xref: /openbmc/linux/drivers/target/target_core_transport.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55 
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65 
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 		struct se_device *dev, int err, bool write_pending);
70 static void target_complete_ok_work(struct work_struct *work);
71 
72 int init_se_kmem_caches(void)
73 {
74 	se_sess_cache = kmem_cache_create("se_sess_cache",
75 			sizeof(struct se_session), __alignof__(struct se_session),
76 			0, NULL);
77 	if (!se_sess_cache) {
78 		pr_err("kmem_cache_create() for struct se_session"
79 				" failed\n");
80 		goto out;
81 	}
82 	se_ua_cache = kmem_cache_create("se_ua_cache",
83 			sizeof(struct se_ua), __alignof__(struct se_ua),
84 			0, NULL);
85 	if (!se_ua_cache) {
86 		pr_err("kmem_cache_create() for struct se_ua failed\n");
87 		goto out_free_sess_cache;
88 	}
89 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 			sizeof(struct t10_pr_registration),
91 			__alignof__(struct t10_pr_registration), 0, NULL);
92 	if (!t10_pr_reg_cache) {
93 		pr_err("kmem_cache_create() for struct t10_pr_registration"
94 				" failed\n");
95 		goto out_free_ua_cache;
96 	}
97 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 			0, NULL);
100 	if (!t10_alua_lu_gp_cache) {
101 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 				" failed\n");
103 		goto out_free_pr_reg_cache;
104 	}
105 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 			sizeof(struct t10_alua_lu_gp_member),
107 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 	if (!t10_alua_lu_gp_mem_cache) {
109 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 				"cache failed\n");
111 		goto out_free_lu_gp_cache;
112 	}
113 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 			sizeof(struct t10_alua_tg_pt_gp),
115 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 	if (!t10_alua_tg_pt_gp_cache) {
117 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 				"cache failed\n");
119 		goto out_free_lu_gp_mem_cache;
120 	}
121 	t10_alua_lba_map_cache = kmem_cache_create(
122 			"t10_alua_lba_map_cache",
123 			sizeof(struct t10_alua_lba_map),
124 			__alignof__(struct t10_alua_lba_map), 0, NULL);
125 	if (!t10_alua_lba_map_cache) {
126 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 				"cache failed\n");
128 		goto out_free_tg_pt_gp_cache;
129 	}
130 	t10_alua_lba_map_mem_cache = kmem_cache_create(
131 			"t10_alua_lba_map_mem_cache",
132 			sizeof(struct t10_alua_lba_map_member),
133 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 	if (!t10_alua_lba_map_mem_cache) {
135 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 				"cache failed\n");
137 		goto out_free_lba_map_cache;
138 	}
139 
140 	target_completion_wq = alloc_workqueue("target_completion",
141 					       WQ_MEM_RECLAIM, 0);
142 	if (!target_completion_wq)
143 		goto out_free_lba_map_mem_cache;
144 
145 	return 0;
146 
147 out_free_lba_map_mem_cache:
148 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 	kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 	kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 	kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 	kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 	kmem_cache_destroy(se_sess_cache);
163 out:
164 	return -ENOMEM;
165 }
166 
167 void release_se_kmem_caches(void)
168 {
169 	destroy_workqueue(target_completion_wq);
170 	kmem_cache_destroy(se_sess_cache);
171 	kmem_cache_destroy(se_ua_cache);
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 	kmem_cache_destroy(t10_alua_lu_gp_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 	kmem_cache_destroy(t10_alua_lba_map_cache);
177 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179 
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 
184 /*
185  * Allocate a new row index for the entry type specified
186  */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 	u32 new_index;
190 
191 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192 
193 	spin_lock(&scsi_mib_index_lock);
194 	new_index = ++scsi_mib_index[type];
195 	spin_unlock(&scsi_mib_index_lock);
196 
197 	return new_index;
198 }
199 
200 void transport_subsystem_check_init(void)
201 {
202 	int ret;
203 	static int sub_api_initialized;
204 
205 	if (sub_api_initialized)
206 		return;
207 
208 	ret = request_module("target_core_iblock");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_iblock\n");
211 
212 	ret = request_module("target_core_file");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_file\n");
215 
216 	ret = request_module("target_core_pscsi");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_pscsi\n");
219 
220 	ret = request_module("target_core_user");
221 	if (ret != 0)
222 		pr_err("Unable to load target_core_user\n");
223 
224 	sub_api_initialized = 1;
225 }
226 
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 	struct se_session *se_sess;
230 
231 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 	if (!se_sess) {
233 		pr_err("Unable to allocate struct se_session from"
234 				" se_sess_cache\n");
235 		return ERR_PTR(-ENOMEM);
236 	}
237 	INIT_LIST_HEAD(&se_sess->sess_list);
238 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 	spin_lock_init(&se_sess->sess_cmd_lock);
242 	se_sess->sup_prot_ops = sup_prot_ops;
243 
244 	return se_sess;
245 }
246 EXPORT_SYMBOL(transport_init_session);
247 
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 			         unsigned int tag_num, unsigned int tag_size)
250 {
251 	int rc;
252 
253 	se_sess->sess_cmd_map = kcalloc(tag_size, tag_num,
254 					GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
255 	if (!se_sess->sess_cmd_map) {
256 		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 		if (!se_sess->sess_cmd_map) {
258 			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 			return -ENOMEM;
260 		}
261 	}
262 
263 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 	if (rc < 0) {
265 		pr_err("Unable to init se_sess->sess_tag_pool,"
266 			" tag_num: %u\n", tag_num);
267 		kvfree(se_sess->sess_cmd_map);
268 		se_sess->sess_cmd_map = NULL;
269 		return -ENOMEM;
270 	}
271 
272 	return 0;
273 }
274 EXPORT_SYMBOL(transport_alloc_session_tags);
275 
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 					       unsigned int tag_size,
278 					       enum target_prot_op sup_prot_ops)
279 {
280 	struct se_session *se_sess;
281 	int rc;
282 
283 	if (tag_num != 0 && !tag_size) {
284 		pr_err("init_session_tags called with percpu-ida tag_num:"
285 		       " %u, but zero tag_size\n", tag_num);
286 		return ERR_PTR(-EINVAL);
287 	}
288 	if (!tag_num && tag_size) {
289 		pr_err("init_session_tags called with percpu-ida tag_size:"
290 		       " %u, but zero tag_num\n", tag_size);
291 		return ERR_PTR(-EINVAL);
292 	}
293 
294 	se_sess = transport_init_session(sup_prot_ops);
295 	if (IS_ERR(se_sess))
296 		return se_sess;
297 
298 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 	if (rc < 0) {
300 		transport_free_session(se_sess);
301 		return ERR_PTR(-ENOMEM);
302 	}
303 
304 	return se_sess;
305 }
306 EXPORT_SYMBOL(transport_init_session_tags);
307 
308 /*
309  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
310  */
311 void __transport_register_session(
312 	struct se_portal_group *se_tpg,
313 	struct se_node_acl *se_nacl,
314 	struct se_session *se_sess,
315 	void *fabric_sess_ptr)
316 {
317 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 	unsigned char buf[PR_REG_ISID_LEN];
319 
320 	se_sess->se_tpg = se_tpg;
321 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
322 	/*
323 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
324 	 *
325 	 * Only set for struct se_session's that will actually be moving I/O.
326 	 * eg: *NOT* discovery sessions.
327 	 */
328 	if (se_nacl) {
329 		/*
330 		 *
331 		 * Determine if fabric allows for T10-PI feature bits exposed to
332 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
333 		 *
334 		 * If so, then always save prot_type on a per se_node_acl node
335 		 * basis and re-instate the previous sess_prot_type to avoid
336 		 * disabling PI from below any previously initiator side
337 		 * registered LUNs.
338 		 */
339 		if (se_nacl->saved_prot_type)
340 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
341 		else if (tfo->tpg_check_prot_fabric_only)
342 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
343 					tfo->tpg_check_prot_fabric_only(se_tpg);
344 		/*
345 		 * If the fabric module supports an ISID based TransportID,
346 		 * save this value in binary from the fabric I_T Nexus now.
347 		 */
348 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 			memset(&buf[0], 0, PR_REG_ISID_LEN);
350 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 					&buf[0], PR_REG_ISID_LEN);
352 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
353 		}
354 
355 		spin_lock_irq(&se_nacl->nacl_sess_lock);
356 		/*
357 		 * The se_nacl->nacl_sess pointer will be set to the
358 		 * last active I_T Nexus for each struct se_node_acl.
359 		 */
360 		se_nacl->nacl_sess = se_sess;
361 
362 		list_add_tail(&se_sess->sess_acl_list,
363 			      &se_nacl->acl_sess_list);
364 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
365 	}
366 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
367 
368 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
370 }
371 EXPORT_SYMBOL(__transport_register_session);
372 
373 void transport_register_session(
374 	struct se_portal_group *se_tpg,
375 	struct se_node_acl *se_nacl,
376 	struct se_session *se_sess,
377 	void *fabric_sess_ptr)
378 {
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&se_tpg->session_lock, flags);
382 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
384 }
385 EXPORT_SYMBOL(transport_register_session);
386 
387 struct se_session *
388 target_alloc_session(struct se_portal_group *tpg,
389 		     unsigned int tag_num, unsigned int tag_size,
390 		     enum target_prot_op prot_op,
391 		     const char *initiatorname, void *private,
392 		     int (*callback)(struct se_portal_group *,
393 				     struct se_session *, void *))
394 {
395 	struct se_session *sess;
396 
397 	/*
398 	 * If the fabric driver is using percpu-ida based pre allocation
399 	 * of I/O descriptor tags, go ahead and perform that setup now..
400 	 */
401 	if (tag_num != 0)
402 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403 	else
404 		sess = transport_init_session(prot_op);
405 
406 	if (IS_ERR(sess))
407 		return sess;
408 
409 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410 					(unsigned char *)initiatorname);
411 	if (!sess->se_node_acl) {
412 		transport_free_session(sess);
413 		return ERR_PTR(-EACCES);
414 	}
415 	/*
416 	 * Go ahead and perform any remaining fabric setup that is
417 	 * required before transport_register_session().
418 	 */
419 	if (callback != NULL) {
420 		int rc = callback(tpg, sess, private);
421 		if (rc) {
422 			transport_free_session(sess);
423 			return ERR_PTR(rc);
424 		}
425 	}
426 
427 	transport_register_session(tpg, sess->se_node_acl, sess, private);
428 	return sess;
429 }
430 EXPORT_SYMBOL(target_alloc_session);
431 
432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
433 {
434 	struct se_session *se_sess;
435 	ssize_t len = 0;
436 
437 	spin_lock_bh(&se_tpg->session_lock);
438 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439 		if (!se_sess->se_node_acl)
440 			continue;
441 		if (!se_sess->se_node_acl->dynamic_node_acl)
442 			continue;
443 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444 			break;
445 
446 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447 				se_sess->se_node_acl->initiatorname);
448 		len += 1; /* Include NULL terminator */
449 	}
450 	spin_unlock_bh(&se_tpg->session_lock);
451 
452 	return len;
453 }
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
455 
456 static void target_complete_nacl(struct kref *kref)
457 {
458 	struct se_node_acl *nacl = container_of(kref,
459 				struct se_node_acl, acl_kref);
460 	struct se_portal_group *se_tpg = nacl->se_tpg;
461 
462 	if (!nacl->dynamic_stop) {
463 		complete(&nacl->acl_free_comp);
464 		return;
465 	}
466 
467 	mutex_lock(&se_tpg->acl_node_mutex);
468 	list_del_init(&nacl->acl_list);
469 	mutex_unlock(&se_tpg->acl_node_mutex);
470 
471 	core_tpg_wait_for_nacl_pr_ref(nacl);
472 	core_free_device_list_for_node(nacl, se_tpg);
473 	kfree(nacl);
474 }
475 
476 void target_put_nacl(struct se_node_acl *nacl)
477 {
478 	kref_put(&nacl->acl_kref, target_complete_nacl);
479 }
480 EXPORT_SYMBOL(target_put_nacl);
481 
482 void transport_deregister_session_configfs(struct se_session *se_sess)
483 {
484 	struct se_node_acl *se_nacl;
485 	unsigned long flags;
486 	/*
487 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
488 	 */
489 	se_nacl = se_sess->se_node_acl;
490 	if (se_nacl) {
491 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
492 		if (!list_empty(&se_sess->sess_acl_list))
493 			list_del_init(&se_sess->sess_acl_list);
494 		/*
495 		 * If the session list is empty, then clear the pointer.
496 		 * Otherwise, set the struct se_session pointer from the tail
497 		 * element of the per struct se_node_acl active session list.
