927 	}
928 
929 	target_complete_cmd(cmd, scsi_status);
930 }
931 EXPORT_SYMBOL(target_complete_cmd_with_length);
932 
933 static void target_add_to_state_list(struct se_cmd *cmd)
934 {
935 	struct se_device *dev = cmd->se_dev;
936 	unsigned long flags;
937 
938 	spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
939 	if (!cmd->state_active) {
940 		list_add_tail(&cmd->state_list,
941 			      &dev->queues[cmd->cpuid].state_list);
942 		cmd->state_active = true;
943 	}
944 	spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
945 }
946 
947 /*
948  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
949  */
950 static void transport_write_pending_qf(struct se_cmd *cmd);
951 static void transport_complete_qf(struct se_cmd *cmd);
952 
953 void target_qf_do_work(struct work_struct *work)
954 {
955 	struct se_device *dev = container_of(work, struct se_device,
956 					qf_work_queue);
957 	LIST_HEAD(qf_cmd_list);
958 	struct se_cmd *cmd, *cmd_tmp;
959 
960 	spin_lock_irq(&dev->qf_cmd_lock);
961 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
962 	spin_unlock_irq(&dev->qf_cmd_lock);
963 
964 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
965 		list_del(&cmd->se_qf_node);
966 		atomic_dec_mb(&dev->dev_qf_count);
967 
968 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
969 			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
970 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
971 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
972 			: "UNKNOWN");
973 
974 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
975 			transport_write_pending_qf(cmd);
976 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
977 			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
978 			transport_complete_qf(cmd);
979 	}
980 }
981 
982 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
983 {
984 	switch (cmd->data_direction) {
985 	case DMA_NONE:
986 		return "NONE";
987 	case DMA_FROM_DEVICE:
988 		return "READ";
989 	case DMA_TO_DEVICE:
990 		return "WRITE";
991 	case DMA_BIDIRECTIONAL:
992 		return "BIDI";
993 	default:
994 		break;
995 	}
996 
997 	return "UNKNOWN";
998 }
999 
1000 void transport_dump_dev_state(
1001 	struct se_device *dev,
1002 	char *b,
1003 	int *bl)
1004 {
1005 	*bl += sprintf(b + *bl, "Status: ");
1006 	if (dev->export_count)
1007 		*bl += sprintf(b + *bl, "ACTIVATED");
1008 	else
1009 		*bl += sprintf(b + *bl, "DEACTIVATED");
1010 
1011 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
1012 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
1013 		dev->dev_attrib.block_size,
1014 		dev->dev_attrib.hw_max_sectors);
1015 	*bl += sprintf(b + *bl, "        ");
1016 }
1017 
1018 void transport_dump_vpd_proto_id(
1019 	struct t10_vpd *vpd,
1020 	unsigned char *p_buf,
1021 	int p_buf_len)
1022 {
1023 	unsigned char buf[VPD_TMP_BUF_SIZE];
1024 	int len;
1025 
1026 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1027 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1028 
1029 	switch (vpd->protocol_identifier) {
1030 	case 0x00:
1031 		sprintf(buf+len, "Fibre Channel\n");
1032 		break;
1033 	case 0x10:
1034 		sprintf(buf+len, "Parallel SCSI\n");
1035 		break;
1036 	case 0x20:
1037 		sprintf(buf+len, "SSA\n");
1038 		break;
1039 	case 0x30:
1040 		sprintf(buf+len, "IEEE 1394\n");
1041 		break;
1042 	case 0x40:
1043 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1044 				" Protocol\n");
1045 		break;
1046 	case 0x50:
1047 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1048 		break;
1049 	case 0x60:
1050 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1051 		break;
1052 	case 0x70:
1053 		sprintf(buf+len, "Automation/Drive Interface Transport"
1054 				" Protocol\n");
1055 		break;
1056 	case 0x80:
1057 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1058 		break;
1059 	default:
1060 		sprintf(buf+len, "Unknown 0x%02x\n",
1061 				vpd->protocol_identifier);
1062 		break;
1063 	}
1064 
1065 	if (p_buf)
1066 		strncpy(p_buf, buf, p_buf_len);
1067 	else
1068 		pr_debug("%s", buf);
1069 }
1070 
1071 void
1072 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1073 {
1074 	/*
1075 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1076 	 *
1077 	 * from spc3r23.pdf section 7.5.1
1078 	 */
1079 	 if (page_83[1] & 0x80) {
1080 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1081 		vpd->protocol_identifier_set = 1;
1082 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1083 	}
1084 }
1085 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1086 
1087 int transport_dump_vpd_assoc(
1088 	struct t10_vpd *vpd,
1089 	unsigned char *p_buf,
1090 	int p_buf_len)
1091 {
1092 	unsigned char buf[VPD_TMP_BUF_SIZE];
1093 	int ret = 0;
1094 	int len;
1095 
1096 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1097 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1098 
1099 	switch (vpd->association) {
1100 	case 0x00:
1101 		sprintf(buf+len, "addressed logical unit\n");
1102 		break;
1103 	case 0x10:
1104 		sprintf(buf+len, "target port\n");
1105 		break;
1106 	case 0x20:
1107 		sprintf(buf+len, "SCSI target device\n");
1108 		break;
1109 	default:
1110 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1111 		ret = -EINVAL;
1112 		break;
1113 	}
1114 
1115 	if (p_buf)
1116 		strncpy(p_buf, buf, p_buf_len);
1117 	else
1118 		pr_debug("%s", buf);
1119 
1120 	return ret;
1121 }
1122 
1123 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1124 {
1125 	/*
1126 	 * The VPD identification association..
1127 	 *
1128 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1129 	 */
1130 	vpd->association = (page_83[1] & 0x30);
1131 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1132 }
1133 EXPORT_SYMBOL(transport_set_vpd_assoc);
1134 
1135 int transport_dump_vpd_ident_type(
1136 	struct t10_vpd *vpd,
1137 	unsigned char *p_buf,
1138 	int p_buf_len)
1139 {
1140 	unsigned char buf[VPD_TMP_BUF_SIZE];
1141 	int ret = 0;
1142 	int len;
1143 
1144 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1145 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1146 
1147 	switch (vpd->device_identifier_type) {
1148 	case 0x00:
1149 		sprintf(buf+len, "Vendor specific\n");
1150 		break;
1151 	case 0x01:
1152 		sprintf(buf+len, "T10 Vendor ID based\n");
1153 		break;
1154 	case 0x02:
1155 		sprintf(buf+len, "EUI-64 based\n");
1156 		break;
1157 	case 0x03:
1158 		sprintf(buf+len, "NAA\n");
1159 		break;
1160 	case 0x04:
1161 		sprintf(buf+len, "Relative target port identifier\n");
1162 		break;
1163 	case 0x08:
1164 		sprintf(buf+len, "SCSI name string\n");
1165 		break;
1166 	default:
1167 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1168 				vpd->device_identifier_type);
1169 		ret = -EINVAL;
1170 		break;
1171 	}
1172 
1173 	if (p_buf) {
1174 		if (p_buf_len < strlen(buf)+1)
1175 			return -EINVAL;
1176 		strncpy(p_buf, buf, p_buf_len);
1177 	} else {
1178 		pr_debug("%s", buf);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
1184 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1185 {
1186 	/*
1187 	 * The VPD identifier type..
1188 	 *
1189 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1190 	 */
1191 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1192 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1193 }
1194 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1195 
1196 int transport_dump_vpd_ident(
1197 	struct t10_vpd *vpd,
1198 	unsigned char *p_buf,
1199 	int p_buf_len)
1200 {
1201 	unsigned char buf[VPD_TMP_BUF_SIZE];
1202 	int ret = 0;
1203 
1204 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1205 
1206 	switch (vpd->device_identifier_code_set) {
1207 	case 0x01: /* Binary */
1208 		snprintf(buf, sizeof(buf),
1209 			"T10 VPD Binary Device Identifier: %s\n",
1210 			&vpd->device_identifier[0]);
1211 		break;
1212 	case 0x02: /* ASCII */
1213 		snprintf(buf, sizeof(buf),
1214 			"T10 VPD ASCII Device Identifier: %s\n",
1215 			&vpd->device_identifier[0]);
1216 		break;
1217 	case 0x03: /* UTF-8 */
1218 		snprintf(buf, sizeof(buf),
1219 			"T10 VPD UTF-8 Device Identifier: %s\n",
1220 			&vpd->device_identifier[0]);
1221 		break;
1222 	default:
1223 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1224 			" 0x%02x", vpd->device_identifier_code_set);
1225 		ret = -EINVAL;
1226 		break;
1227 	}
1228 
1229 	if (p_buf)
1230 		strncpy(p_buf, buf, p_buf_len);
1231 	else
1232 		pr_debug("%s", buf);
1233 
1234 	return ret;
1235 }
1236 
1237 int
1238 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1239 {
1240 	static const char hex_str[] = "0123456789abcdef";
1241 	int j = 0, i = 4; /* offset to start of the identifier */
1242 
1243 	/*
1244 	 * The VPD Code Set (encoding)
1245 	 *
1246 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1247 	 */
1248 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1249 	switch (vpd->device_identifier_code_set) {
1250 	case 0x01: /* Binary */
1251 		vpd->device_identifier[j++] =
1252 				hex_str[vpd->device_identifier_type];
1253 		while (i < (4 + page_83[3])) {
1254 			vpd->device_identifier[j++] =
1255 				hex_str[(page_83[i] & 0xf0) >> 4];
1256 			vpd->device_identifier[j++] =
1257 				hex_str[page_83[i] & 0x0f];
1258 			i++;
1259 		}
1260 		break;
1261 	case 0x02: /* ASCII */
1262 	case 0x03: /* UTF-8 */
1263 		while (i < (4 + page_83[3]))
1264 			vpd->device_identifier[j++] = page_83[i++];
1265 		break;
1266 	default:
1267 		break;
1268 	}
1269 
1270 	return transport_dump_vpd_ident(vpd, NULL, 0);
1271 }
1272 EXPORT_SYMBOL(transport_set_vpd_ident);
1273 
1274 static sense_reason_t
1275 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1276 			       unsigned int size)
1277 {
1278 	u32 mtl;
1279 
1280 	if (!cmd->se_tfo->max_data_sg_nents)
1281 		return TCM_NO_SENSE;
1282 	/*
1283 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1284 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1285 	 * residual_count and reduce original cmd->data_length to maximum
1286 	 * length based on single PAGE_SIZE entry scatter-lists.
