1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static void transport_handle_queue_full(struct se_cmd *cmd, 68 struct se_device *dev); 69 static int transport_put_cmd(struct se_cmd *cmd); 70 static void target_complete_ok_work(struct work_struct *work); 71 72 int init_se_kmem_caches(void) 73 { 74 se_sess_cache = kmem_cache_create("se_sess_cache", 75 sizeof(struct se_session), __alignof__(struct se_session), 76 0, NULL); 77 if (!se_sess_cache) { 78 pr_err("kmem_cache_create() for struct se_session" 79 " failed\n"); 80 goto out; 81 } 82 se_ua_cache = kmem_cache_create("se_ua_cache", 83 sizeof(struct se_ua), __alignof__(struct se_ua), 84 0, NULL); 85 if (!se_ua_cache) { 86 pr_err("kmem_cache_create() for struct se_ua failed\n"); 87 goto out_free_sess_cache; 88 } 89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 90 sizeof(struct t10_pr_registration), 91 __alignof__(struct t10_pr_registration), 0, NULL); 92 if (!t10_pr_reg_cache) { 93 pr_err("kmem_cache_create() for struct t10_pr_registration" 94 " failed\n"); 95 goto out_free_ua_cache; 96 } 97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 99 0, NULL); 100 if (!t10_alua_lu_gp_cache) { 101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 102 " failed\n"); 103 goto out_free_pr_reg_cache; 104 } 105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 106 sizeof(struct t10_alua_lu_gp_member), 107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 108 if (!t10_alua_lu_gp_mem_cache) { 109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 110 "cache failed\n"); 111 goto out_free_lu_gp_cache; 112 } 113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 114 sizeof(struct t10_alua_tg_pt_gp), 115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 116 if (!t10_alua_tg_pt_gp_cache) { 117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 118 "cache failed\n"); 119 goto out_free_lu_gp_mem_cache; 120 } 121 t10_alua_lba_map_cache = kmem_cache_create( 122 "t10_alua_lba_map_cache", 123 sizeof(struct t10_alua_lba_map), 124 __alignof__(struct t10_alua_lba_map), 0, NULL); 125 if (!t10_alua_lba_map_cache) { 126 pr_err("kmem_cache_create() for t10_alua_lba_map_" 127 "cache failed\n"); 128 goto out_free_tg_pt_gp_cache; 129 } 130 t10_alua_lba_map_mem_cache = kmem_cache_create( 131 "t10_alua_lba_map_mem_cache", 132 sizeof(struct t10_alua_lba_map_member), 133 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 134 if (!t10_alua_lba_map_mem_cache) { 135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 136 "cache failed\n"); 137 goto out_free_lba_map_cache; 138 } 139 140 target_completion_wq = alloc_workqueue("target_completion", 141 WQ_MEM_RECLAIM, 0); 142 if (!target_completion_wq) 143 goto out_free_lba_map_mem_cache; 144 145 return 0; 146 147 out_free_lba_map_mem_cache: 148 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 149 out_free_lba_map_cache: 150 kmem_cache_destroy(t10_alua_lba_map_cache); 151 out_free_tg_pt_gp_cache: 152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 153 out_free_lu_gp_mem_cache: 154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 155 out_free_lu_gp_cache: 156 kmem_cache_destroy(t10_alua_lu_gp_cache); 157 out_free_pr_reg_cache: 158 kmem_cache_destroy(t10_pr_reg_cache); 159 out_free_ua_cache: 160 kmem_cache_destroy(se_ua_cache); 161 out_free_sess_cache: 162 kmem_cache_destroy(se_sess_cache); 163 out: 164 return -ENOMEM; 165 } 166 167 void release_se_kmem_caches(void) 168 { 169 destroy_workqueue(target_completion_wq); 170 kmem_cache_destroy(se_sess_cache); 171 kmem_cache_destroy(se_ua_cache); 172 kmem_cache_destroy(t10_pr_reg_cache); 173 kmem_cache_destroy(t10_alua_lu_gp_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 176 kmem_cache_destroy(t10_alua_lba_map_cache); 177 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 178 } 179 180 /* This code ensures unique mib indexes are handed out. */ 181 static DEFINE_SPINLOCK(scsi_mib_index_lock); 182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 183 184 /* 185 * Allocate a new row index for the entry type specified 186 */ 187 u32 scsi_get_new_index(scsi_index_t type) 188 { 189 u32 new_index; 190 191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 192 193 spin_lock(&scsi_mib_index_lock); 194 new_index = ++scsi_mib_index[type]; 195 spin_unlock(&scsi_mib_index_lock); 196 197 return new_index; 198 } 199 200 void transport_subsystem_check_init(void) 201 { 202 int ret; 203 static int sub_api_initialized; 204 205 if (sub_api_initialized) 206 return; 207 208 ret = request_module("target_core_iblock"); 209 if (ret != 0) 210 pr_err("Unable to load target_core_iblock\n"); 211 212 ret = request_module("target_core_file"); 213 if (ret != 0) 214 pr_err("Unable to load target_core_file\n"); 215 216 ret = request_module("target_core_pscsi"); 217 if (ret != 0) 218 pr_err("Unable to load target_core_pscsi\n"); 219 220 ret = request_module("target_core_user"); 221 if (ret != 0) 222 pr_err("Unable to load target_core_user\n"); 223 224 sub_api_initialized = 1; 225 } 226 227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 228 { 229 struct se_session *se_sess; 230 231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 232 if (!se_sess) { 233 pr_err("Unable to allocate struct se_session from" 234 " se_sess_cache\n"); 235 return ERR_PTR(-ENOMEM); 236 } 237 INIT_LIST_HEAD(&se_sess->sess_list); 238 INIT_LIST_HEAD(&se_sess->sess_acl_list); 239 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 240 INIT_LIST_HEAD(&se_sess->sess_wait_list); 241 spin_lock_init(&se_sess->sess_cmd_lock); 242 se_sess->sup_prot_ops = sup_prot_ops; 243 244 return se_sess; 245 } 246 EXPORT_SYMBOL(transport_init_session); 247 248 int transport_alloc_session_tags(struct se_session *se_sess, 249 unsigned int tag_num, unsigned int tag_size) 250 { 251 int rc; 252 253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 255 if (!se_sess->sess_cmd_map) { 256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 257 if (!se_sess->sess_cmd_map) { 258 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 259 return -ENOMEM; 260 } 261 } 262 263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 264 if (rc < 0) { 265 pr_err("Unable to init se_sess->sess_tag_pool," 266 " tag_num: %u\n", tag_num); 267 kvfree(se_sess->sess_cmd_map); 268 se_sess->sess_cmd_map = NULL; 269 return -ENOMEM; 270 } 271 272 return 0; 273 } 274 EXPORT_SYMBOL(transport_alloc_session_tags); 275 276 struct se_session *transport_init_session_tags(unsigned int tag_num, 277 unsigned int tag_size, 278 enum target_prot_op sup_prot_ops) 279 { 280 struct se_session *se_sess; 281 int rc; 282 283 if (tag_num != 0 && !tag_size) { 284 pr_err("init_session_tags called with percpu-ida tag_num:" 285 " %u, but zero tag_size\n", tag_num); 286 return ERR_PTR(-EINVAL); 287 } 288 if (!tag_num && tag_size) { 289 pr_err("init_session_tags called with percpu-ida tag_size:" 290 " %u, but zero tag_num\n", tag_size); 291 return ERR_PTR(-EINVAL); 292 } 293 294 se_sess = transport_init_session(sup_prot_ops); 295 if (IS_ERR(se_sess)) 296 return se_sess; 297 298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 299 if (rc < 0) { 300 transport_free_session(se_sess); 301 return ERR_PTR(-ENOMEM); 302 } 303 304 return se_sess; 305 } 306 EXPORT_SYMBOL(transport_init_session_tags); 307 308 /* 309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 310 */ 311 void __transport_register_session( 312 struct se_portal_group *se_tpg, 313 struct se_node_acl *se_nacl, 314 struct se_session *se_sess, 315 void *fabric_sess_ptr) 316 { 317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 318 unsigned char buf[PR_REG_ISID_LEN]; 319 320 se_sess->se_tpg = se_tpg; 321 se_sess->fabric_sess_ptr = fabric_sess_ptr; 322 /* 323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 324 * 325 * Only set for struct se_session's that will actually be moving I/O. 326 * eg: *NOT* discovery sessions. 327 */ 328 if (se_nacl) { 329 /* 330 * 331 * Determine if fabric allows for T10-PI feature bits exposed to 332 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 333 * 334 * If so, then always save prot_type on a per se_node_acl node 335 * basis and re-instate the previous sess_prot_type to avoid 336 * disabling PI from below any previously initiator side 337 * registered LUNs. 338 */ 339 if (se_nacl->saved_prot_type) 340 se_sess->sess_prot_type = se_nacl->saved_prot_type; 341 else if (tfo->tpg_check_prot_fabric_only) 342 se_sess->sess_prot_type = se_nacl->saved_prot_type = 343 tfo->tpg_check_prot_fabric_only(se_tpg); 344 /* 345 * If the fabric module supports an ISID based TransportID, 346 * save this value in binary from the fabric I_T Nexus now. 347 */ 348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 349 memset(&buf[0], 0, PR_REG_ISID_LEN); 350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 351 &buf[0], PR_REG_ISID_LEN); 352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 353 } 354 355 spin_lock_irq(&se_nacl->nacl_sess_lock); 356 /* 357 * The se_nacl->nacl_sess pointer will be set to the 358 * last active I_T Nexus for each struct se_node_acl. 359 */ 360 se_nacl->nacl_sess = se_sess; 361 362 list_add_tail(&se_sess->sess_acl_list, 363 &se_nacl->acl_sess_list); 364 spin_unlock_irq(&se_nacl->nacl_sess_lock); 365 } 366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 367 368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 370 } 371 EXPORT_SYMBOL(__transport_register_session); 372 373 void transport_register_session( 374 struct se_portal_group *se_tpg, 375 struct se_node_acl *se_nacl, 376 struct se_session *se_sess, 377 void *fabric_sess_ptr) 378 { 379 unsigned long flags; 380 381 spin_lock_irqsave(&se_tpg->session_lock, flags); 382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 383 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 384 } 385 EXPORT_SYMBOL(transport_register_session); 386 387 struct se_session * 388 target_alloc_session(struct se_portal_group *tpg, 389 unsigned int tag_num, unsigned int tag_size, 390 enum target_prot_op prot_op, 391 const char *initiatorname, void *private, 392 int (*callback)(struct se_portal_group *, 393 struct se_session *, void *)) 394 { 395 struct se_session *sess; 396 397 /* 398 * If the fabric driver is using percpu-ida based pre allocation 399 * of I/O descriptor tags, go ahead and perform that setup now.. 400 */ 401 if (tag_num != 0) 402 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 403 else 404 sess = transport_init_session(prot_op); 405 406 if (IS_ERR(sess)) 407 return sess; 408 409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 410 (unsigned char *)initiatorname); 411 if (!sess->se_node_acl) { 412 transport_free_session(sess); 413 return ERR_PTR(-EACCES); 414 } 415 /* 416 * Go ahead and perform any remaining fabric setup that is 417 * required before transport_register_session(). 