1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
34 #include <linux/in.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
44 
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
49 
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/target.h>
57 
58 static struct workqueue_struct *target_completion_wq;
59 static struct kmem_cache *se_sess_cache;
60 struct kmem_cache *se_ua_cache;
61 struct kmem_cache *t10_pr_reg_cache;
62 struct kmem_cache *t10_alua_lu_gp_cache;
63 struct kmem_cache *t10_alua_lu_gp_mem_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_cache;
65 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
66 
67 static void transport_complete_task_attr(struct se_cmd *cmd);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 		struct se_device *dev);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72 
73 int init_se_kmem_caches(void)
74 {
75 	se_sess_cache = kmem_cache_create("se_sess_cache",
76 			sizeof(struct se_session), __alignof__(struct se_session),
77 			0, NULL);
78 	if (!se_sess_cache) {
79 		pr_err("kmem_cache_create() for struct se_session"
80 				" failed\n");
81 		goto out;
82 	}
83 	se_ua_cache = kmem_cache_create("se_ua_cache",
84 			sizeof(struct se_ua), __alignof__(struct se_ua),
85 			0, NULL);
86 	if (!se_ua_cache) {
87 		pr_err("kmem_cache_create() for struct se_ua failed\n");
88 		goto out_free_sess_cache;
89 	}
90 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 			sizeof(struct t10_pr_registration),
92 			__alignof__(struct t10_pr_registration), 0, NULL);
93 	if (!t10_pr_reg_cache) {
94 		pr_err("kmem_cache_create() for struct t10_pr_registration"
95 				" failed\n");
96 		goto out_free_ua_cache;
97 	}
98 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 			0, NULL);
101 	if (!t10_alua_lu_gp_cache) {
102 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 				" failed\n");
104 		goto out_free_pr_reg_cache;
105 	}
106 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 			sizeof(struct t10_alua_lu_gp_member),
108 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 	if (!t10_alua_lu_gp_mem_cache) {
110 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 				"cache failed\n");
112 		goto out_free_lu_gp_cache;
113 	}
114 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 			sizeof(struct t10_alua_tg_pt_gp),
116 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 	if (!t10_alua_tg_pt_gp_cache) {
118 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 				"cache failed\n");
120 		goto out_free_lu_gp_mem_cache;
121 	}
122 	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
123 			"t10_alua_tg_pt_gp_mem_cache",
124 			sizeof(struct t10_alua_tg_pt_gp_member),
125 			__alignof__(struct t10_alua_tg_pt_gp_member),
126 			0, NULL);
127 	if (!t10_alua_tg_pt_gp_mem_cache) {
128 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
129 				"mem_t failed\n");
130 		goto out_free_tg_pt_gp_cache;
131 	}
132 
133 	target_completion_wq = alloc_workqueue("target_completion",
134 					       WQ_MEM_RECLAIM, 0);
135 	if (!target_completion_wq)
136 		goto out_free_tg_pt_gp_mem_cache;
137 
138 	return 0;
139 
140 out_free_tg_pt_gp_mem_cache:
141 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
142 out_free_tg_pt_gp_cache:
143 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
144 out_free_lu_gp_mem_cache:
145 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
146 out_free_lu_gp_cache:
147 	kmem_cache_destroy(t10_alua_lu_gp_cache);
148 out_free_pr_reg_cache:
149 	kmem_cache_destroy(t10_pr_reg_cache);
150 out_free_ua_cache:
151 	kmem_cache_destroy(se_ua_cache);
152 out_free_sess_cache:
153 	kmem_cache_destroy(se_sess_cache);
154 out:
155 	return -ENOMEM;
156 }
157 
158 void release_se_kmem_caches(void)
159 {
160 	destroy_workqueue(target_completion_wq);
161 	kmem_cache_destroy(se_sess_cache);
162 	kmem_cache_destroy(se_ua_cache);
163 	kmem_cache_destroy(t10_pr_reg_cache);
164 	kmem_cache_destroy(t10_alua_lu_gp_cache);
165 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
166 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
168 }
169 
170 /* This code ensures unique mib indexes are handed out. */
171 static DEFINE_SPINLOCK(scsi_mib_index_lock);
172 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
173 
174 /*
175  * Allocate a new row index for the entry type specified
176  */
177 u32 scsi_get_new_index(scsi_index_t type)
178 {
179 	u32 new_index;
180 
181 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
182 
183 	spin_lock(&scsi_mib_index_lock);
184 	new_index = ++scsi_mib_index[type];
185 	spin_unlock(&scsi_mib_index_lock);
186 
187 	return new_index;
188 }
189 
190 void transport_subsystem_check_init(void)
191 {
192 	int ret;
193 	static int sub_api_initialized;
194 
195 	if (sub_api_initialized)
196 		return;
197 
198 	ret = request_module("target_core_iblock");
199 	if (ret != 0)
200 		pr_err("Unable to load target_core_iblock\n");
201 
202 	ret = request_module("target_core_file");
203 	if (ret != 0)
204 		pr_err("Unable to load target_core_file\n");
205 
206 	ret = request_module("target_core_pscsi");
207 	if (ret != 0)
208 		pr_err("Unable to load target_core_pscsi\n");
209 
210 	sub_api_initialized = 1;
211 }
212 
213 struct se_session *transport_init_session(void)
214 {
215 	struct se_session *se_sess;
216 
217 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
218 	if (!se_sess) {
219 		pr_err("Unable to allocate struct se_session from"
220 				" se_sess_cache\n");
221 		return ERR_PTR(-ENOMEM);
222 	}
223 	INIT_LIST_HEAD(&se_sess->sess_list);
224 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
225 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
226 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
227 	spin_lock_init(&se_sess->sess_cmd_lock);
228 	kref_init(&se_sess->sess_kref);
229 
230 	return se_sess;
231 }
232 EXPORT_SYMBOL(transport_init_session);
233 
234 int transport_alloc_session_tags(struct se_session *se_sess,
235 			         unsigned int tag_num, unsigned int tag_size)
236 {
237 	int rc;
238 
239 	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, GFP_KERNEL);
240 	if (!se_sess->sess_cmd_map) {
241 		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
242 		return -ENOMEM;
243 	}
244 
245 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
246 	if (rc < 0) {
247 		pr_err("Unable to init se_sess->sess_tag_pool,"
248 			" tag_num: %u\n", tag_num);
249 		kfree(se_sess->sess_cmd_map);
250 		se_sess->sess_cmd_map = NULL;
251 		return -ENOMEM;
252 	}
253 
254 	return 0;
255 }
256 EXPORT_SYMBOL(transport_alloc_session_tags);
257 
258 struct se_session *transport_init_session_tags(unsigned int tag_num,
259 					       unsigned int tag_size)
260 {
261 	struct se_session *se_sess;
262 	int rc;
263 
264 	se_sess = transport_init_session();
265 	if (IS_ERR(se_sess))
266 		return se_sess;
267 
268 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
269 	if (rc < 0) {
270 		transport_free_session(se_sess);
271 		return ERR_PTR(-ENOMEM);
272 	}
273 
274 	return se_sess;
275 }
276 EXPORT_SYMBOL(transport_init_session_tags);
277 
278 /*
279  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
280  */
281 void __transport_register_session(
282 	struct se_portal_group *se_tpg,
283 	struct se_node_acl *se_nacl,
284 	struct se_session *se_sess,
285 	void *fabric_sess_ptr)
286 {
287 	unsigned char buf[PR_REG_ISID_LEN];
288 
289 	se_sess->se_tpg = se_tpg;
290 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
291 	/*
292 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
293 	 *
294 	 * Only set for struct se_session's that will actually be moving I/O.