1287 	 */
1288 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1289 	if (cmd->data_length > mtl) {
1290 		/*
1291 		 * If an existing CDB overflow is present, calculate new residual
1292 		 * based on CDB size minus fabric maximum transfer length.
1293 		 *
1294 		 * If an existing CDB underflow is present, calculate new residual
1295 		 * based on original cmd->data_length minus fabric maximum transfer
1296 		 * length.
1297 		 *
1298 		 * Otherwise, set the underflow residual based on cmd->data_length
1299 		 * minus fabric maximum transfer length.
1300 		 */
1301 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1302 			cmd->residual_count = (size - mtl);
1303 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1304 			u32 orig_dl = size + cmd->residual_count;
1305 			cmd->residual_count = (orig_dl - mtl);
1306 		} else {
1307 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1308 			cmd->residual_count = (cmd->data_length - mtl);
1309 		}
1310 		cmd->data_length = mtl;
1311 		/*
1312 		 * Reset sbc_check_prot() calculated protection payload
1313 		 * length based upon the new smaller MTL.
1314 		 */
1315 		if (cmd->prot_length) {
1316 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1317 			cmd->prot_length = dev->prot_length * sectors;
1318 		}
1319 	}
1320 	return TCM_NO_SENSE;
1321 }
1322 
1323 /**
1324  * target_cmd_size_check - Check whether there will be a residual.
1325  * @cmd: SCSI command.
1326  * @size: Data buffer size derived from CDB. The data buffer size provided by
1327  *   the SCSI transport driver is available in @cmd->data_length.
1328  *
1329  * Compare the data buffer size from the CDB with the data buffer limit from the transport
1330  * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1331  *
1332  * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1333  *
1334  * Return: TCM_NO_SENSE
1335  */
1336 sense_reason_t
1337 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1338 {
1339 	struct se_device *dev = cmd->se_dev;
1340 
1341 	if (cmd->unknown_data_length) {
1342 		cmd->data_length = size;
1343 	} else if (size != cmd->data_length) {
1344 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1345 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1346 			" 0x%02x\n", cmd->se_tfo->fabric_name,
1347 				cmd->data_length, size, cmd->t_task_cdb[0]);
1348 		/*
1349 		 * For READ command for the overflow case keep the existing
1350 		 * fabric provided ->data_length. Otherwise for the underflow
1351 		 * case, reset ->data_length to the smaller SCSI expected data
1352 		 * transfer length.
1353 		 */
1354 		if (size > cmd->data_length) {
1355 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1356 			cmd->residual_count = (size - cmd->data_length);
1357 		} else {
1358 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1359 			cmd->residual_count = (cmd->data_length - size);
1360 			/*
1361 			 * Do not truncate ->data_length for WRITE command to
1362 			 * dump all payload
1363 			 */
1364 			if (cmd->data_direction == DMA_FROM_DEVICE) {
1365 				cmd->data_length = size;
1366 			}
1367 		}
1368 
1369 		if (cmd->data_direction == DMA_TO_DEVICE) {
1370 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1371 				pr_err_ratelimited("Rejecting underflow/overflow"
1372 						   " for WRITE data CDB\n");
1373 				return TCM_INVALID_FIELD_IN_COMMAND_IU;
1374 			}
1375 			/*
1376 			 * Some fabric drivers like iscsi-target still expect to
1377 			 * always reject overflow writes.  Reject this case until
1378 			 * full fabric driver level support for overflow writes
1379 			 * is introduced tree-wide.
1380 			 */
1381 			if (size > cmd->data_length) {
1382 				pr_err_ratelimited("Rejecting overflow for"
1383 						   " WRITE control CDB\n");
1384 				return TCM_INVALID_CDB_FIELD;
1385 			}
1386 		}
1387 	}
1388 
1389 	return target_check_max_data_sg_nents(cmd, dev, size);
1390 
1391 }
1392 
1393 /*
1394  * Used by fabric modules containing a local struct se_cmd within their
1395  * fabric dependent per I/O descriptor.
1396  *
1397  * Preserves the value of @cmd->tag.
1398  */
1399 void __target_init_cmd(
1400 	struct se_cmd *cmd,
1401 	const struct target_core_fabric_ops *tfo,
1402 	struct se_session *se_sess,
1403 	u32 data_length,
1404 	int data_direction,
1405 	int task_attr,
1406 	unsigned char *sense_buffer, u64 unpacked_lun)
1407 {
1408 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1409 	INIT_LIST_HEAD(&cmd->se_qf_node);
1410 	INIT_LIST_HEAD(&cmd->state_list);
1411 	init_completion(&cmd->t_transport_stop_comp);
1412 	cmd->free_compl = NULL;
1413 	cmd->abrt_compl = NULL;
1414 	spin_lock_init(&cmd->t_state_lock);
1415 	INIT_WORK(&cmd->work, NULL);
1416 	kref_init(&cmd->cmd_kref);
1417 
1418 	cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1419 	cmd->se_tfo = tfo;
1420 	cmd->se_sess = se_sess;
1421 	cmd->data_length = data_length;
1422 	cmd->data_direction = data_direction;
1423 	cmd->sam_task_attr = task_attr;
1424 	cmd->sense_buffer = sense_buffer;
1425 	cmd->orig_fe_lun = unpacked_lun;
1426 
1427 	if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1428 		cmd->cpuid = raw_smp_processor_id();
1429 
1430 	cmd->state_active = false;
1431 }
1432 EXPORT_SYMBOL(__target_init_cmd);
1433 
1434 static sense_reason_t
1435 transport_check_alloc_task_attr(struct se_cmd *cmd)
1436 {
1437 	struct se_device *dev = cmd->se_dev;
1438 
1439 	/*
1440 	 * Check if SAM Task Attribute emulation is enabled for this
1441 	 * struct se_device storage object
1442 	 */
1443 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1444 		return 0;
1445 
1446 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1447 		pr_debug("SAM Task Attribute ACA"
1448 			" emulation is not supported\n");
1449 		return TCM_INVALID_CDB_FIELD;
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 sense_reason_t
1456 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1457 {
1458 	sense_reason_t ret;
1459 
1460 	/*
1461 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1462 	 * for VARIABLE_LENGTH_CMD
1463 	 */
1464 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1465 		pr_err("Received SCSI CDB with command_size: %d that"
1466 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1467 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1468 		ret = TCM_INVALID_CDB_FIELD;
1469 		goto err;
1470 	}
1471 	/*
1472 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1473 	 * allocate the additional extended CDB buffer now..  Otherwise
1474 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1475 	 */
1476 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1477 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1478 		if (!cmd->t_task_cdb) {
1479 			pr_err("Unable to allocate cmd->t_task_cdb"
1480 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1481 				scsi_command_size(cdb),
1482 				(unsigned long)sizeof(cmd->__t_task_cdb));
1483 			ret = TCM_OUT_OF_RESOURCES;
1484 			goto err;
1485 		}
1486 	}
1487 	/*
1488 	 * Copy the original CDB into cmd->
1489 	 */
1490 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1491 
1492 	trace_target_sequencer_start(cmd);
1493 	return 0;
1494 
1495 err:
1496 	/*
1497 	 * Copy the CDB here to allow trace_target_cmd_complete() to
1498 	 * print the cdb to the trace buffers.
1499 	 */
1500 	memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1501 					 (unsigned int)TCM_MAX_COMMAND_SIZE));
1502 	return ret;
1503 }
1504 EXPORT_SYMBOL(target_cmd_init_cdb);
1505 
1506 sense_reason_t
1507 target_cmd_parse_cdb(struct se_cmd *cmd)
1508 {
1509 	struct se_device *dev = cmd->se_dev;
1510 	sense_reason_t ret;
1511 
1512 	ret = dev->transport->parse_cdb(cmd);
1513 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1514 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1515 				    cmd->se_tfo->fabric_name,
1516 				    cmd->se_sess->se_node_acl->initiatorname,
1517 				    cmd->t_task_cdb[0]);
1518 	if (ret)
1519 		return ret;
1520 
1521 	ret = transport_check_alloc_task_attr(cmd);
1522 	if (ret)
1523 		return ret;
1524 
1525 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1526 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1527 	return 0;
1528 }
1529 EXPORT_SYMBOL(target_cmd_parse_cdb);
1530 
1531 /*
1532  * Used by fabric module frontends to queue tasks directly.
1533  * May only be used from process context.
1534  */
1535 int transport_handle_cdb_direct(
1536 	struct se_cmd *cmd)
1537 {
1538 	sense_reason_t ret;
1539 
1540 	might_sleep();
1541 
1542 	if (!cmd->se_lun) {
1543 		dump_stack();
1544 		pr_err("cmd->se_lun is NULL\n");
1545 		return -EINVAL;
1546 	}
1547 
1548 	/*
1549 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1550 	 * outstanding descriptors are handled correctly during shutdown via
1551 	 * transport_wait_for_tasks()
1552 	 *
1553 	 * Also, we don't take cmd->t_state_lock here as we only expect
1554 	 * this to be called for initial descriptor submission.
1555 	 */
1556 	cmd->t_state = TRANSPORT_NEW_CMD;
1557 	cmd->transport_state |= CMD_T_ACTIVE;
1558 
1559 	/*
1560 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1561 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1562 	 * and call transport_generic_request_failure() if necessary..
1563 	 */
1564 	ret = transport_generic_new_cmd(cmd);
1565 	if (ret)
1566 		transport_generic_request_failure(cmd, ret);
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL(transport_handle_cdb_direct);
1570 
1571 sense_reason_t
1572 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1573 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1574 {
1575 	if (!sgl || !sgl_count)
1576 		return 0;
1577 
1578 	/*
1579 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1580 	 * scatterlists already have been set to follow what the fabric
1581 	 * passes for the original expected data transfer length.
1582 	 */
1583 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1584 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1585 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1586 		return TCM_INVALID_CDB_FIELD;
1587 	}
1588 
1589 	cmd->t_data_sg = sgl;
1590 	cmd->t_data_nents = sgl_count;
1591 	cmd->t_bidi_data_sg = sgl_bidi;
1592 	cmd->t_bidi_data_nents = sgl_bidi_count;
1593 
1594 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1595 	return 0;
1596 }
1597 
1598 /**
1599  * target_init_cmd - initialize se_cmd
1600  * @se_cmd: command descriptor to init
1601  * @se_sess: associated se_sess for endpoint
1602  * @sense: pointer to SCSI sense buffer
1603  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1604  * @data_length: fabric expected data transfer length
1605  * @task_attr: SAM task attribute
1606  * @data_dir: DMA data direction
1607  * @flags: flags for command submission from target_sc_flags_tables
1608  *
1609  * Task tags are supported if the caller has set @se_cmd->tag.
