1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /******************************************************************************* 3 * Filename: target_core_transport.c 4 * 5 * This file contains the Generic Target Engine Core. 6 * 7 * (c) Copyright 2002-2013 Datera, Inc. 8 * 9 * Nicholas A. Bellinger <nab@kernel.org> 10 * 11 ******************************************************************************/ 12 13 #include <linux/net.h> 14 #include <linux/delay.h> 15 #include <linux/string.h> 16 #include <linux/timer.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/kthread.h> 20 #include <linux/in.h> 21 #include <linux/cdrom.h> 22 #include <linux/module.h> 23 #include <linux/ratelimit.h> 24 #include <linux/vmalloc.h> 25 #include <asm/unaligned.h> 26 #include <net/sock.h> 27 #include <net/tcp.h> 28 #include <scsi/scsi_proto.h> 29 #include <scsi/scsi_common.h> 30 31 #include <target/target_core_base.h> 32 #include <target/target_core_backend.h> 33 #include <target/target_core_fabric.h> 34 35 #include "target_core_internal.h" 36 #include "target_core_alua.h" 37 #include "target_core_pr.h" 38 #include "target_core_ua.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/target.h> 42 43 static struct workqueue_struct *target_completion_wq; 44 static struct kmem_cache *se_sess_cache; 45 struct kmem_cache *se_ua_cache; 46 struct kmem_cache *t10_pr_reg_cache; 47 struct kmem_cache *t10_alua_lu_gp_cache; 48 struct kmem_cache *t10_alua_lu_gp_mem_cache; 49 struct kmem_cache *t10_alua_tg_pt_gp_cache; 50 struct kmem_cache *t10_alua_lba_map_cache; 51 struct kmem_cache *t10_alua_lba_map_mem_cache; 52 53 static void transport_complete_task_attr(struct se_cmd *cmd); 54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 55 static void transport_handle_queue_full(struct se_cmd *cmd, 56 struct se_device *dev, int err, bool write_pending); 57 static void target_complete_ok_work(struct work_struct *work); 58 59 int init_se_kmem_caches(void) 60 { 61 se_sess_cache = kmem_cache_create("se_sess_cache", 62 sizeof(struct se_session), __alignof__(struct se_session), 63 0, NULL); 64 if (!se_sess_cache) { 65 pr_err("kmem_cache_create() for struct se_session" 66 " failed\n"); 67 goto out; 68 } 69 se_ua_cache = kmem_cache_create("se_ua_cache", 70 sizeof(struct se_ua), __alignof__(struct se_ua), 71 0, NULL); 72 if (!se_ua_cache) { 73 pr_err("kmem_cache_create() for struct se_ua failed\n"); 74 goto out_free_sess_cache; 75 } 76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 77 sizeof(struct t10_pr_registration), 78 __alignof__(struct t10_pr_registration), 0, NULL); 79 if (!t10_pr_reg_cache) { 80 pr_err("kmem_cache_create() for struct t10_pr_registration" 81 " failed\n"); 82 goto out_free_ua_cache; 83 } 84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 86 0, NULL); 87 if (!t10_alua_lu_gp_cache) { 88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 89 " failed\n"); 90 goto out_free_pr_reg_cache; 91 } 92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 93 sizeof(struct t10_alua_lu_gp_member), 94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 95 if (!t10_alua_lu_gp_mem_cache) { 96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 97 "cache failed\n"); 98 goto out_free_lu_gp_cache; 99 } 100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 101 sizeof(struct t10_alua_tg_pt_gp), 102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 103 if (!t10_alua_tg_pt_gp_cache) { 104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 105 "cache failed\n"); 106 goto out_free_lu_gp_mem_cache; 107 } 108 t10_alua_lba_map_cache = kmem_cache_create( 109 "t10_alua_lba_map_cache", 110 sizeof(struct t10_alua_lba_map), 111 __alignof__(struct t10_alua_lba_map), 0, NULL); 112 if (!t10_alua_lba_map_cache) { 113 pr_err("kmem_cache_create() for t10_alua_lba_map_" 114 "cache failed\n"); 115 goto out_free_tg_pt_gp_cache; 116 } 117 t10_alua_lba_map_mem_cache = kmem_cache_create( 118 "t10_alua_lba_map_mem_cache", 119 sizeof(struct t10_alua_lba_map_member), 120 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 121 if (!t10_alua_lba_map_mem_cache) { 122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 123 "cache failed\n"); 124 goto out_free_lba_map_cache; 125 } 126 127 target_completion_wq = alloc_workqueue("target_completion", 128 WQ_MEM_RECLAIM, 0); 129 if (!target_completion_wq) 130 goto out_free_lba_map_mem_cache; 131 132 return 0; 133 134 out_free_lba_map_mem_cache: 135 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 136 out_free_lba_map_cache: 137 kmem_cache_destroy(t10_alua_lba_map_cache); 138 out_free_tg_pt_gp_cache: 139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 140 out_free_lu_gp_mem_cache: 141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 142 out_free_lu_gp_cache: 143 kmem_cache_destroy(t10_alua_lu_gp_cache); 144 out_free_pr_reg_cache: 145 kmem_cache_destroy(t10_pr_reg_cache); 146 out_free_ua_cache: 147 kmem_cache_destroy(se_ua_cache); 148 out_free_sess_cache: 149 kmem_cache_destroy(se_sess_cache); 150 out: 151 return -ENOMEM; 152 } 153 154 void release_se_kmem_caches(void) 155 { 156 destroy_workqueue(target_completion_wq); 157 kmem_cache_destroy(se_sess_cache); 158 kmem_cache_destroy(se_ua_cache); 159 kmem_cache_destroy(t10_pr_reg_cache); 160 kmem_cache_destroy(t10_alua_lu_gp_cache); 161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 163 kmem_cache_destroy(t10_alua_lba_map_cache); 164 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 165 } 166 167 /* This code ensures unique mib indexes are handed out. */ 168 static DEFINE_SPINLOCK(scsi_mib_index_lock); 169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 170 171 /* 172 * Allocate a new row index for the entry type specified 173 */ 174 u32 scsi_get_new_index(scsi_index_t type) 175 { 176 u32 new_index; 177 178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 179 180 spin_lock(&scsi_mib_index_lock); 181 new_index = ++scsi_mib_index[type]; 182 spin_unlock(&scsi_mib_index_lock); 183 184 return new_index; 185 } 186 187 void transport_subsystem_check_init(void) 188 { 189 int ret; 190 static int sub_api_initialized; 191 192 if (sub_api_initialized) 193 return; 194 195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock"); 196 if (ret != 0) 197 pr_err("Unable to load target_core_iblock\n"); 198 199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file"); 200 if (ret != 0) 201 pr_err("Unable to load target_core_file\n"); 202 203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi"); 204 if (ret != 0) 205 pr_err("Unable to load target_core_pscsi\n"); 206 207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user"); 208 if (ret != 0) 209 pr_err("Unable to load target_core_user\n"); 210 211 sub_api_initialized = 1; 212 } 213 214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref) 215 { 216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count); 217 218 wake_up(&sess->cmd_list_wq); 219 } 220 221 /** 222 * transport_init_session - initialize a session object 223 * @se_sess: Session object pointer. 224 * 225 * The caller must have zero-initialized @se_sess before calling this function. 226 */ 227 int transport_init_session(struct se_session *se_sess) 228 { 229 INIT_LIST_HEAD(&se_sess->sess_list); 230 INIT_LIST_HEAD(&se_sess->sess_acl_list); 231 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 232 spin_lock_init(&se_sess->sess_cmd_lock); 233 init_waitqueue_head(&se_sess->cmd_list_wq); 234 return percpu_ref_init(&se_sess->cmd_count, 235 target_release_sess_cmd_refcnt, 0, GFP_KERNEL); 236 } 237 EXPORT_SYMBOL(transport_init_session); 238 239 /** 240 * transport_alloc_session - allocate a session object and initialize it 241 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 242 */ 243 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops) 244 { 245 struct se_session *se_sess; 246 int ret; 247 248 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 249 if (!se_sess) { 250 pr_err("Unable to allocate struct se_session from" 251 " se_sess_cache\n"); 252 return ERR_PTR(-ENOMEM); 253 } 254 ret = transport_init_session(se_sess); 255 if (ret < 0) { 256 kmem_cache_free(se_sess_cache, se_sess); 257 return ERR_PTR(ret); 258 } 259 se_sess->sup_prot_ops = sup_prot_ops; 260 261 return se_sess; 262 } 263 EXPORT_SYMBOL(transport_alloc_session); 264 265 /** 266 * transport_alloc_session_tags - allocate target driver private data 267 * @se_sess: Session pointer. 268 * @tag_num: Maximum number of in-flight commands between initiator and target. 269 * @tag_size: Size in bytes of the private data a target driver associates with 270 * each command. 271 */ 272 int transport_alloc_session_tags(struct se_session *se_sess, 273 unsigned int tag_num, unsigned int tag_size) 274 { 275 int rc; 276 277 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num, 278 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 279 if (!se_sess->sess_cmd_map) { 280 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 281 return -ENOMEM; 282 } 283 284 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1, 285 false, GFP_KERNEL, NUMA_NO_NODE); 286 if (rc < 0) { 287 pr_err("Unable to init se_sess->sess_tag_pool," 288 " tag_num: %u\n", tag_num); 289 kvfree(se_sess->sess_cmd_map); 290 se_sess->sess_cmd_map = NULL; 291 return -ENOMEM; 292 } 293 294 return 0; 295 } 296 EXPORT_SYMBOL(transport_alloc_session_tags); 297 298 /** 299 * transport_init_session_tags - allocate a session and target driver private data 300 * @tag_num: Maximum number of in-flight commands between initiator and target. 301 * @tag_size: Size in bytes of the private data a target driver associates with 302 * each command. 303 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 304 */ 305 static struct se_session * 306 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size, 307 enum target_prot_op sup_prot_ops) 308 { 309 struct se_session *se_sess; 310 int rc; 311 312 if (tag_num != 0 && !tag_size) { 313 pr_err("init_session_tags called with percpu-ida tag_num:" 314 " %u, but zero tag_size\n", tag_num); 315 return ERR_PTR(-EINVAL); 316 } 317 if (!tag_num && tag_size) { 318 pr_err("init_session_tags called with percpu-ida tag_size:" 319 " %u, but zero tag_num\n", tag_size); 320 return ERR_PTR(-EINVAL); 321 } 322 323 se_sess = transport_alloc_session(sup_prot_ops); 324 if (IS_ERR(se_sess)) 325 return se_sess; 326 327 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 328 if (rc < 0) { 329 transport_free_session(se_sess); 330 return ERR_PTR(-ENOMEM); 331 } 332 333 return se_sess; 334 } 335 336 /* 337 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 338 */ 339 void __transport_register_session( 340 struct se_portal_group *se_tpg, 341 struct se_node_acl *se_nacl, 342 struct se_session *se_sess, 343 void *fabric_sess_ptr) 344 { 345 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 346 unsigned char buf[PR_REG_ISID_LEN]; 347 unsigned long flags; 348 349 se_sess->se_tpg = se_tpg; 350 se_sess->fabric_sess_ptr = fabric_sess_ptr; 351 /* 352 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 353 * 354 * Only set for struct se_session's that will actually be moving I/O. 355 * eg: *NOT* discovery sessions. 356 */ 357 if (se_nacl) { 358 /* 359 * 360 * Determine if fabric allows for T10-PI feature bits exposed to 361 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 362 * 363 * If so, then always save prot_type on a per se_node_acl node 364 * basis and re-instate the previous sess_prot_type to avoid 365 * disabling PI from below any previously initiator side 366 * registered LUNs. 367 */ 368 if (se_nacl->saved_prot_type) 369 se_sess->sess_prot_type = se_nacl->saved_prot_type; 370 else if (tfo->tpg_check_prot_fabric_only) 371 se_sess->sess_prot_type = se_nacl->saved_prot_type = 372 tfo->tpg_check_prot_fabric_only(se_tpg); 373 /* 374 * If the fabric module supports an ISID based TransportID, 375 * save this value in binary from the fabric I_T Nexus now. 376 */ 377 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 378 memset(&buf[0], 0, PR_REG_ISID_LEN); 379 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 380 &buf[0], PR_REG_ISID_LEN); 381 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 382 } 383 384 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 385 /* 386 * The se_nacl->nacl_sess pointer will be set to the 387 * last active I_T Nexus for each struct se_node_acl. 388 */ 389 se_nacl->nacl_sess = se_sess; 390 391 list_add_tail(&se_sess->sess_acl_list, 392 &se_nacl->acl_sess_list); 393 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 394 } 395 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 396 397 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 398 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr); 399 } 400 EXPORT_SYMBOL(__transport_register_session); 401 402 void transport_register_session( 403 struct se_portal_group *se_tpg, 404 struct se_node_acl *se_nacl, 405 struct se_session *se_sess, 406 void *fabric_sess_ptr) 407 { 408 unsigned long flags; 409 410 spin_lock_irqsave(&se_tpg->session_lock, flags); 411 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 412 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 413 } 414 EXPORT_SYMBOL(transport_register_session); 415 416 struct se_session * 417 target_setup_session(struct se_portal_group *tpg, 418 unsigned int tag_num, unsigned int tag_size, 419 enum target_prot_op prot_op, 420 const char *initiatorname, void *private, 421 int (*callback)(struct se_portal_group *, 422 struct se_session *, void *)) 423 { 424 struct se_session *sess; 425 426 /* 427 * If the fabric driver is using percpu-ida based pre allocation 428 * of I/O descriptor tags, go ahead and perform that setup now.. 429 */ 430 if (tag_num != 0) 431 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 432 else 433 sess = transport_alloc_session(prot_op); 434 435 if (IS_ERR(sess)) 436 return sess; 437 438 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 439 (unsigned char *)initiatorname); 440 if (!sess->se_node_acl) { 441 transport_free_session(sess); 442 return ERR_PTR(-EACCES); 443 } 444 /* 445 * Go ahead and perform any remaining fabric setup that is 446 * required before transport_register_session(). 