295 	 * eg: *NOT* discovery sessions.
296 	 */
297 	if (se_nacl) {
298 		/*
299 		 * If the fabric module supports an ISID based TransportID,
300 		 * save this value in binary from the fabric I_T Nexus now.
301 		 */
302 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
303 			memset(&buf[0], 0, PR_REG_ISID_LEN);
304 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
305 					&buf[0], PR_REG_ISID_LEN);
306 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
307 		}
308 		kref_get(&se_nacl->acl_kref);
309 
310 		spin_lock_irq(&se_nacl->nacl_sess_lock);
311 		/*
312 		 * The se_nacl->nacl_sess pointer will be set to the
313 		 * last active I_T Nexus for each struct se_node_acl.
314 		 */
315 		se_nacl->nacl_sess = se_sess;
316 
317 		list_add_tail(&se_sess->sess_acl_list,
318 			      &se_nacl->acl_sess_list);
319 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
320 	}
321 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
322 
323 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
324 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
325 }
326 EXPORT_SYMBOL(__transport_register_session);
327 
328 void transport_register_session(
329 	struct se_portal_group *se_tpg,
330 	struct se_node_acl *se_nacl,
331 	struct se_session *se_sess,
332 	void *fabric_sess_ptr)
333 {
334 	unsigned long flags;
335 
336 	spin_lock_irqsave(&se_tpg->session_lock, flags);
337 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
338 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
339 }
340 EXPORT_SYMBOL(transport_register_session);
341 
342 static void target_release_session(struct kref *kref)
343 {
344 	struct se_session *se_sess = container_of(kref,
345 			struct se_session, sess_kref);
346 	struct se_portal_group *se_tpg = se_sess->se_tpg;
347 
348 	se_tpg->se_tpg_tfo->close_session(se_sess);
349 }
350 
351 void target_get_session(struct se_session *se_sess)
352 {
353 	kref_get(&se_sess->sess_kref);
354 }
355 EXPORT_SYMBOL(target_get_session);
356 
357 void target_put_session(struct se_session *se_sess)
358 {
359 	struct se_portal_group *tpg = se_sess->se_tpg;
360 
361 	if (tpg->se_tpg_tfo->put_session != NULL) {
362 		tpg->se_tpg_tfo->put_session(se_sess);
363 		return;
364 	}
365 	kref_put(&se_sess->sess_kref, target_release_session);
366 }
367 EXPORT_SYMBOL(target_put_session);
368 
369 static void target_complete_nacl(struct kref *kref)
370 {
371 	struct se_node_acl *nacl = container_of(kref,
372 				struct se_node_acl, acl_kref);
373 
374 	complete(&nacl->acl_free_comp);
375 }
376 
377 void target_put_nacl(struct se_node_acl *nacl)
378 {
379 	kref_put(&nacl->acl_kref, target_complete_nacl);
380 }
381 
382 void transport_deregister_session_configfs(struct se_session *se_sess)
383 {
384 	struct se_node_acl *se_nacl;
385 	unsigned long flags;
386 	/*
387 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
388 	 */
389 	se_nacl = se_sess->se_node_acl;
390 	if (se_nacl) {
391 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
392 		if (se_nacl->acl_stop == 0)
393 			list_del(&se_sess->sess_acl_list);
394 		/*
395 		 * If the session list is empty, then clear the pointer.
396 		 * Otherwise, set the struct se_session pointer from the tail
397 		 * element of the per struct se_node_acl active session list.
398 		 */
399 		if (list_empty(&se_nacl->acl_sess_list))
400 			se_nacl->nacl_sess = NULL;
401 		else {
402 			se_nacl->nacl_sess = container_of(
403 					se_nacl->acl_sess_list.prev,
404 					struct se_session, sess_acl_list);
405 		}
406 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
407 	}
408 }
409 EXPORT_SYMBOL(transport_deregister_session_configfs);
410 
411 void transport_free_session(struct se_session *se_sess)
412 {
413 	if (se_sess->sess_cmd_map) {
414 		percpu_ida_destroy(&se_sess->sess_tag_pool);
415 		kfree(se_sess->sess_cmd_map);
416 	}
417 	kmem_cache_free(se_sess_cache, se_sess);
418 }
419 EXPORT_SYMBOL(transport_free_session);
420 
421 void transport_deregister_session(struct se_session *se_sess)
422 {
423 	struct se_portal_group *se_tpg = se_sess->se_tpg;
424 	struct target_core_fabric_ops *se_tfo;
425 	struct se_node_acl *se_nacl;
426 	unsigned long flags;
427 	bool comp_nacl = true;
428 
429 	if (!se_tpg) {
430 		transport_free_session(se_sess);
431 		return;
432 	}
433 	se_tfo = se_tpg->se_tpg_tfo;
434 
435 	spin_lock_irqsave(&se_tpg->session_lock, flags);
436 	list_del(&se_sess->sess_list);
437 	se_sess->se_tpg = NULL;
438 	se_sess->fabric_sess_ptr = NULL;
439 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
440 
441 	/*
442 	 * Determine if we need to do extra work for this initiator node's
443 	 * struct se_node_acl if it had been previously dynamically generated.
444 	 */
445 	se_nacl = se_sess->se_node_acl;
446 
447 	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
448 	if (se_nacl && se_nacl->dynamic_node_acl) {
449 		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
450 			list_del(&se_nacl->acl_list);
451 			se_tpg->num_node_acls--;
452 			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
453 			core_tpg_wait_for_nacl_pr_ref(se_nacl);
454 			core_free_device_list_for_node(se_nacl, se_tpg);
455 			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
456 
457 			comp_nacl = false;
458 			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
459 		}
460 	}
461 	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
462 
463 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
464 		se_tpg->se_tpg_tfo->get_fabric_name());
465 	/*
466 	 * If last kref is dropping now for an explict NodeACL, awake sleeping
467 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
468 	 * removal context.
469 	 */
470 	if (se_nacl && comp_nacl == true)
471 		target_put_nacl(se_nacl);
472 
473 	transport_free_session(se_sess);
474 }
475 EXPORT_SYMBOL(transport_deregister_session);
476 
477 /*
478  * Called with cmd->t_state_lock held.