1610  *
1611  * Returns:
1612  *	- less than zero to signal active I/O shutdown failure.
1613  *	- zero on success.
1614  *
1615  * If the fabric driver calls target_stop_session, then it must check the
1616  * return code and handle failures. This will never fail for other drivers,
1617  * and the return code can be ignored.
1618  */
1619 int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1620 		    unsigned char *sense, u64 unpacked_lun,
1621 		    u32 data_length, int task_attr, int data_dir, int flags)
1622 {
1623 	struct se_portal_group *se_tpg;
1624 
1625 	se_tpg = se_sess->se_tpg;
1626 	BUG_ON(!se_tpg);
1627 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1628 
1629 	if (flags & TARGET_SCF_USE_CPUID)
1630 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1631 	/*
1632 	 * Signal bidirectional data payloads to target-core
1633 	 */
1634 	if (flags & TARGET_SCF_BIDI_OP)
1635 		se_cmd->se_cmd_flags |= SCF_BIDI;
1636 
1637 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1638 		se_cmd->unknown_data_length = 1;
1639 	/*
1640 	 * Initialize se_cmd for target operation.  From this point
1641 	 * exceptions are handled by sending exception status via
1642 	 * target_core_fabric_ops->queue_status() callback
1643 	 */
1644 	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1645 			  data_dir, task_attr, sense, unpacked_lun);
1646 
1647 	/*
1648 	 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1649 	 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1650 	 * kref_put() to happen during fabric packet acknowledgement.
1651 	 */
1652 	return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1653 }
1654 EXPORT_SYMBOL_GPL(target_init_cmd);
1655 
1656 /**
1657  * target_submit_prep - prepare cmd for submission
1658  * @se_cmd: command descriptor to prep
1659  * @cdb: pointer to SCSI CDB
1660  * @sgl: struct scatterlist memory for unidirectional mapping
1661  * @sgl_count: scatterlist count for unidirectional mapping
1662  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1663  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1664  * @sgl_prot: struct scatterlist memory protection information
1665  * @sgl_prot_count: scatterlist count for protection information
1666  * @gfp: gfp allocation type
1667  *
1668  * Returns:
1669  *	- less than zero to signal failure.
1670  *	- zero on success.
1671  *
1672  * If failure is returned, lio will the callers queue_status to complete
1673  * the cmd.
1674  */
1675 int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1676 		       struct scatterlist *sgl, u32 sgl_count,
1677 		       struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1678 		       struct scatterlist *sgl_prot, u32 sgl_prot_count,
1679 		       gfp_t gfp)
1680 {
1681 	sense_reason_t rc;
1682 
1683 	rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1684 	if (rc)
1685 		goto send_cc_direct;
1686 
1687 	/*
1688 	 * Locate se_lun pointer and attach it to struct se_cmd
1689 	 */
1690 	rc = transport_lookup_cmd_lun(se_cmd);
1691 	if (rc)
1692 		goto send_cc_direct;
1693 
1694 	rc = target_cmd_parse_cdb(se_cmd);
1695 	if (rc != 0)
1696 		goto generic_fail;
1697 
1698 	/*
1699 	 * Save pointers for SGLs containing protection information,
1700 	 * if present.
1701 	 */
1702 	if (sgl_prot_count) {
1703 		se_cmd->t_prot_sg = sgl_prot;
1704 		se_cmd->t_prot_nents = sgl_prot_count;
1705 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1706 	}
1707 
1708 	/*
1709 	 * When a non zero sgl_count has been passed perform SGL passthrough
1710 	 * mapping for pre-allocated fabric memory instead of having target
1711 	 * core perform an internal SGL allocation..
1712 	 */
1713 	if (sgl_count != 0) {
1714 		BUG_ON(!sgl);
1715 
1716 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1717 				sgl_bidi, sgl_bidi_count);
1718 		if (rc != 0)
1719 			goto generic_fail;
1720 	}
1721 
1722 	return 0;
1723 
1724 send_cc_direct:
1725 	transport_send_check_condition_and_sense(se_cmd, rc, 0);
1726 	target_put_sess_cmd(se_cmd);
1727 	return -EIO;
1728 
1729 generic_fail:
1730 	transport_generic_request_failure(se_cmd, rc);
1731 	return -EIO;
1732 }
1733 EXPORT_SYMBOL_GPL(target_submit_prep);
1734 
1735 /**
1736  * target_submit - perform final initialization and submit cmd to LIO core
1737  * @se_cmd: command descriptor to submit
1738  *
1739  * target_submit_prep must have been called on the cmd, and this must be
1740  * called from process context.
1741  */
1742 void target_submit(struct se_cmd *se_cmd)
1743 {
1744 	struct scatterlist *sgl = se_cmd->t_data_sg;
1745 	unsigned char *buf = NULL;
1746 
1747 	might_sleep();
1748 
1749 	if (se_cmd->t_data_nents != 0) {
1750 		BUG_ON(!sgl);
1751 		/*
1752 		 * A work-around for tcm_loop as some userspace code via
1753 		 * scsi-generic do not memset their associated read buffers,
1754 		 * so go ahead and do that here for type non-data CDBs.  Also
1755 		 * note that this is currently guaranteed to be a single SGL
1756 		 * for this case by target core in target_setup_cmd_from_cdb()
1757 		 * -> transport_generic_cmd_sequencer().
1758 		 */
1759 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1760 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1761 			if (sgl)
1762 				buf = kmap(sg_page(sgl)) + sgl->offset;
1763 
1764 			if (buf) {
1765 				memset(buf, 0, sgl->length);
1766 				kunmap(sg_page(sgl));
1767 			}
1768 		}
1769 
1770 	}
1771 
1772 	/*
1773 	 * Check if we need to delay processing because of ALUA
1774 	 * Active/NonOptimized primary access state..
1775 	 */
1776 	core_alua_check_nonop_delay(se_cmd);
1777 
1778 	transport_handle_cdb_direct(se_cmd);
1779 }
1780 EXPORT_SYMBOL_GPL(target_submit);
1781 
1782 /**
1783  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1784  *
1785  * @se_cmd: command descriptor to submit
1786  * @se_sess: associated se_sess for endpoint
1787  * @cdb: pointer to SCSI CDB
1788  * @sense: pointer to SCSI sense buffer
1789  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1790  * @data_length: fabric expected data transfer length
1791  * @task_attr: SAM task attribute
1792  * @data_dir: DMA data direction
1793  * @flags: flags for command submission from target_sc_flags_tables
1794  *
1795  * Task tags are supported if the caller has set @se_cmd->tag.
1796  *
1797  * This may only be called from process context, and also currently
1798  * assumes internal allocation of fabric payload buffer by target-core.
1799  *
1800  * It also assumes interal target core SGL memory allocation.
1801  *
1802  * This function must only be used by drivers that do their own
1803  * sync during shutdown and does not use target_stop_session. If there
1804  * is a failure this function will call into the fabric driver's
1805  * queue_status with a CHECK_CONDITION.
1806  */
1807 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1808 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1809 		u32 data_length, int task_attr, int data_dir, int flags)
1810 {
1811 	int rc;
1812 
1813 	rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1814 			     task_attr, data_dir, flags);
1815 	WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1816 	if (rc)
1817 		return;
1818 
1819 	if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1820 			       GFP_KERNEL))
1821 		return;
1822 
1823 	target_submit(se_cmd);
1824 }
1825 EXPORT_SYMBOL(target_submit_cmd);
1826 
1827 
1828 static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1829 {
1830 	struct se_dev_plug *se_plug;
1831 
1832 	if (!se_dev->transport->plug_device)
1833 		return NULL;
1834 
1835 	se_plug = se_dev->transport->plug_device(se_dev);
1836 	if (!se_plug)
1837 		return NULL;
1838 
1839 	se_plug->se_dev = se_dev;
1840 	/*
1841 	 * We have a ref to the lun at this point, but the cmds could
1842 	 * complete before we unplug, so grab a ref to the se_device so we
1843 	 * can call back into the backend.
1844 	 */
1845 	config_group_get(&se_dev->dev_group);
1846 	return se_plug;
1847 }
1848 
1849 static void target_unplug_device(struct se_dev_plug *se_plug)
1850 {
1851 	struct se_device *se_dev = se_plug->se_dev;
1852 
1853 	se_dev->transport->unplug_device(se_plug);
1854 	config_group_put(&se_dev->dev_group);
1855 }
1856 
1857 void target_queued_submit_work(struct work_struct *work)
1858 {
1859 	struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1860 	struct se_cmd *se_cmd, *next_cmd;
1861 	struct se_dev_plug *se_plug = NULL;
1862 	struct se_device *se_dev = NULL;
1863 	struct llist_node *cmd_list;
1864 
1865 	cmd_list = llist_del_all(&sq->cmd_list);
1866 	if (!cmd_list)
1867 		/* Previous call took what we were queued to submit */
1868 		return;
1869 
1870 	cmd_list = llist_reverse_order(cmd_list);
1871 	llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1872 		if (!se_dev) {
1873 			se_dev = se_cmd->se_dev;
1874 			se_plug = target_plug_device(se_dev);
1875 		}
1876 
1877 		target_submit(se_cmd);
1878 	}
1879 
1880 	if (se_plug)
1881 		target_unplug_device(se_plug);
1882 }
1883 
1884 /**
1885  * target_queue_submission - queue the cmd to run on the LIO workqueue
1886  * @se_cmd: command descriptor to submit
1887  */
1888 void target_queue_submission(struct se_cmd *se_cmd)
1889 {
1890 	struct se_device *se_dev = se_cmd->se_dev;
1891 	int cpu = se_cmd->cpuid;
1892 	struct se_cmd_queue *sq;
1893 
1894 	sq = &se_dev->queues[cpu].sq;
1895 	llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1896 	queue_work_on(cpu, target_submission_wq, &sq->work);
1897 }
1898 EXPORT_SYMBOL_GPL(target_queue_submission);
1899 
1900 static void target_complete_tmr_failure(struct work_struct *work)
1901 {
1902 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1903 
1904 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1905 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1906 
1907 	transport_lun_remove_cmd(se_cmd);
1908 	transport_cmd_check_stop_to_fabric(se_cmd);
1909 }
1910 
1911 /**
1912  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1913  *                     for TMR CDBs
1914  *
1915  * @se_cmd: command descriptor to submit
1916  * @se_sess: associated se_sess for endpoint
1917  * @sense: pointer to SCSI sense buffer
1918  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1919  * @fabric_tmr_ptr: fabric context for TMR req
1920  * @tm_type: Type of TM request
1921  * @gfp: gfp type for caller
1922  * @tag: referenced task tag for TMR_ABORT_TASK
1923  * @flags: submit cmd flags
1924  *
1925  * Callable from all contexts.