418 */ 419 if (callback != NULL) { 420 int rc = callback(tpg, sess, private); 421 if (rc) { 422 transport_free_session(sess); 423 return ERR_PTR(rc); 424 } 425 } 426 427 transport_register_session(tpg, sess->se_node_acl, sess, private); 428 return sess; 429 } 430 EXPORT_SYMBOL(target_alloc_session); 431 432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 433 { 434 struct se_session *se_sess; 435 ssize_t len = 0; 436 437 spin_lock_bh(&se_tpg->session_lock); 438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 439 if (!se_sess->se_node_acl) 440 continue; 441 if (!se_sess->se_node_acl->dynamic_node_acl) 442 continue; 443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 444 break; 445 446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 447 se_sess->se_node_acl->initiatorname); 448 len += 1; /* Include NULL terminator */ 449 } 450 spin_unlock_bh(&se_tpg->session_lock); 451 452 return len; 453 } 454 EXPORT_SYMBOL(target_show_dynamic_sessions); 455 456 static void target_complete_nacl(struct kref *kref) 457 { 458 struct se_node_acl *nacl = container_of(kref, 459 struct se_node_acl, acl_kref); 460 struct se_portal_group *se_tpg = nacl->se_tpg; 461 462 if (!nacl->dynamic_stop) { 463 complete(&nacl->acl_free_comp); 464 return; 465 } 466 467 mutex_lock(&se_tpg->acl_node_mutex); 468 list_del(&nacl->acl_list); 469 mutex_unlock(&se_tpg->acl_node_mutex); 470 471 core_tpg_wait_for_nacl_pr_ref(nacl); 472 core_free_device_list_for_node(nacl, se_tpg); 473 kfree(nacl); 474 } 475 476 void target_put_nacl(struct se_node_acl *nacl) 477 { 478 kref_put(&nacl->acl_kref, target_complete_nacl); 479 } 480 EXPORT_SYMBOL(target_put_nacl); 481 482 void transport_deregister_session_configfs(struct se_session *se_sess) 483 { 484 struct se_node_acl *se_nacl; 485 unsigned long flags; 486 /* 487 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 488 */ 489 se_nacl = se_sess->se_node_acl; 490 if (se_nacl) { 491 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 492 if (!list_empty(&se_sess->sess_acl_list)) 493 list_del_init(&se_sess->sess_acl_list); 494 /* 495 * If the session list is empty, then clear the pointer. 496 * Otherwise, set the struct se_session pointer from the tail 497 * element of the per struct se_node_acl active session list. 498 */ 499 if (list_empty(&se_nacl->acl_sess_list)) 500 se_nacl->nacl_sess = NULL; 501 else { 502 se_nacl->nacl_sess = container_of( 503 se_nacl->acl_sess_list.prev, 504 struct se_session, sess_acl_list); 505 } 506 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 507 } 508 } 509 EXPORT_SYMBOL(transport_deregister_session_configfs); 510 511 void transport_free_session(struct se_session *se_sess) 512 { 513 struct se_node_acl *se_nacl = se_sess->se_node_acl; 514 515 /* 516 * Drop the se_node_acl->nacl_kref obtained from within 517 * core_tpg_get_initiator_node_acl(). 518 */ 519 if (se_nacl) { 520 struct se_portal_group *se_tpg = se_nacl->se_tpg; 521 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 522 unsigned long flags; 523 524 se_sess->se_node_acl = NULL; 525 526 /* 527 * Also determine if we need to drop the extra ->cmd_kref if 528 * it had been previously dynamically generated, and 529 * the endpoint is not caching dynamic ACLs. 530 */ 531 mutex_lock(&se_tpg->acl_node_mutex); 532 if (se_nacl->dynamic_node_acl && 533 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 534 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 535 if (list_empty(&se_nacl->acl_sess_list)) 536 se_nacl->dynamic_stop = true; 537 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 538 539 if (se_nacl->dynamic_stop) 540 list_del(&se_nacl->acl_list); 541 } 542 mutex_unlock(&se_tpg->acl_node_mutex); 543 544 if (se_nacl->dynamic_stop) 545 target_put_nacl(se_nacl); 546 547 target_put_nacl(se_nacl); 548 } 549 if (se_sess->sess_cmd_map) { 550 percpu_ida_destroy(&se_sess->sess_tag_pool); 551 kvfree(se_sess->sess_cmd_map); 552 } 553 kmem_cache_free(se_sess_cache, se_sess); 554 } 555 EXPORT_SYMBOL(transport_free_session); 556 557 void transport_deregister_session(struct se_session *se_sess) 558 { 559 struct se_portal_group *se_tpg = se_sess->se_tpg; 560 unsigned long flags; 561 562 if (!se_tpg) { 563 transport_free_session(se_sess); 564 return; 565 } 566 567 spin_lock_irqsave(&se_tpg->session_lock, flags); 568 list_del(&se_sess->sess_list); 569 se_sess->se_tpg = NULL; 570 se_sess->fabric_sess_ptr = NULL; 571 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 572 573 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 574 se_tpg->se_tpg_tfo->get_fabric_name()); 575 /* 576 * If last kref is dropping now for an explicit NodeACL, awake sleeping 577 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 578 * removal context from within transport_free_session() code. 579 * 580 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 581 * to release all remaining generate_node_acl=1 created ACL resources. 582 */ 583 584 transport_free_session(se_sess); 585 } 586 EXPORT_SYMBOL(transport_deregister_session); 587 588 static void target_remove_from_state_list(struct se_cmd *cmd) 589 { 590 struct se_device *dev = cmd->se_dev; 591 unsigned long flags; 592 593 if (!dev) 594 return; 595 596 if (cmd->transport_state & CMD_T_BUSY) 597 return; 598 599 spin_lock_irqsave(&dev->execute_task_lock, flags); 600 if (cmd->state_active) { 601 list_del(&cmd->state_list); 602 cmd->state_active = false; 603 } 604 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 605 } 606 607 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 608 bool write_pending) 609 { 610 unsigned long flags; 611 612 if (remove_from_lists) { 613 target_remove_from_state_list(cmd); 614 615 /* 616 * Clear struct se_cmd->se_lun before the handoff to FE. 617 */ 618 cmd->se_lun = NULL; 619 } 620 621 spin_lock_irqsave(&cmd->t_state_lock, flags); 622 if (write_pending) 623 cmd->t_state = TRANSPORT_WRITE_PENDING; 624 625 /* 626 * Determine if frontend context caller is requesting the stopping of 627 * this command for frontend exceptions. 628 */ 629 if (cmd->transport_state & CMD_T_STOP) { 630 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 631 __func__, __LINE__, cmd->tag); 632 633 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 634 635 complete_all(&cmd->t_transport_stop_comp); 636 return 1; 637 } 638 639 cmd->transport_state &= ~CMD_T_ACTIVE; 640 if (remove_from_lists) { 641 /* 642 * Some fabric modules like tcm_loop can release 643 * their internally allocated I/O reference now and 644 * struct se_cmd now. 645 * 646 * Fabric modules are expected to return '1' here if the 647 * se_cmd being passed is released at this point, 648 * or zero if not being released. 649 */ 650 if (cmd->se_tfo->check_stop_free != NULL) { 651 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 652 return cmd->se_tfo->check_stop_free(cmd); 653 } 654 } 655 656 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 657 return 0; 658 } 659 660 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 661 { 662 return transport_cmd_check_stop(cmd, true, false); 663 } 664 665 static void transport_lun_remove_cmd(struct se_cmd *cmd) 666 { 667 struct se_lun *lun = cmd->se_lun; 668 669 if (!lun) 670 return; 671 672 if (cmpxchg(&cmd->lun_ref_active, true, false)) 673 percpu_ref_put(&lun->lun_ref); 674 } 675 676 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 677 { 678 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); 679 680 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 681 transport_lun_remove_cmd(cmd); 682 /* 683 * Allow the fabric driver to unmap any resources before 684 * releasing the descriptor via TFO->release_cmd() 685 */ 686 if (remove) 687 cmd->se_tfo->aborted_task(cmd); 688 689 if (transport_cmd_check_stop_to_fabric(cmd)) 690 return; 691 if (remove && ack_kref) 692 transport_put_cmd(cmd); 693 } 694 695 static void target_complete_failure_work(struct work_struct *work) 696 { 697 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 698 699 transport_generic_request_failure(cmd, 700 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 701 } 702 703 /* 704 * Used when asking transport to copy Sense Data from the underlying 705 * Linux/SCSI struct scsi_cmnd 706 */ 707 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 708 { 709 struct se_device *dev = cmd->se_dev; 710 711 WARN_ON(!cmd->se_lun); 712 713 if (!dev) 714 return NULL; 715 716 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 717 return NULL; 718 719 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 720 721 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 722 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 723 return cmd->sense_buffer; 724 } 725 726 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 727 { 728 struct se_device *dev = cmd->se_dev; 729 int success = scsi_status == GOOD; 730 unsigned long flags; 731 732 cmd->scsi_status = scsi_status; 733 734 735 spin_lock_irqsave(&cmd->t_state_lock, flags); 736 cmd->transport_state &= ~CMD_T_BUSY; 737 738 if (dev && dev->transport->transport_complete) { 739 dev->transport->transport_complete(cmd, 740 cmd->t_data_sg, 741 transport_get_sense_buffer(cmd)); 742 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 743 success = 1; 744 } 745 746 /* 747 * Check for case where an explicit ABORT_TASK has been received 748 * and transport_wait_for_tasks() will be waiting for completion.. 749 */ 750 if (cmd->transport_state & CMD_T_ABORTED || 751 cmd->transport_state & CMD_T_STOP) { 752 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 753 complete_all(&cmd->t_transport_stop_comp); 754 return; 755 } else if (!success) { 756 INIT_WORK(&cmd->work, target_complete_failure_work); 757 } else { 758 INIT_WORK(&cmd->work, target_complete_ok_work); 759 } 760 761 cmd->t_state = TRANSPORT_COMPLETE; 762 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 763 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 764 765 if (cmd->se_cmd_flags & SCF_USE_CPUID) 766 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 767 else 768 queue_work(target_completion_wq, &cmd->work); 769 } 770 EXPORT_SYMBOL(target_complete_cmd); 771 772 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 773 { 774 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 775 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 776 cmd->residual_count += cmd->data_length - length; 777 } else { 778 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 779 cmd->residual_count = cmd->data_length - length; 780 } 781 782 cmd->data_length = length; 783 } 784 785 target_complete_cmd(cmd, scsi_status); 786 } 787 EXPORT_SYMBOL(target_complete_cmd_with_length); 788 789 static void target_add_to_state_list(struct se_cmd *cmd) 790 { 791 struct se_device *dev = cmd->se_dev; 792 unsigned long flags; 793 794 spin_lock_irqsave(&dev->execute_task_lock, flags); 795 if (!cmd->state_active) { 796 list_add_tail(&cmd->state_list, &dev->state_list); 797 cmd->state_active = true; 798 } 799 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 800 } 801 802 /* 803 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 804 */ 805 static void transport_write_pending_qf(struct se_cmd *cmd); 806 static void transport_complete_qf(struct se_cmd *cmd); 807 808 void target_qf_do_work(struct work_struct *work) 809 { 810 struct se_device *dev = container_of(work, struct se_device, 811 qf_work_queue); 812 LIST_HEAD(qf_cmd_list); 813 struct se_cmd *cmd, *cmd_tmp; 814 815 spin_lock_irq(&dev->qf_cmd_lock); 816 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 817 spin_unlock_irq(&dev->qf_cmd_lock); 818 819 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 820 list_del(&cmd->se_qf_node); 821 atomic_dec_mb(&dev->dev_qf_count); 822 823 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 824 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 825 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 826 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 827 : "UNKNOWN"); 828 829 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 830 transport_write_pending_qf(cmd); 831 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 832 transport_complete_qf(cmd); 833 } 834 } 835 836 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 837 { 838 switch (cmd->data_direction) { 839 case DMA_NONE: 840 return "NONE"; 841 case DMA_FROM_DEVICE: 842 return "READ"; 843 case DMA_TO_DEVICE: 844 return "WRITE"; 845 case DMA_BIDIRECTIONAL: 846 return "BIDI"; 847 default: 848 break; 849 } 850 851 return "UNKNOWN"; 852 } 853 854 void transport_dump_dev_state( 855 struct se_device *dev, 856 char *b, 857 int *bl) 858 { 859 *bl += sprintf(b + *bl, "Status: "); 860 if (dev->export_count) 861 *bl += sprintf(b + *bl, "ACTIVATED"); 862 else 863 *bl += sprintf(b + *bl, "DEACTIVATED"); 864 865 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 866 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 867 dev->dev_attrib.block_size, 868 dev->dev_attrib.hw_max_sectors); 869 *bl += sprintf(b + *bl, " "); 870 } 871 872 void transport_dump_vpd_proto_id( 873 struct t10_vpd *vpd, 874 unsigned char *p_buf, 875 int p_buf_len) 876 { 877 unsigned char buf[VPD_TMP_BUF_SIZE]; 878 int len; 879 880 memset(buf, 0, VPD_TMP_BUF_SIZE); 881 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 882 883 switch (vpd->protocol_identifier) { 884 case 0x00: 885 sprintf(buf+len, "Fibre Channel\n"); 886 break; 887 case 0x10: 888 sprintf(buf+len, "Parallel SCSI\n"); 889 break; 890 case 0x20: 891 sprintf(buf+len, "SSA\n"); 892 break; 893 case 0x30: 894 sprintf(buf+len, "IEEE 1394\n"); 895 break; 896 case 0x40: 897 sprintf(buf+len, "SCSI Remote Direct Memory Access" 898 " Protocol\n"); 899 break; 900 case 0x50: 901 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 902 break; 903 case 0x60: 904 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 905 break; 906 case 0x70: 907 sprintf(buf+len, "Automation/Drive Interface Transport" 908 " Protocol\n"); 909 break; 910 case 0x80: 911 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 912 break; 913 default: 914 sprintf(buf+len, "Unknown 0x%02x\n", 915 vpd->protocol_identifier); 916 break; 917 } 918 919 if (p_buf) 920 strncpy(p_buf, buf, p_buf_len); 921 else 922 pr_debug("%s", buf); 923 } 924 925 void 926 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 927 { 928 /* 929 * Check if the Protocol Identifier Valid (PIV) bit is set.. 930 * 931 * from spc3r23.pdf section 7.5.1 932 */ 933 if (page_83[1] & 0x80) { 934 vpd->protocol_identifier = (page_83[0] & 0xf0); 935 vpd->protocol_identifier_set = 1; 936 transport_dump_vpd_proto_id(vpd, NULL, 0); 937 } 938 } 939 EXPORT_SYMBOL(transport_set_vpd_proto_id); 940 941 int transport_dump_vpd_assoc( 942 struct t10_vpd *vpd, 943 unsigned char *p_buf, 944 int p_buf_len) 945 { 946 unsigned char buf[VPD_TMP_BUF_SIZE]; 947 int ret = 0; 948 int len; 949 950 memset(buf, 0, VPD_TMP_BUF_SIZE); 951 len = sprintf(buf, "T10 VPD Identifier Association: "); 952 953 switch (vpd->association) { 954 case 0x00: 955 sprintf(buf+len, "addressed logical unit\n"); 956 break; 957 case 0x10: 958 sprintf(buf+len, "target port\n"); 959 break; 960 case 0x20: 961 sprintf(buf+len, "SCSI target device\n"); 962 break; 963 default: 964 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 965 ret = -EINVAL; 966 break; 967 } 968 969 if (p_buf) 970 strncpy(p_buf, buf, p_buf_len); 971 else 972 pr_debug("%s", buf); 973 974 return ret; 975 } 976 977 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 978 { 979 /* 980 * The VPD identification association.. 981 * 982 * from spc3r23.pdf Section 7.6.3.1 Table 297 983 */ 984 vpd->association = (page_83[1] & 0x30); 985 return transport_dump_vpd_assoc(vpd, NULL, 0); 986 } 987 EXPORT_SYMBOL(transport_set_vpd_assoc); 988 989 int transport_dump_vpd_ident_type( 990 struct t10_vpd *vpd, 991 unsigned char *p_buf, 992 int p_buf_len) 993 { 994 unsigned char buf[VPD_TMP_BUF_SIZE]; 995 int ret = 0; 996 int len; 997 998 memset(buf, 0, VPD_TMP_BUF_SIZE); 999 len = sprintf(buf, "T10 VPD Identifier Type: "); 1000 1001 switch (vpd->device_identifier_type) { 1002 case 0x00: 1003 sprintf(buf+len, "Vendor specific\n"); 1004 break; 1005 case 0x01: 1006 sprintf(buf+len, "T10 Vendor ID based\n"); 1007 break; 1008 case 0x02: 1009 sprintf(buf+len, "EUI-64 based\n"); 1010 break; 1011 case 0x03: 1012 sprintf(buf+len, "NAA\n"); 1013 break; 1014 case 0x04: 1015 sprintf(buf+len, "Relative target port identifier\n"); 1016 break; 1017 case 0x08: 1018 sprintf(buf+len, "SCSI name string\n"); 1019 break; 1020 default: 1021 sprintf(buf+len, "Unsupported: 0x%02x\n", 1022 vpd->device_identifier_type); 1023 ret = -EINVAL; 1024 break; 1025 } 1026 1027 if (p_buf) { 1028 if (p_buf_len < strlen(buf)+1) 1029 return -EINVAL; 1030 strncpy(p_buf, buf, p_buf_len); 1031 } else { 1032 pr_debug("%s", buf); 1033 } 1034 1035 return ret; 1036 } 1037 1038 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1039 { 1040 /* 1041 * The VPD identifier type.. 1042 * 1043 * from spc3r23.pdf Section 7.6.3.1 Table 298 1044 */ 1045 vpd->device_identifier_type = (page_83[1] & 0x0f); 1046 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1047 } 1048 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1049 1050 int transport_dump_vpd_ident( 1051 struct t10_vpd *vpd, 1052 unsigned char *p_buf, 1053 int p_buf_len) 1054 { 1055 unsigned char buf[VPD_TMP_BUF_SIZE]; 1056 int ret = 0; 1057 1058 memset(buf, 0, VPD_TMP_BUF_SIZE); 1059 1060 switch (vpd->device_identifier_code_set) { 1061 case 0x01: /* Binary */ 1062 snprintf(buf, sizeof(buf), 1063 "T10 VPD Binary Device Identifier: %s\n", 1064 &vpd->device_identifier[0]); 1065 break; 1066 case 0x02: /* ASCII */ 1067 snprintf(buf, sizeof(buf), 1068 "T10 VPD ASCII Device Identifier: %s\n", 1069 &vpd->device_identifier[0]); 1070 break; 1071 case 0x03: /* UTF-8 */ 1072 snprintf(buf, sizeof(buf), 1073 "T10 VPD UTF-8 Device Identifier: %s\n", 1074 &vpd->device_identifier[0]); 1075 break; 1076 default: 1077 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1078 " 0x%02x", vpd->device_identifier_code_set); 1079 ret = -EINVAL; 1080 break; 1081 } 1082 1083 if (p_buf) 1084 strncpy(p_buf, buf, p_buf_len); 1085 else 1086 pr_debug("%s", buf); 1087 1088 return ret; 1089 } 1090 1091 int 1092 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1093 { 1094 static const char hex_str[] = "0123456789abcdef"; 1095 int j = 0, i = 4; /* offset to start of the identifier */ 1096 1097 /* 1098 * The VPD Code Set (encoding) 1099 * 1100 * from spc3r23.pdf Section 7.6.3.1 Table 296 1101 */ 1102 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1103 switch (vpd->device_identifier_code_set) { 1104 case 0x01: /* Binary */ 1105 vpd->device_identifier[j++] = 1106 hex_str[vpd->device_identifier_type]; 1107 while (i < (4 + page_83[3])) { 1108 vpd->device_identifier[j++] = 1109 hex_str[(page_83[i] & 0xf0) >> 4]; 1110 vpd->device_identifier[j++] = 1111 hex_str[page_83[i] & 0x0f]; 1112 i++; 1113 } 1114 break; 1115 case 0x02: /* ASCII */ 1116 case 0x03: /* UTF-8 */ 1117 while (i < (4 + page_83[3])) 1118 vpd->device_identifier[j++] = page_83[i++]; 1119 break; 1120 default: 1121 break; 1122 } 1123 1124 return transport_dump_vpd_ident(vpd, NULL, 0); 1125 } 1126 EXPORT_SYMBOL(transport_set_vpd_ident); 1127 1128 static sense_reason_t 1129 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1130 unsigned int size) 1131 { 1132 u32 mtl; 1133 1134 if (!cmd->se_tfo->max_data_sg_nents) 1135 return TCM_NO_SENSE; 1136 /* 1137 * Check if fabric enforced maximum SGL entries per I/O descriptor 1138 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1139 * residual_count and reduce original cmd->data_length to maximum 1140 * length based on single PAGE_SIZE entry scatter-lists. 1141 */ 1142 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1143 if (cmd->data_length > mtl) { 1144 /* 1145 * If an existing CDB overflow is present, calculate new residual 1146 * based on CDB size minus fabric maximum transfer length. 1147 * 1148 * If an existing CDB underflow is present, calculate new residual 1149 * based on original cmd->data_length minus fabric maximum transfer 1150 * length. 1151 * 1152 * Otherwise, set the underflow residual based on cmd->data_length 1153 * minus fabric maximum transfer length. 1154 */ 1155 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1156 cmd->residual_count = (size - mtl); 1157 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1158 u32 orig_dl = size + cmd->residual_count; 1159 cmd->residual_count = (orig_dl - mtl); 1160 } else { 1161 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1162 cmd->residual_count = (cmd->data_length - mtl); 1163 } 1164 cmd->data_length = mtl; 1165 /* 1166 * Reset sbc_check_prot() calculated protection payload 1167 * length based upon the new smaller MTL. 1168 */ 1169 if (cmd->prot_length) { 1170 u32 sectors = (mtl / dev->dev_attrib.block_size); 1171 cmd->prot_length = dev->prot_length * sectors; 1172 } 1173 } 1174 return TCM_NO_SENSE; 1175 } 1176 1177 sense_reason_t 1178 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1179 { 1180 struct se_device *dev = cmd->se_dev; 1181 1182 if (cmd->unknown_data_length) { 1183 cmd->data_length = size; 1184 } else if (size != cmd->data_length) { 1185 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1186 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1187 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1188 cmd->data_length, size, cmd->t_task_cdb[0]); 1189 1190 if (cmd->data_direction == DMA_TO_DEVICE && 1191 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1192 pr_err("Rejecting underflow/overflow WRITE data\n"); 1193 return TCM_INVALID_CDB_FIELD; 1194 } 1195 /* 1196 * Reject READ_* or WRITE_* with overflow/underflow for 1197 * type SCF_SCSI_DATA_CDB. 1198 */ 1199 if (dev->dev_attrib.block_size != 512) { 1200 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1201 " CDB on non 512-byte sector setup subsystem" 1202 " plugin: %s\n", dev->transport->name); 1203 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1204 return TCM_INVALID_CDB_FIELD; 1205 } 1206 /* 1207 * For the overflow case keep the existing fabric provided 1208 * ->data_length. Otherwise for the underflow case, reset 1209 * ->data_length to the smaller SCSI expected data transfer 1210 * length. 1211 */ 1212 if (size > cmd->data_length) { 1213 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1214 cmd->residual_count = (size - cmd->data_length); 1215 } else { 1216 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1217 cmd->residual_count = (cmd->data_length - size); 1218 cmd->data_length = size; 1219 } 1220 } 1221 1222 return target_check_max_data_sg_nents(cmd, dev, size); 1223 1224 } 1225 1226 /* 1227 * Used by fabric modules containing a local struct se_cmd within their 1228 * fabric dependent per I/O descriptor. 