479  */
480 static void target_remove_from_state_list(struct se_cmd *cmd)
481 {
482 	struct se_device *dev = cmd->se_dev;
483 	unsigned long flags;
484 
485 	if (!dev)
486 		return;
487 
488 	if (cmd->transport_state & CMD_T_BUSY)
489 		return;
490 
491 	spin_lock_irqsave(&dev->execute_task_lock, flags);
492 	if (cmd->state_active) {
493 		list_del(&cmd->state_list);
494 		cmd->state_active = false;
495 	}
496 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
497 }
498 
499 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
500 				    bool write_pending)
501 {
502 	unsigned long flags;
503 
504 	spin_lock_irqsave(&cmd->t_state_lock, flags);
505 	if (write_pending)
506 		cmd->t_state = TRANSPORT_WRITE_PENDING;
507 
508 	/*
509 	 * Determine if IOCTL context caller in requesting the stopping of this
510 	 * command for LUN shutdown purposes.
511 	 */
512 	if (cmd->transport_state & CMD_T_LUN_STOP) {
513 		pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
514 			__func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
515 
516 		cmd->transport_state &= ~CMD_T_ACTIVE;
517 		if (remove_from_lists)
518 			target_remove_from_state_list(cmd);
519 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520 
521 		complete(&cmd->transport_lun_stop_comp);
522 		return 1;
523 	}
524 
525 	if (remove_from_lists) {
526 		target_remove_from_state_list(cmd);
527 
528 		/*
529 		 * Clear struct se_cmd->se_lun before the handoff to FE.
530 		 */
531 		cmd->se_lun = NULL;
532 	}
533 
534 	/*
535 	 * Determine if frontend context caller is requesting the stopping of
536 	 * this command for frontend exceptions.
537 	 */
538 	if (cmd->transport_state & CMD_T_STOP) {
539 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
540 			__func__, __LINE__,
541 			cmd->se_tfo->get_task_tag(cmd));
542 
543 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
544 
545 		complete(&cmd->t_transport_stop_comp);
546 		return 1;
547 	}
548 
549 	cmd->transport_state &= ~CMD_T_ACTIVE;
550 	if (remove_from_lists) {
551 		/*
552 		 * Some fabric modules like tcm_loop can release
553 		 * their internally allocated I/O reference now and
554 		 * struct se_cmd now.
555 		 *
556 		 * Fabric modules are expected to return '1' here if the
557 		 * se_cmd being passed is released at this point,
558 		 * or zero if not being released.
559 		 */
560 		if (cmd->se_tfo->check_stop_free != NULL) {
561 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
562 			return cmd->se_tfo->check_stop_free(cmd);
563 		}
564 	}
565 
566 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
567 	return 0;
568 }
569 
570 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
571 {
572 	return transport_cmd_check_stop(cmd, true, false);
573 }
574 
575 static void transport_lun_remove_cmd(struct se_cmd *cmd)
576 {
577 	struct se_lun *lun = cmd->se_lun;
578 
579 	if (!lun || !cmd->lun_ref_active)
580 		return;
581 
582 	percpu_ref_put(&lun->lun_ref);
583 }
584 
585 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
586 {
587 	if (transport_cmd_check_stop_to_fabric(cmd))
588 		return;
589 	if (remove)
590 		transport_put_cmd(cmd);
591 }
592 
593 static void target_complete_failure_work(struct work_struct *work)
594 {
595 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
596 
597 	transport_generic_request_failure(cmd,
598 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
599 }
600 
601 /*
602  * Used when asking transport to copy Sense Data from the underlying
603  * Linux/SCSI struct scsi_cmnd
604  */
605 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
606 {
607 	struct se_device *dev = cmd->se_dev;
608 
609 	WARN_ON(!cmd->se_lun);
610 
611 	if (!dev)
612 		return NULL;
613 
614 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
615 		return NULL;
616 
617 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
618 
619 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
620 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
621 	return cmd->sense_buffer;
622 }
623 
624 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
625 {
626 	struct se_device *dev = cmd->se_dev;
627 	int success = scsi_status == GOOD;
628 	unsigned long flags;
629 
630 	cmd->scsi_status = scsi_status;
631 
632 
633 	spin_lock_irqsave(&cmd->t_state_lock, flags);
634 	cmd->transport_state &= ~CMD_T_BUSY;
635 
636 	if (dev && dev->transport->transport_complete) {
637 		dev->transport->transport_complete(cmd,
638 				cmd->t_data_sg,
639 				transport_get_sense_buffer(cmd));
640 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
641 			success = 1;
642 	}
643 
644 	/*
645 	 * See if we are waiting to complete for an exception condition.
646 	 */
647 	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
648 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
649 		complete(&cmd->task_stop_comp);
650 		return;
651 	}
652 
653 	if (!success)
654 		cmd->transport_state |= CMD_T_FAILED;
655 
656 	/*
657 	 * Check for case where an explict ABORT_TASK has been received
658 	 * and transport_wait_for_tasks() will be waiting for completion..