498 		 */
499 		if (list_empty(&se_nacl->acl_sess_list))
500 			se_nacl->nacl_sess = NULL;
501 		else {
502 			se_nacl->nacl_sess = container_of(
503 					se_nacl->acl_sess_list.prev,
504 					struct se_session, sess_acl_list);
505 		}
506 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
507 	}
508 }
509 EXPORT_SYMBOL(transport_deregister_session_configfs);
510 
511 void transport_free_session(struct se_session *se_sess)
512 {
513 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
514 
515 	/*
516 	 * Drop the se_node_acl->nacl_kref obtained from within
517 	 * core_tpg_get_initiator_node_acl().
518 	 */
519 	if (se_nacl) {
520 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
521 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
522 		unsigned long flags;
523 
524 		se_sess->se_node_acl = NULL;
525 
526 		/*
527 		 * Also determine if we need to drop the extra ->cmd_kref if
528 		 * it had been previously dynamically generated, and
529 		 * the endpoint is not caching dynamic ACLs.
530 		 */
531 		mutex_lock(&se_tpg->acl_node_mutex);
532 		if (se_nacl->dynamic_node_acl &&
533 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
534 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
535 			if (list_empty(&se_nacl->acl_sess_list))
536 				se_nacl->dynamic_stop = true;
537 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
538 
539 			if (se_nacl->dynamic_stop)
540 				list_del_init(&se_nacl->acl_list);
541 		}
542 		mutex_unlock(&se_tpg->acl_node_mutex);
543 
544 		if (se_nacl->dynamic_stop)
545 			target_put_nacl(se_nacl);
546 
547 		target_put_nacl(se_nacl);
548 	}
549 	if (se_sess->sess_cmd_map) {
550 		percpu_ida_destroy(&se_sess->sess_tag_pool);
551 		kvfree(se_sess->sess_cmd_map);
552 	}
553 	kmem_cache_free(se_sess_cache, se_sess);
554 }
555 EXPORT_SYMBOL(transport_free_session);
556 
557 void transport_deregister_session(struct se_session *se_sess)
558 {
559 	struct se_portal_group *se_tpg = se_sess->se_tpg;
560 	unsigned long flags;
561 
562 	if (!se_tpg) {
563 		transport_free_session(se_sess);
564 		return;
565 	}
566 
567 	spin_lock_irqsave(&se_tpg->session_lock, flags);
568 	list_del(&se_sess->sess_list);
569 	se_sess->se_tpg = NULL;
570 	se_sess->fabric_sess_ptr = NULL;
571 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
572 
573 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574 		se_tpg->se_tpg_tfo->get_fabric_name());
575 	/*
576 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578 	 * removal context from within transport_free_session() code.
579 	 *
580 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
581 	 * to release all remaining generate_node_acl=1 created ACL resources.
582 	 */
583 
584 	transport_free_session(se_sess);
585 }
586 EXPORT_SYMBOL(transport_deregister_session);
587 
588 static void target_remove_from_state_list(struct se_cmd *cmd)
589 {
590 	struct se_device *dev = cmd->se_dev;
591 	unsigned long flags;
592 
593 	if (!dev)
594 		return;
595 
596 	spin_lock_irqsave(&dev->execute_task_lock, flags);
597 	if (cmd->state_active) {
598 		list_del(&cmd->state_list);
599 		cmd->state_active = false;
600 	}
601 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
602 }
603 
604 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
605 {
606 	unsigned long flags;
607 
608 	target_remove_from_state_list(cmd);
609 
610 	/*
611 	 * Clear struct se_cmd->se_lun before the handoff to FE.
612 	 */
613 	cmd->se_lun = NULL;
614 
615 	spin_lock_irqsave(&cmd->t_state_lock, flags);
616 	/*
617 	 * Determine if frontend context caller is requesting the stopping of
618 	 * this command for frontend exceptions.
619 	 */
620 	if (cmd->transport_state & CMD_T_STOP) {
621 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
622 			__func__, __LINE__, cmd->tag);
623 
624 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
625 
626 		complete_all(&cmd->t_transport_stop_comp);
627 		return 1;
628 	}
629 	cmd->transport_state &= ~CMD_T_ACTIVE;
630 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631 
632 	/*
633 	 * Some fabric modules like tcm_loop can release their internally
634 	 * allocated I/O reference and struct se_cmd now.
635 	 *
636 	 * Fabric modules are expected to return '1' here if the se_cmd being
637 	 * passed is released at this point, or zero if not being released.
638 	 */
639 	return cmd->se_tfo->check_stop_free(cmd);
640 }
641 
642 static void transport_lun_remove_cmd(struct se_cmd *cmd)
643 {
644 	struct se_lun *lun = cmd->se_lun;
645 
646 	if (!lun)
647 		return;
648 
649 	if (cmpxchg(&cmd->lun_ref_active, true, false))
650 		percpu_ref_put(&lun->lun_ref);
651 }
652 
653 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
654 {
655 	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
656 	int ret = 0;
657 
658 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
659 		transport_lun_remove_cmd(cmd);
660 	/*
661 	 * Allow the fabric driver to unmap any resources before
662 	 * releasing the descriptor via TFO->release_cmd()
663 	 */
664 	if (remove)
665 		cmd->se_tfo->aborted_task(cmd);
666 
667 	if (transport_cmd_check_stop_to_fabric(cmd))
668 		return 1;
669 	if (remove && ack_kref)
670 		ret = target_put_sess_cmd(cmd);
671 
672 	return ret;
673 }
674 
675 static void target_complete_failure_work(struct work_struct *work)
676 {
677 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
678 
679 	transport_generic_request_failure(cmd,
680 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
681 }
682 
683 /*
684  * Used when asking transport to copy Sense Data from the underlying
685  * Linux/SCSI struct scsi_cmnd
686  */
687 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
688 {
689 	struct se_device *dev = cmd->se_dev;
690 
691 	WARN_ON(!cmd->se_lun);
692 
693 	if (!dev)
694 		return NULL;
695 
696 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
697 		return NULL;
698 
699 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
700 
701 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
702 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
703 	return cmd->sense_buffer;
704 }
705 
706 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
707 {
708 	unsigned char *cmd_sense_buf;
709 	unsigned long flags;
710 
711 	spin_lock_irqsave(&cmd->t_state_lock, flags);
712 	cmd_sense_buf = transport_get_sense_buffer(cmd);
713 	if (!cmd_sense_buf) {
714 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
715 		return;
716 	}
717 
718 	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
719 	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
720 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
721 }
722 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
723 
724 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
725 {
726 	struct se_device *dev = cmd->se_dev;
727 	int success;
728 	unsigned long flags;
729 
730 	cmd->scsi_status = scsi_status;
731 
732 	spin_lock_irqsave(&cmd->t_state_lock, flags);
733 	switch (cmd->scsi_status) {
734 	case SAM_STAT_CHECK_CONDITION:
735 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
736 			success = 1;
737 		else
738 			success = 0;
739 		break;
740 	default:
741 		success = 1;
742 		break;
743 	}
744 
745 	/*
746 	 * Check for case where an explicit ABORT_TASK has been received
747 	 * and transport_wait_for_tasks() will be waiting for completion..
748 	 */
749 	if (cmd->transport_state & CMD_T_ABORTED ||
750 	    cmd->transport_state & CMD_T_STOP) {
751 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
752 		/*
753 		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
754 		 * release se_device->caw_sem obtained by sbc_compare_and_write()
755 		 * since target_complete_ok_work() or target_complete_failure_work()
756 		 * won't be called to invoke the normal CAW completion callbacks.
757 		 */
758 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
759 			up(&dev->caw_sem);
760 		}
761 		complete_all(&cmd->t_transport_stop_comp);
762 		return;
763 	} else if (!success) {
764 		INIT_WORK(&cmd->work, target_complete_failure_work);
765 	} else {
766 		INIT_WORK(&cmd->work, target_complete_ok_work);
767 	}
768 
769 	cmd->t_state = TRANSPORT_COMPLETE;
770 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
771 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
772 
773 	if (cmd->se_cmd_flags & SCF_USE_CPUID)
774 		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
775 	else
776 		queue_work(target_completion_wq, &cmd->work);
777 }
778 EXPORT_SYMBOL(target_complete_cmd);
779 
780 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
781 {
782 	if ((scsi_status == SAM_STAT_GOOD ||
783 	     cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
784 	    length < cmd->data_length) {
785 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
786 			cmd->residual_count += cmd->data_length - length;
787 		} else {
788 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
789 			cmd->residual_count = cmd->data_length - length;
790 		}
791 
792 		cmd->data_length = length;
793 	}
794 
795 	target_complete_cmd(cmd, scsi_status);
796 }
797 EXPORT_SYMBOL(target_complete_cmd_with_length);
798 
799 static void target_add_to_state_list(struct se_cmd *cmd)
800 {
801 	struct se_device *dev = cmd->se_dev;
802 	unsigned long flags;
803 
804 	spin_lock_irqsave(&dev->execute_task_lock, flags);
805 	if (!cmd->state_active) {
806 		list_add_tail(&cmd->state_list, &dev->state_list);
807 		cmd->state_active = true;
808 	}
809 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
810 }
811 
812 /*
813  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
814  */
815 static void transport_write_pending_qf(struct se_cmd *cmd);
816 static void transport_complete_qf(struct se_cmd *cmd);
817 
818 void target_qf_do_work(struct work_struct *work)
819 {
820 	struct se_device *dev = container_of(work, struct se_device,
821 					qf_work_queue);
822 	LIST_HEAD(qf_cmd_list);
823 	struct se_cmd *cmd, *cmd_tmp;
824 
825 	spin_lock_irq(&dev->qf_cmd_lock);
826 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
827 	spin_unlock_irq(&dev->qf_cmd_lock);
828 
829 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
830 		list_del(&cmd->se_qf_node);
831 		atomic_dec_mb(&dev->dev_qf_count);
832 
833 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
834 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
835 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
836 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
837 			: "UNKNOWN");
838 
839 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
840 			transport_write_pending_qf(cmd);
841 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
842 			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
843 			transport_complete_qf(cmd);
844 	}
845 }
846 
847 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
848 {
849 	switch (cmd->data_direction) {
850 	case DMA_NONE:
851 		return "NONE";
852 	case DMA_FROM_DEVICE:
853 		return "READ";
854 	case DMA_TO_DEVICE:
855 		return "WRITE";
856 	case DMA_BIDIRECTIONAL:
857 		return "BIDI";
858 	default:
859 		break;
860 	}
861 
862 	return "UNKNOWN";
863 }
864 
865 void transport_dump_dev_state(
866 	struct se_device *dev,
867 	char *b,
868 	int *bl)
869 {
870 	*bl += sprintf(b + *bl, "Status: ");
871 	if (dev->export_count)
872 		*bl += sprintf(b + *bl, "ACTIVATED");
873 	else
874 		*bl += sprintf(b + *bl, "DEACTIVATED");
875 
876 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
877 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
878 		dev->dev_attrib.block_size,
879 		dev->dev_attrib.hw_max_sectors);
880 	*bl += sprintf(b + *bl, "        ");
881 }
882 
883 void transport_dump_vpd_proto_id(
884 	struct t10_vpd *vpd,
885 	unsigned char *p_buf,
886 	int p_buf_len)
887 {
888 	unsigned char buf[VPD_TMP_BUF_SIZE];
889 	int len;
890 
891 	memset(buf, 0, VPD_TMP_BUF_SIZE);
892 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
893 
894 	switch (vpd->protocol_identifier) {
895 	case 0x00:
896 		sprintf(buf+len, "Fibre Channel\n");
897 		break;
898 	case 0x10:
899 		sprintf(buf+len, "Parallel SCSI\n");
900 		break;
901 	case 0x20:
902 		sprintf(buf+len, "SSA\n");
903 		break;
904 	case 0x30:
905 		sprintf(buf+len, "IEEE 1394\n");
906 		break;
907 	case 0x40:
908 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
909 				" Protocol\n");
910 		break;
911 	case 0x50:
912 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
913 		break;
914 	case 0x60:
915 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
916 		break;
917 	case 0x70:
918 		sprintf(buf+len, "Automation/Drive Interface Transport"
919 				" Protocol\n");
920 		break;
921 	case 0x80:
922 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
923 		break;
924 	default:
925 		sprintf(buf+len, "Unknown 0x%02x\n",
926 				vpd->protocol_identifier);
927 		break;
928 	}
929 
930 	if (p_buf)
931 		strncpy(p_buf, buf, p_buf_len);
932 	else
933 		pr_debug("%s", buf);
934 }
935 
936 void
937 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
938 {
939 	/*
940 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
941 	 *
942 	 * from spc3r23.pdf section 7.5.1
943 	 */
944 	 if (page_83[1] & 0x80) {
945 		vpd->protocol_identifier = (page_83[0] & 0xf0);
946 		vpd->protocol_identifier_set = 1;
947 		transport_dump_vpd_proto_id(vpd, NULL, 0);
948 	}
949 }
950 EXPORT_SYMBOL(transport_set_vpd_proto_id);
951 
952 int transport_dump_vpd_assoc(
953 	struct t10_vpd *vpd,
954 	unsigned char *p_buf,
955 	int p_buf_len)
956 {
957 	unsigned char buf[VPD_TMP_BUF_SIZE];
958 	int ret = 0;
959 	int len;
960 
961 	memset(buf, 0, VPD_TMP_BUF_SIZE);
962 	len = sprintf(buf, "T10 VPD Identifier Association: ");
963 
964 	switch (vpd->association) {
965 	case 0x00:
966 		sprintf(buf+len, "addressed logical unit\n");
967 		break;
968 	case 0x10:
969 		sprintf(buf+len, "target port\n");
970 		break;
971 	case 0x20:
972 		sprintf(buf+len, "SCSI target device\n");
973 		break;
974 	default:
975 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
976 		ret = -EINVAL;
977 		break;
978 	}
979 
980 	if (p_buf)
981 		strncpy(p_buf, buf, p_buf_len);
982 	else
983 		pr_debug("%s", buf);
984 
985 	return ret;
986 }
987 
988 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
989 {
990 	/*
991 	 * The VPD identification association..