1926  **/
1927 
1928 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1929 		unsigned char *sense, u64 unpacked_lun,
1930 		void *fabric_tmr_ptr, unsigned char tm_type,
1931 		gfp_t gfp, u64 tag, int flags)
1932 {
1933 	struct se_portal_group *se_tpg;
1934 	int ret;
1935 
1936 	se_tpg = se_sess->se_tpg;
1937 	BUG_ON(!se_tpg);
1938 
1939 	__target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1940 			  0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1941 	/*
1942 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1943 	 * allocation failure.
1944 	 */
1945 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1946 	if (ret < 0)
1947 		return -ENOMEM;
1948 
1949 	if (tm_type == TMR_ABORT_TASK)
1950 		se_cmd->se_tmr_req->ref_task_tag = tag;
1951 
1952 	/* See target_submit_cmd for commentary */
1953 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1954 	if (ret) {
1955 		core_tmr_release_req(se_cmd->se_tmr_req);
1956 		return ret;
1957 	}
1958 
1959 	ret = transport_lookup_tmr_lun(se_cmd);
1960 	if (ret)
1961 		goto failure;
1962 
1963 	transport_generic_handle_tmr(se_cmd);
1964 	return 0;
1965 
1966 	/*
1967 	 * For callback during failure handling, push this work off
1968 	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1969 	 */
1970 failure:
1971 	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1972 	schedule_work(&se_cmd->work);
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL(target_submit_tmr);
1976 
1977 /*
1978  * Handle SAM-esque emulation for generic transport request failures.
1979  */
1980 void transport_generic_request_failure(struct se_cmd *cmd,
1981 		sense_reason_t sense_reason)
1982 {
1983 	int ret = 0, post_ret;
1984 
1985 	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1986 		 sense_reason);
1987 	target_show_cmd("-----[ ", cmd);
1988 
1989 	/*
1990 	 * For SAM Task Attribute emulation for failed struct se_cmd
1991 	 */
1992 	transport_complete_task_attr(cmd);
1993 
1994 	if (cmd->transport_complete_callback)
1995 		cmd->transport_complete_callback(cmd, false, &post_ret);
1996 
1997 	if (cmd->transport_state & CMD_T_ABORTED) {
1998 		INIT_WORK(&cmd->work, target_abort_work);
1999 		queue_work(target_completion_wq, &cmd->work);
2000 		return;
2001 	}
2002 
2003 	switch (sense_reason) {
2004 	case TCM_NON_EXISTENT_LUN:
2005 	case TCM_UNSUPPORTED_SCSI_OPCODE:
2006 	case TCM_INVALID_CDB_FIELD:
2007 	case TCM_INVALID_PARAMETER_LIST:
2008 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
2009 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2010 	case TCM_UNKNOWN_MODE_PAGE:
2011 	case TCM_WRITE_PROTECTED:
2012 	case TCM_ADDRESS_OUT_OF_RANGE:
2013 	case TCM_CHECK_CONDITION_ABORT_CMD:
2014 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2015 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2016 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2017 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2018 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2019 	case TCM_TOO_MANY_TARGET_DESCS:
2020 	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2021 	case TCM_TOO_MANY_SEGMENT_DESCS:
2022 	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2023 	case TCM_INVALID_FIELD_IN_COMMAND_IU:
2024 	case TCM_ALUA_TG_PT_STANDBY:
2025 	case TCM_ALUA_TG_PT_UNAVAILABLE:
2026 	case TCM_ALUA_STATE_TRANSITION:
2027 	case TCM_ALUA_OFFLINE:
2028 		break;
2029 	case TCM_OUT_OF_RESOURCES:
2030 		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2031 		goto queue_status;
2032 	case TCM_LUN_BUSY:
2033 		cmd->scsi_status = SAM_STAT_BUSY;
2034 		goto queue_status;
2035 	case TCM_RESERVATION_CONFLICT:
2036 		/*
2037 		 * No SENSE Data payload for this case, set SCSI Status
2038 		 * and queue the response to $FABRIC_MOD.
2039 		 *
2040 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
2041 		 */
2042 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2043 		/*
2044 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2045 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2046 		 * CONFLICT STATUS.
2047 		 *
2048 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2049 		 */
2050 		if (cmd->se_sess &&
2051 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2052 					== TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2053 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2054 					       cmd->orig_fe_lun, 0x2C,
2055 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2056 		}
2057 
2058 		goto queue_status;
2059 	default:
2060 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2061 			cmd->t_task_cdb[0], sense_reason);
2062 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2063 		break;
2064 	}
2065 
2066 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2067 	if (ret)
2068 		goto queue_full;
2069 
2070 check_stop:
2071 	transport_lun_remove_cmd(cmd);
2072 	transport_cmd_check_stop_to_fabric(cmd);
2073 	return;
2074 
2075 queue_status:
2076 	trace_target_cmd_complete(cmd);
2077 	ret = cmd->se_tfo->queue_status(cmd);
2078 	if (!ret)
2079 		goto check_stop;
2080 queue_full:
2081 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2082 }
2083 EXPORT_SYMBOL(transport_generic_request_failure);
2084 
2085 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2086 {
2087 	sense_reason_t ret;
2088 
2089 	if (!cmd->execute_cmd) {
2090 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2091 		goto err;
2092 	}
2093 	if (do_checks) {
2094 		/*
2095 		 * Check for an existing UNIT ATTENTION condition after
2096 		 * target_handle_task_attr() has done SAM task attr
2097 		 * checking, and possibly have already defered execution
2098 		 * out to target_restart_delayed_cmds() context.
2099 		 */
2100 		ret = target_scsi3_ua_check(cmd);
2101 		if (ret)
2102 			goto err;
2103 
2104 		ret = target_alua_state_check(cmd);
2105 		if (ret)
2106 			goto err;
2107 
2108 		ret = target_check_reservation(cmd);
2109 		if (ret) {
2110 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2111 			goto err;
2112 		}
2113 	}
2114 
2115 	ret = cmd->execute_cmd(cmd);
2116 	if (!ret)
2117 		return;
2118 err:
2119 	spin_lock_irq(&cmd->t_state_lock);
2120 	cmd->transport_state &= ~CMD_T_SENT;
2121 	spin_unlock_irq(&cmd->t_state_lock);
2122 
2123 	transport_generic_request_failure(cmd, ret);
2124 }
2125 
2126 static int target_write_prot_action(struct se_cmd *cmd)
2127 {
2128 	u32 sectors;
2129 	/*
2130 	 * Perform WRITE_INSERT of PI using software emulation when backend
2131 	 * device has PI enabled, if the transport has not already generated
2132 	 * PI using hardware WRITE_INSERT offload.
2133 	 */
2134 	switch (cmd->prot_op) {
2135 	case TARGET_PROT_DOUT_INSERT:
2136 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2137 			sbc_dif_generate(cmd);
2138 		break;
2139 	case TARGET_PROT_DOUT_STRIP:
2140 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2141 			break;
2142 
2143 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2144 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2145 					     sectors, 0, cmd->t_prot_sg, 0);
2146 		if (unlikely(cmd->pi_err)) {
2147 			spin_lock_irq(&cmd->t_state_lock);
2148 			cmd->transport_state &= ~CMD_T_SENT;
2149 			spin_unlock_irq(&cmd->t_state_lock);
2150 			transport_generic_request_failure(cmd, cmd->pi_err);
2151 			return -1;
2152 		}
2153 		break;
2154 	default:
2155 		break;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static bool target_handle_task_attr(struct se_cmd *cmd)
2162 {
2163 	struct se_device *dev = cmd->se_dev;
2164 
2165 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2166 		return false;
2167 
2168 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2169 
2170 	/*
2171 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2172 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
2173 	 */
2174 	switch (cmd->sam_task_attr) {
2175 	case TCM_HEAD_TAG:
2176 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2177 			 cmd->t_task_cdb[0]);
2178 		return false;
2179 	case TCM_ORDERED_TAG:
2180 		atomic_inc_mb(&dev->dev_ordered_sync);
2181 
2182 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2183 			 cmd->t_task_cdb[0]);
2184 
2185 		/*
2186 		 * Execute an ORDERED command if no other older commands
2187 		 * exist that need to be completed first.
2188 		 */
2189 		if (!atomic_read(&dev->simple_cmds))
2190 			return false;
2191 		break;
2192 	default:
2193 		/*
2194 		 * For SIMPLE and UNTAGGED Task Attribute commands
2195 		 */
2196 		atomic_inc_mb(&dev->simple_cmds);
2197 		break;
2198 	}
2199 
2200 	if (atomic_read(&dev->dev_ordered_sync) == 0)
2201 		return false;
2202 
2203 	spin_lock(&dev->delayed_cmd_lock);
2204 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2205 	spin_unlock(&dev->delayed_cmd_lock);
2206 
2207 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2208 		cmd->t_task_cdb[0], cmd->sam_task_attr);
2209 	return true;
2210 }
2211 
2212 void target_execute_cmd(struct se_cmd *cmd)
2213 {
2214 	/*
2215 	 * Determine if frontend context caller is requesting the stopping of
2216 	 * this command for frontend exceptions.
2217 	 *
2218 	 * If the received CDB has already been aborted stop processing it here.