447 */ 448 if (callback != NULL) { 449 int rc = callback(tpg, sess, private); 450 if (rc) { 451 transport_free_session(sess); 452 return ERR_PTR(rc); 453 } 454 } 455 456 transport_register_session(tpg, sess->se_node_acl, sess, private); 457 return sess; 458 } 459 EXPORT_SYMBOL(target_setup_session); 460 461 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 462 { 463 struct se_session *se_sess; 464 ssize_t len = 0; 465 466 spin_lock_bh(&se_tpg->session_lock); 467 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 468 if (!se_sess->se_node_acl) 469 continue; 470 if (!se_sess->se_node_acl->dynamic_node_acl) 471 continue; 472 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 473 break; 474 475 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 476 se_sess->se_node_acl->initiatorname); 477 len += 1; /* Include NULL terminator */ 478 } 479 spin_unlock_bh(&se_tpg->session_lock); 480 481 return len; 482 } 483 EXPORT_SYMBOL(target_show_dynamic_sessions); 484 485 static void target_complete_nacl(struct kref *kref) 486 { 487 struct se_node_acl *nacl = container_of(kref, 488 struct se_node_acl, acl_kref); 489 struct se_portal_group *se_tpg = nacl->se_tpg; 490 491 if (!nacl->dynamic_stop) { 492 complete(&nacl->acl_free_comp); 493 return; 494 } 495 496 mutex_lock(&se_tpg->acl_node_mutex); 497 list_del_init(&nacl->acl_list); 498 mutex_unlock(&se_tpg->acl_node_mutex); 499 500 core_tpg_wait_for_nacl_pr_ref(nacl); 501 core_free_device_list_for_node(nacl, se_tpg); 502 kfree(nacl); 503 } 504 505 void target_put_nacl(struct se_node_acl *nacl) 506 { 507 kref_put(&nacl->acl_kref, target_complete_nacl); 508 } 509 EXPORT_SYMBOL(target_put_nacl); 510 511 void transport_deregister_session_configfs(struct se_session *se_sess) 512 { 513 struct se_node_acl *se_nacl; 514 unsigned long flags; 515 /* 516 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 517 */ 518 se_nacl = se_sess->se_node_acl; 519 if (se_nacl) { 520 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 521 if (!list_empty(&se_sess->sess_acl_list)) 522 list_del_init(&se_sess->sess_acl_list); 523 /* 524 * If the session list is empty, then clear the pointer. 525 * Otherwise, set the struct se_session pointer from the tail 526 * element of the per struct se_node_acl active session list. 527 */ 528 if (list_empty(&se_nacl->acl_sess_list)) 529 se_nacl->nacl_sess = NULL; 530 else { 531 se_nacl->nacl_sess = container_of( 532 se_nacl->acl_sess_list.prev, 533 struct se_session, sess_acl_list); 534 } 535 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 536 } 537 } 538 EXPORT_SYMBOL(transport_deregister_session_configfs); 539 540 void transport_free_session(struct se_session *se_sess) 541 { 542 struct se_node_acl *se_nacl = se_sess->se_node_acl; 543 544 /* 545 * Drop the se_node_acl->nacl_kref obtained from within 546 * core_tpg_get_initiator_node_acl(). 547 */ 548 if (se_nacl) { 549 struct se_portal_group *se_tpg = se_nacl->se_tpg; 550 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 551 unsigned long flags; 552 553 se_sess->se_node_acl = NULL; 554 555 /* 556 * Also determine if we need to drop the extra ->cmd_kref if 557 * it had been previously dynamically generated, and 558 * the endpoint is not caching dynamic ACLs. 559 */ 560 mutex_lock(&se_tpg->acl_node_mutex); 561 if (se_nacl->dynamic_node_acl && 562 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 563 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 564 if (list_empty(&se_nacl->acl_sess_list)) 565 se_nacl->dynamic_stop = true; 566 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 567 568 if (se_nacl->dynamic_stop) 569 list_del_init(&se_nacl->acl_list); 570 } 571 mutex_unlock(&se_tpg->acl_node_mutex); 572 573 if (se_nacl->dynamic_stop) 574 target_put_nacl(se_nacl); 575 576 target_put_nacl(se_nacl); 577 } 578 if (se_sess->sess_cmd_map) { 579 sbitmap_queue_free(&se_sess->sess_tag_pool); 580 kvfree(se_sess->sess_cmd_map); 581 } 582 percpu_ref_exit(&se_sess->cmd_count); 583 kmem_cache_free(se_sess_cache, se_sess); 584 } 585 EXPORT_SYMBOL(transport_free_session); 586 587 static int target_release_res(struct se_device *dev, void *data) 588 { 589 struct se_session *sess = data; 590 591 if (dev->reservation_holder == sess) 592 target_release_reservation(dev); 593 return 0; 594 } 595 596 void transport_deregister_session(struct se_session *se_sess) 597 { 598 struct se_portal_group *se_tpg = se_sess->se_tpg; 599 unsigned long flags; 600 601 if (!se_tpg) { 602 transport_free_session(se_sess); 603 return; 604 } 605 606 spin_lock_irqsave(&se_tpg->session_lock, flags); 607 list_del(&se_sess->sess_list); 608 se_sess->se_tpg = NULL; 609 se_sess->fabric_sess_ptr = NULL; 610 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 611 612 /* 613 * Since the session is being removed, release SPC-2 614 * reservations held by the session that is disappearing. 615 */ 616 target_for_each_device(target_release_res, se_sess); 617 618 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 619 se_tpg->se_tpg_tfo->fabric_name); 620 /* 621 * If last kref is dropping now for an explicit NodeACL, awake sleeping 622 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 623 * removal context from within transport_free_session() code. 624 * 625 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 626 * to release all remaining generate_node_acl=1 created ACL resources. 627 */ 628 629 transport_free_session(se_sess); 630 } 631 EXPORT_SYMBOL(transport_deregister_session); 632 633 void target_remove_session(struct se_session *se_sess) 634 { 635 transport_deregister_session_configfs(se_sess); 636 transport_deregister_session(se_sess); 637 } 638 EXPORT_SYMBOL(target_remove_session); 639 640 static void target_remove_from_state_list(struct se_cmd *cmd) 641 { 642 struct se_device *dev = cmd->se_dev; 643 unsigned long flags; 644 645 if (!dev) 646 return; 647 648 spin_lock_irqsave(&dev->execute_task_lock, flags); 649 if (cmd->state_active) { 650 list_del(&cmd->state_list); 651 cmd->state_active = false; 652 } 653 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 654 } 655 656 /* 657 * This function is called by the target core after the target core has 658 * finished processing a SCSI command or SCSI TMF. Both the regular command 659 * processing code and the code for aborting commands can call this 660 * function. CMD_T_STOP is set if and only if another thread is waiting 661 * inside transport_wait_for_tasks() for t_transport_stop_comp. 662 */ 663 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 664 { 665 unsigned long flags; 666 667 target_remove_from_state_list(cmd); 668 669 spin_lock_irqsave(&cmd->t_state_lock, flags); 670 /* 671 * Determine if frontend context caller is requesting the stopping of 672 * this command for frontend exceptions. 673 */ 674 if (cmd->transport_state & CMD_T_STOP) { 675 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 676 __func__, __LINE__, cmd->tag); 677 678 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 679 680 complete_all(&cmd->t_transport_stop_comp); 681 return 1; 682 } 683 cmd->transport_state &= ~CMD_T_ACTIVE; 684 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 685 686 /* 687 * Some fabric modules like tcm_loop can release their internally 688 * allocated I/O reference and struct se_cmd now. 689 * 690 * Fabric modules are expected to return '1' here if the se_cmd being 691 * passed is released at this point, or zero if not being released. 692 */ 693 return cmd->se_tfo->check_stop_free(cmd); 694 } 695 696 static void target_complete_failure_work(struct work_struct *work) 697 { 698 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 699 700 transport_generic_request_failure(cmd, 701 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 702 } 703 704 /* 705 * Used when asking transport to copy Sense Data from the underlying 706 * Linux/SCSI struct scsi_cmnd 707 */ 708 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 709 { 710 struct se_device *dev = cmd->se_dev; 711 712 WARN_ON(!cmd->se_lun); 713 714 if (!dev) 715 return NULL; 716 717 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 718 return NULL; 719 720 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 721 722 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 723 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 724 return cmd->sense_buffer; 725 } 726 727 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense) 728 { 729 unsigned char *cmd_sense_buf; 730 unsigned long flags; 731 732 spin_lock_irqsave(&cmd->t_state_lock, flags); 733 cmd_sense_buf = transport_get_sense_buffer(cmd); 734 if (!cmd_sense_buf) { 735 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 736 return; 737 } 738 739 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 740 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length); 741 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 742 } 743 EXPORT_SYMBOL(transport_copy_sense_to_cmd); 744 745 static void target_handle_abort(struct se_cmd *cmd) 746 { 747 bool tas = cmd->transport_state & CMD_T_TAS; 748 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF; 749 int ret; 750 751 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas); 752 753 if (tas) { 754 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 755 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 756 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 757 cmd->t_task_cdb[0], cmd->tag); 758 trace_target_cmd_complete(cmd); 759 ret = cmd->se_tfo->queue_status(cmd); 760 if (ret) { 761 transport_handle_queue_full(cmd, cmd->se_dev, 762 ret, false); 763 return; 764 } 765 } else { 766 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED; 767 cmd->se_tfo->queue_tm_rsp(cmd); 768 } 769 } else { 770 /* 771 * Allow the fabric driver to unmap any resources before 772 * releasing the descriptor via TFO->release_cmd(). 