992 	 *
993 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
994 	 */
995 	vpd->association = (page_83[1] & 0x30);
996 	return transport_dump_vpd_assoc(vpd, NULL, 0);
997 }
998 EXPORT_SYMBOL(transport_set_vpd_assoc);
999 
1000 int transport_dump_vpd_ident_type(
1001 	struct t10_vpd *vpd,
1002 	unsigned char *p_buf,
1003 	int p_buf_len)
1004 {
1005 	unsigned char buf[VPD_TMP_BUF_SIZE];
1006 	int ret = 0;
1007 	int len;
1008 
1009 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1010 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1011 
1012 	switch (vpd->device_identifier_type) {
1013 	case 0x00:
1014 		sprintf(buf+len, "Vendor specific\n");
1015 		break;
1016 	case 0x01:
1017 		sprintf(buf+len, "T10 Vendor ID based\n");
1018 		break;
1019 	case 0x02:
1020 		sprintf(buf+len, "EUI-64 based\n");
1021 		break;
1022 	case 0x03:
1023 		sprintf(buf+len, "NAA\n");
1024 		break;
1025 	case 0x04:
1026 		sprintf(buf+len, "Relative target port identifier\n");
1027 		break;
1028 	case 0x08:
1029 		sprintf(buf+len, "SCSI name string\n");
1030 		break;
1031 	default:
1032 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1033 				vpd->device_identifier_type);
1034 		ret = -EINVAL;
1035 		break;
1036 	}
1037 
1038 	if (p_buf) {
1039 		if (p_buf_len < strlen(buf)+1)
1040 			return -EINVAL;
1041 		strncpy(p_buf, buf, p_buf_len);
1042 	} else {
1043 		pr_debug("%s", buf);
1044 	}
1045 
1046 	return ret;
1047 }
1048 
1049 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1050 {
1051 	/*
1052 	 * The VPD identifier type..
1053 	 *
1054 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1055 	 */
1056 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1057 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1058 }
1059 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1060 
1061 int transport_dump_vpd_ident(
1062 	struct t10_vpd *vpd,
1063 	unsigned char *p_buf,
1064 	int p_buf_len)
1065 {
1066 	unsigned char buf[VPD_TMP_BUF_SIZE];
1067 	int ret = 0;
1068 
1069 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1070 
1071 	switch (vpd->device_identifier_code_set) {
1072 	case 0x01: /* Binary */
1073 		snprintf(buf, sizeof(buf),
1074 			"T10 VPD Binary Device Identifier: %s\n",
1075 			&vpd->device_identifier[0]);
1076 		break;
1077 	case 0x02: /* ASCII */
1078 		snprintf(buf, sizeof(buf),
1079 			"T10 VPD ASCII Device Identifier: %s\n",
1080 			&vpd->device_identifier[0]);
1081 		break;
1082 	case 0x03: /* UTF-8 */
1083 		snprintf(buf, sizeof(buf),
1084 			"T10 VPD UTF-8 Device Identifier: %s\n",
1085 			&vpd->device_identifier[0]);
1086 		break;
1087 	default:
1088 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1089 			" 0x%02x", vpd->device_identifier_code_set);
1090 		ret = -EINVAL;
1091 		break;
1092 	}
1093 
1094 	if (p_buf)
1095 		strncpy(p_buf, buf, p_buf_len);
1096 	else
1097 		pr_debug("%s", buf);
1098 
1099 	return ret;
1100 }
1101 
1102 int
1103 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1104 {
1105 	static const char hex_str[] = "0123456789abcdef";
1106 	int j = 0, i = 4; /* offset to start of the identifier */
1107 
1108 	/*
1109 	 * The VPD Code Set (encoding)
1110 	 *
1111 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1112 	 */
1113 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1114 	switch (vpd->device_identifier_code_set) {
1115 	case 0x01: /* Binary */
1116 		vpd->device_identifier[j++] =
1117 				hex_str[vpd->device_identifier_type];
1118 		while (i < (4 + page_83[3])) {
1119 			vpd->device_identifier[j++] =
1120 				hex_str[(page_83[i] & 0xf0) >> 4];
1121 			vpd->device_identifier[j++] =
1122 				hex_str[page_83[i] & 0x0f];
1123 			i++;
1124 		}
1125 		break;
1126 	case 0x02: /* ASCII */
1127 	case 0x03: /* UTF-8 */
1128 		while (i < (4 + page_83[3]))
1129 			vpd->device_identifier[j++] = page_83[i++];
1130 		break;
1131 	default:
1132 		break;
1133 	}
1134 
1135 	return transport_dump_vpd_ident(vpd, NULL, 0);
1136 }
1137 EXPORT_SYMBOL(transport_set_vpd_ident);
1138 
1139 static sense_reason_t
1140 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1141 			       unsigned int size)
1142 {
1143 	u32 mtl;
1144 
1145 	if (!cmd->se_tfo->max_data_sg_nents)
1146 		return TCM_NO_SENSE;
1147 	/*
1148 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1149 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1150 	 * residual_count and reduce original cmd->data_length to maximum
1151 	 * length based on single PAGE_SIZE entry scatter-lists.
1152 	 */
1153 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1154 	if (cmd->data_length > mtl) {
1155 		/*
1156 		 * If an existing CDB overflow is present, calculate new residual
1157 		 * based on CDB size minus fabric maximum transfer length.
1158 		 *
1159 		 * If an existing CDB underflow is present, calculate new residual
1160 		 * based on original cmd->data_length minus fabric maximum transfer
1161 		 * length.
1162 		 *
1163 		 * Otherwise, set the underflow residual based on cmd->data_length
1164 		 * minus fabric maximum transfer length.
1165 		 */
1166 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1167 			cmd->residual_count = (size - mtl);
1168 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1169 			u32 orig_dl = size + cmd->residual_count;
1170 			cmd->residual_count = (orig_dl - mtl);
1171 		} else {
1172 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1173 			cmd->residual_count = (cmd->data_length - mtl);
1174 		}
1175 		cmd->data_length = mtl;
1176 		/*
1177 		 * Reset sbc_check_prot() calculated protection payload
1178 		 * length based upon the new smaller MTL.
1179 		 */
1180 		if (cmd->prot_length) {
1181 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1182 			cmd->prot_length = dev->prot_length * sectors;
1183 		}
1184 	}
1185 	return TCM_NO_SENSE;
1186 }
1187 
1188 sense_reason_t
1189 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1190 {
1191 	struct se_device *dev = cmd->se_dev;
1192 
1193 	if (cmd->unknown_data_length) {
1194 		cmd->data_length = size;
1195 	} else if (size != cmd->data_length) {
1196 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1197 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1198 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1199 				cmd->data_length, size, cmd->t_task_cdb[0]);
1200 
1201 		if (cmd->data_direction == DMA_TO_DEVICE) {
1202 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1203 				pr_err_ratelimited("Rejecting underflow/overflow"
1204 						   " for WRITE data CDB\n");
1205 				return TCM_INVALID_CDB_FIELD;
1206 			}
1207 			/*
1208 			 * Some fabric drivers like iscsi-target still expect to
1209 			 * always reject overflow writes.  Reject this case until
1210 			 * full fabric driver level support for overflow writes
1211 			 * is introduced tree-wide.
1212 			 */
1213 			if (size > cmd->data_length) {
1214 				pr_err_ratelimited("Rejecting overflow for"
1215 						   " WRITE control CDB\n");
1216 				return TCM_INVALID_CDB_FIELD;
1217 			}
1218 		}
1219 		/*
1220 		 * Reject READ_* or WRITE_* with overflow/underflow for
1221 		 * type SCF_SCSI_DATA_CDB.
1222 		 */
1223 		if (dev->dev_attrib.block_size != 512)  {
1224 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1225 				" CDB on non 512-byte sector setup subsystem"
1226 				" plugin: %s\n", dev->transport->name);
1227 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1228 			return TCM_INVALID_CDB_FIELD;
1229 		}
1230 		/*
1231 		 * For the overflow case keep the existing fabric provided
1232 		 * ->data_length.  Otherwise for the underflow case, reset
1233 		 * ->data_length to the smaller SCSI expected data transfer
1234 		 * length.
1235 		 */
1236 		if (size > cmd->data_length) {
1237 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1238 			cmd->residual_count = (size - cmd->data_length);
1239 		} else {
1240 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1241 			cmd->residual_count = (cmd->data_length - size);
1242 			cmd->data_length = size;
1243 		}
1244 	}
1245 
1246 	return target_check_max_data_sg_nents(cmd, dev, size);
1247 
1248 }
1249 
1250 /*
1251  * Used by fabric modules containing a local struct se_cmd within their
1252  * fabric dependent per I/O descriptor.
1253  *
1254  * Preserves the value of @cmd->tag.
1255  */
1256 void transport_init_se_cmd(
1257 	struct se_cmd *cmd,
1258 	const struct target_core_fabric_ops *tfo,
1259 	struct se_session *se_sess,
1260 	u32 data_length,
1261 	int data_direction,
1262 	int task_attr,
1263 	unsigned char *sense_buffer)
1264 {
1265 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1266 	INIT_LIST_HEAD(&cmd->se_qf_node);
1267 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1268 	INIT_LIST_HEAD(&cmd->state_list);
1269 	init_completion(&cmd->t_transport_stop_comp);
1270 	init_completion(&cmd->cmd_wait_comp);
1271 	spin_lock_init(&cmd->t_state_lock);
1272 	INIT_WORK(&cmd->work, NULL);
1273 	kref_init(&cmd->cmd_kref);
1274 
1275 	cmd->se_tfo = tfo;
1276 	cmd->se_sess = se_sess;
1277 	cmd->data_length = data_length;
1278 	cmd->data_direction = data_direction;
1279 	cmd->sam_task_attr = task_attr;
1280 	cmd->sense_buffer = sense_buffer;
1281 
1282 	cmd->state_active = false;
1283 }
1284 EXPORT_SYMBOL(transport_init_se_cmd);
1285 
1286 static sense_reason_t
1287 transport_check_alloc_task_attr(struct se_cmd *cmd)
1288 {
1289 	struct se_device *dev = cmd->se_dev;
1290 
1291 	/*
1292 	 * Check if SAM Task Attribute emulation is enabled for this
1293 	 * struct se_device storage object
1294 	 */
1295 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1296 		return 0;
1297 
1298 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1299 		pr_debug("SAM Task Attribute ACA"
1300 			" emulation is not supported\n");
1301 		return TCM_INVALID_CDB_FIELD;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 sense_reason_t
1308 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1309 {
1310 	struct se_device *dev = cmd->se_dev;
1311 	sense_reason_t ret;
1312 
1313 	/*
1314 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1315 	 * for VARIABLE_LENGTH_CMD
1316 	 */
1317 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1318 		pr_err("Received SCSI CDB with command_size: %d that"
1319 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1320 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1321 		return TCM_INVALID_CDB_FIELD;
1322 	}
1323 	/*
1324 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1325 	 * allocate the additional extended CDB buffer now..  Otherwise
1326 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1327 	 */
1328 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1329 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1330 						GFP_KERNEL);
1331 		if (!cmd->t_task_cdb) {
1332 			pr_err("Unable to allocate cmd->t_task_cdb"
1333 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1334 				scsi_command_size(cdb),
1335 				(unsigned long)sizeof(cmd->__t_task_cdb));
1336 			return TCM_OUT_OF_RESOURCES;
1337 		}
1338 	} else
1339 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1340 	/*
1341 	 * Copy the original CDB into cmd->
1342 	 */
1343 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1344 
1345 	trace_target_sequencer_start(cmd);
1346 
1347 	ret = dev->transport->parse_cdb(cmd);
1348 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1349 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1350 				    cmd->se_tfo->get_fabric_name(),
1351 				    cmd->se_sess->se_node_acl->initiatorname,
1352 				    cmd->t_task_cdb[0]);
1353 	if (ret)
1354 		return ret;
1355 
1356 	ret = transport_check_alloc_task_attr(cmd);
1357 	if (ret)
1358 		return ret;
1359 
1360 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1361 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1362 	return 0;
1363 }
1364 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1365 
1366 /*
1367  * Used by fabric module frontends to queue tasks directly.