659 	 */
660 	if (cmd->transport_state & CMD_T_ABORTED &&
661 	    cmd->transport_state & CMD_T_STOP) {
662 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
663 		complete(&cmd->t_transport_stop_comp);
664 		return;
665 	} else if (cmd->transport_state & CMD_T_FAILED) {
666 		INIT_WORK(&cmd->work, target_complete_failure_work);
667 	} else {
668 		INIT_WORK(&cmd->work, target_complete_ok_work);
669 	}
670 
671 	cmd->t_state = TRANSPORT_COMPLETE;
672 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
673 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
674 
675 	queue_work(target_completion_wq, &cmd->work);
676 }
677 EXPORT_SYMBOL(target_complete_cmd);
678 
679 static void target_add_to_state_list(struct se_cmd *cmd)
680 {
681 	struct se_device *dev = cmd->se_dev;
682 	unsigned long flags;
683 
684 	spin_lock_irqsave(&dev->execute_task_lock, flags);
685 	if (!cmd->state_active) {
686 		list_add_tail(&cmd->state_list, &dev->state_list);
687 		cmd->state_active = true;
688 	}
689 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
690 }
691 
692 /*
693  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
694  */
695 static void transport_write_pending_qf(struct se_cmd *cmd);
696 static void transport_complete_qf(struct se_cmd *cmd);
697 
698 void target_qf_do_work(struct work_struct *work)
699 {
700 	struct se_device *dev = container_of(work, struct se_device,
701 					qf_work_queue);
702 	LIST_HEAD(qf_cmd_list);
703 	struct se_cmd *cmd, *cmd_tmp;
704 
705 	spin_lock_irq(&dev->qf_cmd_lock);
706 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
707 	spin_unlock_irq(&dev->qf_cmd_lock);
708 
709 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
710 		list_del(&cmd->se_qf_node);
711 		atomic_dec(&dev->dev_qf_count);
712 		smp_mb__after_atomic_dec();
713 
714 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
715 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
716 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
717 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
718 			: "UNKNOWN");
719 
720 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
721 			transport_write_pending_qf(cmd);
722 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
723 			transport_complete_qf(cmd);
724 	}
725 }
726 
727 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
728 {
729 	switch (cmd->data_direction) {
730 	case DMA_NONE:
731 		return "NONE";
732 	case DMA_FROM_DEVICE:
733 		return "READ";
734 	case DMA_TO_DEVICE:
735 		return "WRITE";
736 	case DMA_BIDIRECTIONAL:
737 		return "BIDI";
738 	default:
739 		break;
740 	}
741 
742 	return "UNKNOWN";
743 }
744 
745 void transport_dump_dev_state(
746 	struct se_device *dev,
747 	char *b,
748 	int *bl)
749 {
750 	*bl += sprintf(b + *bl, "Status: ");
751 	if (dev->export_count)
752 		*bl += sprintf(b + *bl, "ACTIVATED");
753 	else
754 		*bl += sprintf(b + *bl, "DEACTIVATED");
755 
756 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
757 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
758 		dev->dev_attrib.block_size,
759 		dev->dev_attrib.hw_max_sectors);
760 	*bl += sprintf(b + *bl, "        ");
761 }
762 
763 void transport_dump_vpd_proto_id(
764 	struct t10_vpd *vpd,
765 	unsigned char *p_buf,
766 	int p_buf_len)
767 {
768 	unsigned char buf[VPD_TMP_BUF_SIZE];
769 	int len;
770 
771 	memset(buf, 0, VPD_TMP_BUF_SIZE);
772 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
773 
774 	switch (vpd->protocol_identifier) {
775 	case 0x00:
776 		sprintf(buf+len, "Fibre Channel\n");
777 		break;
778 	case 0x10:
779 		sprintf(buf+len, "Parallel SCSI\n");
780 		break;
781 	case 0x20:
782 		sprintf(buf+len, "SSA\n");
783 		break;
784 	case 0x30:
785 		sprintf(buf+len, "IEEE 1394\n");
786 		break;
787 	case 0x40:
788 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
789 				" Protocol\n");
790 		break;
791 	case 0x50:
792 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
793 		break;
794 	case 0x60:
795 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
796 		break;
797 	case 0x70:
798 		sprintf(buf+len, "Automation/Drive Interface Transport"
799 				" Protocol\n");
800 		break;
801 	case 0x80:
802 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
803 		break;
804 	default:
805 		sprintf(buf+len, "Unknown 0x%02x\n",
806 				vpd->protocol_identifier);
807 		break;
808 	}
809 
810 	if (p_buf)
811 		strncpy(p_buf, buf, p_buf_len);
812 	else
813 		pr_debug("%s", buf);
814 }
815 
816 void
817 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
818 {
819 	/*
820 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
821 	 *
822 	 * from spc3r23.pdf section 7.5.1
823 	 */
824 	 if (page_83[1] & 0x80) {
825 		vpd->protocol_identifier = (page_83[0] & 0xf0);
826 		vpd->protocol_identifier_set = 1;
827 		transport_dump_vpd_proto_id(vpd, NULL, 0);
828 	}
829 }
830 EXPORT_SYMBOL(transport_set_vpd_proto_id);
831 
832 int transport_dump_vpd_assoc(
833 	struct t10_vpd *vpd,
834 	unsigned char *p_buf,
835 	int p_buf_len)
836 {
837 	unsigned char buf[VPD_TMP_BUF_SIZE];
838 	int ret = 0;
839 	int len;
840 
841 	memset(buf, 0, VPD_TMP_BUF_SIZE);
842 	len = sprintf(buf, "T10 VPD Identifier Association: ");
843 
844 	switch (vpd->association) {
845 	case 0x00:
846 		sprintf(buf+len, "addressed logical unit\n");
847 		break;
848 	case 0x10:
849 		sprintf(buf+len, "target port\n");
850 		break;
851 	case 0x20:
852 		sprintf(buf+len, "SCSI target device\n");
853 		break;
854 	default:
855 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
856 		ret = -EINVAL;
857 		break;
858 	}
859 
860 	if (p_buf)
861 		strncpy(p_buf, buf, p_buf_len);
862 	else
863 		pr_debug("%s", buf);
864 
865 	return ret;
866 }
867 
868 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
869 {
870 	/*
871 	 * The VPD identification association..
872 	 *
873 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
874 	 */
875 	vpd->association = (page_83[1] & 0x30);
876 	return transport_dump_vpd_assoc(vpd, NULL, 0);
877 }
878 EXPORT_SYMBOL(transport_set_vpd_assoc);
879 
880 int transport_dump_vpd_ident_type(
881 	struct t10_vpd *vpd,
882 	unsigned char *p_buf,
883 	int p_buf_len)
884 {
885 	unsigned char buf[VPD_TMP_BUF_SIZE];
886 	int ret = 0;
887 	int len;
888 
889 	memset(buf, 0, VPD_TMP_BUF_SIZE);
890 	len = sprintf(buf, "T10 VPD Identifier Type: ");
891 
892 	switch (vpd->device_identifier_type) {
893 	case 0x00:
894 		sprintf(buf+len, "Vendor specific\n");
895 		break;
896 	case 0x01:
897 		sprintf(buf+len, "T10 Vendor ID based\n");
898 		break;
899 	case 0x02:
900 		sprintf(buf+len, "EUI-64 based\n");
901 		break;
902 	case 0x03:
903 		sprintf(buf+len, "NAA\n");
904 		break;
905 	case 0x04:
906 		sprintf(buf+len, "Relative target port identifier\n");
907 		break;
908 	case 0x08:
909 		sprintf(buf+len, "SCSI name string\n");
910 		break;
911 	default:
912 		sprintf(buf+len, "Unsupported: 0x%02x\n",
913 				vpd->device_identifier_type);
914 		ret = -EINVAL;
915 		break;
916 	}
917 
918 	if (p_buf) {
919 		if (p_buf_len < strlen(buf)+1)
920 			return -EINVAL;
921 		strncpy(p_buf, buf, p_buf_len);
922 	} else {
923 		pr_debug("%s", buf);
924 	}
925 
926 	return ret;
927 }
928 
929 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
930 {
931 	/*
932 	 * The VPD identifier type..