773 */ 774 cmd->se_tfo->aborted_task(cmd); 775 if (ack_kref) 776 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0); 777 /* 778 * To do: establish a unit attention condition on the I_T 779 * nexus associated with cmd. See also the paragraph "Aborting 780 * commands" in SAM. 781 */ 782 } 783 784 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0); 785 786 transport_cmd_check_stop_to_fabric(cmd); 787 } 788 789 static void target_abort_work(struct work_struct *work) 790 { 791 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 792 793 target_handle_abort(cmd); 794 } 795 796 static bool target_cmd_interrupted(struct se_cmd *cmd) 797 { 798 int post_ret; 799 800 if (cmd->transport_state & CMD_T_ABORTED) { 801 if (cmd->transport_complete_callback) 802 cmd->transport_complete_callback(cmd, false, &post_ret); 803 INIT_WORK(&cmd->work, target_abort_work); 804 queue_work(target_completion_wq, &cmd->work); 805 return true; 806 } else if (cmd->transport_state & CMD_T_STOP) { 807 if (cmd->transport_complete_callback) 808 cmd->transport_complete_callback(cmd, false, &post_ret); 809 complete_all(&cmd->t_transport_stop_comp); 810 return true; 811 } 812 813 return false; 814 } 815 816 /* May be called from interrupt context so must not sleep. */ 817 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 818 { 819 int success; 820 unsigned long flags; 821 822 if (target_cmd_interrupted(cmd)) 823 return; 824 825 cmd->scsi_status = scsi_status; 826 827 spin_lock_irqsave(&cmd->t_state_lock, flags); 828 switch (cmd->scsi_status) { 829 case SAM_STAT_CHECK_CONDITION: 830 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 831 success = 1; 832 else 833 success = 0; 834 break; 835 default: 836 success = 1; 837 break; 838 } 839 840 cmd->t_state = TRANSPORT_COMPLETE; 841 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 842 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 843 844 INIT_WORK(&cmd->work, success ? target_complete_ok_work : 845 target_complete_failure_work); 846 if (cmd->se_cmd_flags & SCF_USE_CPUID) 847 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 848 else 849 queue_work(target_completion_wq, &cmd->work); 850 } 851 EXPORT_SYMBOL(target_complete_cmd); 852 853 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 854 { 855 if ((scsi_status == SAM_STAT_GOOD || 856 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 857 length < cmd->data_length) { 858 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 859 cmd->residual_count += cmd->data_length - length; 860 } else { 861 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 862 cmd->residual_count = cmd->data_length - length; 863 } 864 865 cmd->data_length = length; 866 } 867 868 target_complete_cmd(cmd, scsi_status); 869 } 870 EXPORT_SYMBOL(target_complete_cmd_with_length); 871 872 static void target_add_to_state_list(struct se_cmd *cmd) 873 { 874 struct se_device *dev = cmd->se_dev; 875 unsigned long flags; 876 877 spin_lock_irqsave(&dev->execute_task_lock, flags); 878 if (!cmd->state_active) { 879 list_add_tail(&cmd->state_list, &dev->state_list); 880 cmd->state_active = true; 881 } 882 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 883 } 884 885 /* 886 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 887 */ 888 static void transport_write_pending_qf(struct se_cmd *cmd); 889 static void transport_complete_qf(struct se_cmd *cmd); 890 891 void target_qf_do_work(struct work_struct *work) 892 { 893 struct se_device *dev = container_of(work, struct se_device, 894 qf_work_queue); 895 LIST_HEAD(qf_cmd_list); 896 struct se_cmd *cmd, *cmd_tmp; 897 898 spin_lock_irq(&dev->qf_cmd_lock); 899 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 900 spin_unlock_irq(&dev->qf_cmd_lock); 901 902 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 903 list_del(&cmd->se_qf_node); 904 atomic_dec_mb(&dev->dev_qf_count); 905 906 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 907 " context: %s\n", cmd->se_tfo->fabric_name, cmd, 908 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 909 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 910 : "UNKNOWN"); 911 912 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 913 transport_write_pending_qf(cmd); 914 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 915 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 916 transport_complete_qf(cmd); 917 } 918 } 919 920 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 921 { 922 switch (cmd->data_direction) { 923 case DMA_NONE: 924 return "NONE"; 925 case DMA_FROM_DEVICE: 926 return "READ"; 927 case DMA_TO_DEVICE: 928 return "WRITE"; 929 case DMA_BIDIRECTIONAL: 930 return "BIDI"; 931 default: 932 break; 933 } 934 935 return "UNKNOWN"; 936 } 937 938 void transport_dump_dev_state( 939 struct se_device *dev, 940 char *b, 941 int *bl) 942 { 943 *bl += sprintf(b + *bl, "Status: "); 944 if (dev->export_count) 945 *bl += sprintf(b + *bl, "ACTIVATED"); 946 else 947 *bl += sprintf(b + *bl, "DEACTIVATED"); 948 949 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 950 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 951 dev->dev_attrib.block_size, 952 dev->dev_attrib.hw_max_sectors); 953 *bl += sprintf(b + *bl, " "); 954 } 955 956 void transport_dump_vpd_proto_id( 957 struct t10_vpd *vpd, 958 unsigned char *p_buf, 959 int p_buf_len) 960 { 961 unsigned char buf[VPD_TMP_BUF_SIZE]; 962 int len; 963 964 memset(buf, 0, VPD_TMP_BUF_SIZE); 965 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 966 967 switch (vpd->protocol_identifier) { 968 case 0x00: 969 sprintf(buf+len, "Fibre Channel\n"); 970 break; 971 case 0x10: 972 sprintf(buf+len, "Parallel SCSI\n"); 973 break; 974 case 0x20: 975 sprintf(buf+len, "SSA\n"); 976 break; 977 case 0x30: 978 sprintf(buf+len, "IEEE 1394\n"); 979 break; 980 case 0x40: 981 sprintf(buf+len, "SCSI Remote Direct Memory Access" 982 " Protocol\n"); 983 break; 984 case 0x50: 985 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 986 break; 987 case 0x60: 988 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 989 break; 990 case 0x70: 991 sprintf(buf+len, "Automation/Drive Interface Transport" 992 " Protocol\n"); 993 break; 994 case 0x80: 995 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 996 break; 997 default: 998 sprintf(buf+len, "Unknown 0x%02x\n", 999 vpd->protocol_identifier); 1000 break; 1001 } 1002 1003 if (p_buf) 1004 strncpy(p_buf, buf, p_buf_len); 1005 else 1006 pr_debug("%s", buf); 1007 } 1008 1009 void 1010 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 1011 { 1012 /* 1013 * Check if the Protocol Identifier Valid (PIV) bit is set.. 1014 * 1015 * from spc3r23.pdf section 7.5.1 1016 */ 1017 if (page_83[1] & 0x80) { 1018 vpd->protocol_identifier = (page_83[0] & 0xf0); 1019 vpd->protocol_identifier_set = 1; 1020 transport_dump_vpd_proto_id(vpd, NULL, 0); 1021 } 1022 } 1023 EXPORT_SYMBOL(transport_set_vpd_proto_id); 1024 1025 int transport_dump_vpd_assoc( 1026 struct t10_vpd *vpd, 1027 unsigned char *p_buf, 1028 int p_buf_len) 1029 { 1030 unsigned char buf[VPD_TMP_BUF_SIZE]; 1031 int ret = 0; 1032 int len; 1033 1034 memset(buf, 0, VPD_TMP_BUF_SIZE); 1035 len = sprintf(buf, "T10 VPD Identifier Association: "); 1036 1037 switch (vpd->association) { 1038 case 0x00: 1039 sprintf(buf+len, "addressed logical unit\n"); 1040 break; 1041 case 0x10: 1042 sprintf(buf+len, "target port\n"); 1043 break; 1044 case 0x20: 1045 sprintf(buf+len, "SCSI target device\n"); 1046 break; 1047 default: 1048 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 1049 ret = -EINVAL; 1050 break; 1051 } 1052 1053 if (p_buf) 1054 strncpy(p_buf, buf, p_buf_len); 1055 else 1056 pr_debug("%s", buf); 1057 1058 return ret; 1059 } 1060 1061 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 1062 { 1063 /* 1064 * The VPD identification association.. 1065 * 1066 * from spc3r23.pdf Section 7.6.3.1 Table 297 1067 */ 1068 vpd->association = (page_83[1] & 0x30); 1069 return transport_dump_vpd_assoc(vpd, NULL, 0); 1070 } 1071 EXPORT_SYMBOL(transport_set_vpd_assoc); 1072 1073 int transport_dump_vpd_ident_type( 1074 struct t10_vpd *vpd, 1075 unsigned char *p_buf, 1076 int p_buf_len) 1077 { 1078 unsigned char buf[VPD_TMP_BUF_SIZE]; 1079 int ret = 0; 1080 int len; 1081 1082 memset(buf, 0, VPD_TMP_BUF_SIZE); 1083 len = sprintf(buf, "T10 VPD Identifier Type: "); 1084 1085 switch (vpd->device_identifier_type) { 1086 case 0x00: 1087 sprintf(buf+len, "Vendor specific\n"); 1088 break; 1089 case 0x01: 1090 sprintf(buf+len, "T10 Vendor ID based\n"); 1091 break; 1092 case 0x02: 1093 sprintf(buf+len, "EUI-64 based\n"); 1094 break; 1095 case 0x03: 1096 sprintf(buf+len, "NAA\n"); 1097 break; 1098 case 0x04: 1099 sprintf(buf+len, "Relative target port identifier\n"); 1100 break; 1101 case 0x08: 1102 sprintf(buf+len, "SCSI name string\n"); 1103 break; 1104 default: 1105 sprintf(buf+len, "Unsupported: 0x%02x\n", 1106 vpd->device_identifier_type); 1107 ret = -EINVAL; 1108 break; 1109 } 1110 1111 if (p_buf) { 1112 if (p_buf_len < strlen(buf)+1) 1113 return -EINVAL; 1114 strncpy(p_buf, buf, p_buf_len); 1115 } else { 1116 pr_debug("%s", buf); 1117 } 1118 1119 return ret; 1120 } 1121 1122 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1123 { 1124 /* 1125 * The VPD identifier type.. 1126 * 1127 * from spc3r23.pdf Section 7.6.3.1 Table 298 1128 */ 1129 vpd->device_identifier_type = (page_83[1] & 0x0f); 1130 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1131 } 1132 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1133 1134 int transport_dump_vpd_ident( 1135 struct t10_vpd *vpd, 1136 unsigned char *p_buf, 1137 int p_buf_len) 1138 { 1139 unsigned char buf[VPD_TMP_BUF_SIZE]; 1140 int ret = 0; 1141 1142 memset(buf, 0, VPD_TMP_BUF_SIZE); 1143 1144 switch (vpd->device_identifier_code_set) { 1145 case 0x01: /* Binary */ 1146 snprintf(buf, sizeof(buf), 1147 "T10 VPD Binary Device Identifier: %s\n", 1148 &vpd->device_identifier[0]); 1149 break; 1150 case 0x02: /* ASCII */ 1151 snprintf(buf, sizeof(buf), 1152 "T10 VPD ASCII Device Identifier: %s\n", 1153 &vpd->device_identifier[0]); 1154 break; 1155 case 0x03: /* UTF-8 */ 1156 snprintf(buf, sizeof(buf), 1157 "T10 VPD UTF-8 Device Identifier: %s\n", 1158 &vpd->device_identifier[0]); 1159 break; 1160 default: 1161 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1162 " 0x%02x", vpd->device_identifier_code_set); 1163 ret = -EINVAL; 1164 break; 1165 } 1166 1167 if (p_buf) 1168 strncpy(p_buf, buf, p_buf_len); 1169 else 1170 pr_debug("%s", buf); 1171 1172 return ret; 1173 } 1174 1175 int 1176 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1177 { 1178 static const char hex_str[] = "0123456789abcdef"; 1179 int j = 0, i = 4; /* offset to start of the identifier */ 1180 1181 /* 1182 * The VPD Code Set (encoding) 1183 * 1184 * from spc3r23.pdf Section 7.6.3.1 Table 296 1185 */ 1186 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1187 switch (vpd->device_identifier_code_set) { 1188 case 0x01: /* Binary */ 1189 vpd->device_identifier[j++] = 1190 hex_str[vpd->device_identifier_type]; 1191 while (i < (4 + page_83[3])) { 1192 vpd->device_identifier[j++] = 1193 hex_str[(page_83[i] & 0xf0) >> 4]; 1194 vpd->device_identifier[j++] = 1195 hex_str[page_83[i] & 0x0f]; 1196 i++; 1197 } 1198 break; 1199 case 0x02: /* ASCII */ 1200 case 0x03: /* UTF-8 */ 1201 while (i < (4 + page_83[3])) 1202 vpd->device_identifier[j++] = page_83[i++]; 1203 break; 1204 default: 1205 break; 1206 } 1207 1208 return transport_dump_vpd_ident(vpd, NULL, 0); 1209 } 1210 EXPORT_SYMBOL(transport_set_vpd_ident); 1211 1212 static sense_reason_t 1213 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1214 unsigned int size) 1215 { 1216 u32 mtl; 1217 1218 if (!cmd->se_tfo->max_data_sg_nents) 1219 return TCM_NO_SENSE; 1220 /* 1221 * Check if fabric enforced maximum SGL entries per I/O descriptor 1222 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1223 * residual_count and reduce original cmd->data_length to maximum 1224 * length based on single PAGE_SIZE entry scatter-lists. 1225 */ 1226 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1227 if (cmd->data_length > mtl) { 1228 /* 1229 * If an existing CDB overflow is present, calculate new residual 1230 * based on CDB size minus fabric maximum transfer length. 1231 * 1232 * If an existing CDB underflow is present, calculate new residual 1233 * based on original cmd->data_length minus fabric maximum transfer 1234 * length. 1235 * 1236 * Otherwise, set the underflow residual based on cmd->data_length 1237 * minus fabric maximum transfer length. 1238 */ 1239 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1240 cmd->residual_count = (size - mtl); 1241 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1242 u32 orig_dl = size + cmd->residual_count; 1243 cmd->residual_count = (orig_dl - mtl); 1244 } else { 1245 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1246 cmd->residual_count = (cmd->data_length - mtl); 1247 } 1248 cmd->data_length = mtl; 1249 /* 1250 * Reset sbc_check_prot() calculated protection payload 1251 * length based upon the new smaller MTL. 1252 */ 1253 if (cmd->prot_length) { 1254 u32 sectors = (mtl / dev->dev_attrib.block_size); 1255 cmd->prot_length = dev->prot_length * sectors; 1256 } 1257 } 1258 return TCM_NO_SENSE; 1259 } 1260 1261 /** 1262 * target_cmd_size_check - Check whether there will be a residual. 1263 * @cmd: SCSI command. 1264 * @size: Data buffer size derived from CDB. The data buffer size provided by 1265 * the SCSI transport driver is available in @cmd->data_length. 1266 * 1267 * Compare the data buffer size from the CDB with the data buffer limit from the transport 1268 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary. 1269 * 1270 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd(). 1271 * 1272 * Return: TCM_NO_SENSE 1273 */ 1274 sense_reason_t 1275 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1276 { 1277 struct se_device *dev = cmd->se_dev; 1278 1279 if (cmd->unknown_data_length) { 1280 cmd->data_length = size; 1281 } else if (size != cmd->data_length) { 1282 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" 1283 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1284 " 0x%02x\n", cmd->se_tfo->fabric_name, 1285 cmd->data_length, size, cmd->t_task_cdb[0]); 1286 1287 if (cmd->data_direction == DMA_TO_DEVICE) { 1288 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1289 pr_err_ratelimited("Rejecting underflow/overflow" 1290 " for WRITE data CDB\n"); 1291 return TCM_INVALID_CDB_FIELD; 1292 } 1293 /* 1294 * Some fabric drivers like iscsi-target still expect to 1295 * always reject overflow writes. Reject this case until 1296 * full fabric driver level support for overflow writes 1297 * is introduced tree-wide. 1298 */ 1299 if (size > cmd->data_length) { 1300 pr_err_ratelimited("Rejecting overflow for" 1301 " WRITE control CDB\n"); 1302 return TCM_INVALID_CDB_FIELD; 1303 } 1304 } 1305 /* 1306 * Reject READ_* or WRITE_* with overflow/underflow for 1307 * type SCF_SCSI_DATA_CDB. 1308 */ 1309 if (dev->dev_attrib.block_size != 512) { 1310 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1311 " CDB on non 512-byte sector setup subsystem" 1312 " plugin: %s\n", dev->transport->name); 1313 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1314 return TCM_INVALID_CDB_FIELD; 1315 } 1316 /* 1317 * For the overflow case keep the existing fabric provided 1318 * ->data_length. Otherwise for the underflow case, reset 1319 * ->data_length to the smaller SCSI expected data transfer 1320 * length. 