1368  * May only be used from process context.
1369  */
1370 int transport_handle_cdb_direct(
1371 	struct se_cmd *cmd)
1372 {
1373 	sense_reason_t ret;
1374 
1375 	if (!cmd->se_lun) {
1376 		dump_stack();
1377 		pr_err("cmd->se_lun is NULL\n");
1378 		return -EINVAL;
1379 	}
1380 	if (in_interrupt()) {
1381 		dump_stack();
1382 		pr_err("transport_generic_handle_cdb cannot be called"
1383 				" from interrupt context\n");
1384 		return -EINVAL;
1385 	}
1386 	/*
1387 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1388 	 * outstanding descriptors are handled correctly during shutdown via
1389 	 * transport_wait_for_tasks()
1390 	 *
1391 	 * Also, we don't take cmd->t_state_lock here as we only expect
1392 	 * this to be called for initial descriptor submission.
1393 	 */
1394 	cmd->t_state = TRANSPORT_NEW_CMD;
1395 	cmd->transport_state |= CMD_T_ACTIVE;
1396 
1397 	/*
1398 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1399 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1400 	 * and call transport_generic_request_failure() if necessary..
1401 	 */
1402 	ret = transport_generic_new_cmd(cmd);
1403 	if (ret)
1404 		transport_generic_request_failure(cmd, ret);
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL(transport_handle_cdb_direct);
1408 
1409 sense_reason_t
1410 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1411 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1412 {
1413 	if (!sgl || !sgl_count)
1414 		return 0;
1415 
1416 	/*
1417 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1418 	 * scatterlists already have been set to follow what the fabric
1419 	 * passes for the original expected data transfer length.
1420 	 */
1421 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1422 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1423 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1424 		return TCM_INVALID_CDB_FIELD;
1425 	}
1426 
1427 	cmd->t_data_sg = sgl;
1428 	cmd->t_data_nents = sgl_count;
1429 	cmd->t_bidi_data_sg = sgl_bidi;
1430 	cmd->t_bidi_data_nents = sgl_bidi_count;
1431 
1432 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1433 	return 0;
1434 }
1435 
1436 /**
1437  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1438  * 			 se_cmd + use pre-allocated SGL memory.
1439  *
1440  * @se_cmd: command descriptor to submit
1441  * @se_sess: associated se_sess for endpoint
1442  * @cdb: pointer to SCSI CDB
1443  * @sense: pointer to SCSI sense buffer
1444  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1445  * @data_length: fabric expected data transfer length
1446  * @task_attr: SAM task attribute
1447  * @data_dir: DMA data direction
1448  * @flags: flags for command submission from target_sc_flags_tables
1449  * @sgl: struct scatterlist memory for unidirectional mapping
1450  * @sgl_count: scatterlist count for unidirectional mapping
1451  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1452  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1453  * @sgl_prot: struct scatterlist memory protection information
1454  * @sgl_prot_count: scatterlist count for protection information
1455  *
1456  * Task tags are supported if the caller has set @se_cmd->tag.
1457  *
1458  * Returns non zero to signal active I/O shutdown failure.  All other
1459  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1460  * but still return zero here.
1461  *
1462  * This may only be called from process context, and also currently
1463  * assumes internal allocation of fabric payload buffer by target-core.
1464  */
1465 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1466 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1467 		u32 data_length, int task_attr, int data_dir, int flags,
1468 		struct scatterlist *sgl, u32 sgl_count,
1469 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1470 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1471 {
1472 	struct se_portal_group *se_tpg;
1473 	sense_reason_t rc;
1474 	int ret;
1475 
1476 	se_tpg = se_sess->se_tpg;
1477 	BUG_ON(!se_tpg);
1478 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1479 	BUG_ON(in_interrupt());
1480 	/*
1481 	 * Initialize se_cmd for target operation.  From this point
1482 	 * exceptions are handled by sending exception status via
1483 	 * target_core_fabric_ops->queue_status() callback
1484 	 */
1485 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1486 				data_length, data_dir, task_attr, sense);
1487 
1488 	if (flags & TARGET_SCF_USE_CPUID)
1489 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1490 	else
1491 		se_cmd->cpuid = WORK_CPU_UNBOUND;
1492 
1493 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1494 		se_cmd->unknown_data_length = 1;
1495 	/*
1496 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1497 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1498 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1499 	 * kref_put() to happen during fabric packet acknowledgement.
1500 	 */
1501 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1502 	if (ret)
1503 		return ret;
1504 	/*
1505 	 * Signal bidirectional data payloads to target-core
1506 	 */
1507 	if (flags & TARGET_SCF_BIDI_OP)
1508 		se_cmd->se_cmd_flags |= SCF_BIDI;
1509 	/*
1510 	 * Locate se_lun pointer and attach it to struct se_cmd
1511 	 */
1512 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1513 	if (rc) {
1514 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1515 		target_put_sess_cmd(se_cmd);
1516 		return 0;
1517 	}
1518 
1519 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1520 	if (rc != 0) {
1521 		transport_generic_request_failure(se_cmd, rc);
1522 		return 0;
1523 	}
1524 
1525 	/*
1526 	 * Save pointers for SGLs containing protection information,
1527 	 * if present.
1528 	 */
1529 	if (sgl_prot_count) {
1530 		se_cmd->t_prot_sg = sgl_prot;
1531 		se_cmd->t_prot_nents = sgl_prot_count;
1532 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1533 	}
1534 
1535 	/*
1536 	 * When a non zero sgl_count has been passed perform SGL passthrough
1537 	 * mapping for pre-allocated fabric memory instead of having target
1538 	 * core perform an internal SGL allocation..
1539 	 */
1540 	if (sgl_count != 0) {
1541 		BUG_ON(!sgl);
1542 
1543 		/*
1544 		 * A work-around for tcm_loop as some userspace code via
1545 		 * scsi-generic do not memset their associated read buffers,
1546 		 * so go ahead and do that here for type non-data CDBs.  Also
1547 		 * note that this is currently guaranteed to be a single SGL
1548 		 * for this case by target core in target_setup_cmd_from_cdb()
1549 		 * -> transport_generic_cmd_sequencer().
1550 		 */
1551 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1552 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1553 			unsigned char *buf = NULL;
1554 
1555 			if (sgl)
1556 				buf = kmap(sg_page(sgl)) + sgl->offset;
1557 
1558 			if (buf) {
1559 				memset(buf, 0, sgl->length);
1560 				kunmap(sg_page(sgl));
1561 			}
1562 		}
1563 
1564 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1565 				sgl_bidi, sgl_bidi_count);
1566 		if (rc != 0) {
1567 			transport_generic_request_failure(se_cmd, rc);
1568 			return 0;
1569 		}
1570 	}
1571 
1572 	/*
1573 	 * Check if we need to delay processing because of ALUA
1574 	 * Active/NonOptimized primary access state..
1575 	 */
1576 	core_alua_check_nonop_delay(se_cmd);
1577 
1578 	transport_handle_cdb_direct(se_cmd);
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1582 
1583 /**
1584  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1585  *
1586  * @se_cmd: command descriptor to submit
1587  * @se_sess: associated se_sess for endpoint
1588  * @cdb: pointer to SCSI CDB
1589  * @sense: pointer to SCSI sense buffer
1590  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1591  * @data_length: fabric expected data transfer length
1592  * @task_attr: SAM task attribute
1593  * @data_dir: DMA data direction
1594  * @flags: flags for command submission from target_sc_flags_tables
1595  *
1596  * Task tags are supported if the caller has set @se_cmd->tag.
1597  *
1598  * Returns non zero to signal active I/O shutdown failure.  All other
1599  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1600  * but still return zero here.
1601  *
1602  * This may only be called from process context, and also currently
1603  * assumes internal allocation of fabric payload buffer by target-core.
1604  *
1605  * It also assumes interal target core SGL memory allocation.
1606  */
1607 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1608 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1609 		u32 data_length, int task_attr, int data_dir, int flags)
1610 {
1611 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1612 			unpacked_lun, data_length, task_attr, data_dir,
1613 			flags, NULL, 0, NULL, 0, NULL, 0);
1614 }
1615 EXPORT_SYMBOL(target_submit_cmd);
1616 
1617 static void target_complete_tmr_failure(struct work_struct *work)
1618 {
1619 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1620 
1621 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1622 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1623 
1624 	transport_lun_remove_cmd(se_cmd);
1625 	transport_cmd_check_stop_to_fabric(se_cmd);
1626 }
1627 
1628 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1629 				       u64 *unpacked_lun)
1630 {
1631 	struct se_cmd *se_cmd;
1632 	unsigned long flags;
1633 	bool ret = false;
1634 
1635 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1636 	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1637 		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1638 			continue;
1639 
1640 		if (se_cmd->tag == tag) {
1641 			*unpacked_lun = se_cmd->orig_fe_lun;
1642 			ret = true;
1643 			break;
1644 		}
1645 	}
1646 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1647 
1648 	return ret;
1649 }
1650 
1651 /**
1652  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1653  *                     for TMR CDBs
1654  *
1655  * @se_cmd: command descriptor to submit
1656  * @se_sess: associated se_sess for endpoint
1657  * @sense: pointer to SCSI sense buffer
1658  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1659  * @fabric_tmr_ptr: fabric context for TMR req
1660  * @tm_type: Type of TM request
1661  * @gfp: gfp type for caller
1662  * @tag: referenced task tag for TMR_ABORT_TASK
1663  * @flags: submit cmd flags
1664  *
1665  * Callable from all contexts.
1666  **/
1667 
1668 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1669 		unsigned char *sense, u64 unpacked_lun,
1670 		void *fabric_tmr_ptr, unsigned char tm_type,
1671 		gfp_t gfp, u64 tag, int flags)
1672 {
1673 	struct se_portal_group *se_tpg;
1674 	int ret;
1675 
1676 	se_tpg = se_sess->se_tpg;
1677 	BUG_ON(!se_tpg);
1678 
1679 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1680 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1681 	/*
1682 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1683 	 * allocation failure.
1684 	 */
1685 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1686 	if (ret < 0)
1687 		return -ENOMEM;
1688 
1689 	if (tm_type == TMR_ABORT_TASK)
1690 		se_cmd->se_tmr_req->ref_task_tag = tag;
1691 
1692 	/* See target_submit_cmd for commentary */
1693 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1694 	if (ret) {
1695 		core_tmr_release_req(se_cmd->se_tmr_req);
1696 		return ret;
1697 	}
1698 	/*
1699 	 * If this is ABORT_TASK with no explicit fabric provided LUN,
1700 	 * go ahead and search active session tags for a match to figure
1701 	 * out unpacked_lun for the original se_cmd.
1702 	 */
1703 	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1704 		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1705 			goto failure;
1706 	}
1707 
1708 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1709 	if (ret)
1710 		goto failure;
1711 
1712 	transport_generic_handle_tmr(se_cmd);
1713 	return 0;
1714 
1715 	/*
1716 	 * For callback during failure handling, push this work off
1717 	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1718 	 */
1719 failure:
1720 	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1721 	schedule_work(&se_cmd->work);
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(target_submit_tmr);
1725 
1726 /*
1727  * Handle SAM-esque emulation for generic transport request failures.
1728  */
1729 void transport_generic_request_failure(struct se_cmd *cmd,
1730 		sense_reason_t sense_reason)
1731 {
1732 	int ret = 0, post_ret = 0;
1733 
1734 	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1735 		 sense_reason);
1736 	target_show_cmd("-----[ ", cmd);
1737 
1738 	/*
1739 	 * For SAM Task Attribute emulation for failed struct se_cmd
1740 	 */
1741 	transport_complete_task_attr(cmd);
1742 
1743 	/*
1744 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1745 	 * callback is expected to drop the per device ->caw_sem.