1229 * 1230 * Preserves the value of @cmd->tag. 1231 */ 1232 void transport_init_se_cmd( 1233 struct se_cmd *cmd, 1234 const struct target_core_fabric_ops *tfo, 1235 struct se_session *se_sess, 1236 u32 data_length, 1237 int data_direction, 1238 int task_attr, 1239 unsigned char *sense_buffer) 1240 { 1241 INIT_LIST_HEAD(&cmd->se_delayed_node); 1242 INIT_LIST_HEAD(&cmd->se_qf_node); 1243 INIT_LIST_HEAD(&cmd->se_cmd_list); 1244 INIT_LIST_HEAD(&cmd->state_list); 1245 init_completion(&cmd->t_transport_stop_comp); 1246 init_completion(&cmd->cmd_wait_comp); 1247 spin_lock_init(&cmd->t_state_lock); 1248 kref_init(&cmd->cmd_kref); 1249 cmd->transport_state = CMD_T_DEV_ACTIVE; 1250 1251 cmd->se_tfo = tfo; 1252 cmd->se_sess = se_sess; 1253 cmd->data_length = data_length; 1254 cmd->data_direction = data_direction; 1255 cmd->sam_task_attr = task_attr; 1256 cmd->sense_buffer = sense_buffer; 1257 1258 cmd->state_active = false; 1259 } 1260 EXPORT_SYMBOL(transport_init_se_cmd); 1261 1262 static sense_reason_t 1263 transport_check_alloc_task_attr(struct se_cmd *cmd) 1264 { 1265 struct se_device *dev = cmd->se_dev; 1266 1267 /* 1268 * Check if SAM Task Attribute emulation is enabled for this 1269 * struct se_device storage object 1270 */ 1271 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1272 return 0; 1273 1274 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1275 pr_debug("SAM Task Attribute ACA" 1276 " emulation is not supported\n"); 1277 return TCM_INVALID_CDB_FIELD; 1278 } 1279 1280 return 0; 1281 } 1282 1283 sense_reason_t 1284 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1285 { 1286 struct se_device *dev = cmd->se_dev; 1287 sense_reason_t ret; 1288 1289 /* 1290 * Ensure that the received CDB is less than the max (252 + 8) bytes 1291 * for VARIABLE_LENGTH_CMD 1292 */ 1293 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1294 pr_err("Received SCSI CDB with command_size: %d that" 1295 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1296 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1297 return TCM_INVALID_CDB_FIELD; 1298 } 1299 /* 1300 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1301 * allocate the additional extended CDB buffer now.. Otherwise 1302 * setup the pointer from __t_task_cdb to t_task_cdb. 1303 */ 1304 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1305 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1306 GFP_KERNEL); 1307 if (!cmd->t_task_cdb) { 1308 pr_err("Unable to allocate cmd->t_task_cdb" 1309 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1310 scsi_command_size(cdb), 1311 (unsigned long)sizeof(cmd->__t_task_cdb)); 1312 return TCM_OUT_OF_RESOURCES; 1313 } 1314 } else 1315 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1316 /* 1317 * Copy the original CDB into cmd-> 1318 */ 1319 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1320 1321 trace_target_sequencer_start(cmd); 1322 1323 ret = dev->transport->parse_cdb(cmd); 1324 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1325 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1326 cmd->se_tfo->get_fabric_name(), 1327 cmd->se_sess->se_node_acl->initiatorname, 1328 cmd->t_task_cdb[0]); 1329 if (ret) 1330 return ret; 1331 1332 ret = transport_check_alloc_task_attr(cmd); 1333 if (ret) 1334 return ret; 1335 1336 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1337 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1338 return 0; 1339 } 1340 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1341 1342 /* 1343 * Used by fabric module frontends to queue tasks directly. 1344 * May only be used from process context. 1345 */ 1346 int transport_handle_cdb_direct( 1347 struct se_cmd *cmd) 1348 { 1349 sense_reason_t ret; 1350 1351 if (!cmd->se_lun) { 1352 dump_stack(); 1353 pr_err("cmd->se_lun is NULL\n"); 1354 return -EINVAL; 1355 } 1356 if (in_interrupt()) { 1357 dump_stack(); 1358 pr_err("transport_generic_handle_cdb cannot be called" 1359 " from interrupt context\n"); 1360 return -EINVAL; 1361 } 1362 /* 1363 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1364 * outstanding descriptors are handled correctly during shutdown via 1365 * transport_wait_for_tasks() 1366 * 1367 * Also, we don't take cmd->t_state_lock here as we only expect 1368 * this to be called for initial descriptor submission. 1369 */ 1370 cmd->t_state = TRANSPORT_NEW_CMD; 1371 cmd->transport_state |= CMD_T_ACTIVE; 1372 1373 /* 1374 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1375 * so follow TRANSPORT_NEW_CMD processing thread context usage 1376 * and call transport_generic_request_failure() if necessary.. 1377 */ 1378 ret = transport_generic_new_cmd(cmd); 1379 if (ret) 1380 transport_generic_request_failure(cmd, ret); 1381 return 0; 1382 } 1383 EXPORT_SYMBOL(transport_handle_cdb_direct); 1384 1385 sense_reason_t 1386 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1387 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1388 { 1389 if (!sgl || !sgl_count) 1390 return 0; 1391 1392 /* 1393 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1394 * scatterlists already have been set to follow what the fabric 1395 * passes for the original expected data transfer length. 1396 */ 1397 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1398 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1399 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1400 return TCM_INVALID_CDB_FIELD; 1401 } 1402 1403 cmd->t_data_sg = sgl; 1404 cmd->t_data_nents = sgl_count; 1405 cmd->t_bidi_data_sg = sgl_bidi; 1406 cmd->t_bidi_data_nents = sgl_bidi_count; 1407 1408 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1409 return 0; 1410 } 1411 1412 /* 1413 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1414 * se_cmd + use pre-allocated SGL memory. 1415 * 1416 * @se_cmd: command descriptor to submit 1417 * @se_sess: associated se_sess for endpoint 1418 * @cdb: pointer to SCSI CDB 1419 * @sense: pointer to SCSI sense buffer 1420 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1421 * @data_length: fabric expected data transfer length 1422 * @task_addr: SAM task attribute 1423 * @data_dir: DMA data direction 1424 * @flags: flags for command submission from target_sc_flags_tables 1425 * @sgl: struct scatterlist memory for unidirectional mapping 1426 * @sgl_count: scatterlist count for unidirectional mapping 1427 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1428 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1429 * @sgl_prot: struct scatterlist memory protection information 1430 * @sgl_prot_count: scatterlist count for protection information 1431 * 1432 * Task tags are supported if the caller has set @se_cmd->tag. 1433 * 1434 * Returns non zero to signal active I/O shutdown failure. All other 1435 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1436 * but still return zero here. 1437 * 1438 * This may only be called from process context, and also currently 1439 * assumes internal allocation of fabric payload buffer by target-core. 1440 */ 1441 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1442 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1443 u32 data_length, int task_attr, int data_dir, int flags, 1444 struct scatterlist *sgl, u32 sgl_count, 1445 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1446 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1447 { 1448 struct se_portal_group *se_tpg; 1449 sense_reason_t rc; 1450 int ret; 1451 1452 se_tpg = se_sess->se_tpg; 1453 BUG_ON(!se_tpg); 1454 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1455 BUG_ON(in_interrupt()); 1456 /* 1457 * Initialize se_cmd for target operation. From this point 1458 * exceptions are handled by sending exception status via 1459 * target_core_fabric_ops->queue_status() callback 1460 */ 1461 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1462 data_length, data_dir, task_attr, sense); 1463 1464 if (flags & TARGET_SCF_USE_CPUID) 1465 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1466 else 1467 se_cmd->cpuid = WORK_CPU_UNBOUND; 1468 1469 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1470 se_cmd->unknown_data_length = 1; 1471 /* 1472 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1473 * se_sess->sess_cmd_list. A second kref_get here is necessary 1474 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1475 * kref_put() to happen during fabric packet acknowledgement. 1476 */ 1477 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1478 if (ret) 1479 return ret; 1480 /* 1481 * Signal bidirectional data payloads to target-core 1482 */ 1483 if (flags & TARGET_SCF_BIDI_OP) 1484 se_cmd->se_cmd_flags |= SCF_BIDI; 1485 /* 1486 * Locate se_lun pointer and attach it to struct se_cmd 1487 */ 1488 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1489 if (rc) { 1490 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1491 target_put_sess_cmd(se_cmd); 1492 return 0; 1493 } 1494 1495 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1496 if (rc != 0) { 1497 transport_generic_request_failure(se_cmd, rc); 1498 return 0; 1499 } 1500 1501 /* 1502 * Save pointers for SGLs containing protection information, 1503 * if present. 1504 */ 1505 if (sgl_prot_count) { 1506 se_cmd->t_prot_sg = sgl_prot; 1507 se_cmd->t_prot_nents = sgl_prot_count; 1508 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1509 } 1510 1511 /* 1512 * When a non zero sgl_count has been passed perform SGL passthrough 1513 * mapping for pre-allocated fabric memory instead of having target 1514 * core perform an internal SGL allocation.. 1515 */ 1516 if (sgl_count != 0) { 1517 BUG_ON(!sgl); 1518 1519 /* 1520 * A work-around for tcm_loop as some userspace code via 1521 * scsi-generic do not memset their associated read buffers, 1522 * so go ahead and do that here for type non-data CDBs. Also 1523 * note that this is currently guaranteed to be a single SGL 1524 * for this case by target core in target_setup_cmd_from_cdb() 1525 * -> transport_generic_cmd_sequencer(). 1526 */ 1527 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1528 se_cmd->data_direction == DMA_FROM_DEVICE) { 1529 unsigned char *buf = NULL; 1530 1531 if (sgl) 1532 buf = kmap(sg_page(sgl)) + sgl->offset; 1533 1534 if (buf) { 1535 memset(buf, 0, sgl->length); 1536 kunmap(sg_page(sgl)); 1537 } 1538 } 1539 1540 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1541 sgl_bidi, sgl_bidi_count); 1542 if (rc != 0) { 1543 transport_generic_request_failure(se_cmd, rc); 1544 return 0; 1545 } 1546 } 1547 1548 /* 1549 * Check if we need to delay processing because of ALUA 1550 * Active/NonOptimized primary access state.. 1551 */ 1552 core_alua_check_nonop_delay(se_cmd); 1553 1554 transport_handle_cdb_direct(se_cmd); 1555 return 0; 1556 } 1557 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1558 1559 /* 1560 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1561 * 1562 * @se_cmd: command descriptor to submit 1563 * @se_sess: associated se_sess for endpoint 1564 * @cdb: pointer to SCSI CDB 1565 * @sense: pointer to SCSI sense buffer 1566 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1567 * @data_length: fabric expected data transfer length 1568 * @task_addr: SAM task attribute 1569 * @data_dir: DMA data direction 1570 * @flags: flags for command submission from target_sc_flags_tables 1571 * 1572 * Task tags are supported if the caller has set @se_cmd->tag. 1573 * 1574 * Returns non zero to signal active I/O shutdown failure. All other 1575 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1576 * but still return zero here. 1577 * 1578 * This may only be called from process context, and also currently 1579 * assumes internal allocation of fabric payload buffer by target-core. 1580 * 1581 * It also assumes interal target core SGL memory allocation. 1582 */ 1583 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1584 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1585 u32 data_length, int task_attr, int data_dir, int flags) 1586 { 1587 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1588 unpacked_lun, data_length, task_attr, data_dir, 1589 flags, NULL, 0, NULL, 0, NULL, 0); 1590 } 1591 EXPORT_SYMBOL(target_submit_cmd); 1592 1593 static void target_complete_tmr_failure(struct work_struct *work) 1594 { 1595 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1596 1597 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1598 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1599 1600 transport_cmd_check_stop_to_fabric(se_cmd); 1601 } 1602 1603 /** 1604 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1605 * for TMR CDBs 1606 * 1607 * @se_cmd: command descriptor to submit 1608 * @se_sess: associated se_sess for endpoint 1609 * @sense: pointer to SCSI sense buffer 1610 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1611 * @fabric_context: fabric context for TMR req 1612 * @tm_type: Type of TM request 1613 * @gfp: gfp type for caller 1614 * @tag: referenced task tag for TMR_ABORT_TASK 1615 * @flags: submit cmd flags 1616 * 1617 * Callable from all contexts. 1618 **/ 1619 1620 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1621 unsigned char *sense, u64 unpacked_lun, 1622 void *fabric_tmr_ptr, unsigned char tm_type, 1623 gfp_t gfp, u64 tag, int flags) 1624 { 1625 struct se_portal_group *se_tpg; 1626 int ret; 1627 1628 se_tpg = se_sess->se_tpg; 1629 BUG_ON(!se_tpg); 1630 1631 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1632 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1633 /* 1634 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1635 * allocation failure. 