2219 	 */
2220 	if (target_cmd_interrupted(cmd))
2221 		return;
2222 
2223 	spin_lock_irq(&cmd->t_state_lock);
2224 	cmd->t_state = TRANSPORT_PROCESSING;
2225 	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2226 	spin_unlock_irq(&cmd->t_state_lock);
2227 
2228 	if (target_write_prot_action(cmd))
2229 		return;
2230 
2231 	if (target_handle_task_attr(cmd)) {
2232 		spin_lock_irq(&cmd->t_state_lock);
2233 		cmd->transport_state &= ~CMD_T_SENT;
2234 		spin_unlock_irq(&cmd->t_state_lock);
2235 		return;
2236 	}
2237 
2238 	__target_execute_cmd(cmd, true);
2239 }
2240 EXPORT_SYMBOL(target_execute_cmd);
2241 
2242 /*
2243  * Process all commands up to the last received ORDERED task attribute which
2244  * requires another blocking boundary
2245  */
2246 static void target_restart_delayed_cmds(struct se_device *dev)
2247 {
2248 	for (;;) {
2249 		struct se_cmd *cmd;
2250 
2251 		spin_lock(&dev->delayed_cmd_lock);
2252 		if (list_empty(&dev->delayed_cmd_list)) {
2253 			spin_unlock(&dev->delayed_cmd_lock);
2254 			break;
2255 		}
2256 
2257 		cmd = list_entry(dev->delayed_cmd_list.next,
2258 				 struct se_cmd, se_delayed_node);
2259 		list_del(&cmd->se_delayed_node);
2260 		spin_unlock(&dev->delayed_cmd_lock);
2261 
2262 		cmd->transport_state |= CMD_T_SENT;
2263 
2264 		__target_execute_cmd(cmd, true);
2265 
2266 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2267 			break;
2268 	}
2269 }
2270 
2271 /*
2272  * Called from I/O completion to determine which dormant/delayed
2273  * and ordered cmds need to have their tasks added to the execution queue.
2274  */
2275 static void transport_complete_task_attr(struct se_cmd *cmd)
2276 {
2277 	struct se_device *dev = cmd->se_dev;
2278 
2279 	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2280 		return;
2281 
2282 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2283 		goto restart;
2284 
2285 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2286 		atomic_dec_mb(&dev->simple_cmds);
2287 		dev->dev_cur_ordered_id++;
2288 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2289 		dev->dev_cur_ordered_id++;
2290 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2291 			 dev->dev_cur_ordered_id);
2292 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2293 		atomic_dec_mb(&dev->dev_ordered_sync);
2294 
2295 		dev->dev_cur_ordered_id++;
2296 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2297 			 dev->dev_cur_ordered_id);
2298 	}
2299 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2300 
2301 restart:
2302 	target_restart_delayed_cmds(dev);
2303 }
2304 
2305 static void transport_complete_qf(struct se_cmd *cmd)
2306 {
2307 	int ret = 0;
2308 
2309 	transport_complete_task_attr(cmd);
2310 	/*
2311 	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2312 	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2313 	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2314 	 * if a scsi_status is not already set.
2315 	 *
2316 	 * If a fabric driver ->queue_status() has returned non zero, always
2317 	 * keep retrying no matter what..
2318 	 */
2319 	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2320 		if (cmd->scsi_status)
2321 			goto queue_status;
2322 
2323 		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2324 		goto queue_status;
2325 	}
2326 
2327 	/*
2328 	 * Check if we need to send a sense buffer from
2329 	 * the struct se_cmd in question. We do NOT want
2330 	 * to take this path of the IO has been marked as
2331 	 * needing to be treated like a "normal read". This
2332 	 * is the case if it's a tape read, and either the
2333 	 * FM, EOM, or ILI bits are set, but there is no
2334 	 * sense data.
2335 	 */
2336 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2337 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2338 		goto queue_status;
2339 
2340 	switch (cmd->data_direction) {
2341 	case DMA_FROM_DEVICE:
2342 		/* queue status if not treating this as a normal read */
2343 		if (cmd->scsi_status &&
2344 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2345 			goto queue_status;
2346 
2347 		trace_target_cmd_complete(cmd);
2348 		ret = cmd->se_tfo->queue_data_in(cmd);
2349 		break;
2350 	case DMA_TO_DEVICE:
2351 		if (cmd->se_cmd_flags & SCF_BIDI) {
2352 			ret = cmd->se_tfo->queue_data_in(cmd);
2353 			break;
2354 		}
2355 		fallthrough;
2356 	case DMA_NONE:
2357 queue_status:
2358 		trace_target_cmd_complete(cmd);
2359 		ret = cmd->se_tfo->queue_status(cmd);
2360 		break;
2361 	default:
2362 		break;
2363 	}
2364 
2365 	if (ret < 0) {
2366 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2367 		return;
2368 	}
2369 	transport_lun_remove_cmd(cmd);
2370 	transport_cmd_check_stop_to_fabric(cmd);
2371 }
2372 
2373 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2374 					int err, bool write_pending)
2375 {
2376 	/*
2377 	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2378 	 * ->queue_data_in() callbacks from new process context.
2379 	 *
2380 	 * Otherwise for other errors, transport_complete_qf() will send
2381 	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2382 	 * retry associated fabric driver data-transfer callbacks.
2383 	 */
2384 	if (err == -EAGAIN || err == -ENOMEM) {
2385 		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2386 						 TRANSPORT_COMPLETE_QF_OK;
2387 	} else {
2388 		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2389 		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2390 	}
2391 
2392 	spin_lock_irq(&dev->qf_cmd_lock);
2393 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2394 	atomic_inc_mb(&dev->dev_qf_count);
2395 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2396 
2397 	schedule_work(&cmd->se_dev->qf_work_queue);
2398 }
2399 
2400 static bool target_read_prot_action(struct se_cmd *cmd)
2401 {
2402 	switch (cmd->prot_op) {
2403 	case TARGET_PROT_DIN_STRIP:
2404 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2405 			u32 sectors = cmd->data_length >>
2406 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2407 
2408 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2409 						     sectors, 0, cmd->t_prot_sg,
2410 						     0);
2411 			if (cmd->pi_err)
2412 				return true;
2413 		}
2414 		break;
2415 	case TARGET_PROT_DIN_INSERT:
2416 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2417 			break;
2418 
2419 		sbc_dif_generate(cmd);
2420 		break;
2421 	default:
2422 		break;
2423 	}
2424 
2425 	return false;
2426 }
2427 
2428 static void target_complete_ok_work(struct work_struct *work)
2429 {
2430 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2431 	int ret;
2432 
2433 	/*
2434 	 * Check if we need to move delayed/dormant tasks from cmds on the
2435 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2436 	 * Attribute.
2437 	 */
2438 	transport_complete_task_attr(cmd);
2439 
2440 	/*
2441 	 * Check to schedule QUEUE_FULL work, or execute an existing
2442 	 * cmd->transport_qf_callback()
2443 	 */
2444 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2445 		schedule_work(&cmd->se_dev->qf_work_queue);
2446 
2447 	/*
2448 	 * Check if we need to send a sense buffer from
2449 	 * the struct se_cmd in question. We do NOT want
2450 	 * to take this path of the IO has been marked as
2451 	 * needing to be treated like a "normal read". This
2452 	 * is the case if it's a tape read, and either the
2453 	 * FM, EOM, or ILI bits are set, but there is no
2454 	 * sense data.
2455 	 */
2456 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2457 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2458 		WARN_ON(!cmd->scsi_status);
2459 		ret = transport_send_check_condition_and_sense(
2460 					cmd, 0, 1);
2461 		if (ret)
2462 			goto queue_full;
2463 
2464 		transport_lun_remove_cmd(cmd);
2465 		transport_cmd_check_stop_to_fabric(cmd);
2466 		return;
2467 	}
2468 	/*
2469 	 * Check for a callback, used by amongst other things
2470 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2471 	 */
2472 	if (cmd->transport_complete_callback) {
2473 		sense_reason_t rc;
2474 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2475 		bool zero_dl = !(cmd->data_length);
2476 		int post_ret = 0;
2477 
2478 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2479 		if (!rc && !post_ret) {
2480 			if (caw && zero_dl)
2481 				goto queue_rsp;
2482 
2483 			return;
2484 		} else if (rc) {
2485 			ret = transport_send_check_condition_and_sense(cmd,
2486 						rc, 0);
2487 			if (ret)
2488 				goto queue_full;
2489 
2490 			transport_lun_remove_cmd(cmd);
2491 			transport_cmd_check_stop_to_fabric(cmd);
2492 			return;
2493 		}
2494 	}
2495 
2496 queue_rsp:
2497 	switch (cmd->data_direction) {
2498 	case DMA_FROM_DEVICE:
2499 		/*
2500 		 * if this is a READ-type IO, but SCSI status
2501 		 * is set, then skip returning data and just
2502 		 * return the status -- unless this IO is marked
2503 		 * as needing to be treated as a normal read,
2504 		 * in which case we want to go ahead and return
2505 		 * the data. This happens, for example, for tape
2506 		 * reads with the FM, EOM, or ILI bits set, with
2507 		 * no sense data.
2508 		 */
2509 		if (cmd->scsi_status &&
2510 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2511 			goto queue_status;
2512 
2513 		atomic_long_add(cmd->data_length,
2514 				&cmd->se_lun->lun_stats.tx_data_octets);
2515 		/*
2516 		 * Perform READ_STRIP of PI using software emulation when
2517 		 * backend had PI enabled, if the transport will not be
2518 		 * performing hardware READ_STRIP offload.
2519 		 */
2520 		if (target_read_prot_action(cmd)) {
2521 			ret = transport_send_check_condition_and_sense(cmd,
2522 						cmd->pi_err, 0);
2523 			if (ret)
2524 				goto queue_full;
2525 
2526 			transport_lun_remove_cmd(cmd);
2527 			transport_cmd_check_stop_to_fabric(cmd);
2528 			return;
2529 		}
2530 
2531 		trace_target_cmd_complete(cmd);
2532 		ret = cmd->se_tfo->queue_data_in(cmd);
2533 		if (ret)
2534 			goto queue_full;
2535 		break;
2536 	case DMA_TO_DEVICE:
2537 		atomic_long_add(cmd->data_length,
2538 				&cmd->se_lun->lun_stats.rx_data_octets);
2539 		/*
2540 		 * Check if we need to send READ payload for BIDI-COMMAND
2541 		 */
2542 		if (cmd->se_cmd_flags & SCF_BIDI) {
2543 			atomic_long_add(cmd->data_length,
2544 					&cmd->se_lun->lun_stats.tx_data_octets);
2545 			ret = cmd->se_tfo->queue_data_in(cmd);
2546 			if (ret)
2547 				goto queue_full;
2548 			break;
2549 		}
2550 		fallthrough;
2551 	case DMA_NONE:
2552 queue_status:
2553 		trace_target_cmd_complete(cmd);
2554 		ret = cmd->se_tfo->queue_status(cmd);
2555 		if (ret)
2556 			goto queue_full;
2557 		break;
2558 	default:
2559 		break;
2560 	}
2561 
2562 	transport_lun_remove_cmd(cmd);
2563 	transport_cmd_check_stop_to_fabric(cmd);
2564 	return;
2565 
2566 queue_full:
2567 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2568 		" data_direction: %d\n", cmd, cmd->data_direction);
2569 
2570 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2571 }
2572 
2573 void target_free_sgl(struct scatterlist *sgl, int nents)
2574 {
2575 	sgl_free_n_order(sgl, nents, 0);
2576 }
2577 EXPORT_SYMBOL(target_free_sgl);
2578 
2579 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2580 {
2581 	/*
2582 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2583 	 * emulation, and free + reset pointers if necessary..