1746 	 */
1747 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1748 	     cmd->transport_complete_callback)
1749 		cmd->transport_complete_callback(cmd, false, &post_ret);
1750 
1751 	if (transport_check_aborted_status(cmd, 1))
1752 		return;
1753 
1754 	switch (sense_reason) {
1755 	case TCM_NON_EXISTENT_LUN:
1756 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1757 	case TCM_INVALID_CDB_FIELD:
1758 	case TCM_INVALID_PARAMETER_LIST:
1759 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1760 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1761 	case TCM_UNKNOWN_MODE_PAGE:
1762 	case TCM_WRITE_PROTECTED:
1763 	case TCM_ADDRESS_OUT_OF_RANGE:
1764 	case TCM_CHECK_CONDITION_ABORT_CMD:
1765 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1766 	case TCM_CHECK_CONDITION_NOT_READY:
1767 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1768 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1769 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1770 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1771 	case TCM_TOO_MANY_TARGET_DESCS:
1772 	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1773 	case TCM_TOO_MANY_SEGMENT_DESCS:
1774 	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1775 		break;
1776 	case TCM_OUT_OF_RESOURCES:
1777 		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1778 		goto queue_status;
1779 	case TCM_LUN_BUSY:
1780 		cmd->scsi_status = SAM_STAT_BUSY;
1781 		goto queue_status;
1782 	case TCM_RESERVATION_CONFLICT:
1783 		/*
1784 		 * No SENSE Data payload for this case, set SCSI Status
1785 		 * and queue the response to $FABRIC_MOD.
1786 		 *
1787 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1788 		 */
1789 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1790 		/*
1791 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1792 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1793 		 * CONFLICT STATUS.
1794 		 *
1795 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1796 		 */
1797 		if (cmd->se_sess &&
1798 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1799 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1800 					       cmd->orig_fe_lun, 0x2C,
1801 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1802 		}
1803 
1804 		goto queue_status;
1805 	default:
1806 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1807 			cmd->t_task_cdb[0], sense_reason);
1808 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1809 		break;
1810 	}
1811 
1812 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1813 	if (ret)
1814 		goto queue_full;
1815 
1816 check_stop:
1817 	transport_lun_remove_cmd(cmd);
1818 	transport_cmd_check_stop_to_fabric(cmd);
1819 	return;
1820 
1821 queue_status:
1822 	trace_target_cmd_complete(cmd);
1823 	ret = cmd->se_tfo->queue_status(cmd);
1824 	if (!ret)
1825 		goto check_stop;
1826 queue_full:
1827 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1828 }
1829 EXPORT_SYMBOL(transport_generic_request_failure);
1830 
1831 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1832 {
1833 	sense_reason_t ret;
1834 
1835 	if (!cmd->execute_cmd) {
1836 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1837 		goto err;
1838 	}
1839 	if (do_checks) {
1840 		/*
1841 		 * Check for an existing UNIT ATTENTION condition after
1842 		 * target_handle_task_attr() has done SAM task attr
1843 		 * checking, and possibly have already defered execution
1844 		 * out to target_restart_delayed_cmds() context.
1845 		 */
1846 		ret = target_scsi3_ua_check(cmd);
1847 		if (ret)
1848 			goto err;
1849 
1850 		ret = target_alua_state_check(cmd);
1851 		if (ret)
1852 			goto err;
1853 
1854 		ret = target_check_reservation(cmd);
1855 		if (ret) {
1856 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1857 			goto err;
1858 		}
1859 	}
1860 
1861 	ret = cmd->execute_cmd(cmd);
1862 	if (!ret)
1863 		return;
1864 err:
1865 	spin_lock_irq(&cmd->t_state_lock);
1866 	cmd->transport_state &= ~CMD_T_SENT;
1867 	spin_unlock_irq(&cmd->t_state_lock);
1868 
1869 	transport_generic_request_failure(cmd, ret);
1870 }
1871 
1872 static int target_write_prot_action(struct se_cmd *cmd)
1873 {
1874 	u32 sectors;
1875 	/*
1876 	 * Perform WRITE_INSERT of PI using software emulation when backend
1877 	 * device has PI enabled, if the transport has not already generated
1878 	 * PI using hardware WRITE_INSERT offload.
1879 	 */
1880 	switch (cmd->prot_op) {
1881 	case TARGET_PROT_DOUT_INSERT:
1882 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1883 			sbc_dif_generate(cmd);
1884 		break;
1885 	case TARGET_PROT_DOUT_STRIP:
1886 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1887 			break;
1888 
1889 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1890 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1891 					     sectors, 0, cmd->t_prot_sg, 0);
1892 		if (unlikely(cmd->pi_err)) {
1893 			spin_lock_irq(&cmd->t_state_lock);
1894 			cmd->transport_state &= ~CMD_T_SENT;
1895 			spin_unlock_irq(&cmd->t_state_lock);
1896 			transport_generic_request_failure(cmd, cmd->pi_err);
1897 			return -1;
1898 		}
1899 		break;
1900 	default:
1901 		break;
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 static bool target_handle_task_attr(struct se_cmd *cmd)
1908 {
1909 	struct se_device *dev = cmd->se_dev;
1910 
1911 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1912 		return false;
1913 
1914 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1915 
1916 	/*
1917 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1918 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1919 	 */
1920 	switch (cmd->sam_task_attr) {
1921 	case TCM_HEAD_TAG:
1922 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1923 			 cmd->t_task_cdb[0]);
1924 		return false;
1925 	case TCM_ORDERED_TAG:
1926 		atomic_inc_mb(&dev->dev_ordered_sync);
1927 
1928 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1929 			 cmd->t_task_cdb[0]);
1930 
1931 		/*
1932 		 * Execute an ORDERED command if no other older commands
1933 		 * exist that need to be completed first.
1934 		 */
1935 		if (!atomic_read(&dev->simple_cmds))
1936 			return false;
1937 		break;
1938 	default:
1939 		/*
1940 		 * For SIMPLE and UNTAGGED Task Attribute commands
1941 		 */
1942 		atomic_inc_mb(&dev->simple_cmds);
1943 		break;
1944 	}
1945 
1946 	if (atomic_read(&dev->dev_ordered_sync) == 0)
1947 		return false;
1948 
1949 	spin_lock(&dev->delayed_cmd_lock);
1950 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1951 	spin_unlock(&dev->delayed_cmd_lock);
1952 
1953 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1954 		cmd->t_task_cdb[0], cmd->sam_task_attr);
1955 	return true;
1956 }
1957 
1958 static int __transport_check_aborted_status(struct se_cmd *, int);
1959 
1960 void target_execute_cmd(struct se_cmd *cmd)
1961 {
1962 	/*
1963 	 * Determine if frontend context caller is requesting the stopping of
1964 	 * this command for frontend exceptions.
1965 	 *
1966 	 * If the received CDB has aleady been aborted stop processing it here.
1967 	 */
1968 	spin_lock_irq(&cmd->t_state_lock);
1969 	if (__transport_check_aborted_status(cmd, 1)) {
1970 		spin_unlock_irq(&cmd->t_state_lock);
1971 		return;
1972 	}
1973 	if (cmd->transport_state & CMD_T_STOP) {
1974 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1975 			__func__, __LINE__, cmd->tag);
1976 
1977 		spin_unlock_irq(&cmd->t_state_lock);
1978 		complete_all(&cmd->t_transport_stop_comp);
1979 		return;
1980 	}
1981 
1982 	cmd->t_state = TRANSPORT_PROCESSING;
1983 	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1984 	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1985 	spin_unlock_irq(&cmd->t_state_lock);
1986 
1987 	if (target_write_prot_action(cmd))
1988 		return;
1989 
1990 	if (target_handle_task_attr(cmd)) {
1991 		spin_lock_irq(&cmd->t_state_lock);
1992 		cmd->transport_state &= ~CMD_T_SENT;
1993 		spin_unlock_irq(&cmd->t_state_lock);
1994 		return;
1995 	}
1996 
1997 	__target_execute_cmd(cmd, true);
1998 }
1999 EXPORT_SYMBOL(target_execute_cmd);
2000 
2001 /*
2002  * Process all commands up to the last received ORDERED task attribute which
2003  * requires another blocking boundary
2004  */
2005 static void target_restart_delayed_cmds(struct se_device *dev)
2006 {
2007 	for (;;) {
2008 		struct se_cmd *cmd;
2009 
2010 		spin_lock(&dev->delayed_cmd_lock);
2011 		if (list_empty(&dev->delayed_cmd_list)) {
2012 			spin_unlock(&dev->delayed_cmd_lock);
2013 			break;
2014 		}
2015 
2016 		cmd = list_entry(dev->delayed_cmd_list.next,
2017 				 struct se_cmd, se_delayed_node);
2018 		list_del(&cmd->se_delayed_node);
2019 		spin_unlock(&dev->delayed_cmd_lock);
2020 
2021 		cmd->transport_state |= CMD_T_SENT;
2022 
2023 		__target_execute_cmd(cmd, true);
2024 
2025 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2026 			break;
2027 	}
2028 }
2029 
2030 /*
2031  * Called from I/O completion to determine which dormant/delayed
2032  * and ordered cmds need to have their tasks added to the execution queue.
2033  */
2034 static void transport_complete_task_attr(struct se_cmd *cmd)
2035 {
2036 	struct se_device *dev = cmd->se_dev;
2037 
2038 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2039 		return;
2040 
2041 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2042 		goto restart;
2043 
2044 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2045 		atomic_dec_mb(&dev->simple_cmds);
2046 		dev->dev_cur_ordered_id++;
2047 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2048 		dev->dev_cur_ordered_id++;
2049 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2050 			 dev->dev_cur_ordered_id);
2051 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2052 		atomic_dec_mb(&dev->dev_ordered_sync);
2053 
2054 		dev->dev_cur_ordered_id++;
2055 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2056 			 dev->dev_cur_ordered_id);
2057 	}
2058 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2059 
2060 restart:
2061 	target_restart_delayed_cmds(dev);
2062 }
2063 
2064 static void transport_complete_qf(struct se_cmd *cmd)
2065 {
2066 	int ret = 0;
2067 
2068 	transport_complete_task_attr(cmd);
2069 	/*
2070 	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2071 	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2072 	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2073 	 * if a scsi_status is not already set.
2074 	 *
2075 	 * If a fabric driver ->queue_status() has returned non zero, always
2076 	 * keep retrying no matter what..
2077 	 */
2078 	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2079 		if (cmd->scsi_status)
2080 			goto queue_status;
2081 
2082 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2083 		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2084 		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2085 		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2086 		goto queue_status;
2087 	}
2088 
2089 	/*
2090 	 * Check if we need to send a sense buffer from
2091 	 * the struct se_cmd in question. We do NOT want
2092 	 * to take this path of the IO has been marked as
2093 	 * needing to be treated like a "normal read". This
2094 	 * is the case if it's a tape read, and either the
2095 	 * FM, EOM, or ILI bits are set, but there is no
2096 	 * sense data.
2097 	 */
2098 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2099 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2100 		goto queue_status;
2101 
2102 	switch (cmd->data_direction) {
2103 	case DMA_FROM_DEVICE:
2104 		/* queue status if not treating this as a normal read */
2105 		if (cmd->scsi_status &&
2106 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2107 			goto queue_status;
2108 
2109 		trace_target_cmd_complete(cmd);
2110 		ret = cmd->se_tfo->queue_data_in(cmd);
2111 		break;
2112 	case DMA_TO_DEVICE:
2113 		if (cmd->se_cmd_flags & SCF_BIDI) {
2114 			ret = cmd->se_tfo->queue_data_in(cmd);
2115 			break;
2116 		}
2117 		/* fall through */
2118 	case DMA_NONE:
2119 queue_status:
2120 		trace_target_cmd_complete(cmd);
2121 		ret = cmd->se_tfo->queue_status(cmd);
2122 		break;
2123 	default:
2124 		break;
2125 	}
2126 
2127 	if (ret < 0) {
2128 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2129 		return;
2130 	}
2131 	transport_lun_remove_cmd(cmd);
2132 	transport_cmd_check_stop_to_fabric(cmd);
2133 }
2134 
2135 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2136 					int err, bool write_pending)
2137 {
2138 	/*
2139 	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2140 	 * ->queue_data_in() callbacks from new process context.
2141 	 *
2142 	 * Otherwise for other errors, transport_complete_qf() will send
2143 	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2144 	 * retry associated fabric driver data-transfer callbacks.