1636 */ 1637 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1638 if (ret < 0) 1639 return -ENOMEM; 1640 1641 if (tm_type == TMR_ABORT_TASK) 1642 se_cmd->se_tmr_req->ref_task_tag = tag; 1643 1644 /* See target_submit_cmd for commentary */ 1645 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1646 if (ret) { 1647 core_tmr_release_req(se_cmd->se_tmr_req); 1648 return ret; 1649 } 1650 1651 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1652 if (ret) { 1653 /* 1654 * For callback during failure handling, push this work off 1655 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1656 */ 1657 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1658 schedule_work(&se_cmd->work); 1659 return 0; 1660 } 1661 transport_generic_handle_tmr(se_cmd); 1662 return 0; 1663 } 1664 EXPORT_SYMBOL(target_submit_tmr); 1665 1666 /* 1667 * Handle SAM-esque emulation for generic transport request failures. 1668 */ 1669 void transport_generic_request_failure(struct se_cmd *cmd, 1670 sense_reason_t sense_reason) 1671 { 1672 int ret = 0, post_ret = 0; 1673 1674 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" 1675 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); 1676 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1677 cmd->se_tfo->get_cmd_state(cmd), 1678 cmd->t_state, sense_reason); 1679 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1680 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1681 (cmd->transport_state & CMD_T_STOP) != 0, 1682 (cmd->transport_state & CMD_T_SENT) != 0); 1683 1684 /* 1685 * For SAM Task Attribute emulation for failed struct se_cmd 1686 */ 1687 transport_complete_task_attr(cmd); 1688 /* 1689 * Handle special case for COMPARE_AND_WRITE failure, where the 1690 * callback is expected to drop the per device ->caw_sem. 1691 */ 1692 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1693 cmd->transport_complete_callback) 1694 cmd->transport_complete_callback(cmd, false, &post_ret); 1695 1696 switch (sense_reason) { 1697 case TCM_NON_EXISTENT_LUN: 1698 case TCM_UNSUPPORTED_SCSI_OPCODE: 1699 case TCM_INVALID_CDB_FIELD: 1700 case TCM_INVALID_PARAMETER_LIST: 1701 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1702 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1703 case TCM_UNKNOWN_MODE_PAGE: 1704 case TCM_WRITE_PROTECTED: 1705 case TCM_ADDRESS_OUT_OF_RANGE: 1706 case TCM_CHECK_CONDITION_ABORT_CMD: 1707 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1708 case TCM_CHECK_CONDITION_NOT_READY: 1709 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1710 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1711 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1712 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1713 case TCM_TOO_MANY_TARGET_DESCS: 1714 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1715 case TCM_TOO_MANY_SEGMENT_DESCS: 1716 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1717 break; 1718 case TCM_OUT_OF_RESOURCES: 1719 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1720 break; 1721 case TCM_RESERVATION_CONFLICT: 1722 /* 1723 * No SENSE Data payload for this case, set SCSI Status 1724 * and queue the response to $FABRIC_MOD. 1725 * 1726 * Uses linux/include/scsi/scsi.h SAM status codes defs 1727 */ 1728 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1729 /* 1730 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1731 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1732 * CONFLICT STATUS. 1733 * 1734 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1735 */ 1736 if (cmd->se_sess && 1737 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1738 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1739 cmd->orig_fe_lun, 0x2C, 1740 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1741 } 1742 trace_target_cmd_complete(cmd); 1743 ret = cmd->se_tfo->queue_status(cmd); 1744 if (ret == -EAGAIN || ret == -ENOMEM) 1745 goto queue_full; 1746 goto check_stop; 1747 default: 1748 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1749 cmd->t_task_cdb[0], sense_reason); 1750 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1751 break; 1752 } 1753 1754 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1755 if (ret == -EAGAIN || ret == -ENOMEM) 1756 goto queue_full; 1757 1758 check_stop: 1759 transport_lun_remove_cmd(cmd); 1760 transport_cmd_check_stop_to_fabric(cmd); 1761 return; 1762 1763 queue_full: 1764 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1765 transport_handle_queue_full(cmd, cmd->se_dev); 1766 } 1767 EXPORT_SYMBOL(transport_generic_request_failure); 1768 1769 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1770 { 1771 sense_reason_t ret; 1772 1773 if (!cmd->execute_cmd) { 1774 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1775 goto err; 1776 } 1777 if (do_checks) { 1778 /* 1779 * Check for an existing UNIT ATTENTION condition after 1780 * target_handle_task_attr() has done SAM task attr 1781 * checking, and possibly have already defered execution 1782 * out to target_restart_delayed_cmds() context. 1783 */ 1784 ret = target_scsi3_ua_check(cmd); 1785 if (ret) 1786 goto err; 1787 1788 ret = target_alua_state_check(cmd); 1789 if (ret) 1790 goto err; 1791 1792 ret = target_check_reservation(cmd); 1793 if (ret) { 1794 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1795 goto err; 1796 } 1797 } 1798 1799 ret = cmd->execute_cmd(cmd); 1800 if (!ret) 1801 return; 1802 err: 1803 spin_lock_irq(&cmd->t_state_lock); 1804 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1805 spin_unlock_irq(&cmd->t_state_lock); 1806 1807 transport_generic_request_failure(cmd, ret); 1808 } 1809 1810 static int target_write_prot_action(struct se_cmd *cmd) 1811 { 1812 u32 sectors; 1813 /* 1814 * Perform WRITE_INSERT of PI using software emulation when backend 1815 * device has PI enabled, if the transport has not already generated 1816 * PI using hardware WRITE_INSERT offload. 1817 */ 1818 switch (cmd->prot_op) { 1819 case TARGET_PROT_DOUT_INSERT: 1820 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1821 sbc_dif_generate(cmd); 1822 break; 1823 case TARGET_PROT_DOUT_STRIP: 1824 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1825 break; 1826 1827 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1828 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1829 sectors, 0, cmd->t_prot_sg, 0); 1830 if (unlikely(cmd->pi_err)) { 1831 spin_lock_irq(&cmd->t_state_lock); 1832 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1833 spin_unlock_irq(&cmd->t_state_lock); 1834 transport_generic_request_failure(cmd, cmd->pi_err); 1835 return -1; 1836 } 1837 break; 1838 default: 1839 break; 1840 } 1841 1842 return 0; 1843 } 1844 1845 static bool target_handle_task_attr(struct se_cmd *cmd) 1846 { 1847 struct se_device *dev = cmd->se_dev; 1848 1849 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1850 return false; 1851 1852 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 1853 1854 /* 1855 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1856 * to allow the passed struct se_cmd list of tasks to the front of the list. 1857 */ 1858 switch (cmd->sam_task_attr) { 1859 case TCM_HEAD_TAG: 1860 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1861 cmd->t_task_cdb[0]); 1862 return false; 1863 case TCM_ORDERED_TAG: 1864 atomic_inc_mb(&dev->dev_ordered_sync); 1865 1866 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1867 cmd->t_task_cdb[0]); 1868 1869 /* 1870 * Execute an ORDERED command if no other older commands 1871 * exist that need to be completed first. 1872 */ 1873 if (!atomic_read(&dev->simple_cmds)) 1874 return false; 1875 break; 1876 default: 1877 /* 1878 * For SIMPLE and UNTAGGED Task Attribute commands 1879 */ 1880 atomic_inc_mb(&dev->simple_cmds); 1881 break; 1882 } 1883 1884 if (atomic_read(&dev->dev_ordered_sync) == 0) 1885 return false; 1886 1887 spin_lock(&dev->delayed_cmd_lock); 1888 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1889 spin_unlock(&dev->delayed_cmd_lock); 1890 1891 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1892 cmd->t_task_cdb[0], cmd->sam_task_attr); 1893 return true; 1894 } 1895 1896 static int __transport_check_aborted_status(struct se_cmd *, int); 1897 1898 void target_execute_cmd(struct se_cmd *cmd) 1899 { 1900 /* 1901 * Determine if frontend context caller is requesting the stopping of 1902 * this command for frontend exceptions. 1903 * 1904 * If the received CDB has aleady been aborted stop processing it here. 1905 */ 1906 spin_lock_irq(&cmd->t_state_lock); 1907 if (__transport_check_aborted_status(cmd, 1)) { 1908 spin_unlock_irq(&cmd->t_state_lock); 1909 return; 1910 } 1911 if (cmd->transport_state & CMD_T_STOP) { 1912 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1913 __func__, __LINE__, cmd->tag); 1914 1915 spin_unlock_irq(&cmd->t_state_lock); 1916 complete_all(&cmd->t_transport_stop_comp); 1917 return; 1918 } 1919 1920 cmd->t_state = TRANSPORT_PROCESSING; 1921 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1922 spin_unlock_irq(&cmd->t_state_lock); 1923 1924 if (target_write_prot_action(cmd)) 1925 return; 1926 1927 if (target_handle_task_attr(cmd)) { 1928 spin_lock_irq(&cmd->t_state_lock); 1929 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT); 1930 spin_unlock_irq(&cmd->t_state_lock); 1931 return; 1932 } 1933 1934 __target_execute_cmd(cmd, true); 1935 } 1936 EXPORT_SYMBOL(target_execute_cmd); 1937 1938 /* 1939 * Process all commands up to the last received ORDERED task attribute which 1940 * requires another blocking boundary 1941 */ 1942 static void target_restart_delayed_cmds(struct se_device *dev) 1943 { 1944 for (;;) { 1945 struct se_cmd *cmd; 1946 1947 spin_lock(&dev->delayed_cmd_lock); 1948 if (list_empty(&dev->delayed_cmd_list)) { 1949 spin_unlock(&dev->delayed_cmd_lock); 1950 break; 1951 } 1952 1953 cmd = list_entry(dev->delayed_cmd_list.next, 1954 struct se_cmd, se_delayed_node); 1955 list_del(&cmd->se_delayed_node); 1956 spin_unlock(&dev->delayed_cmd_lock); 1957 1958 __target_execute_cmd(cmd, true); 1959 1960 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1961 break; 1962 } 1963 } 1964 1965 /* 1966 * Called from I/O completion to determine which dormant/delayed 1967 * and ordered cmds need to have their tasks added to the execution queue. 