933 	 *
934 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
935 	 */
936 	vpd->device_identifier_type = (page_83[1] & 0x0f);
937 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
938 }
939 EXPORT_SYMBOL(transport_set_vpd_ident_type);
940 
941 int transport_dump_vpd_ident(
942 	struct t10_vpd *vpd,
943 	unsigned char *p_buf,
944 	int p_buf_len)
945 {
946 	unsigned char buf[VPD_TMP_BUF_SIZE];
947 	int ret = 0;
948 
949 	memset(buf, 0, VPD_TMP_BUF_SIZE);
950 
951 	switch (vpd->device_identifier_code_set) {
952 	case 0x01: /* Binary */
953 		snprintf(buf, sizeof(buf),
954 			"T10 VPD Binary Device Identifier: %s\n",
955 			&vpd->device_identifier[0]);
956 		break;
957 	case 0x02: /* ASCII */
958 		snprintf(buf, sizeof(buf),
959 			"T10 VPD ASCII Device Identifier: %s\n",
960 			&vpd->device_identifier[0]);
961 		break;
962 	case 0x03: /* UTF-8 */
963 		snprintf(buf, sizeof(buf),
964 			"T10 VPD UTF-8 Device Identifier: %s\n",
965 			&vpd->device_identifier[0]);
966 		break;
967 	default:
968 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
969 			" 0x%02x", vpd->device_identifier_code_set);
970 		ret = -EINVAL;
971 		break;
972 	}
973 
974 	if (p_buf)
975 		strncpy(p_buf, buf, p_buf_len);
976 	else
977 		pr_debug("%s", buf);
978 
979 	return ret;
980 }
981 
982 int
983 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
984 {
985 	static const char hex_str[] = "0123456789abcdef";
986 	int j = 0, i = 4; /* offset to start of the identifier */
987 
988 	/*
989 	 * The VPD Code Set (encoding)
990 	 *
991 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
992 	 */
993 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
994 	switch (vpd->device_identifier_code_set) {
995 	case 0x01: /* Binary */
996 		vpd->device_identifier[j++] =
997 				hex_str[vpd->device_identifier_type];
998 		while (i < (4 + page_83[3])) {
999 			vpd->device_identifier[j++] =
1000 				hex_str[(page_83[i] & 0xf0) >> 4];
1001 			vpd->device_identifier[j++] =
1002 				hex_str[page_83[i] & 0x0f];
1003 			i++;
1004 		}
1005 		break;
1006 	case 0x02: /* ASCII */
1007 	case 0x03: /* UTF-8 */
1008 		while (i < (4 + page_83[3]))
1009 			vpd->device_identifier[j++] = page_83[i++];
1010 		break;
1011 	default:
1012 		break;
1013 	}
1014 
1015 	return transport_dump_vpd_ident(vpd, NULL, 0);
1016 }
1017 EXPORT_SYMBOL(transport_set_vpd_ident);
1018 
1019 sense_reason_t
1020 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1021 {
1022 	struct se_device *dev = cmd->se_dev;
1023 
1024 	if (cmd->unknown_data_length) {
1025 		cmd->data_length = size;
1026 	} else if (size != cmd->data_length) {
1027 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1028 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1029 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1030 				cmd->data_length, size, cmd->t_task_cdb[0]);
1031 
1032 		if (cmd->data_direction == DMA_TO_DEVICE) {
1033 			pr_err("Rejecting underflow/overflow"
1034 					" WRITE data\n");
1035 			return TCM_INVALID_CDB_FIELD;
1036 		}
1037 		/*
1038 		 * Reject READ_* or WRITE_* with overflow/underflow for
1039 		 * type SCF_SCSI_DATA_CDB.
1040 		 */
1041 		if (dev->dev_attrib.block_size != 512)  {
1042 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1043 				" CDB on non 512-byte sector setup subsystem"
1044 				" plugin: %s\n", dev->transport->name);
1045 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1046 			return TCM_INVALID_CDB_FIELD;
1047 		}
1048 		/*
1049 		 * For the overflow case keep the existing fabric provided
1050 		 * ->data_length.  Otherwise for the underflow case, reset
1051 		 * ->data_length to the smaller SCSI expected data transfer
1052 		 * length.
1053 		 */
1054 		if (size > cmd->data_length) {
1055 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1056 			cmd->residual_count = (size - cmd->data_length);
1057 		} else {
1058 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1059 			cmd->residual_count = (cmd->data_length - size);
1060 			cmd->data_length = size;
1061 		}
1062 	}
1063 
1064 	return 0;
1065 
1066 }
1067 
1068 /*
1069  * Used by fabric modules containing a local struct se_cmd within their
1070  * fabric dependent per I/O descriptor.
1071  */
1072 void transport_init_se_cmd(
1073 	struct se_cmd *cmd,
1074 	struct target_core_fabric_ops *tfo,
1075 	struct se_session *se_sess,
1076 	u32 data_length,
1077 	int data_direction,
1078 	int task_attr,
1079 	unsigned char *sense_buffer)
1080 {
1081 	INIT_LIST_HEAD(&cmd->se_lun_node);
1082 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1083 	INIT_LIST_HEAD(&cmd->se_qf_node);
1084 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1085 	INIT_LIST_HEAD(&cmd->state_list);
1086 	init_completion(&cmd->transport_lun_fe_stop_comp);
1087 	init_completion(&cmd->transport_lun_stop_comp);
1088 	init_completion(&cmd->t_transport_stop_comp);
1089 	init_completion(&cmd->cmd_wait_comp);
1090 	init_completion(&cmd->task_stop_comp);
1091 	spin_lock_init(&cmd->t_state_lock);
1092 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1093 
1094 	cmd->se_tfo = tfo;
1095 	cmd->se_sess = se_sess;
1096 	cmd->data_length = data_length;
1097 	cmd->data_direction = data_direction;
1098 	cmd->sam_task_attr = task_attr;
1099 	cmd->sense_buffer = sense_buffer;
1100 
1101 	cmd->state_active = false;
1102 }
1103 EXPORT_SYMBOL(transport_init_se_cmd);
1104 
1105 static sense_reason_t
1106 transport_check_alloc_task_attr(struct se_cmd *cmd)
1107 {
1108 	struct se_device *dev = cmd->se_dev;
1109 
1110 	/*
1111 	 * Check if SAM Task Attribute emulation is enabled for this
1112 	 * struct se_device storage object
1113 	 */
1114 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1115 		return 0;
1116 
1117 	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1118 		pr_debug("SAM Task Attribute ACA"
1119 			" emulation is not supported\n");
1120 		return TCM_INVALID_CDB_FIELD;
1121 	}
1122 	/*
1123 	 * Used to determine when ORDERED commands should go from
1124 	 * Dormant to Active status.