1321 */ 1322 if (size > cmd->data_length) { 1323 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1324 cmd->residual_count = (size - cmd->data_length); 1325 } else { 1326 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1327 cmd->residual_count = (cmd->data_length - size); 1328 cmd->data_length = size; 1329 } 1330 } 1331 1332 return target_check_max_data_sg_nents(cmd, dev, size); 1333 1334 } 1335 1336 /* 1337 * Used by fabric modules containing a local struct se_cmd within their 1338 * fabric dependent per I/O descriptor. 1339 * 1340 * Preserves the value of @cmd->tag. 1341 */ 1342 void transport_init_se_cmd( 1343 struct se_cmd *cmd, 1344 const struct target_core_fabric_ops *tfo, 1345 struct se_session *se_sess, 1346 u32 data_length, 1347 int data_direction, 1348 int task_attr, 1349 unsigned char *sense_buffer) 1350 { 1351 INIT_LIST_HEAD(&cmd->se_delayed_node); 1352 INIT_LIST_HEAD(&cmd->se_qf_node); 1353 INIT_LIST_HEAD(&cmd->se_cmd_list); 1354 INIT_LIST_HEAD(&cmd->state_list); 1355 init_completion(&cmd->t_transport_stop_comp); 1356 cmd->free_compl = NULL; 1357 cmd->abrt_compl = NULL; 1358 spin_lock_init(&cmd->t_state_lock); 1359 INIT_WORK(&cmd->work, NULL); 1360 kref_init(&cmd->cmd_kref); 1361 1362 cmd->se_tfo = tfo; 1363 cmd->se_sess = se_sess; 1364 cmd->data_length = data_length; 1365 cmd->data_direction = data_direction; 1366 cmd->sam_task_attr = task_attr; 1367 cmd->sense_buffer = sense_buffer; 1368 1369 cmd->state_active = false; 1370 } 1371 EXPORT_SYMBOL(transport_init_se_cmd); 1372 1373 static sense_reason_t 1374 transport_check_alloc_task_attr(struct se_cmd *cmd) 1375 { 1376 struct se_device *dev = cmd->se_dev; 1377 1378 /* 1379 * Check if SAM Task Attribute emulation is enabled for this 1380 * struct se_device storage object 1381 */ 1382 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1383 return 0; 1384 1385 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1386 pr_debug("SAM Task Attribute ACA" 1387 " emulation is not supported\n"); 1388 return TCM_INVALID_CDB_FIELD; 1389 } 1390 1391 return 0; 1392 } 1393 1394 sense_reason_t 1395 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1396 { 1397 struct se_device *dev = cmd->se_dev; 1398 sense_reason_t ret; 1399 1400 /* 1401 * Ensure that the received CDB is less than the max (252 + 8) bytes 1402 * for VARIABLE_LENGTH_CMD 1403 */ 1404 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1405 pr_err("Received SCSI CDB with command_size: %d that" 1406 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1407 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1408 return TCM_INVALID_CDB_FIELD; 1409 } 1410 /* 1411 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1412 * allocate the additional extended CDB buffer now.. Otherwise 1413 * setup the pointer from __t_task_cdb to t_task_cdb. 1414 */ 1415 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1416 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1417 GFP_KERNEL); 1418 if (!cmd->t_task_cdb) { 1419 pr_err("Unable to allocate cmd->t_task_cdb" 1420 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1421 scsi_command_size(cdb), 1422 (unsigned long)sizeof(cmd->__t_task_cdb)); 1423 return TCM_OUT_OF_RESOURCES; 1424 } 1425 } else 1426 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1427 /* 1428 * Copy the original CDB into cmd-> 1429 */ 1430 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1431 1432 trace_target_sequencer_start(cmd); 1433 1434 ret = dev->transport->parse_cdb(cmd); 1435 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1436 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1437 cmd->se_tfo->fabric_name, 1438 cmd->se_sess->se_node_acl->initiatorname, 1439 cmd->t_task_cdb[0]); 1440 if (ret) 1441 return ret; 1442 1443 ret = transport_check_alloc_task_attr(cmd); 1444 if (ret) 1445 return ret; 1446 1447 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1448 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1449 return 0; 1450 } 1451 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1452 1453 /* 1454 * Used by fabric module frontends to queue tasks directly. 1455 * May only be used from process context. 1456 */ 1457 int transport_handle_cdb_direct( 1458 struct se_cmd *cmd) 1459 { 1460 sense_reason_t ret; 1461 1462 if (!cmd->se_lun) { 1463 dump_stack(); 1464 pr_err("cmd->se_lun is NULL\n"); 1465 return -EINVAL; 1466 } 1467 if (in_interrupt()) { 1468 dump_stack(); 1469 pr_err("transport_generic_handle_cdb cannot be called" 1470 " from interrupt context\n"); 1471 return -EINVAL; 1472 } 1473 /* 1474 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1475 * outstanding descriptors are handled correctly during shutdown via 1476 * transport_wait_for_tasks() 1477 * 1478 * Also, we don't take cmd->t_state_lock here as we only expect 1479 * this to be called for initial descriptor submission. 1480 */ 1481 cmd->t_state = TRANSPORT_NEW_CMD; 1482 cmd->transport_state |= CMD_T_ACTIVE; 1483 1484 /* 1485 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1486 * so follow TRANSPORT_NEW_CMD processing thread context usage 1487 * and call transport_generic_request_failure() if necessary.. 1488 */ 1489 ret = transport_generic_new_cmd(cmd); 1490 if (ret) 1491 transport_generic_request_failure(cmd, ret); 1492 return 0; 1493 } 1494 EXPORT_SYMBOL(transport_handle_cdb_direct); 1495 1496 sense_reason_t 1497 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1498 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1499 { 1500 if (!sgl || !sgl_count) 1501 return 0; 1502 1503 /* 1504 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1505 * scatterlists already have been set to follow what the fabric 1506 * passes for the original expected data transfer length. 1507 */ 1508 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1509 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1510 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1511 return TCM_INVALID_CDB_FIELD; 1512 } 1513 1514 cmd->t_data_sg = sgl; 1515 cmd->t_data_nents = sgl_count; 1516 cmd->t_bidi_data_sg = sgl_bidi; 1517 cmd->t_bidi_data_nents = sgl_bidi_count; 1518 1519 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1520 return 0; 1521 } 1522 1523 /** 1524 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1525 * se_cmd + use pre-allocated SGL memory. 1526 * 1527 * @se_cmd: command descriptor to submit 1528 * @se_sess: associated se_sess for endpoint 1529 * @cdb: pointer to SCSI CDB 1530 * @sense: pointer to SCSI sense buffer 1531 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1532 * @data_length: fabric expected data transfer length 1533 * @task_attr: SAM task attribute 1534 * @data_dir: DMA data direction 1535 * @flags: flags for command submission from target_sc_flags_tables 1536 * @sgl: struct scatterlist memory for unidirectional mapping 1537 * @sgl_count: scatterlist count for unidirectional mapping 1538 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1539 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1540 * @sgl_prot: struct scatterlist memory protection information 1541 * @sgl_prot_count: scatterlist count for protection information 1542 * 1543 * Task tags are supported if the caller has set @se_cmd->tag. 1544 * 1545 * Returns non zero to signal active I/O shutdown failure. All other 1546 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1547 * but still return zero here. 1548 * 1549 * This may only be called from process context, and also currently 1550 * assumes internal allocation of fabric payload buffer by target-core. 1551 */ 1552 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1553 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1554 u32 data_length, int task_attr, int data_dir, int flags, 1555 struct scatterlist *sgl, u32 sgl_count, 1556 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1557 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1558 { 1559 struct se_portal_group *se_tpg; 1560 sense_reason_t rc; 1561 int ret; 1562 1563 se_tpg = se_sess->se_tpg; 1564 BUG_ON(!se_tpg); 1565 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1566 BUG_ON(in_interrupt()); 1567 /* 1568 * Initialize se_cmd for target operation. From this point 1569 * exceptions are handled by sending exception status via 1570 * target_core_fabric_ops->queue_status() callback 1571 */ 1572 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1573 data_length, data_dir, task_attr, sense); 1574 1575 if (flags & TARGET_SCF_USE_CPUID) 1576 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1577 else 1578 se_cmd->cpuid = WORK_CPU_UNBOUND; 1579 1580 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1581 se_cmd->unknown_data_length = 1; 1582 /* 1583 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1584 * se_sess->sess_cmd_list. A second kref_get here is necessary 1585 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1586 * kref_put() to happen during fabric packet acknowledgement. 1587 */ 1588 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1589 if (ret) 1590 return ret; 1591 /* 1592 * Signal bidirectional data payloads to target-core 1593 */ 1594 if (flags & TARGET_SCF_BIDI_OP) 1595 se_cmd->se_cmd_flags |= SCF_BIDI; 1596 /* 1597 * Locate se_lun pointer and attach it to struct se_cmd 1598 */ 1599 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1600 if (rc) { 1601 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1602 target_put_sess_cmd(se_cmd); 1603 return 0; 1604 } 1605 1606 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1607 if (rc != 0) { 1608 transport_generic_request_failure(se_cmd, rc); 1609 return 0; 1610 } 1611 1612 /* 1613 * Save pointers for SGLs containing protection information, 1614 * if present. 1615 */ 1616 if (sgl_prot_count) { 1617 se_cmd->t_prot_sg = sgl_prot; 1618 se_cmd->t_prot_nents = sgl_prot_count; 1619 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1620 } 1621 1622 /* 1623 * When a non zero sgl_count has been passed perform SGL passthrough 1624 * mapping for pre-allocated fabric memory instead of having target 1625 * core perform an internal SGL allocation.. 1626 */ 1627 if (sgl_count != 0) { 1628 BUG_ON(!sgl); 1629 1630 /* 1631 * A work-around for tcm_loop as some userspace code via 1632 * scsi-generic do not memset their associated read buffers, 1633 * so go ahead and do that here for type non-data CDBs. Also 1634 * note that this is currently guaranteed to be a single SGL 1635 * for this case by target core in target_setup_cmd_from_cdb() 1636 * -> transport_generic_cmd_sequencer(). 1637 */ 1638 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1639 se_cmd->data_direction == DMA_FROM_DEVICE) { 1640 unsigned char *buf = NULL; 1641 1642 if (sgl) 1643 buf = kmap(sg_page(sgl)) + sgl->offset; 1644 1645 if (buf) { 1646 memset(buf, 0, sgl->length); 1647 kunmap(sg_page(sgl)); 1648 } 1649 } 1650 1651 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1652 sgl_bidi, sgl_bidi_count); 1653 if (rc != 0) { 1654 transport_generic_request_failure(se_cmd, rc); 1655 return 0; 1656 } 1657 } 1658 1659 /* 1660 * Check if we need to delay processing because of ALUA 1661 * Active/NonOptimized primary access state.. 1662 */ 1663 core_alua_check_nonop_delay(se_cmd); 1664 1665 transport_handle_cdb_direct(se_cmd); 1666 return 0; 1667 } 1668 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1669 1670 /** 1671 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1672 * 1673 * @se_cmd: command descriptor to submit 1674 * @se_sess: associated se_sess for endpoint 1675 * @cdb: pointer to SCSI CDB 1676 * @sense: pointer to SCSI sense buffer 1677 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1678 * @data_length: fabric expected data transfer length 1679 * @task_attr: SAM task attribute 1680 * @data_dir: DMA data direction 1681 * @flags: flags for command submission from target_sc_flags_tables 1682 * 1683 * Task tags are supported if the caller has set @se_cmd->tag. 1684 * 1685 * Returns non zero to signal active I/O shutdown failure. All other 1686 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1687 * but still return zero here. 1688 * 1689 * This may only be called from process context, and also currently 1690 * assumes internal allocation of fabric payload buffer by target-core. 1691 * 1692 * It also assumes interal target core SGL memory allocation. 