1968 */ 1969 static void transport_complete_task_attr(struct se_cmd *cmd) 1970 { 1971 struct se_device *dev = cmd->se_dev; 1972 1973 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1974 return; 1975 1976 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 1977 goto restart; 1978 1979 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1980 atomic_dec_mb(&dev->simple_cmds); 1981 dev->dev_cur_ordered_id++; 1982 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n", 1983 dev->dev_cur_ordered_id); 1984 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1985 dev->dev_cur_ordered_id++; 1986 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 1987 dev->dev_cur_ordered_id); 1988 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1989 atomic_dec_mb(&dev->dev_ordered_sync); 1990 1991 dev->dev_cur_ordered_id++; 1992 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 1993 dev->dev_cur_ordered_id); 1994 } 1995 restart: 1996 target_restart_delayed_cmds(dev); 1997 } 1998 1999 static void transport_complete_qf(struct se_cmd *cmd) 2000 { 2001 int ret = 0; 2002 2003 transport_complete_task_attr(cmd); 2004 2005 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2006 trace_target_cmd_complete(cmd); 2007 ret = cmd->se_tfo->queue_status(cmd); 2008 goto out; 2009 } 2010 2011 switch (cmd->data_direction) { 2012 case DMA_FROM_DEVICE: 2013 if (cmd->scsi_status) 2014 goto queue_status; 2015 2016 trace_target_cmd_complete(cmd); 2017 ret = cmd->se_tfo->queue_data_in(cmd); 2018 break; 2019 case DMA_TO_DEVICE: 2020 if (cmd->se_cmd_flags & SCF_BIDI) { 2021 ret = cmd->se_tfo->queue_data_in(cmd); 2022 break; 2023 } 2024 /* Fall through for DMA_TO_DEVICE */ 2025 case DMA_NONE: 2026 queue_status: 2027 trace_target_cmd_complete(cmd); 2028 ret = cmd->se_tfo->queue_status(cmd); 2029 break; 2030 default: 2031 break; 2032 } 2033 2034 out: 2035 if (ret < 0) { 2036 transport_handle_queue_full(cmd, cmd->se_dev); 2037 return; 2038 } 2039 transport_lun_remove_cmd(cmd); 2040 transport_cmd_check_stop_to_fabric(cmd); 2041 } 2042 2043 static void transport_handle_queue_full( 2044 struct se_cmd *cmd, 2045 struct se_device *dev) 2046 { 2047 spin_lock_irq(&dev->qf_cmd_lock); 2048 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2049 atomic_inc_mb(&dev->dev_qf_count); 2050 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2051 2052 schedule_work(&cmd->se_dev->qf_work_queue); 2053 } 2054 2055 static bool target_read_prot_action(struct se_cmd *cmd) 2056 { 2057 switch (cmd->prot_op) { 2058 case TARGET_PROT_DIN_STRIP: 2059 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2060 u32 sectors = cmd->data_length >> 2061 ilog2(cmd->se_dev->dev_attrib.block_size); 2062 2063 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2064 sectors, 0, cmd->t_prot_sg, 2065 0); 2066 if (cmd->pi_err) 2067 return true; 2068 } 2069 break; 2070 case TARGET_PROT_DIN_INSERT: 2071 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2072 break; 2073 2074 sbc_dif_generate(cmd); 2075 break; 2076 default: 2077 break; 2078 } 2079 2080 return false; 2081 } 2082 2083 static void target_complete_ok_work(struct work_struct *work) 2084 { 2085 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2086 int ret; 2087 2088 /* 2089 * Check if we need to move delayed/dormant tasks from cmds on the 2090 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2091 * Attribute. 2092 */ 2093 transport_complete_task_attr(cmd); 2094 2095 /* 2096 * Check to schedule QUEUE_FULL work, or execute an existing 2097 * cmd->transport_qf_callback() 2098 */ 2099 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2100 schedule_work(&cmd->se_dev->qf_work_queue); 2101 2102 /* 2103 * Check if we need to send a sense buffer from 2104 * the struct se_cmd in question. 2105 */ 2106 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2107 WARN_ON(!cmd->scsi_status); 2108 ret = transport_send_check_condition_and_sense( 2109 cmd, 0, 1); 2110 if (ret == -EAGAIN || ret == -ENOMEM) 2111 goto queue_full; 2112 2113 transport_lun_remove_cmd(cmd); 2114 transport_cmd_check_stop_to_fabric(cmd); 2115 return; 2116 } 2117 /* 2118 * Check for a callback, used by amongst other things 2119 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2120 */ 2121 if (cmd->transport_complete_callback) { 2122 sense_reason_t rc; 2123 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2124 bool zero_dl = !(cmd->data_length); 2125 int post_ret = 0; 2126 2127 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2128 if (!rc && !post_ret) { 2129 if (caw && zero_dl) 2130 goto queue_rsp; 2131 2132 return; 2133 } else if (rc) { 2134 ret = transport_send_check_condition_and_sense(cmd, 2135 rc, 0); 2136 if (ret == -EAGAIN || ret == -ENOMEM) 2137 goto queue_full; 2138 2139 transport_lun_remove_cmd(cmd); 2140 transport_cmd_check_stop_to_fabric(cmd); 2141 return; 2142 } 2143 } 2144 2145 queue_rsp: 2146 switch (cmd->data_direction) { 2147 case DMA_FROM_DEVICE: 2148 if (cmd->scsi_status) 2149 goto queue_status; 2150 2151 atomic_long_add(cmd->data_length, 2152 &cmd->se_lun->lun_stats.tx_data_octets); 2153 /* 2154 * Perform READ_STRIP of PI using software emulation when 2155 * backend had PI enabled, if the transport will not be 2156 * performing hardware READ_STRIP offload. 2157 */ 2158 if (target_read_prot_action(cmd)) { 2159 ret = transport_send_check_condition_and_sense(cmd, 2160 cmd->pi_err, 0); 2161 if (ret == -EAGAIN || ret == -ENOMEM) 2162 goto queue_full; 2163 2164 transport_lun_remove_cmd(cmd); 2165 transport_cmd_check_stop_to_fabric(cmd); 2166 return; 2167 } 2168 2169 trace_target_cmd_complete(cmd); 2170 ret = cmd->se_tfo->queue_data_in(cmd); 2171 if (ret == -EAGAIN || ret == -ENOMEM) 2172 goto queue_full; 2173 break; 2174 case DMA_TO_DEVICE: 2175 atomic_long_add(cmd->data_length, 2176 &cmd->se_lun->lun_stats.rx_data_octets); 2177 /* 2178 * Check if we need to send READ payload for BIDI-COMMAND 2179 */ 2180 if (cmd->se_cmd_flags & SCF_BIDI) { 2181 atomic_long_add(cmd->data_length, 2182 &cmd->se_lun->lun_stats.tx_data_octets); 2183 ret = cmd->se_tfo->queue_data_in(cmd); 2184 if (ret == -EAGAIN || ret == -ENOMEM) 2185 goto queue_full; 2186 break; 2187 } 2188 /* Fall through for DMA_TO_DEVICE */ 2189 case DMA_NONE: 2190 queue_status: 2191 trace_target_cmd_complete(cmd); 2192 ret = cmd->se_tfo->queue_status(cmd); 2193 if (ret == -EAGAIN || ret == -ENOMEM) 2194 goto queue_full; 2195 break; 2196 default: 2197 break; 2198 } 2199 2200 transport_lun_remove_cmd(cmd); 2201 transport_cmd_check_stop_to_fabric(cmd); 2202 return; 2203 2204 queue_full: 2205 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2206 " data_direction: %d\n", cmd, cmd->data_direction); 2207 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2208 transport_handle_queue_full(cmd, cmd->se_dev); 2209 } 2210 2211 void target_free_sgl(struct scatterlist *sgl, int nents) 2212 { 2213 struct scatterlist *sg; 2214 int count; 2215 2216 for_each_sg(sgl, sg, nents, count) 2217 __free_page(sg_page(sg)); 2218 2219 kfree(sgl); 2220 } 2221 EXPORT_SYMBOL(target_free_sgl); 2222 2223 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2224 { 2225 /* 2226 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2227 * emulation, and free + reset pointers if necessary.. 2228 */ 2229 if (!cmd->t_data_sg_orig) 2230 return; 2231 2232 kfree(cmd->t_data_sg); 2233 cmd->t_data_sg = cmd->t_data_sg_orig; 2234 cmd->t_data_sg_orig = NULL; 2235 cmd->t_data_nents = cmd->t_data_nents_orig; 2236 cmd->t_data_nents_orig = 0; 2237 } 2238 2239 static inline void transport_free_pages(struct se_cmd *cmd) 2240 { 2241 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2242 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2243 cmd->t_prot_sg = NULL; 2244 cmd->t_prot_nents = 0; 2245 } 2246 2247 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2248 /* 2249 * Release special case READ buffer payload required for 2250 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2251 */ 2252 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2253 target_free_sgl(cmd->t_bidi_data_sg, 2254 cmd->t_bidi_data_nents); 2255 cmd->t_bidi_data_sg = NULL; 2256 cmd->t_bidi_data_nents = 0; 2257 } 2258 transport_reset_sgl_orig(cmd); 2259 return; 2260 } 2261 transport_reset_sgl_orig(cmd); 2262 2263 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2264 cmd->t_data_sg = NULL; 2265 cmd->t_data_nents = 0; 2266 2267 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2268 cmd->t_bidi_data_sg = NULL; 2269 cmd->t_bidi_data_nents = 0; 2270 } 2271 2272 /** 2273 * transport_put_cmd - release a reference to a command 2274 * @cmd: command to release 2275 * 2276 * This routine releases our reference to the command and frees it if possible. 2277 */ 2278 static int transport_put_cmd(struct se_cmd *cmd) 2279 { 2280 BUG_ON(!cmd->se_tfo); 2281 /* 2282 * If this cmd has been setup with target_get_sess_cmd(), drop 2283 * the kref and call ->release_cmd() in kref callback. 2284 */ 2285 return target_put_sess_cmd(cmd); 2286 } 2287 2288 void *transport_kmap_data_sg(struct se_cmd *cmd) 2289 { 2290 struct scatterlist *sg = cmd->t_data_sg; 2291 struct page **pages; 2292 int i; 2293 2294 /* 2295 * We need to take into account a possible offset here for fabrics like 2296 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2297 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2298 */ 2299 if (!cmd->t_data_nents) 2300 return NULL; 2301 2302 BUG_ON(!sg); 2303 if (cmd->t_data_nents == 1) 2304 return kmap(sg_page(sg)) + sg->offset; 2305 2306 /* >1 page. use vmap */ 2307 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2308 if (!pages) 2309 return NULL; 2310 2311 /* convert sg[] to pages[] */ 2312 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2313 pages[i] = sg_page(sg); 2314 } 2315 2316 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2317 kfree(pages); 2318 if (!cmd->t_data_vmap) 2319 return NULL; 2320 2321 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2322 } 2323 EXPORT_SYMBOL(transport_kmap_data_sg); 2324 2325 void transport_kunmap_data_sg(struct se_cmd *cmd) 2326 { 2327 if (!cmd->t_data_nents) { 2328 return; 2329 } else if (cmd->t_data_nents == 1) { 2330 kunmap(sg_page(cmd->t_data_sg)); 2331 return; 2332 } 2333 2334 vunmap(cmd->t_data_vmap); 2335 cmd->t_data_vmap = NULL; 2336 } 2337 EXPORT_SYMBOL(transport_kunmap_data_sg); 2338 2339 int 2340 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2341 bool zero_page, bool chainable) 2342 { 2343 struct scatterlist *sg; 2344 struct page *page; 2345 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2346 unsigned int nalloc, nent; 2347 int i = 0; 2348 2349 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE); 2350 if (chainable) 2351 nalloc++; 2352 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL); 2353 if (!sg) 2354 return -ENOMEM; 2355 2356 sg_init_table(sg, nalloc); 2357 2358 while (length) { 2359 u32 page_len = min_t(u32, length, PAGE_SIZE); 2360 page = alloc_page(GFP_KERNEL | zero_flag); 2361 if (!page) 2362 goto out; 2363 2364 sg_set_page(&sg[i], page, page_len, 0); 2365 length -= page_len; 2366 i++; 2367 } 2368 *sgl = sg; 2369 *nents = nent; 2370 return 0; 2371 2372 out: 2373 while (i > 0) { 2374 i--; 2375 __free_page(sg_page(&sg[i])); 2376 } 2377 kfree(sg); 2378 return -ENOMEM; 2379 } 2380 EXPORT_SYMBOL(target_alloc_sgl); 2381 2382 /* 2383 * Allocate any required resources to execute the command. For writes we 2384 * might not have the payload yet, so notify the fabric via a call to 2385 * ->write_pending instead. Otherwise place it on the execution queue. 2386 */ 2387 sense_reason_t 2388 transport_generic_new_cmd(struct se_cmd *cmd) 2389 { 2390 int ret = 0; 2391 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2392 2393 if (cmd->prot_op != TARGET_PROT_NORMAL && 2394 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2395 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2396 cmd->prot_length, true, false); 2397 if (ret < 0) 2398 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2399 } 2400 2401 /* 2402 * Determine is the TCM fabric module has already allocated physical 2403 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2404 * beforehand. 2405 */ 2406 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2407 cmd->data_length) { 2408 2409 if ((cmd->se_cmd_flags & SCF_BIDI) || 2410 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2411 u32 bidi_length; 2412 2413 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2414 bidi_length = cmd->t_task_nolb * 2415 cmd->se_dev->dev_attrib.block_size; 2416 else 2417 bidi_length = cmd->data_length; 2418 2419 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2420 &cmd->t_bidi_data_nents, 2421 bidi_length, zero_flag, false); 2422 if (ret < 0) 2423 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2424 } 2425 2426 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2427 cmd->data_length, zero_flag, false); 2428 if (ret < 0) 2429 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2430 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2431 cmd->data_length) { 2432 /* 2433 * Special case for COMPARE_AND_WRITE with fabrics 2434 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2435 */ 2436 u32 caw_length = cmd->t_task_nolb * 2437 cmd->se_dev->dev_attrib.block_size; 2438 2439 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2440 &cmd->t_bidi_data_nents, 2441 caw_length, zero_flag, false); 2442 if (ret < 0) 2443 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2444 } 2445 /* 2446 * If this command is not a write we can execute it right here, 2447 * for write buffers we need to notify the fabric driver first 2448 * and let it call back once the write buffers are ready. 