1125 	 */
1126 	cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1127 	smp_mb__after_atomic_inc();
1128 	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1129 			cmd->se_ordered_id, cmd->sam_task_attr,
1130 			dev->transport->name);
1131 	return 0;
1132 }
1133 
1134 sense_reason_t
1135 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1136 {
1137 	struct se_device *dev = cmd->se_dev;
1138 	sense_reason_t ret;
1139 
1140 	/*
1141 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1142 	 * for VARIABLE_LENGTH_CMD
1143 	 */
1144 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1145 		pr_err("Received SCSI CDB with command_size: %d that"
1146 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1147 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1148 		return TCM_INVALID_CDB_FIELD;
1149 	}
1150 	/*
1151 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1152 	 * allocate the additional extended CDB buffer now..  Otherwise
1153 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1154 	 */
1155 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1156 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1157 						GFP_KERNEL);
1158 		if (!cmd->t_task_cdb) {
1159 			pr_err("Unable to allocate cmd->t_task_cdb"
1160 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1161 				scsi_command_size(cdb),
1162 				(unsigned long)sizeof(cmd->__t_task_cdb));
1163 			return TCM_OUT_OF_RESOURCES;
1164 		}
1165 	} else
1166 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1167 	/*
1168 	 * Copy the original CDB into cmd->
1169 	 */
1170 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1171 
1172 	trace_target_sequencer_start(cmd);
1173 
1174 	/*
1175 	 * Check for an existing UNIT ATTENTION condition
1176 	 */
1177 	ret = target_scsi3_ua_check(cmd);
1178 	if (ret)
1179 		return ret;
1180 
1181 	ret = target_alua_state_check(cmd);
1182 	if (ret)
1183 		return ret;
1184 
1185 	ret = target_check_reservation(cmd);
1186 	if (ret) {
1187 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1188 		return ret;
1189 	}
1190 
1191 	ret = dev->transport->parse_cdb(cmd);
1192 	if (ret)
1193 		return ret;
1194 
1195 	ret = transport_check_alloc_task_attr(cmd);
1196 	if (ret)
1197 		return ret;
1198 
1199 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1200 
1201 	spin_lock(&cmd->se_lun->lun_sep_lock);
1202 	if (cmd->se_lun->lun_sep)
1203 		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1204 	spin_unlock(&cmd->se_lun->lun_sep_lock);
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1208 
1209 /*
1210  * Used by fabric module frontends to queue tasks directly.
1211  * Many only be used from process context only
1212  */
1213 int transport_handle_cdb_direct(
1214 	struct se_cmd *cmd)
1215 {
1216 	sense_reason_t ret;
1217 
1218 	if (!cmd->se_lun) {
1219 		dump_stack();
1220 		pr_err("cmd->se_lun is NULL\n");
1221 		return -EINVAL;
1222 	}
1223 	if (in_interrupt()) {
1224 		dump_stack();
1225 		pr_err("transport_generic_handle_cdb cannot be called"
1226 				" from interrupt context\n");
1227 		return -EINVAL;
1228 	}
1229 	/*
1230 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1231 	 * outstanding descriptors are handled correctly during shutdown via
1232 	 * transport_wait_for_tasks()
1233 	 *
1234 	 * Also, we don't take cmd->t_state_lock here as we only expect
1235 	 * this to be called for initial descriptor submission.
1236 	 */
1237 	cmd->t_state = TRANSPORT_NEW_CMD;
1238 	cmd->transport_state |= CMD_T_ACTIVE;
1239 
1240 	/*
1241 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1242 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1243 	 * and call transport_generic_request_failure() if necessary..
1244 	 */
1245 	ret = transport_generic_new_cmd(cmd);
1246 	if (ret)
1247 		transport_generic_request_failure(cmd, ret);
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL(transport_handle_cdb_direct);
1251 
1252 sense_reason_t
1253 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1254 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1255 {
1256 	if (!sgl || !sgl_count)
1257 		return 0;
1258 
1259 	/*
1260 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1261 	 * scatterlists already have been set to follow what the fabric
1262 	 * passes for the original expected data transfer length.
1263 	 */
1264 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1265 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1266 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1267 		return TCM_INVALID_CDB_FIELD;
1268 	}
1269 
1270 	cmd->t_data_sg = sgl;
1271 	cmd->t_data_nents = sgl_count;
1272 
1273 	if (sgl_bidi && sgl_bidi_count) {
1274 		cmd->t_bidi_data_sg = sgl_bidi;
1275 		cmd->t_bidi_data_nents = sgl_bidi_count;
1276 	}
1277 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1278 	return 0;
1279 }
1280 
1281 /*
1282  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1283  * 			 se_cmd + use pre-allocated SGL memory.
1284  *
1285  * @se_cmd: command descriptor to submit
1286  * @se_sess: associated se_sess for endpoint
1287  * @cdb: pointer to SCSI CDB
1288  * @sense: pointer to SCSI sense buffer
1289  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1290  * @data_length: fabric expected data transfer length
1291  * @task_addr: SAM task attribute
1292  * @data_dir: DMA data direction
1293  * @flags: flags for command submission from target_sc_flags_tables
1294  * @sgl: struct scatterlist memory for unidirectional mapping
1295  * @sgl_count: scatterlist count for unidirectional mapping
1296  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1297  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1298  *
1299  * Returns non zero to signal active I/O shutdown failure.  All other
1300  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1301  * but still return zero here.
1302  *
1303  * This may only be called from process context, and also currently
1304  * assumes internal allocation of fabric payload buffer by target-core.
1305  */
1306 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1307 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1308 		u32 data_length, int task_attr, int data_dir, int flags,
1309 		struct scatterlist *sgl, u32 sgl_count,
1310 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1311 {
1312 	struct se_portal_group *se_tpg;
1313 	sense_reason_t rc;
1314 	int ret;
1315 
1316 	se_tpg = se_sess->se_tpg;
1317 	BUG_ON(!se_tpg);
1318 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1319 	BUG_ON(in_interrupt());
1320 	/*
1321 	 * Initialize se_cmd for target operation.  From this point
1322 	 * exceptions are handled by sending exception status via
1323 	 * target_core_fabric_ops->queue_status() callback
1324 	 */
1325 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1326 				data_length, data_dir, task_attr, sense);
1327 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1328 		se_cmd->unknown_data_length = 1;
1329 	/*
1330 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1331 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1332 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1333 	 * kref_put() to happen during fabric packet acknowledgement.
1334 	 */
1335 	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1336 	if (ret)
1337 		return ret;
1338 	/*
1339 	 * Signal bidirectional data payloads to target-core
1340 	 */
1341 	if (flags & TARGET_SCF_BIDI_OP)
1342 		se_cmd->se_cmd_flags |= SCF_BIDI;
1343 	/*
1344 	 * Locate se_lun pointer and attach it to struct se_cmd
1345 	 */
1346 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1347 	if (rc) {
1348 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1349 		target_put_sess_cmd(se_sess, se_cmd);
1350 		return 0;
1351 	}
1352 
1353 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1354 	if (rc != 0) {
1355 		transport_generic_request_failure(se_cmd, rc);
1356 		return 0;
1357 	}
1358 	/*
1359 	 * When a non zero sgl_count has been passed perform SGL passthrough
1360 	 * mapping for pre-allocated fabric memory instead of having target
1361 	 * core perform an internal SGL allocation..
1362 	 */
1363 	if (sgl_count != 0) {
1364 		BUG_ON(!sgl);
1365 
1366 		/*
1367 		 * A work-around for tcm_loop as some userspace code via
1368 		 * scsi-generic do not memset their associated read buffers,
1369 		 * so go ahead and do that here for type non-data CDBs.  Also
1370 		 * note that this is currently guaranteed to be a single SGL
1371 		 * for this case by target core in target_setup_cmd_from_cdb()
1372 		 * -> transport_generic_cmd_sequencer().