2145 	 */
2146 	if (err == -EAGAIN || err == -ENOMEM) {
2147 		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2148 						 TRANSPORT_COMPLETE_QF_OK;
2149 	} else {
2150 		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2151 		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2152 	}
2153 
2154 	spin_lock_irq(&dev->qf_cmd_lock);
2155 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2156 	atomic_inc_mb(&dev->dev_qf_count);
2157 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2158 
2159 	schedule_work(&cmd->se_dev->qf_work_queue);
2160 }
2161 
2162 static bool target_read_prot_action(struct se_cmd *cmd)
2163 {
2164 	switch (cmd->prot_op) {
2165 	case TARGET_PROT_DIN_STRIP:
2166 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2167 			u32 sectors = cmd->data_length >>
2168 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2169 
2170 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2171 						     sectors, 0, cmd->t_prot_sg,
2172 						     0);
2173 			if (cmd->pi_err)
2174 				return true;
2175 		}
2176 		break;
2177 	case TARGET_PROT_DIN_INSERT:
2178 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2179 			break;
2180 
2181 		sbc_dif_generate(cmd);
2182 		break;
2183 	default:
2184 		break;
2185 	}
2186 
2187 	return false;
2188 }
2189 
2190 static void target_complete_ok_work(struct work_struct *work)
2191 {
2192 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2193 	int ret;
2194 
2195 	/*
2196 	 * Check if we need to move delayed/dormant tasks from cmds on the
2197 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2198 	 * Attribute.
2199 	 */
2200 	transport_complete_task_attr(cmd);
2201 
2202 	/*
2203 	 * Check to schedule QUEUE_FULL work, or execute an existing
2204 	 * cmd->transport_qf_callback()
2205 	 */
2206 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2207 		schedule_work(&cmd->se_dev->qf_work_queue);
2208 
2209 	/*
2210 	 * Check if we need to send a sense buffer from
2211 	 * the struct se_cmd in question. We do NOT want
2212 	 * to take this path of the IO has been marked as
2213 	 * needing to be treated like a "normal read". This
2214 	 * is the case if it's a tape read, and either the
2215 	 * FM, EOM, or ILI bits are set, but there is no
2216 	 * sense data.
2217 	 */
2218 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2219 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2220 		WARN_ON(!cmd->scsi_status);
2221 		ret = transport_send_check_condition_and_sense(
2222 					cmd, 0, 1);
2223 		if (ret)
2224 			goto queue_full;
2225 
2226 		transport_lun_remove_cmd(cmd);
2227 		transport_cmd_check_stop_to_fabric(cmd);
2228 		return;
2229 	}
2230 	/*
2231 	 * Check for a callback, used by amongst other things
2232 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2233 	 */
2234 	if (cmd->transport_complete_callback) {
2235 		sense_reason_t rc;
2236 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2237 		bool zero_dl = !(cmd->data_length);
2238 		int post_ret = 0;
2239 
2240 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2241 		if (!rc && !post_ret) {
2242 			if (caw && zero_dl)
2243 				goto queue_rsp;
2244 
2245 			return;
2246 		} else if (rc) {
2247 			ret = transport_send_check_condition_and_sense(cmd,
2248 						rc, 0);
2249 			if (ret)
2250 				goto queue_full;
2251 
2252 			transport_lun_remove_cmd(cmd);
2253 			transport_cmd_check_stop_to_fabric(cmd);
2254 			return;
2255 		}
2256 	}
2257 
2258 queue_rsp:
2259 	switch (cmd->data_direction) {
2260 	case DMA_FROM_DEVICE:
2261 		/*
2262 		 * if this is a READ-type IO, but SCSI status
2263 		 * is set, then skip returning data and just
2264 		 * return the status -- unless this IO is marked
2265 		 * as needing to be treated as a normal read,
2266 		 * in which case we want to go ahead and return
2267 		 * the data. This happens, for example, for tape
2268 		 * reads with the FM, EOM, or ILI bits set, with
2269 		 * no sense data.
2270 		 */
2271 		if (cmd->scsi_status &&
2272 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2273 			goto queue_status;
2274 
2275 		atomic_long_add(cmd->data_length,
2276 				&cmd->se_lun->lun_stats.tx_data_octets);
2277 		/*
2278 		 * Perform READ_STRIP of PI using software emulation when
2279 		 * backend had PI enabled, if the transport will not be
2280 		 * performing hardware READ_STRIP offload.
2281 		 */
2282 		if (target_read_prot_action(cmd)) {
2283 			ret = transport_send_check_condition_and_sense(cmd,
2284 						cmd->pi_err, 0);
2285 			if (ret)
2286 				goto queue_full;
2287 
2288 			transport_lun_remove_cmd(cmd);
2289 			transport_cmd_check_stop_to_fabric(cmd);
2290 			return;
2291 		}
2292 
2293 		trace_target_cmd_complete(cmd);
2294 		ret = cmd->se_tfo->queue_data_in(cmd);
2295 		if (ret)
2296 			goto queue_full;
2297 		break;
2298 	case DMA_TO_DEVICE:
2299 		atomic_long_add(cmd->data_length,
2300 				&cmd->se_lun->lun_stats.rx_data_octets);
2301 		/*
2302 		 * Check if we need to send READ payload for BIDI-COMMAND
2303 		 */
2304 		if (cmd->se_cmd_flags & SCF_BIDI) {
2305 			atomic_long_add(cmd->data_length,
2306 					&cmd->se_lun->lun_stats.tx_data_octets);
2307 			ret = cmd->se_tfo->queue_data_in(cmd);
2308 			if (ret)
2309 				goto queue_full;
2310 			break;
2311 		}
2312 		/* fall through */
2313 	case DMA_NONE:
2314 queue_status:
2315 		trace_target_cmd_complete(cmd);
2316 		ret = cmd->se_tfo->queue_status(cmd);
2317 		if (ret)
2318 			goto queue_full;
2319 		break;
2320 	default:
2321 		break;
2322 	}
2323 
2324 	transport_lun_remove_cmd(cmd);
2325 	transport_cmd_check_stop_to_fabric(cmd);
2326 	return;
2327 
2328 queue_full:
2329 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2330 		" data_direction: %d\n", cmd, cmd->data_direction);
2331 
2332 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2333 }
2334 
2335 void target_free_sgl(struct scatterlist *sgl, int nents)
2336 {
2337 	sgl_free_n_order(sgl, nents, 0);
2338 }
2339 EXPORT_SYMBOL(target_free_sgl);
2340 
2341 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2342 {
2343 	/*
2344 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2345 	 * emulation, and free + reset pointers if necessary..
2346 	 */
2347 	if (!cmd->t_data_sg_orig)
2348 		return;
2349 
2350 	kfree(cmd->t_data_sg);
2351 	cmd->t_data_sg = cmd->t_data_sg_orig;
2352 	cmd->t_data_sg_orig = NULL;
2353 	cmd->t_data_nents = cmd->t_data_nents_orig;
2354 	cmd->t_data_nents_orig = 0;
2355 }
2356 
2357 static inline void transport_free_pages(struct se_cmd *cmd)
2358 {
2359 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2360 		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2361 		cmd->t_prot_sg = NULL;
2362 		cmd->t_prot_nents = 0;
2363 	}
2364 
2365 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2366 		/*
2367 		 * Release special case READ buffer payload required for
2368 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2369 		 */
2370 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2371 			target_free_sgl(cmd->t_bidi_data_sg,
2372 					   cmd->t_bidi_data_nents);
2373 			cmd->t_bidi_data_sg = NULL;
2374 			cmd->t_bidi_data_nents = 0;
2375 		}
2376 		transport_reset_sgl_orig(cmd);
2377 		return;
2378 	}
2379 	transport_reset_sgl_orig(cmd);
2380 
2381 	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2382 	cmd->t_data_sg = NULL;
2383 	cmd->t_data_nents = 0;
2384 
2385 	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2386 	cmd->t_bidi_data_sg = NULL;
2387 	cmd->t_bidi_data_nents = 0;
2388 }
2389 
2390 void *transport_kmap_data_sg(struct se_cmd *cmd)
2391 {
2392 	struct scatterlist *sg = cmd->t_data_sg;
2393 	struct page **pages;
2394 	int i;
2395 
2396 	/*
2397 	 * We need to take into account a possible offset here for fabrics like
2398 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2399 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2400 	 */
2401 	if (!cmd->t_data_nents)
2402 		return NULL;
2403 
2404 	BUG_ON(!sg);
2405 	if (cmd->t_data_nents == 1)
2406 		return kmap(sg_page(sg)) + sg->offset;
2407 
2408 	/* >1 page. use vmap */
2409 	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2410 	if (!pages)
2411 		return NULL;
2412 
2413 	/* convert sg[] to pages[] */
2414 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2415 		pages[i] = sg_page(sg);
2416 	}
2417 
2418 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2419 	kfree(pages);
2420 	if (!cmd->t_data_vmap)
2421 		return NULL;
2422 
2423 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2424 }
2425 EXPORT_SYMBOL(transport_kmap_data_sg);
2426 
2427 void transport_kunmap_data_sg(struct se_cmd *cmd)
2428 {
2429 	if (!cmd->t_data_nents) {
2430 		return;
2431 	} else if (cmd->t_data_nents == 1) {
2432 		kunmap(sg_page(cmd->t_data_sg));
2433 		return;
2434 	}
2435 
2436 	vunmap(cmd->t_data_vmap);
2437 	cmd->t_data_vmap = NULL;
2438 }
2439 EXPORT_SYMBOL(transport_kunmap_data_sg);
2440 
2441 int
2442 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2443 		 bool zero_page, bool chainable)
2444 {
2445 	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2446 
2447 	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2448 	return *sgl ? 0 : -ENOMEM;
2449 }
2450 EXPORT_SYMBOL(target_alloc_sgl);
2451 
2452 /*
2453  * Allocate any required resources to execute the command.  For writes we
2454  * might not have the payload yet, so notify the fabric via a call to
2455  * ->write_pending instead. Otherwise place it on the execution queue.
2456  */
2457 sense_reason_t
2458 transport_generic_new_cmd(struct se_cmd *cmd)
2459 {
2460 	unsigned long flags;
2461 	int ret = 0;
2462 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2463 
2464 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2465 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2466 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2467 				       cmd->prot_length, true, false);
2468 		if (ret < 0)
2469 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2470 	}
2471 
2472 	/*
2473 	 * Determine is the TCM fabric module has already allocated physical
2474 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2475 	 * beforehand.
2476 	 */
2477 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2478 	    cmd->data_length) {
2479 
2480 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2481 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2482 			u32 bidi_length;
2483 
2484 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2485 				bidi_length = cmd->t_task_nolb *
2486 					      cmd->se_dev->dev_attrib.block_size;
2487 			else
2488 				bidi_length = cmd->data_length;
2489 
2490 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2491 					       &cmd->t_bidi_data_nents,
2492 					       bidi_length, zero_flag, false);
2493 			if (ret < 0)
2494 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2495 		}
2496 
2497 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2498 				       cmd->data_length, zero_flag, false);
2499 		if (ret < 0)
2500 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2501 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2502 		    cmd->data_length) {
2503 		/*
2504 		 * Special case for COMPARE_AND_WRITE with fabrics
2505 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2506 		 */
2507 		u32 caw_length = cmd->t_task_nolb *
2508 				 cmd->se_dev->dev_attrib.block_size;
2509 
2510 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2511 				       &cmd->t_bidi_data_nents,
2512 				       caw_length, zero_flag, false);
2513 		if (ret < 0)
2514 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2515 	}
2516 	/*
2517 	 * If this command is not a write we can execute it right here,
2518 	 * for write buffers we need to notify the fabric driver first
2519 	 * and let it call back once the write buffers are ready.
2520 	 */
2521 	target_add_to_state_list(cmd);
2522 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2523 		target_execute_cmd(cmd);
2524 		return 0;
2525 	}
2526 
2527 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2528 	cmd->t_state = TRANSPORT_WRITE_PENDING;
2529 	/*
2530 	 * Determine if frontend context caller is requesting the stopping of
2531 	 * this command for frontend exceptions.
2532 	 */
2533 	if (cmd->transport_state & CMD_T_STOP) {
2534 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2535 			 __func__, __LINE__, cmd->tag);
2536 
2537 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2538 
2539 		complete_all(&cmd->t_transport_stop_comp);
2540 		return 0;
2541 	}
2542 	cmd->transport_state &= ~CMD_T_ACTIVE;
2543 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2544 
2545 	ret = cmd->se_tfo->write_pending(cmd);
2546 	if (ret)
2547 		goto queue_full;
2548 
2549 	return 0;
2550 
2551 queue_full:
2552 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2553 	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL(transport_generic_new_cmd);
2557 
2558 static void transport_write_pending_qf(struct se_cmd *cmd)
2559 {
2560 	unsigned long flags;
2561 	int ret;
2562 	bool stop;
2563 
2564 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2565 	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2566 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2567 
2568 	if (stop) {
2569 		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2570 			__func__, __LINE__, cmd->tag);
2571 		complete_all(&cmd->t_transport_stop_comp);
2572 		return;
2573 	}
2574 
2575 	ret = cmd->se_tfo->write_pending(cmd);
2576 	if (ret) {
2577 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2578 			 cmd);
2579 		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2580 	}
2581 }
2582 
2583 static bool
2584 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2585 			   unsigned long *flags);
2586 
2587 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2588 {
2589 	unsigned long flags;
2590 
2591 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2592 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2593 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2594 }
2595 
2596 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2597 {
2598 	int ret = 0;
2599 	bool aborted = false, tas = false;
2600 
2601 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2602 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2603 			target_wait_free_cmd(cmd, &aborted, &tas);
2604 
2605 		if (!aborted || tas)
2606 			ret = target_put_sess_cmd(cmd);
2607 	} else {
2608 		if (wait_for_tasks)
2609 			target_wait_free_cmd(cmd, &aborted, &tas);
2610 		/*
2611 		 * Handle WRITE failure case where transport_generic_new_cmd()
2612 		 * has already added se_cmd to state_list, but fabric has
2613 		 * failed command before I/O submission.