2449 */ 2450 target_add_to_state_list(cmd); 2451 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2452 target_execute_cmd(cmd); 2453 return 0; 2454 } 2455 transport_cmd_check_stop(cmd, false, true); 2456 2457 ret = cmd->se_tfo->write_pending(cmd); 2458 if (ret == -EAGAIN || ret == -ENOMEM) 2459 goto queue_full; 2460 2461 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2462 WARN_ON(ret); 2463 2464 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2465 2466 queue_full: 2467 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2468 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2469 transport_handle_queue_full(cmd, cmd->se_dev); 2470 return 0; 2471 } 2472 EXPORT_SYMBOL(transport_generic_new_cmd); 2473 2474 static void transport_write_pending_qf(struct se_cmd *cmd) 2475 { 2476 int ret; 2477 2478 ret = cmd->se_tfo->write_pending(cmd); 2479 if (ret == -EAGAIN || ret == -ENOMEM) { 2480 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2481 cmd); 2482 transport_handle_queue_full(cmd, cmd->se_dev); 2483 } 2484 } 2485 2486 static bool 2487 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2488 unsigned long *flags); 2489 2490 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2491 { 2492 unsigned long flags; 2493 2494 spin_lock_irqsave(&cmd->t_state_lock, flags); 2495 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2496 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2497 } 2498 2499 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2500 { 2501 int ret = 0; 2502 bool aborted = false, tas = false; 2503 2504 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2505 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2506 target_wait_free_cmd(cmd, &aborted, &tas); 2507 2508 if (!aborted || tas) 2509 ret = transport_put_cmd(cmd); 2510 } else { 2511 if (wait_for_tasks) 2512 target_wait_free_cmd(cmd, &aborted, &tas); 2513 /* 2514 * Handle WRITE failure case where transport_generic_new_cmd() 2515 * has already added se_cmd to state_list, but fabric has 2516 * failed command before I/O submission. 2517 */ 2518 if (cmd->state_active) 2519 target_remove_from_state_list(cmd); 2520 2521 if (cmd->se_lun) 2522 transport_lun_remove_cmd(cmd); 2523 2524 if (!aborted || tas) 2525 ret = transport_put_cmd(cmd); 2526 } 2527 /* 2528 * If the task has been internally aborted due to TMR ABORT_TASK 2529 * or LUN_RESET, target_core_tmr.c is responsible for performing 2530 * the remaining calls to target_put_sess_cmd(), and not the 2531 * callers of this function. 2532 */ 2533 if (aborted) { 2534 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2535 wait_for_completion(&cmd->cmd_wait_comp); 2536 cmd->se_tfo->release_cmd(cmd); 2537 ret = 1; 2538 } 2539 return ret; 2540 } 2541 EXPORT_SYMBOL(transport_generic_free_cmd); 2542 2543 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2544 * @se_cmd: command descriptor to add 2545 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2546 */ 2547 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2548 { 2549 struct se_session *se_sess = se_cmd->se_sess; 2550 unsigned long flags; 2551 int ret = 0; 2552 2553 /* 2554 * Add a second kref if the fabric caller is expecting to handle 2555 * fabric acknowledgement that requires two target_put_sess_cmd() 2556 * invocations before se_cmd descriptor release. 2557 */ 2558 if (ack_kref) { 2559 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2560 return -EINVAL; 2561 2562 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2563 } 2564 2565 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2566 if (se_sess->sess_tearing_down) { 2567 ret = -ESHUTDOWN; 2568 goto out; 2569 } 2570 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2571 out: 2572 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2573 2574 if (ret && ack_kref) 2575 target_put_sess_cmd(se_cmd); 2576 2577 return ret; 2578 } 2579 EXPORT_SYMBOL(target_get_sess_cmd); 2580 2581 static void target_free_cmd_mem(struct se_cmd *cmd) 2582 { 2583 transport_free_pages(cmd); 2584 2585 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2586 core_tmr_release_req(cmd->se_tmr_req); 2587 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2588 kfree(cmd->t_task_cdb); 2589 } 2590 2591 static void target_release_cmd_kref(struct kref *kref) 2592 { 2593 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2594 struct se_session *se_sess = se_cmd->se_sess; 2595 unsigned long flags; 2596 bool fabric_stop; 2597 2598 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2599 2600 spin_lock(&se_cmd->t_state_lock); 2601 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) && 2602 (se_cmd->transport_state & CMD_T_ABORTED); 2603 spin_unlock(&se_cmd->t_state_lock); 2604 2605 if (se_cmd->cmd_wait_set || fabric_stop) { 2606 list_del_init(&se_cmd->se_cmd_list); 2607 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2608 target_free_cmd_mem(se_cmd); 2609 complete(&se_cmd->cmd_wait_comp); 2610 return; 2611 } 2612 list_del_init(&se_cmd->se_cmd_list); 2613 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2614 2615 target_free_cmd_mem(se_cmd); 2616 se_cmd->se_tfo->release_cmd(se_cmd); 2617 } 2618 2619 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2620 * @se_cmd: command descriptor to drop 2621 */ 2622 int target_put_sess_cmd(struct se_cmd *se_cmd) 2623 { 2624 struct se_session *se_sess = se_cmd->se_sess; 2625 2626 if (!se_sess) { 2627 target_free_cmd_mem(se_cmd); 2628 se_cmd->se_tfo->release_cmd(se_cmd); 2629 return 1; 2630 } 2631 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2632 } 2633 EXPORT_SYMBOL(target_put_sess_cmd); 2634 2635 /* target_sess_cmd_list_set_waiting - Flag all commands in 2636 * sess_cmd_list to complete cmd_wait_comp. Set 2637 * sess_tearing_down so no more commands are queued. 2638 * @se_sess: session to flag 2639 */ 2640 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2641 { 2642 struct se_cmd *se_cmd, *tmp_cmd; 2643 unsigned long flags; 2644 int rc; 2645 2646 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2647 if (se_sess->sess_tearing_down) { 2648 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2649 return; 2650 } 2651 se_sess->sess_tearing_down = 1; 2652 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2653 2654 list_for_each_entry_safe(se_cmd, tmp_cmd, 2655 &se_sess->sess_wait_list, se_cmd_list) { 2656 rc = kref_get_unless_zero(&se_cmd->cmd_kref); 2657 if (rc) { 2658 se_cmd->cmd_wait_set = 1; 2659 spin_lock(&se_cmd->t_state_lock); 2660 se_cmd->transport_state |= CMD_T_FABRIC_STOP; 2661 spin_unlock(&se_cmd->t_state_lock); 2662 } else 2663 list_del_init(&se_cmd->se_cmd_list); 2664 } 2665 2666 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2667 } 2668 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2669 2670 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2671 * @se_sess: session to wait for active I/O 2672 */ 2673 void target_wait_for_sess_cmds(struct se_session *se_sess) 2674 { 2675 struct se_cmd *se_cmd, *tmp_cmd; 2676 unsigned long flags; 2677 bool tas; 2678 2679 list_for_each_entry_safe(se_cmd, tmp_cmd, 2680 &se_sess->sess_wait_list, se_cmd_list) { 2681 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2682 " %d\n", se_cmd, se_cmd->t_state, 2683 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2684 2685 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2686 tas = (se_cmd->transport_state & CMD_T_TAS); 2687 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2688 2689 if (!target_put_sess_cmd(se_cmd)) { 2690 if (tas) 2691 target_put_sess_cmd(se_cmd); 2692 } 2693 2694 wait_for_completion(&se_cmd->cmd_wait_comp); 2695 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2696 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2697 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2698 2699 se_cmd->se_tfo->release_cmd(se_cmd); 2700 } 2701 2702 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2703 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2704 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2705 2706 } 2707 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2708 2709 void transport_clear_lun_ref(struct se_lun *lun) 2710 { 2711 percpu_ref_kill(&lun->lun_ref); 2712 wait_for_completion(&lun->lun_ref_comp); 2713 } 2714 2715 static bool 2716 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2717 bool *aborted, bool *tas, unsigned long *flags) 2718 __releases(&cmd->t_state_lock) 2719 __acquires(&cmd->t_state_lock) 2720 { 2721 2722 assert_spin_locked(&cmd->t_state_lock); 2723 WARN_ON_ONCE(!irqs_disabled()); 2724 2725 if (fabric_stop) 2726 cmd->transport_state |= CMD_T_FABRIC_STOP; 2727 2728 if (cmd->transport_state & CMD_T_ABORTED) 2729 *aborted = true; 2730 2731 if (cmd->transport_state & CMD_T_TAS) 2732 *tas = true; 2733 2734 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2735 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2736 return false; 2737 2738 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2739 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2740 return false; 2741 2742 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2743 return false; 2744 2745 if (fabric_stop && *aborted) 2746 return false; 2747 2748 cmd->transport_state |= CMD_T_STOP; 2749 2750 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d," 2751 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag, 2752 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2753 2754 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2755 2756 wait_for_completion(&cmd->t_transport_stop_comp); 2757 2758 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2759 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2760 2761 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 2762 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 2763 2764 return true; 2765 } 2766 2767 /** 2768 * transport_wait_for_tasks - wait for completion to occur 2769 * @cmd: command to wait 2770 * 2771 * Called from frontend fabric context to wait for storage engine 2772 * to pause and/or release frontend generated struct se_cmd. 2773 */ 2774 bool transport_wait_for_tasks(struct se_cmd *cmd) 2775 { 2776 unsigned long flags; 2777 bool ret, aborted = false, tas = false; 2778 2779 spin_lock_irqsave(&cmd->t_state_lock, flags); 2780 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 2781 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2782 2783 return ret; 2784 } 2785 EXPORT_SYMBOL(transport_wait_for_tasks); 2786 2787 struct sense_info { 2788 u8 key; 2789 u8 asc; 2790 u8 ascq; 2791 bool add_sector_info; 2792 }; 2793 2794 static const struct sense_info sense_info_table[] = { 2795 [TCM_NO_SENSE] = { 2796 .key = NOT_READY 2797 }, 2798 [TCM_NON_EXISTENT_LUN] = { 2799 .key = ILLEGAL_REQUEST, 2800 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 2801 }, 2802 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 2803 .key = ILLEGAL_REQUEST, 2804 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2805 }, 2806 [TCM_SECTOR_COUNT_TOO_MANY] = { 2807 .key = ILLEGAL_REQUEST, 2808 