1693 */ 1694 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1695 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1696 u32 data_length, int task_attr, int data_dir, int flags) 1697 { 1698 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1699 unpacked_lun, data_length, task_attr, data_dir, 1700 flags, NULL, 0, NULL, 0, NULL, 0); 1701 } 1702 EXPORT_SYMBOL(target_submit_cmd); 1703 1704 static void target_complete_tmr_failure(struct work_struct *work) 1705 { 1706 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1707 1708 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1709 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1710 1711 transport_cmd_check_stop_to_fabric(se_cmd); 1712 } 1713 1714 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag, 1715 u64 *unpacked_lun) 1716 { 1717 struct se_cmd *se_cmd; 1718 unsigned long flags; 1719 bool ret = false; 1720 1721 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 1722 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) { 1723 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 1724 continue; 1725 1726 if (se_cmd->tag == tag) { 1727 *unpacked_lun = se_cmd->orig_fe_lun; 1728 ret = true; 1729 break; 1730 } 1731 } 1732 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 1733 1734 return ret; 1735 } 1736 1737 /** 1738 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1739 * for TMR CDBs 1740 * 1741 * @se_cmd: command descriptor to submit 1742 * @se_sess: associated se_sess for endpoint 1743 * @sense: pointer to SCSI sense buffer 1744 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1745 * @fabric_tmr_ptr: fabric context for TMR req 1746 * @tm_type: Type of TM request 1747 * @gfp: gfp type for caller 1748 * @tag: referenced task tag for TMR_ABORT_TASK 1749 * @flags: submit cmd flags 1750 * 1751 * Callable from all contexts. 1752 **/ 1753 1754 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1755 unsigned char *sense, u64 unpacked_lun, 1756 void *fabric_tmr_ptr, unsigned char tm_type, 1757 gfp_t gfp, u64 tag, int flags) 1758 { 1759 struct se_portal_group *se_tpg; 1760 int ret; 1761 1762 se_tpg = se_sess->se_tpg; 1763 BUG_ON(!se_tpg); 1764 1765 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1766 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1767 /* 1768 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1769 * allocation failure. 1770 */ 1771 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1772 if (ret < 0) 1773 return -ENOMEM; 1774 1775 if (tm_type == TMR_ABORT_TASK) 1776 se_cmd->se_tmr_req->ref_task_tag = tag; 1777 1778 /* See target_submit_cmd for commentary */ 1779 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1780 if (ret) { 1781 core_tmr_release_req(se_cmd->se_tmr_req); 1782 return ret; 1783 } 1784 /* 1785 * If this is ABORT_TASK with no explicit fabric provided LUN, 1786 * go ahead and search active session tags for a match to figure 1787 * out unpacked_lun for the original se_cmd. 1788 */ 1789 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) { 1790 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun)) 1791 goto failure; 1792 } 1793 1794 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1795 if (ret) 1796 goto failure; 1797 1798 transport_generic_handle_tmr(se_cmd); 1799 return 0; 1800 1801 /* 1802 * For callback during failure handling, push this work off 1803 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1804 */ 1805 failure: 1806 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1807 schedule_work(&se_cmd->work); 1808 return 0; 1809 } 1810 EXPORT_SYMBOL(target_submit_tmr); 1811 1812 /* 1813 * Handle SAM-esque emulation for generic transport request failures. 1814 */ 1815 void transport_generic_request_failure(struct se_cmd *cmd, 1816 sense_reason_t sense_reason) 1817 { 1818 int ret = 0, post_ret; 1819 1820 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n", 1821 sense_reason); 1822 target_show_cmd("-----[ ", cmd); 1823 1824 /* 1825 * For SAM Task Attribute emulation for failed struct se_cmd 1826 */ 1827 transport_complete_task_attr(cmd); 1828 1829 if (cmd->transport_complete_callback) 1830 cmd->transport_complete_callback(cmd, false, &post_ret); 1831 1832 if (cmd->transport_state & CMD_T_ABORTED) { 1833 INIT_WORK(&cmd->work, target_abort_work); 1834 queue_work(target_completion_wq, &cmd->work); 1835 return; 1836 } 1837 1838 switch (sense_reason) { 1839 case TCM_NON_EXISTENT_LUN: 1840 case TCM_UNSUPPORTED_SCSI_OPCODE: 1841 case TCM_INVALID_CDB_FIELD: 1842 case TCM_INVALID_PARAMETER_LIST: 1843 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1844 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1845 case TCM_UNKNOWN_MODE_PAGE: 1846 case TCM_WRITE_PROTECTED: 1847 case TCM_ADDRESS_OUT_OF_RANGE: 1848 case TCM_CHECK_CONDITION_ABORT_CMD: 1849 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1850 case TCM_CHECK_CONDITION_NOT_READY: 1851 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1852 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1853 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1854 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1855 case TCM_TOO_MANY_TARGET_DESCS: 1856 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1857 case TCM_TOO_MANY_SEGMENT_DESCS: 1858 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1859 break; 1860 case TCM_OUT_OF_RESOURCES: 1861 cmd->scsi_status = SAM_STAT_TASK_SET_FULL; 1862 goto queue_status; 1863 case TCM_LUN_BUSY: 1864 cmd->scsi_status = SAM_STAT_BUSY; 1865 goto queue_status; 1866 case TCM_RESERVATION_CONFLICT: 1867 /* 1868 * No SENSE Data payload for this case, set SCSI Status 1869 * and queue the response to $FABRIC_MOD. 1870 * 1871 * Uses linux/include/scsi/scsi.h SAM status codes defs 1872 */ 1873 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1874 /* 1875 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1876 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1877 * CONFLICT STATUS. 1878 * 1879 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1880 */ 1881 if (cmd->se_sess && 1882 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1883 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1884 cmd->orig_fe_lun, 0x2C, 1885 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1886 } 1887 1888 goto queue_status; 1889 default: 1890 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1891 cmd->t_task_cdb[0], sense_reason); 1892 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1893 break; 1894 } 1895 1896 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1897 if (ret) 1898 goto queue_full; 1899 1900 check_stop: 1901 transport_cmd_check_stop_to_fabric(cmd); 1902 return; 1903 1904 queue_status: 1905 trace_target_cmd_complete(cmd); 1906 ret = cmd->se_tfo->queue_status(cmd); 1907 if (!ret) 1908 goto check_stop; 1909 queue_full: 1910 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 1911 } 1912 EXPORT_SYMBOL(transport_generic_request_failure); 1913 1914 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1915 { 1916 sense_reason_t ret; 1917 1918 if (!cmd->execute_cmd) { 1919 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1920 goto err; 1921 } 1922 if (do_checks) { 1923 /* 1924 * Check for an existing UNIT ATTENTION condition after 1925 * target_handle_task_attr() has done SAM task attr 1926 * checking, and possibly have already defered execution 1927 * out to target_restart_delayed_cmds() context. 1928 */ 1929 ret = target_scsi3_ua_check(cmd); 1930 if (ret) 1931 goto err; 1932 1933 ret = target_alua_state_check(cmd); 1934 if (ret) 1935 goto err; 1936 1937 ret = target_check_reservation(cmd); 1938 if (ret) { 1939 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1940 goto err; 1941 } 1942 } 1943 1944 ret = cmd->execute_cmd(cmd); 1945 if (!ret) 1946 return; 1947 err: 1948 spin_lock_irq(&cmd->t_state_lock); 1949 cmd->transport_state &= ~CMD_T_SENT; 1950 spin_unlock_irq(&cmd->t_state_lock); 1951 1952 transport_generic_request_failure(cmd, ret); 1953 } 1954 1955 static int target_write_prot_action(struct se_cmd *cmd) 1956 { 1957 u32 sectors; 1958 /* 1959 * Perform WRITE_INSERT of PI using software emulation when backend 1960 * device has PI enabled, if the transport has not already generated 1961 * PI using hardware WRITE_INSERT offload. 1962 */ 1963 switch (cmd->prot_op) { 1964 case TARGET_PROT_DOUT_INSERT: 1965 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1966 sbc_dif_generate(cmd); 1967 break; 1968 case TARGET_PROT_DOUT_STRIP: 1969 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1970 break; 1971 1972 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1973 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1974 sectors, 0, cmd->t_prot_sg, 0); 1975 if (unlikely(cmd->pi_err)) { 1976 spin_lock_irq(&cmd->t_state_lock); 1977 cmd->transport_state &= ~CMD_T_SENT; 1978 spin_unlock_irq(&cmd->t_state_lock); 1979 transport_generic_request_failure(cmd, cmd->pi_err); 1980 return -1; 1981 } 1982 break; 1983 default: 1984 break; 1985 } 1986 1987 return 0; 1988 } 1989 1990 static bool target_handle_task_attr(struct se_cmd *cmd) 1991 { 1992 struct se_device *dev = cmd->se_dev; 1993 1994 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1995 return false; 1996 1997 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 1998 1999 /* 2000 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 2001 * to allow the passed struct se_cmd list of tasks to the front of the list. 2002 */ 2003 switch (cmd->sam_task_attr) { 2004 case TCM_HEAD_TAG: 2005 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 2006 cmd->t_task_cdb[0]); 2007 return false; 2008 case TCM_ORDERED_TAG: 2009 atomic_inc_mb(&dev->dev_ordered_sync); 2010 2011 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 2012 cmd->t_task_cdb[0]); 2013 2014 /* 2015 * Execute an ORDERED command if no other older commands 2016 * exist that need to be completed first. 2017 */ 2018 if (!atomic_read(&dev->simple_cmds)) 2019 return false; 2020 break; 2021 default: 2022 /* 2023 * For SIMPLE and UNTAGGED Task Attribute commands 2024 */ 2025 atomic_inc_mb(&dev->simple_cmds); 2026 break; 2027 } 2028 2029 if (atomic_read(&dev->dev_ordered_sync) == 0) 2030 return false; 2031 2032 spin_lock(&dev->delayed_cmd_lock); 2033 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 2034 spin_unlock(&dev->delayed_cmd_lock); 2035 2036 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 2037 cmd->t_task_cdb[0], cmd->sam_task_attr); 2038 return true; 2039 } 2040 2041 void target_execute_cmd(struct se_cmd *cmd) 2042 { 2043 /* 2044 * Determine if frontend context caller is requesting the stopping of 2045 * this command for frontend exceptions. 2046 * 2047 * If the received CDB has already been aborted stop processing it here. 2048 */ 2049 if (target_cmd_interrupted(cmd)) 2050 return; 2051 2052 spin_lock_irq(&cmd->t_state_lock); 2053 cmd->t_state = TRANSPORT_PROCESSING; 2054 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 2055 spin_unlock_irq(&cmd->t_state_lock); 2056 2057 if (target_write_prot_action(cmd)) 2058 return; 2059 2060 if (target_handle_task_attr(cmd)) { 2061 spin_lock_irq(&cmd->t_state_lock); 2062 cmd->transport_state &= ~CMD_T_SENT; 2063 spin_unlock_irq(&cmd->t_state_lock); 2064 return; 2065 } 2066 2067 __target_execute_cmd(cmd, true); 2068 } 2069 EXPORT_SYMBOL(target_execute_cmd); 2070 2071 /* 2072 * Process all commands up to the last received ORDERED task attribute which 2073 * requires another blocking boundary 2074 */ 2075 static void target_restart_delayed_cmds(struct se_device *dev) 2076 { 2077 for (;;) { 2078 struct se_cmd *cmd; 2079 2080 spin_lock(&dev->delayed_cmd_lock); 2081 if (list_empty(&dev->delayed_cmd_list)) { 2082 spin_unlock(&dev->delayed_cmd_lock); 2083 break; 2084 } 2085 2086 cmd = list_entry(dev->delayed_cmd_list.next, 2087 struct se_cmd, se_delayed_node); 2088 list_del(&cmd->se_delayed_node); 2089 spin_unlock(&dev->delayed_cmd_lock); 2090 2091 cmd->transport_state |= CMD_T_SENT; 2092 2093 __target_execute_cmd(cmd, true); 2094 2095 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 2096 break; 2097 } 2098 } 2099 2100 /* 2101 * Called from I/O completion to determine which dormant/delayed 2102 * and ordered cmds need to have their tasks added to the execution queue. 