2584 	 */
2585 	if (!cmd->t_data_sg_orig)
2586 		return;
2587 
2588 	kfree(cmd->t_data_sg);
2589 	cmd->t_data_sg = cmd->t_data_sg_orig;
2590 	cmd->t_data_sg_orig = NULL;
2591 	cmd->t_data_nents = cmd->t_data_nents_orig;
2592 	cmd->t_data_nents_orig = 0;
2593 }
2594 
2595 static inline void transport_free_pages(struct se_cmd *cmd)
2596 {
2597 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2598 		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2599 		cmd->t_prot_sg = NULL;
2600 		cmd->t_prot_nents = 0;
2601 	}
2602 
2603 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2604 		/*
2605 		 * Release special case READ buffer payload required for
2606 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2607 		 */
2608 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2609 			target_free_sgl(cmd->t_bidi_data_sg,
2610 					   cmd->t_bidi_data_nents);
2611 			cmd->t_bidi_data_sg = NULL;
2612 			cmd->t_bidi_data_nents = 0;
2613 		}
2614 		transport_reset_sgl_orig(cmd);
2615 		return;
2616 	}
2617 	transport_reset_sgl_orig(cmd);
2618 
2619 	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2620 	cmd->t_data_sg = NULL;
2621 	cmd->t_data_nents = 0;
2622 
2623 	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2624 	cmd->t_bidi_data_sg = NULL;
2625 	cmd->t_bidi_data_nents = 0;
2626 }
2627 
2628 void *transport_kmap_data_sg(struct se_cmd *cmd)
2629 {
2630 	struct scatterlist *sg = cmd->t_data_sg;
2631 	struct page **pages;
2632 	int i;
2633 
2634 	/*
2635 	 * We need to take into account a possible offset here for fabrics like
2636 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2637 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2638 	 */
2639 	if (!cmd->t_data_nents)
2640 		return NULL;
2641 
2642 	BUG_ON(!sg);
2643 	if (cmd->t_data_nents == 1)
2644 		return kmap(sg_page(sg)) + sg->offset;
2645 
2646 	/* >1 page. use vmap */
2647 	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2648 	if (!pages)
2649 		return NULL;
2650 
2651 	/* convert sg[] to pages[] */
2652 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2653 		pages[i] = sg_page(sg);
2654 	}
2655 
2656 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2657 	kfree(pages);
2658 	if (!cmd->t_data_vmap)
2659 		return NULL;
2660 
2661 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2662 }
2663 EXPORT_SYMBOL(transport_kmap_data_sg);
2664 
2665 void transport_kunmap_data_sg(struct se_cmd *cmd)
2666 {
2667 	if (!cmd->t_data_nents) {
2668 		return;
2669 	} else if (cmd->t_data_nents == 1) {
2670 		kunmap(sg_page(cmd->t_data_sg));
2671 		return;
2672 	}
2673 
2674 	vunmap(cmd->t_data_vmap);
2675 	cmd->t_data_vmap = NULL;
2676 }
2677 EXPORT_SYMBOL(transport_kunmap_data_sg);
2678 
2679 int
2680 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2681 		 bool zero_page, bool chainable)
2682 {
2683 	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2684 
2685 	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2686 	return *sgl ? 0 : -ENOMEM;
2687 }
2688 EXPORT_SYMBOL(target_alloc_sgl);
2689 
2690 /*
2691  * Allocate any required resources to execute the command.  For writes we
2692  * might not have the payload yet, so notify the fabric via a call to
2693  * ->write_pending instead. Otherwise place it on the execution queue.
2694  */
2695 sense_reason_t
2696 transport_generic_new_cmd(struct se_cmd *cmd)
2697 {
2698 	unsigned long flags;
2699 	int ret = 0;
2700 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2701 
2702 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2703 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2704 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2705 				       cmd->prot_length, true, false);
2706 		if (ret < 0)
2707 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2708 	}
2709 
2710 	/*
2711 	 * Determine if the TCM fabric module has already allocated physical
2712 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2713 	 * beforehand.
2714 	 */
2715 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2716 	    cmd->data_length) {
2717 
2718 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2719 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2720 			u32 bidi_length;
2721 
2722 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2723 				bidi_length = cmd->t_task_nolb *
2724 					      cmd->se_dev->dev_attrib.block_size;
2725 			else
2726 				bidi_length = cmd->data_length;
2727 
2728 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2729 					       &cmd->t_bidi_data_nents,
2730 					       bidi_length, zero_flag, false);
2731 			if (ret < 0)
2732 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2733 		}
2734 
2735 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2736 				       cmd->data_length, zero_flag, false);
2737 		if (ret < 0)
2738 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2739 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2740 		    cmd->data_length) {
2741 		/*
2742 		 * Special case for COMPARE_AND_WRITE with fabrics
2743 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2744 		 */
2745 		u32 caw_length = cmd->t_task_nolb *
2746 				 cmd->se_dev->dev_attrib.block_size;
2747 
2748 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2749 				       &cmd->t_bidi_data_nents,
2750 				       caw_length, zero_flag, false);
2751 		if (ret < 0)
2752 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2753 	}
2754 	/*
2755 	 * If this command is not a write we can execute it right here,
2756 	 * for write buffers we need to notify the fabric driver first
2757 	 * and let it call back once the write buffers are ready.
2758 	 */
2759 	target_add_to_state_list(cmd);
2760 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2761 		target_execute_cmd(cmd);
2762 		return 0;
2763 	}
2764 
2765 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2766 	cmd->t_state = TRANSPORT_WRITE_PENDING;
2767 	/*
2768 	 * Determine if frontend context caller is requesting the stopping of
2769 	 * this command for frontend exceptions.
2770 	 */
2771 	if (cmd->transport_state & CMD_T_STOP &&
2772 	    !cmd->se_tfo->write_pending_must_be_called) {
2773 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2774 			 __func__, __LINE__, cmd->tag);
2775 
2776 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2777 
2778 		complete_all(&cmd->t_transport_stop_comp);
2779 		return 0;
2780 	}
2781 	cmd->transport_state &= ~CMD_T_ACTIVE;
2782 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2783 
2784 	ret = cmd->se_tfo->write_pending(cmd);
2785 	if (ret)
2786 		goto queue_full;
2787 
2788 	return 0;
2789 
2790 queue_full:
2791 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2792 	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2793 	return 0;
2794 }
2795 EXPORT_SYMBOL(transport_generic_new_cmd);
2796 
2797 static void transport_write_pending_qf(struct se_cmd *cmd)
2798 {
2799 	unsigned long flags;
2800 	int ret;
2801 	bool stop;
2802 
2803 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2804 	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2805 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2806 
2807 	if (stop) {
2808 		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2809 			__func__, __LINE__, cmd->tag);
2810 		complete_all(&cmd->t_transport_stop_comp);
2811 		return;
2812 	}
2813 
2814 	ret = cmd->se_tfo->write_pending(cmd);
2815 	if (ret) {
2816 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2817 			 cmd);
2818 		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2819 	}
2820 }
2821 
2822 static bool
2823 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2824 			   unsigned long *flags);
2825 
2826 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2827 {
2828 	unsigned long flags;
2829 
2830 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2831 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2832 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2833 }
2834 
2835 /*
2836  * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2837  * finished.
2838  */
2839 void target_put_cmd_and_wait(struct se_cmd *cmd)
2840 {
2841 	DECLARE_COMPLETION_ONSTACK(compl);
2842 
2843 	WARN_ON_ONCE(cmd->abrt_compl);
2844 	cmd->abrt_compl = &compl;
2845 	target_put_sess_cmd(cmd);
2846 	wait_for_completion(&compl);
2847 }
2848 
2849 /*
2850  * This function is called by frontend drivers after processing of a command
2851  * has finished.
2852  *
2853  * The protocol for ensuring that either the regular frontend command
2854  * processing flow or target_handle_abort() code drops one reference is as
2855  * follows:
2856  * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2857  *   the frontend driver to call this function synchronously or asynchronously.
2858  *   That will cause one reference to be dropped.
2859  * - During regular command processing the target core sets CMD_T_COMPLETE
2860  *   before invoking one of the .queue_*() functions.
2861  * - The code that aborts commands skips commands and TMFs for which
2862  *   CMD_T_COMPLETE has been set.
2863  * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2864  *   commands that will be aborted.
2865  * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2866  *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2867  * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2868  *   be called and will drop a reference.
2869  * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2870  *   will be called. target_handle_abort() will drop the final reference.
2871  */
2872 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2873 {
2874 	DECLARE_COMPLETION_ONSTACK(compl);
2875 	int ret = 0;
2876 	bool aborted = false, tas = false;
2877 
2878 	if (wait_for_tasks)
2879 		target_wait_free_cmd(cmd, &aborted, &tas);
2880 
2881 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2882 		/*
2883 		 * Handle WRITE failure case where transport_generic_new_cmd()
2884 		 * has already added se_cmd to state_list, but fabric has
2885 		 * failed command before I/O submission.