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2809 }, 2810 [TCM_UNKNOWN_MODE_PAGE] = { 2811 .key = ILLEGAL_REQUEST, 2812 .asc = 0x24, /* INVALID FIELD IN CDB */ 2813 }, 2814 [TCM_CHECK_CONDITION_ABORT_CMD] = { 2815 .key = ABORTED_COMMAND, 2816 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 2817 .ascq = 0x03, 2818 }, 2819 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 2820 .key = ABORTED_COMMAND, 2821 .asc = 0x0c, /* WRITE ERROR */ 2822 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 2823 }, 2824 [TCM_INVALID_CDB_FIELD] = { 2825 .key = ILLEGAL_REQUEST, 2826 .asc = 0x24, /* INVALID FIELD IN CDB */ 2827 }, 2828 [TCM_INVALID_PARAMETER_LIST] = { 2829 .key = ILLEGAL_REQUEST, 2830 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 2831 }, 2832 [TCM_TOO_MANY_TARGET_DESCS] = { 2833 .key = ILLEGAL_REQUEST, 2834 .asc = 0x26, 2835 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 2836 }, 2837 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 2838 .key = ILLEGAL_REQUEST, 2839 .asc = 0x26, 2840 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 2841 }, 2842 [TCM_TOO_MANY_SEGMENT_DESCS] = { 2843 .key = ILLEGAL_REQUEST, 2844 .asc = 0x26, 2845 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 2846 }, 2847 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 2848 .key = ILLEGAL_REQUEST, 2849 .asc = 0x26, 2850 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 2851 }, 2852 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 2853 .key = ILLEGAL_REQUEST, 2854 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 2855 }, 2856 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 2857 .key = ILLEGAL_REQUEST, 2858 .asc = 0x0c, /* WRITE ERROR */ 2859 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 2860 }, 2861 [TCM_SERVICE_CRC_ERROR] = { 2862 .key = ABORTED_COMMAND, 2863 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 2864 .ascq = 0x05, /* N/A */ 2865 }, 2866 [TCM_SNACK_REJECTED] = { 2867 .key = ABORTED_COMMAND, 2868 .asc = 0x11, /* READ ERROR */ 2869 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 2870 }, 2871 [TCM_WRITE_PROTECTED] = { 2872 .key = DATA_PROTECT, 2873 .asc = 0x27, /* WRITE PROTECTED */ 2874 }, 2875 [TCM_ADDRESS_OUT_OF_RANGE] = { 2876 .key = ILLEGAL_REQUEST, 2877 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2878 }, 2879 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 2880 .key = UNIT_ATTENTION, 2881 }, 2882 [TCM_CHECK_CONDITION_NOT_READY] = { 2883 .key = NOT_READY, 2884 }, 2885 [TCM_MISCOMPARE_VERIFY] = { 2886 .key = MISCOMPARE, 2887 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 2888 .ascq = 0x00, 2889 }, 2890 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 2891 .key = ABORTED_COMMAND, 2892 .asc = 0x10, 2893 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 2894 .add_sector_info = true, 2895 }, 2896 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 2897 .key = ABORTED_COMMAND, 2898 .asc = 0x10, 2899 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2900 .add_sector_info = true, 2901 }, 2902 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 2903 .key = ABORTED_COMMAND, 2904 .asc = 0x10, 2905 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2906 .add_sector_info = true, 2907 }, 2908 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 2909 .key = COPY_ABORTED, 2910 .asc = 0x0d, 2911 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 2912 2913 }, 2914 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 2915 /* 2916 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2917 * Solaris initiators. Returning NOT READY instead means the 2918 * operations will be retried a finite number of times and we 2919 * can survive intermittent errors. 2920 */ 2921 .key = NOT_READY, 2922 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 2923 }, 2924 }; 2925 2926 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 2927 { 2928 const struct sense_info *si; 2929 u8 *buffer = cmd->sense_buffer; 2930 int r = (__force int)reason; 2931 u8 asc, ascq; 2932 bool desc_format = target_sense_desc_format(cmd->se_dev); 2933 2934 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 2935 si = &sense_info_table[r]; 2936 else 2937 si = &sense_info_table[(__force int) 2938 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 2939 2940 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 2941 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2942 WARN_ON_ONCE(asc == 0); 2943 } else if (si->asc == 0) { 2944 WARN_ON_ONCE(cmd->scsi_asc == 0); 2945 asc = cmd->scsi_asc; 2946 ascq = cmd->scsi_ascq; 2947 } else { 2948 asc = si->asc; 2949 ascq = si->ascq; 2950 } 2951 2952 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 2953 if (si->add_sector_info) 2954 return scsi_set_sense_information(buffer, 2955 cmd->scsi_sense_length, 2956 cmd->bad_sector); 2957 2958 return 0; 2959 } 2960 2961 int 2962 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2963 sense_reason_t reason, int from_transport) 2964 { 2965 unsigned long flags; 2966 2967 spin_lock_irqsave(&cmd->t_state_lock, flags); 2968 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2969 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2970 return 0; 2971 } 2972 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2973 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2974 2975 if (!from_transport) { 2976 int rc; 2977 2978 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2979 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2980 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2981 rc = translate_sense_reason(cmd, reason); 2982 if (rc) 2983 return rc; 2984 } 2985 2986 trace_target_cmd_complete(cmd); 2987 return cmd->se_tfo->queue_status(cmd); 2988 } 2989 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2990 2991 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2992 __releases(&cmd->t_state_lock) 2993 __acquires(&cmd->t_state_lock) 2994 { 2995 assert_spin_locked(&cmd->t_state_lock); 2996 WARN_ON_ONCE(!irqs_disabled()); 2997 2998 if (!(cmd->transport_state & CMD_T_ABORTED)) 2999 return 0; 3000 /* 3001 * If cmd has been aborted but either no status is to be sent or it has 3002 * already been sent, just return 3003 */ 3004 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { 3005 if (send_status) 3006 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3007 return 1; 3008 } 3009 3010 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" 3011 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); 3012 3013 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 3014 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3015 trace_target_cmd_complete(cmd); 3016 3017 spin_unlock_irq(&cmd->t_state_lock); 3018 cmd->se_tfo->queue_status(cmd); 3019 spin_lock_irq(&cmd->t_state_lock); 3020 3021 return 1; 3022 } 3023 3024 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 3025 { 3026 int ret; 3027 3028 spin_lock_irq(&cmd->t_state_lock); 3029 ret = __transport_check_aborted_status(cmd, send_status); 3030 spin_unlock_irq(&cmd->t_state_lock); 3031 3032 return ret; 3033 } 3034 EXPORT_SYMBOL(transport_check_aborted_status); 3035 3036 void transport_send_task_abort(struct se_cmd *cmd) 3037 { 3038 unsigned long flags; 3039 3040 spin_lock_irqsave(&cmd->t_state_lock, flags); 3041 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 3042 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3043 return; 3044 } 3045 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3046 3047 /* 3048 * If there are still expected incoming fabric WRITEs, we wait 3049 * until until they have completed before sending a TASK_ABORTED 3050 * response. This response with TASK_ABORTED status will be 3051 * queued back to fabric module by transport_check_aborted_status(). 3052 */ 3053 if (cmd->data_direction == DMA_TO_DEVICE) { 3054 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3055 spin_lock_irqsave(&cmd->t_state_lock, flags); 3056 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { 3057 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3058 goto send_abort; 3059 } 3060 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3061 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3062 return; 3063 } 3064 } 3065 send_abort: 3066 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3067 3068 transport_lun_remove_cmd(cmd); 3069 3070 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 3071 cmd->t_task_cdb[0], cmd->tag); 3072 3073 trace_target_cmd_complete(cmd); 3074 cmd->se_tfo->queue_status(cmd); 3075 } 3076 3077 static void target_tmr_work(struct work_struct *work) 3078 { 3079 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3080 struct se_device *dev = cmd->se_dev; 3081 struct se_tmr_req *tmr = cmd->se_tmr_req; 3082 unsigned long flags; 3083 int ret; 3084 3085 spin_lock_irqsave(&cmd->t_state_lock, flags); 3086 if (cmd->transport_state & CMD_T_ABORTED) { 3087 tmr->response = TMR_FUNCTION_REJECTED; 3088 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3089 goto check_stop; 3090 } 3091 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3092 3093 switch (tmr->function) { 3094 case TMR_ABORT_TASK: 3095 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3096 break; 3097 case TMR_ABORT_TASK_SET: 3098 case TMR_CLEAR_ACA: 3099 case TMR_CLEAR_TASK_SET: 3100 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3101 break; 3102 case TMR_LUN_RESET: 3103 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3104 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3105 TMR_FUNCTION_REJECTED; 3106 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3107 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3108 cmd->orig_fe_lun, 0x29, 3109 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3110 } 3111 break; 3112 case TMR_TARGET_WARM_RESET: 3113 tmr->response = TMR_FUNCTION_REJECTED; 3114 break; 3115 case TMR_TARGET_COLD_RESET: 3116 tmr->response = TMR_FUNCTION_REJECTED; 3117 break; 3118 default: 3119 pr_err("Uknown TMR function: 0x%02x.\n", 3120 tmr->function); 3121 tmr->response = TMR_FUNCTION_REJECTED; 3122 break; 3123 } 3124 3125 spin_lock_irqsave(&cmd->t_state_lock, flags); 3126 if (cmd->transport_state & CMD_T_ABORTED) { 3127 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3128 goto check_stop; 3129 } 3130 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3131 3132 cmd->se_tfo->queue_tm_rsp(cmd); 3133 3134 check_stop: 3135 transport_cmd_check_stop_to_fabric(cmd); 3136 } 3137 3138 int transport_generic_handle_tmr( 3139 struct se_cmd *cmd) 3140 { 3141 unsigned long flags; 3142 bool aborted = false; 3143 3144 spin_lock_irqsave(&cmd->t_state_lock, flags); 3145 if (cmd->transport_state & CMD_T_ABORTED) { 3146 aborted = true; 3147 } else { 3148 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3149 cmd->transport_state |= CMD_T_ACTIVE; 3150 } 3151 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3152 3153 if (aborted) { 3154 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d" 3155 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function, 3156 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3157 transport_cmd_check_stop_to_fabric(cmd); 3158 return 0; 3159 } 3160 3161 INIT_WORK(&cmd->work, target_tmr_work); 3162 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3163 return 0; 3164 } 3165 EXPORT_SYMBOL(transport_generic_handle_tmr); 3166 3167 bool 3168 target_check_wce(struct se_device *dev) 3169 { 3170 bool wce = false; 3171 3172 if (dev->transport->get_write_cache) 3173 wce = dev->transport->get_write_cache(dev); 3174 else if (dev->dev_attrib.emulate_write_cache > 0) 3175 wce = true; 3176 3177 return wce; 3178 } 3179 3180 bool 3181 target_check_fua(struct se_device *dev) 3182 { 3183 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3184 } 3185