2103 */ 2104 static void transport_complete_task_attr(struct se_cmd *cmd) 2105 { 2106 struct se_device *dev = cmd->se_dev; 2107 2108 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2109 return; 2110 2111 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 2112 goto restart; 2113 2114 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 2115 atomic_dec_mb(&dev->simple_cmds); 2116 dev->dev_cur_ordered_id++; 2117 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 2118 dev->dev_cur_ordered_id++; 2119 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 2120 dev->dev_cur_ordered_id); 2121 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 2122 atomic_dec_mb(&dev->dev_ordered_sync); 2123 2124 dev->dev_cur_ordered_id++; 2125 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 2126 dev->dev_cur_ordered_id); 2127 } 2128 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET; 2129 2130 restart: 2131 target_restart_delayed_cmds(dev); 2132 } 2133 2134 static void transport_complete_qf(struct se_cmd *cmd) 2135 { 2136 int ret = 0; 2137 2138 transport_complete_task_attr(cmd); 2139 /* 2140 * If a fabric driver ->write_pending() or ->queue_data_in() callback 2141 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 2142 * the same callbacks should not be retried. Return CHECK_CONDITION 2143 * if a scsi_status is not already set. 2144 * 2145 * If a fabric driver ->queue_status() has returned non zero, always 2146 * keep retrying no matter what.. 2147 */ 2148 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 2149 if (cmd->scsi_status) 2150 goto queue_status; 2151 2152 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 2153 goto queue_status; 2154 } 2155 2156 /* 2157 * Check if we need to send a sense buffer from 2158 * the struct se_cmd in question. We do NOT want 2159 * to take this path of the IO has been marked as 2160 * needing to be treated like a "normal read". This 2161 * is the case if it's a tape read, and either the 2162 * FM, EOM, or ILI bits are set, but there is no 2163 * sense data. 2164 */ 2165 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2166 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2167 goto queue_status; 2168 2169 switch (cmd->data_direction) { 2170 case DMA_FROM_DEVICE: 2171 /* queue status if not treating this as a normal read */ 2172 if (cmd->scsi_status && 2173 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2174 goto queue_status; 2175 2176 trace_target_cmd_complete(cmd); 2177 ret = cmd->se_tfo->queue_data_in(cmd); 2178 break; 2179 case DMA_TO_DEVICE: 2180 if (cmd->se_cmd_flags & SCF_BIDI) { 2181 ret = cmd->se_tfo->queue_data_in(cmd); 2182 break; 2183 } 2184 /* fall through */ 2185 case DMA_NONE: 2186 queue_status: 2187 trace_target_cmd_complete(cmd); 2188 ret = cmd->se_tfo->queue_status(cmd); 2189 break; 2190 default: 2191 break; 2192 } 2193 2194 if (ret < 0) { 2195 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2196 return; 2197 } 2198 transport_cmd_check_stop_to_fabric(cmd); 2199 } 2200 2201 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2202 int err, bool write_pending) 2203 { 2204 /* 2205 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2206 * ->queue_data_in() callbacks from new process context. 2207 * 2208 * Otherwise for other errors, transport_complete_qf() will send 2209 * CHECK_CONDITION via ->queue_status() instead of attempting to 2210 * retry associated fabric driver data-transfer callbacks. 2211 */ 2212 if (err == -EAGAIN || err == -ENOMEM) { 2213 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2214 TRANSPORT_COMPLETE_QF_OK; 2215 } else { 2216 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2217 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2218 } 2219 2220 spin_lock_irq(&dev->qf_cmd_lock); 2221 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2222 atomic_inc_mb(&dev->dev_qf_count); 2223 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2224 2225 schedule_work(&cmd->se_dev->qf_work_queue); 2226 } 2227 2228 static bool target_read_prot_action(struct se_cmd *cmd) 2229 { 2230 switch (cmd->prot_op) { 2231 case TARGET_PROT_DIN_STRIP: 2232 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2233 u32 sectors = cmd->data_length >> 2234 ilog2(cmd->se_dev->dev_attrib.block_size); 2235 2236 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2237 sectors, 0, cmd->t_prot_sg, 2238 0); 2239 if (cmd->pi_err) 2240 return true; 2241 } 2242 break; 2243 case TARGET_PROT_DIN_INSERT: 2244 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2245 break; 2246 2247 sbc_dif_generate(cmd); 2248 break; 2249 default: 2250 break; 2251 } 2252 2253 return false; 2254 } 2255 2256 static void target_complete_ok_work(struct work_struct *work) 2257 { 2258 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2259 int ret; 2260 2261 /* 2262 * Check if we need to move delayed/dormant tasks from cmds on the 2263 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2264 * Attribute. 2265 */ 2266 transport_complete_task_attr(cmd); 2267 2268 /* 2269 * Check to schedule QUEUE_FULL work, or execute an existing 2270 * cmd->transport_qf_callback() 2271 */ 2272 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2273 schedule_work(&cmd->se_dev->qf_work_queue); 2274 2275 /* 2276 * Check if we need to send a sense buffer from 2277 * the struct se_cmd in question. We do NOT want 2278 * to take this path of the IO has been marked as 2279 * needing to be treated like a "normal read". This 2280 * is the case if it's a tape read, and either the 2281 * FM, EOM, or ILI bits are set, but there is no 2282 * sense data. 2283 */ 2284 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2285 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2286 WARN_ON(!cmd->scsi_status); 2287 ret = transport_send_check_condition_and_sense( 2288 cmd, 0, 1); 2289 if (ret) 2290 goto queue_full; 2291 2292 transport_cmd_check_stop_to_fabric(cmd); 2293 return; 2294 } 2295 /* 2296 * Check for a callback, used by amongst other things 2297 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2298 */ 2299 if (cmd->transport_complete_callback) { 2300 sense_reason_t rc; 2301 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2302 bool zero_dl = !(cmd->data_length); 2303 int post_ret = 0; 2304 2305 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2306 if (!rc && !post_ret) { 2307 if (caw && zero_dl) 2308 goto queue_rsp; 2309 2310 return; 2311 } else if (rc) { 2312 ret = transport_send_check_condition_and_sense(cmd, 2313 rc, 0); 2314 if (ret) 2315 goto queue_full; 2316 2317 transport_cmd_check_stop_to_fabric(cmd); 2318 return; 2319 } 2320 } 2321 2322 queue_rsp: 2323 switch (cmd->data_direction) { 2324 case DMA_FROM_DEVICE: 2325 /* 2326 * if this is a READ-type IO, but SCSI status 2327 * is set, then skip returning data and just 2328 * return the status -- unless this IO is marked 2329 * as needing to be treated as a normal read, 2330 * in which case we want to go ahead and return 2331 * the data. This happens, for example, for tape 2332 * reads with the FM, EOM, or ILI bits set, with 2333 * no sense data. 2334 */ 2335 if (cmd->scsi_status && 2336 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2337 goto queue_status; 2338 2339 atomic_long_add(cmd->data_length, 2340 &cmd->se_lun->lun_stats.tx_data_octets); 2341 /* 2342 * Perform READ_STRIP of PI using software emulation when 2343 * backend had PI enabled, if the transport will not be 2344 * performing hardware READ_STRIP offload. 2345 */ 2346 if (target_read_prot_action(cmd)) { 2347 ret = transport_send_check_condition_and_sense(cmd, 2348 cmd->pi_err, 0); 2349 if (ret) 2350 goto queue_full; 2351 2352 transport_cmd_check_stop_to_fabric(cmd); 2353 return; 2354 } 2355 2356 trace_target_cmd_complete(cmd); 2357 ret = cmd->se_tfo->queue_data_in(cmd); 2358 if (ret) 2359 goto queue_full; 2360 break; 2361 case DMA_TO_DEVICE: 2362 atomic_long_add(cmd->data_length, 2363 &cmd->se_lun->lun_stats.rx_data_octets); 2364 /* 2365 * Check if we need to send READ payload for BIDI-COMMAND 2366 */ 2367 if (cmd->se_cmd_flags & SCF_BIDI) { 2368 atomic_long_add(cmd->data_length, 2369 &cmd->se_lun->lun_stats.tx_data_octets); 2370 ret = cmd->se_tfo->queue_data_in(cmd); 2371 if (ret) 2372 goto queue_full; 2373 break; 2374 } 2375 /* fall through */ 2376 case DMA_NONE: 2377 queue_status: 2378 trace_target_cmd_complete(cmd); 2379 ret = cmd->se_tfo->queue_status(cmd); 2380 if (ret) 2381 goto queue_full; 2382 break; 2383 default: 2384 break; 2385 } 2386 2387 transport_cmd_check_stop_to_fabric(cmd); 2388 return; 2389 2390 queue_full: 2391 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2392 " data_direction: %d\n", cmd, cmd->data_direction); 2393 2394 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2395 } 2396 2397 void target_free_sgl(struct scatterlist *sgl, int nents) 2398 { 2399 sgl_free_n_order(sgl, nents, 0); 2400 } 2401 EXPORT_SYMBOL(target_free_sgl); 2402 2403 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2404 { 2405 /* 2406 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2407 * emulation, and free + reset pointers if necessary.. 2408 */ 2409 if (!cmd->t_data_sg_orig) 2410 return; 2411 2412 kfree(cmd->t_data_sg); 2413 cmd->t_data_sg = cmd->t_data_sg_orig; 2414 cmd->t_data_sg_orig = NULL; 2415 cmd->t_data_nents = cmd->t_data_nents_orig; 2416 cmd->t_data_nents_orig = 0; 2417 } 2418 2419 static inline void transport_free_pages(struct se_cmd *cmd) 2420 { 2421 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2422 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2423 cmd->t_prot_sg = NULL; 2424 cmd->t_prot_nents = 0; 2425 } 2426 2427 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2428 /* 2429 * Release special case READ buffer payload required for 2430 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2431 */ 2432 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2433 target_free_sgl(cmd->t_bidi_data_sg, 2434 cmd->t_bidi_data_nents); 2435 cmd->t_bidi_data_sg = NULL; 2436 cmd->t_bidi_data_nents = 0; 2437 } 2438 transport_reset_sgl_orig(cmd); 2439 return; 2440 } 2441 transport_reset_sgl_orig(cmd); 2442 2443 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2444 cmd->t_data_sg = NULL; 2445 cmd->t_data_nents = 0; 2446 2447 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2448 cmd->t_bidi_data_sg = NULL; 2449 cmd->t_bidi_data_nents = 0; 2450 } 2451 2452 void *transport_kmap_data_sg(struct se_cmd *cmd) 2453 { 2454 struct scatterlist *sg = cmd->t_data_sg; 2455 struct page **pages; 2456 int i; 2457 2458 /* 2459 * We need to take into account a possible offset here for fabrics like 2460 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2461 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2462 */ 2463 if (!cmd->t_data_nents) 2464 return NULL; 2465 2466 BUG_ON(!sg); 2467 if (cmd->t_data_nents == 1) 2468 return kmap(sg_page(sg)) + sg->offset; 2469 2470 /* >1 page. use vmap */ 2471 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); 2472 if (!pages) 2473 return NULL; 2474 2475 /* convert sg[] to pages[] */ 2476 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2477 pages[i] = sg_page(sg); 2478 } 2479 2480 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2481 kfree(pages); 2482 if (!cmd->t_data_vmap) 2483 return NULL; 2484 2485 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2486 } 2487 EXPORT_SYMBOL(transport_kmap_data_sg); 2488 2489 void transport_kunmap_data_sg(struct se_cmd *cmd) 2490 { 2491 if (!cmd->t_data_nents) { 2492 return; 2493 } else if (cmd->t_data_nents == 1) { 2494 kunmap(sg_page(cmd->t_data_sg)); 2495 return; 2496 } 2497 2498 vunmap(cmd->t_data_vmap); 2499 cmd->t_data_vmap = NULL; 2500 } 2501 EXPORT_SYMBOL(transport_kunmap_data_sg); 2502 2503 int 2504 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2505 bool zero_page, bool chainable) 2506 { 2507 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0); 2508 2509 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents); 2510 return *sgl ? 0 : -ENOMEM; 2511 } 2512 EXPORT_SYMBOL(target_alloc_sgl); 2513 2514 /* 2515 * Allocate any required resources to execute the command. For writes we 2516 * might not have the payload yet, so notify the fabric via a call to 2517 * ->write_pending instead. Otherwise place it on the execution queue. 2518 */ 2519 sense_reason_t 2520 transport_generic_new_cmd(struct se_cmd *cmd) 2521 { 2522 unsigned long flags; 2523 int ret = 0; 2524 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2525 2526 if (cmd->prot_op != TARGET_PROT_NORMAL && 2527 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2528 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2529 cmd->prot_length, true, false); 2530 if (ret < 0) 2531 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2532 } 2533 2534 /* 2535 * Determine if the TCM fabric module has already allocated physical 2536 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2537 * beforehand. 