2614 		 */
2615 		if (cmd->state_active)
2616 			target_remove_from_state_list(cmd);
2617 
2618 		if (cmd->se_lun)
2619 			transport_lun_remove_cmd(cmd);
2620 
2621 		if (!aborted || tas)
2622 			ret = target_put_sess_cmd(cmd);
2623 	}
2624 	/*
2625 	 * If the task has been internally aborted due to TMR ABORT_TASK
2626 	 * or LUN_RESET, target_core_tmr.c is responsible for performing
2627 	 * the remaining calls to target_put_sess_cmd(), and not the
2628 	 * callers of this function.
2629 	 */
2630 	if (aborted) {
2631 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2632 		wait_for_completion(&cmd->cmd_wait_comp);
2633 		cmd->se_tfo->release_cmd(cmd);
2634 		ret = 1;
2635 	}
2636 	return ret;
2637 }
2638 EXPORT_SYMBOL(transport_generic_free_cmd);
2639 
2640 /**
2641  * target_get_sess_cmd - Add command to active ->sess_cmd_list
2642  * @se_cmd:	command descriptor to add
2643  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2644  */
2645 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2646 {
2647 	struct se_session *se_sess = se_cmd->se_sess;
2648 	unsigned long flags;
2649 	int ret = 0;
2650 
2651 	/*
2652 	 * Add a second kref if the fabric caller is expecting to handle
2653 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2654 	 * invocations before se_cmd descriptor release.
2655 	 */
2656 	if (ack_kref) {
2657 		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2658 			return -EINVAL;
2659 
2660 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2661 	}
2662 
2663 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2664 	if (se_sess->sess_tearing_down) {
2665 		ret = -ESHUTDOWN;
2666 		goto out;
2667 	}
2668 	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2669 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2670 out:
2671 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2672 
2673 	if (ret && ack_kref)
2674 		target_put_sess_cmd(se_cmd);
2675 
2676 	return ret;
2677 }
2678 EXPORT_SYMBOL(target_get_sess_cmd);
2679 
2680 static void target_free_cmd_mem(struct se_cmd *cmd)
2681 {
2682 	transport_free_pages(cmd);
2683 
2684 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2685 		core_tmr_release_req(cmd->se_tmr_req);
2686 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2687 		kfree(cmd->t_task_cdb);
2688 }
2689 
2690 static void target_release_cmd_kref(struct kref *kref)
2691 {
2692 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2693 	struct se_session *se_sess = se_cmd->se_sess;
2694 	unsigned long flags;
2695 	bool fabric_stop;
2696 
2697 	if (se_sess) {
2698 		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2699 
2700 		spin_lock(&se_cmd->t_state_lock);
2701 		fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2702 			      (se_cmd->transport_state & CMD_T_ABORTED);
2703 		spin_unlock(&se_cmd->t_state_lock);
2704 
2705 		if (se_cmd->cmd_wait_set || fabric_stop) {
2706 			list_del_init(&se_cmd->se_cmd_list);
2707 			spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2708 			target_free_cmd_mem(se_cmd);
2709 			complete(&se_cmd->cmd_wait_comp);
2710 			return;
2711 		}
2712 		list_del_init(&se_cmd->se_cmd_list);
2713 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2714 	}
2715 
2716 	target_free_cmd_mem(se_cmd);
2717 	se_cmd->se_tfo->release_cmd(se_cmd);
2718 }
2719 
2720 /**
2721  * target_put_sess_cmd - decrease the command reference count
2722  * @se_cmd:	command to drop a reference from
2723  *
2724  * Returns 1 if and only if this target_put_sess_cmd() call caused the
2725  * refcount to drop to zero. Returns zero otherwise.
2726  */
2727 int target_put_sess_cmd(struct se_cmd *se_cmd)
2728 {
2729 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2730 }
2731 EXPORT_SYMBOL(target_put_sess_cmd);
2732 
2733 static const char *data_dir_name(enum dma_data_direction d)
2734 {
2735 	switch (d) {
2736 	case DMA_BIDIRECTIONAL:	return "BIDI";
2737 	case DMA_TO_DEVICE:	return "WRITE";
2738 	case DMA_FROM_DEVICE:	return "READ";
2739 	case DMA_NONE:		return "NONE";
2740 	}
2741 
2742 	return "(?)";
2743 }
2744 
2745 static const char *cmd_state_name(enum transport_state_table t)
2746 {
2747 	switch (t) {
2748 	case TRANSPORT_NO_STATE:	return "NO_STATE";
2749 	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
2750 	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
2751 	case TRANSPORT_PROCESSING:	return "PROCESSING";
2752 	case TRANSPORT_COMPLETE:	return "COMPLETE";
2753 	case TRANSPORT_ISTATE_PROCESSING:
2754 					return "ISTATE_PROCESSING";
2755 	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
2756 	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
2757 	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
2758 	}
2759 
2760 	return "(?)";
2761 }
2762 
2763 static void target_append_str(char **str, const char *txt)
2764 {
2765 	char *prev = *str;
2766 
2767 	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2768 		kstrdup(txt, GFP_ATOMIC);
2769 	kfree(prev);
2770 }
2771 
2772 /*
2773  * Convert a transport state bitmask into a string. The caller is
2774  * responsible for freeing the returned pointer.
2775  */
2776 static char *target_ts_to_str(u32 ts)
2777 {
2778 	char *str = NULL;
2779 
2780 	if (ts & CMD_T_ABORTED)
2781 		target_append_str(&str, "aborted");
2782 	if (ts & CMD_T_ACTIVE)
2783 		target_append_str(&str, "active");
2784 	if (ts & CMD_T_COMPLETE)
2785 		target_append_str(&str, "complete");
2786 	if (ts & CMD_T_SENT)
2787 		target_append_str(&str, "sent");
2788 	if (ts & CMD_T_STOP)
2789 		target_append_str(&str, "stop");
2790 	if (ts & CMD_T_FABRIC_STOP)
2791 		target_append_str(&str, "fabric_stop");
2792 
2793 	return str;
2794 }
2795 
2796 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2797 {
2798 	switch (tmf) {
2799 	case TMR_ABORT_TASK:		return "ABORT_TASK";
2800 	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
2801 	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
2802 	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
2803 	case TMR_LUN_RESET:		return "LUN_RESET";
2804 	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
2805 	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
2806 	case TMR_UNKNOWN:		break;
2807 	}
2808 	return "(?)";
2809 }
2810 
2811 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2812 {
2813 	char *ts_str = target_ts_to_str(cmd->transport_state);
2814 	const u8 *cdb = cmd->t_task_cdb;
2815 	struct se_tmr_req *tmf = cmd->se_tmr_req;
2816 
2817 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2818 		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2819 			 pfx, cdb[0], cdb[1], cmd->tag,
2820 			 data_dir_name(cmd->data_direction),
2821 			 cmd->se_tfo->get_cmd_state(cmd),
2822 			 cmd_state_name(cmd->t_state), cmd->data_length,
2823 			 kref_read(&cmd->cmd_kref), ts_str);
2824 	} else {
2825 		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2826 			 pfx, target_tmf_name(tmf->function), cmd->tag,
2827 			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2828 			 cmd_state_name(cmd->t_state),
2829 			 kref_read(&cmd->cmd_kref), ts_str);
2830 	}
2831 	kfree(ts_str);
2832 }
2833 EXPORT_SYMBOL(target_show_cmd);
2834 
2835 /**
2836  * target_sess_cmd_list_set_waiting - Flag all commands in
2837  *         sess_cmd_list to complete cmd_wait_comp.  Set
2838  *         sess_tearing_down so no more commands are queued.
2839  * @se_sess:	session to flag
2840  */
2841 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2842 {
2843 	struct se_cmd *se_cmd, *tmp_cmd;
2844 	unsigned long flags;
2845 	int rc;
2846 
2847 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2848 	if (se_sess->sess_tearing_down) {
2849 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2850 		return;
2851 	}
2852 	se_sess->sess_tearing_down = 1;
2853 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2854 
2855 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2856 				 &se_sess->sess_wait_list, se_cmd_list) {
2857 		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2858 		if (rc) {
2859 			se_cmd->cmd_wait_set = 1;
2860 			spin_lock(&se_cmd->t_state_lock);
2861 			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2862 			spin_unlock(&se_cmd->t_state_lock);
2863 		} else
2864 			list_del_init(&se_cmd->se_cmd_list);
2865 	}
2866 
2867 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2868 }
2869 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2870 
2871 /**
2872  * target_wait_for_sess_cmds - Wait for outstanding descriptors
2873  * @se_sess:    session to wait for active I/O
2874  */
2875 void target_wait_for_sess_cmds(struct se_session *se_sess)
2876 {
2877 	struct se_cmd *se_cmd, *tmp_cmd;
2878 	unsigned long flags;
2879 	bool tas;
2880 
2881 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2882 				&se_sess->sess_wait_list, se_cmd_list) {
2883 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2884 			" %d\n", se_cmd, se_cmd->t_state,
2885 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2886 
2887 		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2888 		tas = (se_cmd->transport_state & CMD_T_TAS);
2889 		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2890 
2891 		if (!target_put_sess_cmd(se_cmd)) {
2892 			if (tas)
2893 				target_put_sess_cmd(se_cmd);
2894 		}
2895 
2896 		wait_for_completion(&se_cmd->cmd_wait_comp);
2897 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2898 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2899 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2900 
2901 		se_cmd->se_tfo->release_cmd(se_cmd);
2902 	}
2903 
2904 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2905 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2906 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2907 
2908 }
2909 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2910 
2911 static void target_lun_confirm(struct percpu_ref *ref)
2912 {
2913 	struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2914 
2915 	complete(&lun->lun_ref_comp);
2916 }
2917 
2918 void transport_clear_lun_ref(struct se_lun *lun)
2919 {
2920 	/*
2921 	 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2922 	 * the initial reference and schedule confirm kill to be
2923 	 * executed after one full RCU grace period has completed.
2924 	 */
2925 	percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2926 	/*
2927 	 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2928 	 * to call target_lun_confirm after lun->lun_ref has been marked
2929 	 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2930 	 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2931 	 * fails for all new incoming I/O.
2932 	 */
2933 	wait_for_completion(&lun->lun_ref_comp);
2934 	/*
2935 	 * The second completion waits for percpu_ref_put_many() to
2936 	 * invoke ->release() after lun->lun_ref has switched to
2937 	 * atomic_t mode, and lun->lun_ref.count has reached zero.
2938 	 *
2939 	 * At this point all target-core lun->lun_ref references have
2940 	 * been dropped via transport_lun_remove_cmd(), and it's safe
2941 	 * to proceed with the remaining LUN shutdown.