1373 		 */
1374 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1375 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1376 			unsigned char *buf = NULL;
1377 
1378 			if (sgl)
1379 				buf = kmap(sg_page(sgl)) + sgl->offset;
1380 
1381 			if (buf) {
1382 				memset(buf, 0, sgl->length);
1383 				kunmap(sg_page(sgl));
1384 			}
1385 		}
1386 
1387 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1388 				sgl_bidi, sgl_bidi_count);
1389 		if (rc != 0) {
1390 			transport_generic_request_failure(se_cmd, rc);
1391 			return 0;
1392 		}
1393 	}
1394 	/*
1395 	 * Check if we need to delay processing because of ALUA
1396 	 * Active/NonOptimized primary access state..
1397 	 */
1398 	core_alua_check_nonop_delay(se_cmd);
1399 
1400 	transport_handle_cdb_direct(se_cmd);
1401 	return 0;
1402 }
1403 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1404 
1405 /*
1406  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1407  *
1408  * @se_cmd: command descriptor to submit
1409  * @se_sess: associated se_sess for endpoint
1410  * @cdb: pointer to SCSI CDB
1411  * @sense: pointer to SCSI sense buffer
1412  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1413  * @data_length: fabric expected data transfer length
1414  * @task_addr: SAM task attribute
1415  * @data_dir: DMA data direction
1416  * @flags: flags for command submission from target_sc_flags_tables
1417  *
1418  * Returns non zero to signal active I/O shutdown failure.  All other
1419  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1420  * but still return zero here.
1421  *
1422  * This may only be called from process context, and also currently
1423  * assumes internal allocation of fabric payload buffer by target-core.
1424  *
1425  * It also assumes interal target core SGL memory allocation.
1426  */
1427 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1428 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1429 		u32 data_length, int task_attr, int data_dir, int flags)
1430 {
1431 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1432 			unpacked_lun, data_length, task_attr, data_dir,
1433 			flags, NULL, 0, NULL, 0);
1434 }
1435 EXPORT_SYMBOL(target_submit_cmd);
1436 
1437 static void target_complete_tmr_failure(struct work_struct *work)
1438 {
1439 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1440 
1441 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1442 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1443 
1444 	transport_cmd_check_stop_to_fabric(se_cmd);
1445 }
1446 
1447 /**
1448  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1449  *                     for TMR CDBs
1450  *
1451  * @se_cmd: command descriptor to submit
1452  * @se_sess: associated se_sess for endpoint
1453  * @sense: pointer to SCSI sense buffer
1454  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1455  * @fabric_context: fabric context for TMR req
1456  * @tm_type: Type of TM request
1457  * @gfp: gfp type for caller
1458  * @tag: referenced task tag for TMR_ABORT_TASK
1459  * @flags: submit cmd flags
1460  *
1461  * Callable from all contexts.
1462  **/
1463 
1464 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1465 		unsigned char *sense, u32 unpacked_lun,
1466 		void *fabric_tmr_ptr, unsigned char tm_type,
1467 		gfp_t gfp, unsigned int tag, int flags)
1468 {
1469 	struct se_portal_group *se_tpg;
1470 	int ret;
1471 
1472 	se_tpg = se_sess->se_tpg;
1473 	BUG_ON(!se_tpg);
1474 
1475 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1476 			      0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1477 	/*
1478 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1479 	 * allocation failure.
1480 	 */
1481 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1482 	if (ret < 0)
1483 		return -ENOMEM;
1484 
1485 	if (tm_type == TMR_ABORT_TASK)
1486 		se_cmd->se_tmr_req->ref_task_tag = tag;
1487 
1488 	/* See target_submit_cmd for commentary */
1489 	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1490 	if (ret) {
1491 		core_tmr_release_req(se_cmd->se_tmr_req);
1492 		return ret;
1493 	}
1494 
1495 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1496 	if (ret) {
1497 		/*
1498 		 * For callback during failure handling, push this work off
1499 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1500 		 */
1501 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1502 		schedule_work(&se_cmd->work);
1503 		return 0;
1504 	}
1505 	transport_generic_handle_tmr(se_cmd);
1506 	return 0;
1507 }
1508 EXPORT_SYMBOL(target_submit_tmr);
1509 
1510 /*
1511  * If the cmd is active, request it to be stopped and sleep until it
1512  * has completed.
1513  */
1514 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1515 {
1516 	bool was_active = false;
1517 
1518 	if (cmd->transport_state & CMD_T_BUSY) {
1519 		cmd->transport_state |= CMD_T_REQUEST_STOP;
1520 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1521 
1522 		pr_debug("cmd %p waiting to complete\n", cmd);
1523 		wait_for_completion(&cmd->task_stop_comp);
1524 		pr_debug("cmd %p stopped successfully\n", cmd);
1525 
1526 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1527 		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1528 		cmd->transport_state &= ~CMD_T_BUSY;
1529 		was_active = true;
1530 	}
1531 
1532 	return was_active;
1533 }
1534 
1535 /*
1536  * Handle SAM-esque emulation for generic transport request failures.
1537  */
1538 void transport_generic_request_failure(struct se_cmd *cmd,
1539 		sense_reason_t sense_reason)
1540 {
1541 	int ret = 0;
1542 
1543 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1544 		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1545 		cmd->t_task_cdb[0]);
1546 	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1547 		cmd->se_tfo->get_cmd_state(cmd),
1548 		cmd->t_state, sense_reason);
1549 	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1550 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1551 		(cmd->transport_state & CMD_T_STOP) != 0,
1552 		(cmd->transport_state & CMD_T_SENT) != 0);
1553 
1554 	/*
1555 	 * For SAM Task Attribute emulation for failed struct se_cmd
1556 	 */
1557 	transport_complete_task_attr(cmd);
1558 	/*
1559 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1560 	 * callback is expected to drop the per device ->caw_mutex.
1561 	 */
1562 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1563 	     cmd->transport_complete_callback)
1564 		cmd->transport_complete_callback(cmd);
1565 
1566 	switch (sense_reason) {
1567 	case TCM_NON_EXISTENT_LUN:
1568 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1569 	case TCM_INVALID_CDB_FIELD:
1570 	case TCM_INVALID_PARAMETER_LIST:
1571 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1572 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1573 	case TCM_UNKNOWN_MODE_PAGE:
1574 	case TCM_WRITE_PROTECTED:
1575 	case TCM_ADDRESS_OUT_OF_RANGE:
1576 	case TCM_CHECK_CONDITION_ABORT_CMD:
1577 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1578 	case TCM_CHECK_CONDITION_NOT_READY:
1579 		break;
1580 	case TCM_OUT_OF_RESOURCES:
1581 		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1582 		break;
1583 	case TCM_RESERVATION_CONFLICT:
1584 		/*
1585 		 * No SENSE Data payload for this case, set SCSI Status
1586 		 * and queue the response to $FABRIC_MOD.
1587 		 *
1588 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1589 		 */
1590 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1591 		/*
1592 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1593 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1594 		 * CONFLICT STATUS.