2538 */ 2539 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2540 cmd->data_length) { 2541 2542 if ((cmd->se_cmd_flags & SCF_BIDI) || 2543 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2544 u32 bidi_length; 2545 2546 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2547 bidi_length = cmd->t_task_nolb * 2548 cmd->se_dev->dev_attrib.block_size; 2549 else 2550 bidi_length = cmd->data_length; 2551 2552 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2553 &cmd->t_bidi_data_nents, 2554 bidi_length, zero_flag, false); 2555 if (ret < 0) 2556 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2557 } 2558 2559 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2560 cmd->data_length, zero_flag, false); 2561 if (ret < 0) 2562 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2563 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2564 cmd->data_length) { 2565 /* 2566 * Special case for COMPARE_AND_WRITE with fabrics 2567 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2568 */ 2569 u32 caw_length = cmd->t_task_nolb * 2570 cmd->se_dev->dev_attrib.block_size; 2571 2572 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2573 &cmd->t_bidi_data_nents, 2574 caw_length, zero_flag, false); 2575 if (ret < 0) 2576 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2577 } 2578 /* 2579 * If this command is not a write we can execute it right here, 2580 * for write buffers we need to notify the fabric driver first 2581 * and let it call back once the write buffers are ready. 2582 */ 2583 target_add_to_state_list(cmd); 2584 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2585 target_execute_cmd(cmd); 2586 return 0; 2587 } 2588 2589 spin_lock_irqsave(&cmd->t_state_lock, flags); 2590 cmd->t_state = TRANSPORT_WRITE_PENDING; 2591 /* 2592 * Determine if frontend context caller is requesting the stopping of 2593 * this command for frontend exceptions. 2594 */ 2595 if (cmd->transport_state & CMD_T_STOP && 2596 !cmd->se_tfo->write_pending_must_be_called) { 2597 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2598 __func__, __LINE__, cmd->tag); 2599 2600 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2601 2602 complete_all(&cmd->t_transport_stop_comp); 2603 return 0; 2604 } 2605 cmd->transport_state &= ~CMD_T_ACTIVE; 2606 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2607 2608 ret = cmd->se_tfo->write_pending(cmd); 2609 if (ret) 2610 goto queue_full; 2611 2612 return 0; 2613 2614 queue_full: 2615 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2616 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2617 return 0; 2618 } 2619 EXPORT_SYMBOL(transport_generic_new_cmd); 2620 2621 static void transport_write_pending_qf(struct se_cmd *cmd) 2622 { 2623 unsigned long flags; 2624 int ret; 2625 bool stop; 2626 2627 spin_lock_irqsave(&cmd->t_state_lock, flags); 2628 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED)); 2629 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2630 2631 if (stop) { 2632 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n", 2633 __func__, __LINE__, cmd->tag); 2634 complete_all(&cmd->t_transport_stop_comp); 2635 return; 2636 } 2637 2638 ret = cmd->se_tfo->write_pending(cmd); 2639 if (ret) { 2640 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2641 cmd); 2642 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2643 } 2644 } 2645 2646 static bool 2647 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2648 unsigned long *flags); 2649 2650 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2651 { 2652 unsigned long flags; 2653 2654 spin_lock_irqsave(&cmd->t_state_lock, flags); 2655 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2656 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2657 } 2658 2659 /* 2660 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has 2661 * finished. 2662 */ 2663 void target_put_cmd_and_wait(struct se_cmd *cmd) 2664 { 2665 DECLARE_COMPLETION_ONSTACK(compl); 2666 2667 WARN_ON_ONCE(cmd->abrt_compl); 2668 cmd->abrt_compl = &compl; 2669 target_put_sess_cmd(cmd); 2670 wait_for_completion(&compl); 2671 } 2672 2673 /* 2674 * This function is called by frontend drivers after processing of a command 2675 * has finished. 2676 * 2677 * The protocol for ensuring that either the regular frontend command 2678 * processing flow or target_handle_abort() code drops one reference is as 2679 * follows: 2680 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause 2681 * the frontend driver to call this function synchronously or asynchronously. 2682 * That will cause one reference to be dropped. 2683 * - During regular command processing the target core sets CMD_T_COMPLETE 2684 * before invoking one of the .queue_*() functions. 2685 * - The code that aborts commands skips commands and TMFs for which 2686 * CMD_T_COMPLETE has been set. 2687 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for 2688 * commands that will be aborted. 2689 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set 2690 * transport_generic_free_cmd() skips its call to target_put_sess_cmd(). 2691 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will 2692 * be called and will drop a reference. 2693 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task() 2694 * will be called. target_handle_abort() will drop the final reference. 2695 */ 2696 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2697 { 2698 DECLARE_COMPLETION_ONSTACK(compl); 2699 int ret = 0; 2700 bool aborted = false, tas = false; 2701 2702 if (wait_for_tasks) 2703 target_wait_free_cmd(cmd, &aborted, &tas); 2704 2705 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) { 2706 /* 2707 * Handle WRITE failure case where transport_generic_new_cmd() 2708 * has already added se_cmd to state_list, but fabric has 2709 * failed command before I/O submission. 2710 */ 2711 if (cmd->state_active) 2712 target_remove_from_state_list(cmd); 2713 } 2714 if (aborted) 2715 cmd->free_compl = &compl; 2716 ret = target_put_sess_cmd(cmd); 2717 if (aborted) { 2718 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2719 wait_for_completion(&compl); 2720 ret = 1; 2721 } 2722 return ret; 2723 } 2724 EXPORT_SYMBOL(transport_generic_free_cmd); 2725 2726 /** 2727 * target_get_sess_cmd - Add command to active ->sess_cmd_list 2728 * @se_cmd: command descriptor to add 2729 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2730 */ 2731 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2732 { 2733 struct se_session *se_sess = se_cmd->se_sess; 2734 unsigned long flags; 2735 int ret = 0; 2736 2737 /* 2738 * Add a second kref if the fabric caller is expecting to handle 2739 * fabric acknowledgement that requires two target_put_sess_cmd() 2740 * invocations before se_cmd descriptor release. 2741 */ 2742 if (ack_kref) { 2743 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2744 return -EINVAL; 2745 2746 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2747 } 2748 2749 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2750 if (se_sess->sess_tearing_down) { 2751 ret = -ESHUTDOWN; 2752 goto out; 2753 } 2754 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2755 percpu_ref_get(&se_sess->cmd_count); 2756 out: 2757 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2758 2759 if (ret && ack_kref) 2760 target_put_sess_cmd(se_cmd); 2761 2762 return ret; 2763 } 2764 EXPORT_SYMBOL(target_get_sess_cmd); 2765 2766 static void target_free_cmd_mem(struct se_cmd *cmd) 2767 { 2768 transport_free_pages(cmd); 2769 2770 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2771 core_tmr_release_req(cmd->se_tmr_req); 2772 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2773 kfree(cmd->t_task_cdb); 2774 } 2775 2776 static void target_release_cmd_kref(struct kref *kref) 2777 { 2778 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2779 struct se_session *se_sess = se_cmd->se_sess; 2780 struct completion *free_compl = se_cmd->free_compl; 2781 struct completion *abrt_compl = se_cmd->abrt_compl; 2782 unsigned long flags; 2783 2784 if (se_cmd->lun_ref_active) 2785 percpu_ref_put(&se_cmd->se_lun->lun_ref); 2786 2787 if (se_sess) { 2788 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2789 list_del_init(&se_cmd->se_cmd_list); 2790 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2791 } 2792 2793 target_free_cmd_mem(se_cmd); 2794 se_cmd->se_tfo->release_cmd(se_cmd); 2795 if (free_compl) 2796 complete(free_compl); 2797 if (abrt_compl) 2798 complete(abrt_compl); 2799 2800 percpu_ref_put(&se_sess->cmd_count); 2801 } 2802 2803 /** 2804 * target_put_sess_cmd - decrease the command reference count 2805 * @se_cmd: command to drop a reference from 2806 * 2807 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2808 * refcount to drop to zero. Returns zero otherwise. 2809 */ 2810 int target_put_sess_cmd(struct se_cmd *se_cmd) 2811 { 2812 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2813 } 2814 EXPORT_SYMBOL(target_put_sess_cmd); 2815 2816 static const char *data_dir_name(enum dma_data_direction d) 2817 { 2818 switch (d) { 2819 case DMA_BIDIRECTIONAL: return "BIDI"; 2820 case DMA_TO_DEVICE: return "WRITE"; 2821 case DMA_FROM_DEVICE: return "READ"; 2822 case DMA_NONE: return "NONE"; 2823 } 2824 2825 return "(?)"; 2826 } 2827 2828 static const char *cmd_state_name(enum transport_state_table t) 2829 { 2830 switch (t) { 2831 case TRANSPORT_NO_STATE: return "NO_STATE"; 2832 case TRANSPORT_NEW_CMD: return "NEW_CMD"; 2833 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING"; 2834 case TRANSPORT_PROCESSING: return "PROCESSING"; 2835 case TRANSPORT_COMPLETE: return "COMPLETE"; 2836 case TRANSPORT_ISTATE_PROCESSING: 2837 return "ISTATE_PROCESSING"; 2838 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP"; 2839 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK"; 2840 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR"; 2841 } 2842 2843 return "(?)"; 2844 } 2845 2846 static void target_append_str(char **str, const char *txt) 2847 { 2848 char *prev = *str; 2849 2850 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) : 2851 kstrdup(txt, GFP_ATOMIC); 2852 kfree(prev); 2853 } 2854 2855 /* 2856 * Convert a transport state bitmask into a string. The caller is 2857 * responsible for freeing the returned pointer. 2858 */ 2859 static char *target_ts_to_str(u32 ts) 2860 { 2861 char *str = NULL; 2862 2863 if (ts & CMD_T_ABORTED) 2864 target_append_str(&str, "aborted"); 2865 if (ts & CMD_T_ACTIVE) 2866 target_append_str(&str, "active"); 2867 if (ts & CMD_T_COMPLETE) 2868 target_append_str(&str, "complete"); 2869 if (ts & CMD_T_SENT) 2870 target_append_str(&str, "sent"); 2871 if (ts & CMD_T_STOP) 2872 target_append_str(&str, "stop"); 2873 if (ts & CMD_T_FABRIC_STOP) 2874 target_append_str(&str, "fabric_stop"); 2875 2876 return str; 2877 } 2878 2879 static const char *target_tmf_name(enum tcm_tmreq_table tmf) 2880 { 2881 switch (tmf) { 2882 case TMR_ABORT_TASK: return "ABORT_TASK"; 2883 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET"; 2884 case TMR_CLEAR_ACA: return "CLEAR_ACA"; 2885 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET"; 2886 case TMR_LUN_RESET: return "LUN_RESET"; 2887 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET"; 2888 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET"; 2889 case TMR_UNKNOWN: break; 2890 } 2891 return "(?)"; 2892 } 2893 2894 void target_show_cmd(const char *pfx, struct se_cmd *cmd) 2895 { 2896 char *ts_str = target_ts_to_str(cmd->transport_state); 2897 const u8 *cdb = cmd->t_task_cdb; 2898 struct se_tmr_req *tmf = cmd->se_tmr_req; 2899 2900 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2901 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n", 2902 pfx, cdb[0], cdb[1], cmd->tag, 2903 data_dir_name(cmd->data_direction), 2904 cmd->se_tfo->get_cmd_state(cmd), 2905 cmd_state_name(cmd->t_state), cmd->data_length, 2906 kref_read(&cmd->cmd_kref), ts_str); 2907 } else { 2908 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n", 2909 pfx, target_tmf_name(tmf->function), cmd->tag, 2910 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd), 2911 cmd_state_name(cmd->t_state), 2912 kref_read(&cmd->cmd_kref), ts_str); 2913 } 2914 kfree(ts_str); 2915 } 2916 EXPORT_SYMBOL(target_show_cmd); 2917 2918 /** 2919 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued. 2920 * @se_sess: session to flag 2921 */ 2922 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2923 { 2924 unsigned long flags; 2925 2926 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2927 se_sess->sess_tearing_down = 1; 2928 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2929 2930 percpu_ref_kill(&se_sess->cmd_count); 2931 } 2932 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2933 2934 /** 2935 * target_wait_for_sess_cmds - Wait for outstanding commands 2936 * @se_sess: session to wait for active I/O 2937 */ 2938 void target_wait_for_sess_cmds(struct se_session *se_sess) 2939 { 2940 struct se_cmd *cmd; 2941 int ret; 2942 2943 WARN_ON_ONCE(!se_sess->sess_tearing_down); 2944 2945 do { 2946 ret = wait_event_timeout(se_sess->cmd_list_wq, 2947 percpu_ref_is_zero(&se_sess->cmd_count), 2948 180 * HZ); 2949 list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list) 2950 target_show_cmd("session shutdown: still waiting for ", 2951 cmd); 2952 } while (ret <= 0); 2953 } 2954 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2955 2956 /* 2957 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until 2958 * all references to the LUN have been released. Called during LUN shutdown. 