2886 		 */
2887 		if (cmd->state_active)
2888 			target_remove_from_state_list(cmd);
2889 
2890 		if (cmd->se_lun)
2891 			transport_lun_remove_cmd(cmd);
2892 	}
2893 	if (aborted)
2894 		cmd->free_compl = &compl;
2895 	ret = target_put_sess_cmd(cmd);
2896 	if (aborted) {
2897 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2898 		wait_for_completion(&compl);
2899 		ret = 1;
2900 	}
2901 	return ret;
2902 }
2903 EXPORT_SYMBOL(transport_generic_free_cmd);
2904 
2905 /**
2906  * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2907  * @se_cmd:	command descriptor to add
2908  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2909  */
2910 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2911 {
2912 	struct se_session *se_sess = se_cmd->se_sess;
2913 	int ret = 0;
2914 
2915 	/*
2916 	 * Add a second kref if the fabric caller is expecting to handle
2917 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2918 	 * invocations before se_cmd descriptor release.
2919 	 */
2920 	if (ack_kref) {
2921 		kref_get(&se_cmd->cmd_kref);
2922 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2923 	}
2924 
2925 	if (!percpu_ref_tryget_live(&se_sess->cmd_count))
2926 		ret = -ESHUTDOWN;
2927 
2928 	if (ret && ack_kref)
2929 		target_put_sess_cmd(se_cmd);
2930 
2931 	return ret;
2932 }
2933 EXPORT_SYMBOL(target_get_sess_cmd);
2934 
2935 static void target_free_cmd_mem(struct se_cmd *cmd)
2936 {
2937 	transport_free_pages(cmd);
2938 
2939 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2940 		core_tmr_release_req(cmd->se_tmr_req);
2941 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2942 		kfree(cmd->t_task_cdb);
2943 }
2944 
2945 static void target_release_cmd_kref(struct kref *kref)
2946 {
2947 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2948 	struct se_session *se_sess = se_cmd->se_sess;
2949 	struct completion *free_compl = se_cmd->free_compl;
2950 	struct completion *abrt_compl = se_cmd->abrt_compl;
2951 
2952 	target_free_cmd_mem(se_cmd);
2953 	se_cmd->se_tfo->release_cmd(se_cmd);
2954 	if (free_compl)
2955 		complete(free_compl);
2956 	if (abrt_compl)
2957 		complete(abrt_compl);
2958 
2959 	percpu_ref_put(&se_sess->cmd_count);
2960 }
2961 
2962 /**
2963  * target_put_sess_cmd - decrease the command reference count
2964  * @se_cmd:	command to drop a reference from
2965  *
2966  * Returns 1 if and only if this target_put_sess_cmd() call caused the
2967  * refcount to drop to zero. Returns zero otherwise.
2968  */
2969 int target_put_sess_cmd(struct se_cmd *se_cmd)
2970 {
2971 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2972 }
2973 EXPORT_SYMBOL(target_put_sess_cmd);
2974 
2975 static const char *data_dir_name(enum dma_data_direction d)
2976 {
2977 	switch (d) {
2978 	case DMA_BIDIRECTIONAL:	return "BIDI";
2979 	case DMA_TO_DEVICE:	return "WRITE";
2980 	case DMA_FROM_DEVICE:	return "READ";
2981 	case DMA_NONE:		return "NONE";
2982 	}
2983 
2984 	return "(?)";
2985 }
2986 
2987 static const char *cmd_state_name(enum transport_state_table t)
2988 {
2989 	switch (t) {
2990 	case TRANSPORT_NO_STATE:	return "NO_STATE";
2991 	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
2992 	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
2993 	case TRANSPORT_PROCESSING:	return "PROCESSING";
2994 	case TRANSPORT_COMPLETE:	return "COMPLETE";
2995 	case TRANSPORT_ISTATE_PROCESSING:
2996 					return "ISTATE_PROCESSING";
2997 	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
2998 	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
2999 	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
3000 	}
3001 
3002 	return "(?)";
3003 }
3004 
3005 static void target_append_str(char **str, const char *txt)
3006 {
3007 	char *prev = *str;
3008 
3009 	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3010 		kstrdup(txt, GFP_ATOMIC);
3011 	kfree(prev);
3012 }
3013 
3014 /*
3015  * Convert a transport state bitmask into a string. The caller is
3016  * responsible for freeing the returned pointer.
3017  */
3018 static char *target_ts_to_str(u32 ts)
3019 {
3020 	char *str = NULL;
3021 
3022 	if (ts & CMD_T_ABORTED)
3023 		target_append_str(&str, "aborted");
3024 	if (ts & CMD_T_ACTIVE)
3025 		target_append_str(&str, "active");
3026 	if (ts & CMD_T_COMPLETE)
3027 		target_append_str(&str, "complete");
3028 	if (ts & CMD_T_SENT)
3029 		target_append_str(&str, "sent");
3030 	if (ts & CMD_T_STOP)
3031 		target_append_str(&str, "stop");
3032 	if (ts & CMD_T_FABRIC_STOP)
3033 		target_append_str(&str, "fabric_stop");
3034 
3035 	return str;
3036 }
3037 
3038 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3039 {
3040 	switch (tmf) {
3041 	case TMR_ABORT_TASK:		return "ABORT_TASK";
3042 	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
3043 	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
3044 	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
3045 	case TMR_LUN_RESET:		return "LUN_RESET";
3046 	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
3047 	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
3048 	case TMR_LUN_RESET_PRO:		return "LUN_RESET_PRO";
3049 	case TMR_UNKNOWN:		break;
3050 	}
3051 	return "(?)";
3052 }
3053 
3054 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3055 {
3056 	char *ts_str = target_ts_to_str(cmd->transport_state);
3057 	const u8 *cdb = cmd->t_task_cdb;
3058 	struct se_tmr_req *tmf = cmd->se_tmr_req;
3059 
3060 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3061 		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3062 			 pfx, cdb[0], cdb[1], cmd->tag,
3063 			 data_dir_name(cmd->data_direction),
3064 			 cmd->se_tfo->get_cmd_state(cmd),
3065 			 cmd_state_name(cmd->t_state), cmd->data_length,
3066 			 kref_read(&cmd->cmd_kref), ts_str);
3067 	} else {
3068 		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3069 			 pfx, target_tmf_name(tmf->function), cmd->tag,
3070 			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3071 			 cmd_state_name(cmd->t_state),
3072 			 kref_read(&cmd->cmd_kref), ts_str);
3073 	}
3074 	kfree(ts_str);
3075 }
3076 EXPORT_SYMBOL(target_show_cmd);
3077 
3078 static void target_stop_session_confirm(struct percpu_ref *ref)
3079 {
3080 	struct se_session *se_sess = container_of(ref, struct se_session,
3081 						  cmd_count);
3082 	complete_all(&se_sess->stop_done);
3083 }
3084 
3085 /**
3086  * target_stop_session - Stop new IO from being queued on the session.
3087  * @se_sess:    session to stop
3088  */
3089 void target_stop_session(struct se_session *se_sess)
3090 {
3091 	pr_debug("Stopping session queue.\n");
3092 	if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
3093 		percpu_ref_kill_and_confirm(&se_sess->cmd_count,
3094 					    target_stop_session_confirm);
3095 }
3096 EXPORT_SYMBOL(target_stop_session);
3097 
3098 /**
3099  * target_wait_for_sess_cmds - Wait for outstanding commands
3100  * @se_sess:    session to wait for active I/O
3101  */
3102 void target_wait_for_sess_cmds(struct se_session *se_sess)
3103 {
3104 	int ret;
3105 
3106 	WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
3107 
3108 	do {
3109 		pr_debug("Waiting for running cmds to complete.\n");
3110 		ret = wait_event_timeout(se_sess->cmd_count_wq,
3111 				percpu_ref_is_zero(&se_sess->cmd_count),
3112 				180 * HZ);
3113 	} while (ret <= 0);
3114 
3115 	wait_for_completion(&se_sess->stop_done);
3116 	pr_debug("Waiting for cmds done.\n");
3117 }
3118 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3119 
3120 /*
3121  * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3122  * all references to the LUN have been released. Called during LUN shutdown.