2942 	 */
2943 	wait_for_completion(&lun->lun_shutdown_comp);
2944 }
2945 
2946 static bool
2947 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2948 			   bool *aborted, bool *tas, unsigned long *flags)
2949 	__releases(&cmd->t_state_lock)
2950 	__acquires(&cmd->t_state_lock)
2951 {
2952 
2953 	assert_spin_locked(&cmd->t_state_lock);
2954 	WARN_ON_ONCE(!irqs_disabled());
2955 
2956 	if (fabric_stop)
2957 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2958 
2959 	if (cmd->transport_state & CMD_T_ABORTED)
2960 		*aborted = true;
2961 
2962 	if (cmd->transport_state & CMD_T_TAS)
2963 		*tas = true;
2964 
2965 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2966 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2967 		return false;
2968 
2969 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2970 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2971 		return false;
2972 
2973 	if (!(cmd->transport_state & CMD_T_ACTIVE))
2974 		return false;
2975 
2976 	if (fabric_stop && *aborted)
2977 		return false;
2978 
2979 	cmd->transport_state |= CMD_T_STOP;
2980 
2981 	target_show_cmd("wait_for_tasks: Stopping ", cmd);
2982 
2983 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2984 
2985 	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
2986 					    180 * HZ))
2987 		target_show_cmd("wait for tasks: ", cmd);
2988 
2989 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2990 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2991 
2992 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2993 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2994 
2995 	return true;
2996 }
2997 
2998 /**
2999  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3000  * @cmd: command to wait on
3001  */
3002 bool transport_wait_for_tasks(struct se_cmd *cmd)
3003 {
3004 	unsigned long flags;
3005 	bool ret, aborted = false, tas = false;
3006 
3007 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3008 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3009 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3010 
3011 	return ret;
3012 }
3013 EXPORT_SYMBOL(transport_wait_for_tasks);
3014 
3015 struct sense_info {
3016 	u8 key;
3017 	u8 asc;
3018 	u8 ascq;
3019 	bool add_sector_info;
3020 };
3021 
3022 static const struct sense_info sense_info_table[] = {
3023 	[TCM_NO_SENSE] = {
3024 		.key = NOT_READY
3025 	},
3026 	[TCM_NON_EXISTENT_LUN] = {
3027 		.key = ILLEGAL_REQUEST,
3028 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3029 	},
3030 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3031 		.key = ILLEGAL_REQUEST,
3032 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3033 	},
3034 	[TCM_SECTOR_COUNT_TOO_MANY] = {
3035 		.key = ILLEGAL_REQUEST,
3036 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3037 	},
3038 	[TCM_UNKNOWN_MODE_PAGE] = {
3039 		.key = ILLEGAL_REQUEST,
3040 		.asc = 0x24, /* INVALID FIELD IN CDB */
3041 	},
3042 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3043 		.key = ABORTED_COMMAND,
3044 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3045 		.ascq = 0x03,
3046 	},
3047 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3048 		.key = ABORTED_COMMAND,
3049 		.asc = 0x0c, /* WRITE ERROR */
3050 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3051 	},
3052 	[TCM_INVALID_CDB_FIELD] = {
3053 		.key = ILLEGAL_REQUEST,
3054 		.asc = 0x24, /* INVALID FIELD IN CDB */
3055 	},
3056 	[TCM_INVALID_PARAMETER_LIST] = {
3057 		.key = ILLEGAL_REQUEST,
3058 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3059 	},
3060 	[TCM_TOO_MANY_TARGET_DESCS] = {
3061 		.key = ILLEGAL_REQUEST,
3062 		.asc = 0x26,
3063 		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3064 	},
3065 	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3066 		.key = ILLEGAL_REQUEST,
3067 		.asc = 0x26,
3068 		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3069 	},
3070 	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3071 		.key = ILLEGAL_REQUEST,
3072 		.asc = 0x26,
3073 		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3074 	},
3075 	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3076 		.key = ILLEGAL_REQUEST,
3077 		.asc = 0x26,
3078 		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3079 	},
3080 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3081 		.key = ILLEGAL_REQUEST,
3082 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3083 	},
3084 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3085 		.key = ILLEGAL_REQUEST,
3086 		.asc = 0x0c, /* WRITE ERROR */
3087 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3088 	},
3089 	[TCM_SERVICE_CRC_ERROR] = {
3090 		.key = ABORTED_COMMAND,
3091 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3092 		.ascq = 0x05, /* N/A */
3093 	},
3094 	[TCM_SNACK_REJECTED] = {
3095 		.key = ABORTED_COMMAND,
3096 		.asc = 0x11, /* READ ERROR */
3097 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3098 	},
3099 	[TCM_WRITE_PROTECTED] = {
3100 		.key = DATA_PROTECT,
3101 		.asc = 0x27, /* WRITE PROTECTED */
3102 	},
3103 	[TCM_ADDRESS_OUT_OF_RANGE] = {
3104 		.key = ILLEGAL_REQUEST,
3105 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3106 	},
3107 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3108 		.key = UNIT_ATTENTION,
3109 	},
3110 	[TCM_CHECK_CONDITION_NOT_READY] = {
3111 		.key = NOT_READY,
3112 	},
3113 	[TCM_MISCOMPARE_VERIFY] = {
3114 		.key = MISCOMPARE,
3115 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3116 		.ascq = 0x00,
3117 	},
3118 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3119 		.key = ABORTED_COMMAND,
3120 		.asc = 0x10,
3121 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3122 		.add_sector_info = true,
3123 	},
3124 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3125 		.key = ABORTED_COMMAND,
3126 		.asc = 0x10,
3127 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3128 		.add_sector_info = true,
3129 	},
3130 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3131 		.key = ABORTED_COMMAND,
3132 		.asc = 0x10,
3133 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3134 		.add_sector_info = true,
3135 	},
3136 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3137 		.key = COPY_ABORTED,
3138 		.asc = 0x0d,
3139 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3140 
3141 	},
3142 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3143 		/*
3144 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3145 		 * Solaris initiators.  Returning NOT READY instead means the
3146 		 * operations will be retried a finite number of times and we
3147 		 * can survive intermittent errors.
3148 		 */
3149 		.key = NOT_READY,
3150 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3151 	},
3152 	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3153 		/*
3154 		 * From spc4r22 section5.7.7,5.7.8
3155 		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3156 		 * or a REGISTER AND IGNORE EXISTING KEY service action or
3157 		 * REGISTER AND MOVE service actionis attempted,
3158 		 * but there are insufficient device server resources to complete the
3159 		 * operation, then the command shall be terminated with CHECK CONDITION
3160 		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3161 		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3162 		 */
3163 		.key = ILLEGAL_REQUEST,
3164 		.asc = 0x55,
3165 		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3166 	},
3167 };
3168 
3169 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3170 {
3171 	const struct sense_info *si;
3172 	u8 *buffer = cmd->sense_buffer;
3173 	int r = (__force int)reason;
3174 	u8 asc, ascq;
3175 	bool desc_format = target_sense_desc_format(cmd->se_dev);
3176 
3177 	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3178 		si = &sense_info_table[r];
3179 	else
3180 		si = &sense_info_table[(__force int)
3181 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3182 
3183 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3184 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3185 		WARN_ON_ONCE(asc == 0);
3186 	} else if (si->asc == 0) {
3187 		WARN_ON_ONCE(cmd->scsi_asc == 0);
3188 		asc = cmd->scsi_asc;
3189 		ascq = cmd->scsi_ascq;
3190 	} else {
3191 		asc = si->asc;
3192 		ascq = si->ascq;
3193 	}
3194 
3195 	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3196 	if (si->add_sector_info)
3197 		return scsi_set_sense_information(buffer,
3198 						  cmd->scsi_sense_length,
3199 						  cmd->bad_sector);
3200 
3201 	return 0;
3202 }
3203 
3204 int
3205 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3206 		sense_reason_t reason, int from_transport)
3207 {
3208 	unsigned long flags;
3209 
3210 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3211 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3212 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3213 		return 0;
3214 	}
3215 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3216 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3217 
3218 	if (!from_transport) {
3219 		int rc;
3220 
3221 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3222 		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3223 		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3224 		rc = translate_sense_reason(cmd, reason);
3225 		if (rc)
3226 			return rc;
3227 	}
3228 
3229 	trace_target_cmd_complete(cmd);
3230 	return cmd->se_tfo->queue_status(cmd);
3231 }
3232 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3233 
3234 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3235 	__releases(&cmd->t_state_lock)
3236 	__acquires(&cmd->t_state_lock)
3237 {
3238 	int ret;
3239 
3240 	assert_spin_locked(&cmd->t_state_lock);
3241 	WARN_ON_ONCE(!irqs_disabled());
3242 
3243 	if (!(cmd->transport_state & CMD_T_ABORTED))
3244 		return 0;
3245 	/*
3246 	 * If cmd has been aborted but either no status is to be sent or it has
3247 	 * already been sent, just return
3248 	 */
3249 	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3250 		if (send_status)
3251 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3252 		return 1;
3253 	}
3254 
3255 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3256 		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3257 
3258 	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3259 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3260 	trace_target_cmd_complete(cmd);
3261 
3262 	spin_unlock_irq(&cmd->t_state_lock);
3263 	ret = cmd->se_tfo->queue_status(cmd);
3264 	if (ret)
3265 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3266 	spin_lock_irq(&cmd->t_state_lock);
3267 
3268 	return 1;
3269 }
3270 
3271 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3272 {
3273 	int ret;
3274 
3275 	spin_lock_irq(&cmd->t_state_lock);
3276 	ret = __transport_check_aborted_status(cmd, send_status);
3277 	spin_unlock_irq(&cmd->t_state_lock);
3278 
3279 	return ret;
3280 }
3281 EXPORT_SYMBOL(transport_check_aborted_status);
3282 
3283 void transport_send_task_abort(struct se_cmd *cmd)
3284 {
3285 	unsigned long flags;
3286 	int ret;
3287 
3288 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3289 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3290 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3291 		return;
3292 	}
3293 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3294 
3295 	/*
3296 	 * If there are still expected incoming fabric WRITEs, we wait
3297 	 * until until they have completed before sending a TASK_ABORTED
3298 	 * response.  This response with TASK_ABORTED status will be
3299 	 * queued back to fabric module by transport_check_aborted_status().
3300 	 */
3301 	if (cmd->data_direction == DMA_TO_DEVICE) {
3302 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3303 			spin_lock_irqsave(&cmd->t_state_lock, flags);
3304 			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3305 				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3306 				goto send_abort;
3307 			}
3308 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3309 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3310 			return;
3311 		}
3312 	}
3313 send_abort:
3314 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3315 
3316 	transport_lun_remove_cmd(cmd);
3317 
3318 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3319 		 cmd->t_task_cdb[0], cmd->tag);
3320 
3321 	trace_target_cmd_complete(cmd);
3322 	ret = cmd->se_tfo->queue_status(cmd);
3323 	if (ret)
3324 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3325 }
3326 
3327 static void target_tmr_work(struct work_struct *work)
3328 {
3329 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3330 	struct se_device *dev = cmd->se_dev;
3331 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3332 	unsigned long flags;
3333 	int ret;
3334 
3335 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3336 	if (cmd->transport_state & CMD_T_ABORTED) {
3337 		tmr->response = TMR_FUNCTION_REJECTED;
3338 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3339 		goto check_stop;
3340 	}
3341 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3342 
3343 	switch (tmr->function) {
3344 	case TMR_ABORT_TASK:
3345 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3346 		break;
3347 	case TMR_ABORT_TASK_SET:
3348 	case TMR_CLEAR_ACA:
3349 	case TMR_CLEAR_TASK_SET:
3350 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3351 		break;
3352 	case TMR_LUN_RESET:
3353 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3354 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3355 					 TMR_FUNCTION_REJECTED;
3356 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3357 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3358 					       cmd->orig_fe_lun, 0x29,
3359 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3360 		}
3361 		break;
3362 	case TMR_TARGET_WARM_RESET:
3363 		tmr->response = TMR_FUNCTION_REJECTED;
3364 		break;
3365 	case TMR_TARGET_COLD_RESET:
3366 		tmr->response = TMR_FUNCTION_REJECTED;
3367 		break;
3368 	default:
3369 		pr_err("Unknown TMR function: 0x%02x.\n",
3370 				tmr->function);
3371 		tmr->response = TMR_FUNCTION_REJECTED;
3372 		break;
3373 	}
3374 
3375 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3376 	if (cmd->transport_state & CMD_T_ABORTED) {
3377 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3378 		goto check_stop;
3379 	}
3380 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3381 
3382 	cmd->se_tfo->queue_tm_rsp(cmd);
3383 
3384 check_stop:
3385 	transport_lun_remove_cmd(cmd);
3386 	transport_cmd_check_stop_to_fabric(cmd);
3387 }
3388 
3389 int transport_generic_handle_tmr(
3390 	struct se_cmd *cmd)
3391 {
3392 	unsigned long flags;
3393 	bool aborted = false;
3394 
3395 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3396 	if (cmd->transport_state & CMD_T_ABORTED) {
3397 		aborted = true;
3398 	} else {
3399 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3400 		cmd->transport_state |= CMD_T_ACTIVE;
3401 	}
3402 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3403 
3404 	if (aborted) {
3405 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3406 			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3407 			cmd->se_tmr_req->ref_task_tag, cmd->tag);
3408 		transport_lun_remove_cmd(cmd);
3409 		transport_cmd_check_stop_to_fabric(cmd);
3410 		return 0;
3411 	}
3412 
3413 	INIT_WORK(&cmd->work, target_tmr_work);
3414 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3415 	return 0;
3416 }
3417 EXPORT_SYMBOL(transport_generic_handle_tmr);
3418 
3419 bool
3420 target_check_wce(struct se_device *dev)
3421 {
3422 	bool wce = false;
3423 
3424 	if (dev->transport->get_write_cache)
3425 		wce = dev->transport->get_write_cache(dev);
3426 	else if (dev->dev_attrib.emulate_write_cache > 0)
3427 		wce = true;
3428 
3429 	return wce;
3430 }
3431 
3432 bool
3433 target_check_fua(struct se_device *dev)
3434 {
3435 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3436 }
3437