2959 */ 2960 void transport_clear_lun_ref(struct se_lun *lun) 2961 { 2962 percpu_ref_kill(&lun->lun_ref); 2963 wait_for_completion(&lun->lun_shutdown_comp); 2964 } 2965 2966 static bool 2967 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2968 bool *aborted, bool *tas, unsigned long *flags) 2969 __releases(&cmd->t_state_lock) 2970 __acquires(&cmd->t_state_lock) 2971 { 2972 2973 assert_spin_locked(&cmd->t_state_lock); 2974 WARN_ON_ONCE(!irqs_disabled()); 2975 2976 if (fabric_stop) 2977 cmd->transport_state |= CMD_T_FABRIC_STOP; 2978 2979 if (cmd->transport_state & CMD_T_ABORTED) 2980 *aborted = true; 2981 2982 if (cmd->transport_state & CMD_T_TAS) 2983 *tas = true; 2984 2985 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2986 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2987 return false; 2988 2989 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2990 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2991 return false; 2992 2993 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2994 return false; 2995 2996 if (fabric_stop && *aborted) 2997 return false; 2998 2999 cmd->transport_state |= CMD_T_STOP; 3000 3001 target_show_cmd("wait_for_tasks: Stopping ", cmd); 3002 3003 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 3004 3005 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp, 3006 180 * HZ)) 3007 target_show_cmd("wait for tasks: ", cmd); 3008 3009 spin_lock_irqsave(&cmd->t_state_lock, *flags); 3010 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 3011 3012 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 3013 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 3014 3015 return true; 3016 } 3017 3018 /** 3019 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 3020 * @cmd: command to wait on 3021 */ 3022 bool transport_wait_for_tasks(struct se_cmd *cmd) 3023 { 3024 unsigned long flags; 3025 bool ret, aborted = false, tas = false; 3026 3027 spin_lock_irqsave(&cmd->t_state_lock, flags); 3028 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 3029 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3030 3031 return ret; 3032 } 3033 EXPORT_SYMBOL(transport_wait_for_tasks); 3034 3035 struct sense_info { 3036 u8 key; 3037 u8 asc; 3038 u8 ascq; 3039 bool add_sector_info; 3040 }; 3041 3042 static const struct sense_info sense_info_table[] = { 3043 [TCM_NO_SENSE] = { 3044 .key = NOT_READY 3045 }, 3046 [TCM_NON_EXISTENT_LUN] = { 3047 .key = ILLEGAL_REQUEST, 3048 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 3049 }, 3050 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 3051 .key = ILLEGAL_REQUEST, 3052 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3053 }, 3054 [TCM_SECTOR_COUNT_TOO_MANY] = { 3055 .key = ILLEGAL_REQUEST, 3056 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3057 }, 3058 [TCM_UNKNOWN_MODE_PAGE] = { 3059 .key = ILLEGAL_REQUEST, 3060 .asc = 0x24, /* INVALID FIELD IN CDB */ 3061 }, 3062 [TCM_CHECK_CONDITION_ABORT_CMD] = { 3063 .key = ABORTED_COMMAND, 3064 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 3065 .ascq = 0x03, 3066 }, 3067 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 3068 .key = ABORTED_COMMAND, 3069 .asc = 0x0c, /* WRITE ERROR */ 3070 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 3071 }, 3072 [TCM_INVALID_CDB_FIELD] = { 3073 .key = ILLEGAL_REQUEST, 3074 .asc = 0x24, /* INVALID FIELD IN CDB */ 3075 }, 3076 [TCM_INVALID_PARAMETER_LIST] = { 3077 .key = ILLEGAL_REQUEST, 3078 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 3079 }, 3080 [TCM_TOO_MANY_TARGET_DESCS] = { 3081 .key = ILLEGAL_REQUEST, 3082 .asc = 0x26, 3083 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 3084 }, 3085 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 3086 .key = ILLEGAL_REQUEST, 3087 .asc = 0x26, 3088 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 3089 }, 3090 [TCM_TOO_MANY_SEGMENT_DESCS] = { 3091 .key = ILLEGAL_REQUEST, 3092 .asc = 0x26, 3093 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 3094 }, 3095 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 3096 .key = ILLEGAL_REQUEST, 3097 .asc = 0x26, 3098 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 3099 }, 3100 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 3101 .key = ILLEGAL_REQUEST, 3102 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 3103 }, 3104 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 3105 .key = ILLEGAL_REQUEST, 3106 .asc = 0x0c, /* WRITE ERROR */ 3107 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 3108 }, 3109 [TCM_SERVICE_CRC_ERROR] = { 3110 .key = ABORTED_COMMAND, 3111 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 3112 .ascq = 0x05, /* N/A */ 3113 }, 3114 [TCM_SNACK_REJECTED] = { 3115 .key = ABORTED_COMMAND, 3116 .asc = 0x11, /* READ ERROR */ 3117 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 3118 }, 3119 [TCM_WRITE_PROTECTED] = { 3120 .key = DATA_PROTECT, 3121 .asc = 0x27, /* WRITE PROTECTED */ 3122 }, 3123 [TCM_ADDRESS_OUT_OF_RANGE] = { 3124 .key = ILLEGAL_REQUEST, 3125 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 3126 }, 3127 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 3128 .key = UNIT_ATTENTION, 3129 }, 3130 [TCM_CHECK_CONDITION_NOT_READY] = { 3131 .key = NOT_READY, 3132 }, 3133 [TCM_MISCOMPARE_VERIFY] = { 3134 .key = MISCOMPARE, 3135 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 3136 .ascq = 0x00, 3137 }, 3138 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 3139 .key = ABORTED_COMMAND, 3140 .asc = 0x10, 3141 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 3142 .add_sector_info = true, 3143 }, 3144 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 3145 .key = ABORTED_COMMAND, 3146 .asc = 0x10, 3147 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 3148 .add_sector_info = true, 3149 }, 3150 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 3151 .key = ABORTED_COMMAND, 3152 .asc = 0x10, 3153 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 3154 .add_sector_info = true, 3155 }, 3156 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 3157 .key = COPY_ABORTED, 3158 .asc = 0x0d, 3159 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 3160 3161 }, 3162 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 3163 /* 3164 * Returning ILLEGAL REQUEST would cause immediate IO errors on 3165 * Solaris initiators. Returning NOT READY instead means the 3166 * operations will be retried a finite number of times and we 3167 * can survive intermittent errors. 3168 */ 3169 .key = NOT_READY, 3170 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 3171 }, 3172 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = { 3173 /* 3174 * From spc4r22 section5.7.7,5.7.8 3175 * If a PERSISTENT RESERVE OUT command with a REGISTER service action 3176 * or a REGISTER AND IGNORE EXISTING KEY service action or 3177 * REGISTER AND MOVE service actionis attempted, 3178 * but there are insufficient device server resources to complete the 3179 * operation, then the command shall be terminated with CHECK CONDITION 3180 * status, with the sense key set to ILLEGAL REQUEST,and the additonal 3181 * sense code set to INSUFFICIENT REGISTRATION RESOURCES. 3182 */ 3183 .key = ILLEGAL_REQUEST, 3184 .asc = 0x55, 3185 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */ 3186 }, 3187 }; 3188 3189 /** 3190 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq 3191 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will 3192 * be stored. 3193 * @reason: LIO sense reason code. If this argument has the value 3194 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If 3195 * dequeuing a unit attention fails due to multiple commands being processed 3196 * concurrently, set the command status to BUSY. 3197 * 3198 * Return: 0 upon success or -EINVAL if the sense buffer is too small. 3199 */ 3200 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 3201 { 3202 const struct sense_info *si; 3203 u8 *buffer = cmd->sense_buffer; 3204 int r = (__force int)reason; 3205 u8 key, asc, ascq; 3206 bool desc_format = target_sense_desc_format(cmd->se_dev); 3207 3208 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 3209 si = &sense_info_table[r]; 3210 else 3211 si = &sense_info_table[(__force int) 3212 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 3213 3214 key = si->key; 3215 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 3216 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc, 3217 &ascq)) { 3218 cmd->scsi_status = SAM_STAT_BUSY; 3219 return; 3220 } 3221 } else if (si->asc == 0) { 3222 WARN_ON_ONCE(cmd->scsi_asc == 0); 3223 asc = cmd->scsi_asc; 3224 ascq = cmd->scsi_ascq; 3225 } else { 3226 asc = si->asc; 3227 ascq = si->ascq; 3228 } 3229 3230 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3231 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3232 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3233 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq); 3234 if (si->add_sector_info) 3235 WARN_ON_ONCE(scsi_set_sense_information(buffer, 3236 cmd->scsi_sense_length, 3237 cmd->bad_sector) < 0); 3238 } 3239 3240 int 3241 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3242 sense_reason_t reason, int from_transport) 3243 { 3244 unsigned long flags; 3245 3246 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3247 3248 spin_lock_irqsave(&cmd->t_state_lock, flags); 3249 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3250 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3251 return 0; 3252 } 3253 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3254 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3255 3256 if (!from_transport) 3257 translate_sense_reason(cmd, reason); 3258 3259 trace_target_cmd_complete(cmd); 3260 return cmd->se_tfo->queue_status(cmd); 3261 } 3262 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3263 3264 /** 3265 * target_send_busy - Send SCSI BUSY status back to the initiator 3266 * @cmd: SCSI command for which to send a BUSY reply. 3267 * 3268 * Note: Only call this function if target_submit_cmd*() failed. 3269 */ 3270 int target_send_busy(struct se_cmd *cmd) 3271 { 3272 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3273 3274 cmd->scsi_status = SAM_STAT_BUSY; 3275 trace_target_cmd_complete(cmd); 3276 return cmd->se_tfo->queue_status(cmd); 3277 } 3278 EXPORT_SYMBOL(target_send_busy); 3279 3280 static void target_tmr_work(struct work_struct *work) 3281 { 3282 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3283 struct se_device *dev = cmd->se_dev; 3284 struct se_tmr_req *tmr = cmd->se_tmr_req; 3285 int ret; 3286 3287 if (cmd->transport_state & CMD_T_ABORTED) 3288 goto aborted; 3289 3290 switch (tmr->function) { 3291 case TMR_ABORT_TASK: 3292 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3293 break; 3294 case TMR_ABORT_TASK_SET: 3295 case TMR_CLEAR_ACA: 3296 case TMR_CLEAR_TASK_SET: 3297 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3298 break; 3299 case TMR_LUN_RESET: 3300 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3301 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3302 TMR_FUNCTION_REJECTED; 3303 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3304 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3305 cmd->orig_fe_lun, 0x29, 3306 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3307 } 3308 break; 3309 case TMR_TARGET_WARM_RESET: 3310 tmr->response = TMR_FUNCTION_REJECTED; 3311 break; 3312 case TMR_TARGET_COLD_RESET: 3313 tmr->response = TMR_FUNCTION_REJECTED; 3314 break; 3315 default: 3316 pr_err("Unknown TMR function: 0x%02x.\n", 3317 tmr->function); 3318 tmr->response = TMR_FUNCTION_REJECTED; 3319 break; 3320 } 3321 3322 if (cmd->transport_state & CMD_T_ABORTED) 3323 goto aborted; 3324 3325 cmd->se_tfo->queue_tm_rsp(cmd); 3326 3327 transport_cmd_check_stop_to_fabric(cmd); 3328 return; 3329 3330 aborted: 3331 target_handle_abort(cmd); 3332 } 3333 3334 int transport_generic_handle_tmr( 3335 struct se_cmd *cmd) 3336 { 3337 unsigned long flags; 3338 bool aborted = false; 3339 3340 spin_lock_irqsave(&cmd->t_state_lock, flags); 3341 if (cmd->transport_state & CMD_T_ABORTED) { 3342 aborted = true; 3343 } else { 3344 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3345 cmd->transport_state |= CMD_T_ACTIVE; 3346 } 3347 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3348 3349 if (aborted) { 3350 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n", 3351 cmd->se_tmr_req->function, 3352 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3353 target_handle_abort(cmd); 3354 return 0; 3355 } 3356 3357 INIT_WORK(&cmd->work, target_tmr_work); 3358 schedule_work(&cmd->work); 3359 return 0; 3360 } 3361 EXPORT_SYMBOL(transport_generic_handle_tmr); 3362 3363 bool 3364 target_check_wce(struct se_device *dev) 3365 { 3366 bool wce = false; 3367 3368 if (dev->transport->get_write_cache) 3369 wce = dev->transport->get_write_cache(dev); 3370 else if (dev->dev_attrib.emulate_write_cache > 0) 3371 wce = true; 3372 3373 return wce; 3374 } 3375 3376 bool 3377 target_check_fua(struct se_device *dev) 3378 { 3379 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3380 } 3381