3123  */
3124 void transport_clear_lun_ref(struct se_lun *lun)
3125 {
3126 	percpu_ref_kill(&lun->lun_ref);
3127 	wait_for_completion(&lun->lun_shutdown_comp);
3128 }
3129 
3130 static bool
3131 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3132 			   bool *aborted, bool *tas, unsigned long *flags)
3133 	__releases(&cmd->t_state_lock)
3134 	__acquires(&cmd->t_state_lock)
3135 {
3136 	lockdep_assert_held(&cmd->t_state_lock);
3137 
3138 	if (fabric_stop)
3139 		cmd->transport_state |= CMD_T_FABRIC_STOP;
3140 
3141 	if (cmd->transport_state & CMD_T_ABORTED)
3142 		*aborted = true;
3143 
3144 	if (cmd->transport_state & CMD_T_TAS)
3145 		*tas = true;
3146 
3147 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3148 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3149 		return false;
3150 
3151 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3152 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3153 		return false;
3154 
3155 	if (!(cmd->transport_state & CMD_T_ACTIVE))
3156 		return false;
3157 
3158 	if (fabric_stop && *aborted)
3159 		return false;
3160 
3161 	cmd->transport_state |= CMD_T_STOP;
3162 
3163 	target_show_cmd("wait_for_tasks: Stopping ", cmd);
3164 
3165 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3166 
3167 	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3168 					    180 * HZ))
3169 		target_show_cmd("wait for tasks: ", cmd);
3170 
3171 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3172 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3173 
3174 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3175 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3176 
3177 	return true;
3178 }
3179 
3180 /**
3181  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3182  * @cmd: command to wait on
3183  */
3184 bool transport_wait_for_tasks(struct se_cmd *cmd)
3185 {
3186 	unsigned long flags;
3187 	bool ret, aborted = false, tas = false;
3188 
3189 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3190 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3191 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3192 
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL(transport_wait_for_tasks);
3196 
3197 struct sense_detail {
3198 	u8 key;
3199 	u8 asc;
3200 	u8 ascq;
3201 	bool add_sense_info;
3202 };
3203 
3204 static const struct sense_detail sense_detail_table[] = {
3205 	[TCM_NO_SENSE] = {
3206 		.key = NOT_READY
3207 	},
3208 	[TCM_NON_EXISTENT_LUN] = {
3209 		.key = ILLEGAL_REQUEST,
3210 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3211 	},
3212 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3213 		.key = ILLEGAL_REQUEST,
3214 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3215 	},
3216 	[TCM_SECTOR_COUNT_TOO_MANY] = {
3217 		.key = ILLEGAL_REQUEST,
3218 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3219 	},
3220 	[TCM_UNKNOWN_MODE_PAGE] = {
3221 		.key = ILLEGAL_REQUEST,
3222 		.asc = 0x24, /* INVALID FIELD IN CDB */
3223 	},
3224 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3225 		.key = ABORTED_COMMAND,
3226 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3227 		.ascq = 0x03,
3228 	},
3229 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3230 		.key = ABORTED_COMMAND,
3231 		.asc = 0x0c, /* WRITE ERROR */
3232 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3233 	},
3234 	[TCM_INVALID_CDB_FIELD] = {
3235 		.key = ILLEGAL_REQUEST,
3236 		.asc = 0x24, /* INVALID FIELD IN CDB */
3237 	},
3238 	[TCM_INVALID_PARAMETER_LIST] = {
3239 		.key = ILLEGAL_REQUEST,
3240 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3241 	},
3242 	[TCM_TOO_MANY_TARGET_DESCS] = {
3243 		.key = ILLEGAL_REQUEST,
3244 		.asc = 0x26,
3245 		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3246 	},
3247 	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3248 		.key = ILLEGAL_REQUEST,
3249 		.asc = 0x26,
3250 		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3251 	},
3252 	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3253 		.key = ILLEGAL_REQUEST,
3254 		.asc = 0x26,
3255 		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3256 	},
3257 	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3258 		.key = ILLEGAL_REQUEST,
3259 		.asc = 0x26,
3260 		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3261 	},
3262 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3263 		.key = ILLEGAL_REQUEST,
3264 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3265 	},
3266 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3267 		.key = ILLEGAL_REQUEST,
3268 		.asc = 0x0c, /* WRITE ERROR */
3269 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3270 	},
3271 	[TCM_SERVICE_CRC_ERROR] = {
3272 		.key = ABORTED_COMMAND,
3273 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3274 		.ascq = 0x05, /* N/A */
3275 	},
3276 	[TCM_SNACK_REJECTED] = {
3277 		.key = ABORTED_COMMAND,
3278 		.asc = 0x11, /* READ ERROR */
3279 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3280 	},
3281 	[TCM_WRITE_PROTECTED] = {
3282 		.key = DATA_PROTECT,
3283 		.asc = 0x27, /* WRITE PROTECTED */
3284 	},
3285 	[TCM_ADDRESS_OUT_OF_RANGE] = {
3286 		.key = ILLEGAL_REQUEST,
3287 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3288 	},
3289 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3290 		.key = UNIT_ATTENTION,
3291 	},
3292 	[TCM_MISCOMPARE_VERIFY] = {
3293 		.key = MISCOMPARE,
3294 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3295 		.ascq = 0x00,
3296 		.add_sense_info = true,
3297 	},
3298 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3299 		.key = ABORTED_COMMAND,
3300 		.asc = 0x10,
3301 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3302 		.add_sense_info = true,
3303 	},
3304 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3305 		.key = ABORTED_COMMAND,
3306 		.asc = 0x10,
3307 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3308 		.add_sense_info = true,
3309 	},
3310 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3311 		.key = ABORTED_COMMAND,
3312 		.asc = 0x10,
3313 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3314 		.add_sense_info = true,
3315 	},
3316 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3317 		.key = COPY_ABORTED,
3318 		.asc = 0x0d,
3319 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3320 
3321 	},
3322 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3323 		/*
3324 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3325 		 * Solaris initiators.  Returning NOT READY instead means the
3326 		 * operations will be retried a finite number of times and we
3327 		 * can survive intermittent errors.
3328 		 */
3329 		.key = NOT_READY,
3330 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3331 	},
3332 	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3333 		/*
3334 		 * From spc4r22 section5.7.7,5.7.8
3335 		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3336 		 * or a REGISTER AND IGNORE EXISTING KEY service action or
3337 		 * REGISTER AND MOVE service actionis attempted,
3338 		 * but there are insufficient device server resources to complete the
3339 		 * operation, then the command shall be terminated with CHECK CONDITION
3340 		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3341 		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3342 		 */
3343 		.key = ILLEGAL_REQUEST,
3344 		.asc = 0x55,
3345 		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3346 	},
3347 	[TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3348 		.key = ILLEGAL_REQUEST,
3349 		.asc = 0x0e,
3350 		.ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3351 	},
3352 	[TCM_ALUA_TG_PT_STANDBY] = {
3353 		.key = NOT_READY,
3354 		.asc = 0x04,
3355 		.ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3356 	},
3357 	[TCM_ALUA_TG_PT_UNAVAILABLE] = {
3358 		.key = NOT_READY,
3359 		.asc = 0x04,
3360 		.ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3361 	},
3362 	[TCM_ALUA_STATE_TRANSITION] = {
3363 		.key = NOT_READY,
3364 		.asc = 0x04,
3365 		.ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3366 	},
3367 	[TCM_ALUA_OFFLINE] = {
3368 		.key = NOT_READY,
3369 		.asc = 0x04,
3370 		.ascq = ASCQ_04H_ALUA_OFFLINE,
3371 	},
3372 };
3373 
3374 /**
3375  * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3376  * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3377  *   be stored.
3378  * @reason: LIO sense reason code. If this argument has the value
3379  *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3380  *   dequeuing a unit attention fails due to multiple commands being processed
3381  *   concurrently, set the command status to BUSY.
3382  *
3383  * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3384  */
3385 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3386 {
3387 	const struct sense_detail *sd;
3388 	u8 *buffer = cmd->sense_buffer;
3389 	int r = (__force int)reason;
3390 	u8 key, asc, ascq;
3391 	bool desc_format = target_sense_desc_format(cmd->se_dev);
3392 
3393 	if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3394 		sd = &sense_detail_table[r];
3395 	else
3396 		sd = &sense_detail_table[(__force int)
3397 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3398 
3399 	key = sd->key;
3400 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3401 		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3402 						       &ascq)) {
3403 			cmd->scsi_status = SAM_STAT_BUSY;
3404 			return;
3405 		}
3406 	} else {
3407 		WARN_ON_ONCE(sd->asc == 0);
3408 		asc = sd->asc;
3409 		ascq = sd->ascq;
3410 	}
3411 
3412 	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3413 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3414 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3415 	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3416 	if (sd->add_sense_info)
3417 		WARN_ON_ONCE(scsi_set_sense_information(buffer,
3418 							cmd->scsi_sense_length,
3419 							cmd->sense_info) < 0);
3420 }
3421 
3422 int
3423 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3424 		sense_reason_t reason, int from_transport)
3425 {
3426 	unsigned long flags;
3427 
3428 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3429 
3430 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3431 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3432 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3433 		return 0;
3434 	}
3435 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3436 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3437 
3438 	if (!from_transport)
3439 		translate_sense_reason(cmd, reason);
3440 
3441 	trace_target_cmd_complete(cmd);
3442 	return cmd->se_tfo->queue_status(cmd);
3443 }
3444 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3445 
3446 /**
3447  * target_send_busy - Send SCSI BUSY status back to the initiator
3448  * @cmd: SCSI command for which to send a BUSY reply.
3449  *
3450  * Note: Only call this function if target_submit_cmd*() failed.
3451  */
3452 int target_send_busy(struct se_cmd *cmd)
3453 {
3454 	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3455 
3456 	cmd->scsi_status = SAM_STAT_BUSY;
3457 	trace_target_cmd_complete(cmd);
3458 	return cmd->se_tfo->queue_status(cmd);
3459 }
3460 EXPORT_SYMBOL(target_send_busy);
3461 
3462 static void target_tmr_work(struct work_struct *work)
3463 {
3464 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3465 	struct se_device *dev = cmd->se_dev;
3466 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3467 	int ret;
3468 
3469 	if (cmd->transport_state & CMD_T_ABORTED)
3470 		goto aborted;
3471 
3472 	switch (tmr->function) {
3473 	case TMR_ABORT_TASK:
3474 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3475 		break;
3476 	case TMR_ABORT_TASK_SET:
3477 	case TMR_CLEAR_ACA:
3478 	case TMR_CLEAR_TASK_SET:
3479 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3480 		break;
3481 	case TMR_LUN_RESET:
3482 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3483 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3484 					 TMR_FUNCTION_REJECTED;
3485 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3486 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3487 					       cmd->orig_fe_lun, 0x29,
3488 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3489 		}
3490 		break;
3491 	case TMR_TARGET_WARM_RESET:
3492 		tmr->response = TMR_FUNCTION_REJECTED;
3493 		break;
3494 	case TMR_TARGET_COLD_RESET:
3495 		tmr->response = TMR_FUNCTION_REJECTED;
3496 		break;
3497 	default:
3498 		pr_err("Unknown TMR function: 0x%02x.\n",
3499 				tmr->function);
3500 		tmr->response = TMR_FUNCTION_REJECTED;
3501 		break;
3502 	}
3503 
3504 	if (cmd->transport_state & CMD_T_ABORTED)
3505 		goto aborted;
3506 
3507 	cmd->se_tfo->queue_tm_rsp(cmd);
3508 
3509 	transport_lun_remove_cmd(cmd);
3510 	transport_cmd_check_stop_to_fabric(cmd);
3511 	return;
3512 
3513 aborted:
3514 	target_handle_abort(cmd);
3515 }
3516 
3517 int transport_generic_handle_tmr(
3518 	struct se_cmd *cmd)
3519 {
3520 	unsigned long flags;
3521 	bool aborted = false;
3522 
3523 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3524 	if (cmd->transport_state & CMD_T_ABORTED) {
3525 		aborted = true;
3526 	} else {
3527 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3528 		cmd->transport_state |= CMD_T_ACTIVE;
3529 	}
3530 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3531 
3532 	if (aborted) {
3533 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3534 				    cmd->se_tmr_req->function,
3535 				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3536 		target_handle_abort(cmd);
3537 		return 0;
3538 	}
3539 
3540 	INIT_WORK(&cmd->work, target_tmr_work);
3541 	schedule_work(&cmd->work);
3542 	return 0;
3543 }
3544 EXPORT_SYMBOL(transport_generic_handle_tmr);
3545 
3546 bool
3547 target_check_wce(struct se_device *dev)
3548 {
3549 	bool wce = false;
3550 
3551 	if (dev->transport->get_write_cache)
3552 		wce = dev->transport->get_write_cache(dev);
3553 	else if (dev->dev_attrib.emulate_write_cache > 0)
3554 		wce = true;
3555 
3556 	return wce;
3557 }
3558 
3559 bool
3560 target_check_fua(struct se_device *dev)
3561 {
3562 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3563 }
3564