1595 		 *
1596 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1597 		 */
1598 		if (cmd->se_sess &&
1599 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1600 			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1601 				cmd->orig_fe_lun, 0x2C,
1602 				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1603 
1604 		trace_target_cmd_complete(cmd);
1605 		ret = cmd->se_tfo-> queue_status(cmd);
1606 		if (ret == -EAGAIN || ret == -ENOMEM)
1607 			goto queue_full;
1608 		goto check_stop;
1609 	default:
1610 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1611 			cmd->t_task_cdb[0], sense_reason);
1612 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1613 		break;
1614 	}
1615 
1616 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1617 	if (ret == -EAGAIN || ret == -ENOMEM)
1618 		goto queue_full;
1619 
1620 check_stop:
1621 	transport_lun_remove_cmd(cmd);
1622 	if (!transport_cmd_check_stop_to_fabric(cmd))
1623 		;
1624 	return;
1625 
1626 queue_full:
1627 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1628 	transport_handle_queue_full(cmd, cmd->se_dev);
1629 }
1630 EXPORT_SYMBOL(transport_generic_request_failure);
1631 
1632 void __target_execute_cmd(struct se_cmd *cmd)
1633 {
1634 	sense_reason_t ret;
1635 
1636 	if (cmd->execute_cmd) {
1637 		ret = cmd->execute_cmd(cmd);
1638 		if (ret) {
1639 			spin_lock_irq(&cmd->t_state_lock);
1640 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1641 			spin_unlock_irq(&cmd->t_state_lock);
1642 
1643 			transport_generic_request_failure(cmd, ret);
1644 		}
1645 	}
1646 }
1647 
1648 static bool target_handle_task_attr(struct se_cmd *cmd)
1649 {
1650 	struct se_device *dev = cmd->se_dev;
1651 
1652 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1653 		return false;
1654 
1655 	/*
1656 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1657 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1658 	 */
1659 	switch (cmd->sam_task_attr) {
1660 	case MSG_HEAD_TAG:
1661 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1662 			 "se_ordered_id: %u\n",
1663 			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1664 		return false;
1665 	case MSG_ORDERED_TAG:
1666 		atomic_inc(&dev->dev_ordered_sync);
1667 		smp_mb__after_atomic_inc();
1668 
1669 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1670 			 " se_ordered_id: %u\n",
1671 			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1672 
1673 		/*
1674 		 * Execute an ORDERED command if no other older commands
1675 		 * exist that need to be completed first.
1676 		 */
1677 		if (!atomic_read(&dev->simple_cmds))
1678 			return false;
1679 		break;
1680 	default:
1681 		/*
1682 		 * For SIMPLE and UNTAGGED Task Attribute commands
1683 		 */
1684 		atomic_inc(&dev->simple_cmds);
1685 		smp_mb__after_atomic_inc();
1686 		break;
1687 	}
1688 
1689 	if (atomic_read(&dev->dev_ordered_sync) == 0)
1690 		return false;
1691 
1692 	spin_lock(&dev->delayed_cmd_lock);
1693 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1694 	spin_unlock(&dev->delayed_cmd_lock);
1695 
1696 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1697 		" delayed CMD list, se_ordered_id: %u\n",
1698 		cmd->t_task_cdb[0], cmd->sam_task_attr,
1699 		cmd->se_ordered_id);
1700 	return true;
1701 }
1702 
1703 void target_execute_cmd(struct se_cmd *cmd)
1704 {
1705 	/*
1706 	 * If the received CDB has aleady been aborted stop processing it here.
1707 	 */
1708 	if (transport_check_aborted_status(cmd, 1)) {
1709 		complete(&cmd->transport_lun_stop_comp);
1710 		return;
1711 	}
1712 
1713 	/*
1714 	 * Determine if IOCTL context caller in requesting the stopping of this
1715 	 * command for LUN shutdown purposes.
1716 	 */
1717 	spin_lock_irq(&cmd->t_state_lock);
1718 	if (cmd->transport_state & CMD_T_LUN_STOP) {
1719 		pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1720 			__func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1721 
1722 		cmd->transport_state &= ~CMD_T_ACTIVE;
1723 		spin_unlock_irq(&cmd->t_state_lock);
1724 		complete(&cmd->transport_lun_stop_comp);
1725 		return;
1726 	}
1727 	/*
1728 	 * Determine if frontend context caller is requesting the stopping of
1729 	 * this command for frontend exceptions.
1730 	 */
1731 	if (cmd->transport_state & CMD_T_STOP) {
1732 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1733 			__func__, __LINE__,
1734 			cmd->se_tfo->get_task_tag(cmd));
1735 
1736 		spin_unlock_irq(&cmd->t_state_lock);
1737 		complete(&cmd->t_transport_stop_comp);
1738 		return;
1739 	}
1740 
1741 	cmd->t_state = TRANSPORT_PROCESSING;
1742 	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1743 	spin_unlock_irq(&cmd->t_state_lock);
1744 
1745 	if (target_handle_task_attr(cmd)) {
1746 		spin_lock_irq(&cmd->t_state_lock);
1747 		cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1748 		spin_unlock_irq(&cmd->t_state_lock);
1749 		return;
1750 	}
1751 
1752 	__target_execute_cmd(cmd);
1753 }
1754 EXPORT_SYMBOL(target_execute_cmd);
1755 
1756 /*
1757  * Process all commands up to the last received ORDERED task attribute which
1758  * requires another blocking boundary
1759  */
1760 static void target_restart_delayed_cmds(struct se_device *dev)
1761 {
1762 	for (;;) {
1763 		struct se_cmd *cmd;
1764 
1765 		spin_lock(&dev->delayed_cmd_lock);
1766 		if (list_empty(&dev->delayed_cmd_list)) {
1767 			spin_unlock(&dev->delayed_cmd_lock);
1768 			break;
1769 		}
1770 
1771 		cmd = list_entry(dev->delayed_cmd_list.next,
1772 				 struct se_cmd, se_delayed_node);
1773 		list_del(&cmd->se_delayed_node);
1774 		spin_unlock(&dev->delayed_cmd_lock);
1775 
1776 		__target_execute_cmd(cmd);
1777 
1778 		if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1779 			break;
1780 	}
1781 }
1782 
1783 /*
1784  * Called from I/O completion to determine which dormant/delayed
1785  * and ordered cmds need to have their tasks added to the execution queue.
1786  */
1787 static void transport_complete_task_attr(struct se_cmd *cmd)
1788 {
1789 	struct se_device *dev = cmd->se_dev;
1790 
1791 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1792 		return;
1793 
1794 	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1795 		atomic_dec(&dev->simple_cmds);
1796 		smp_mb__after_atomic_dec();
1797 		dev->dev_cur_ordered_id++;
1798 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1799 			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
1800 			cmd->se_ordered_id);
1801 	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1802 		dev->dev_cur_ordered_id++;
1803 		pr_debug("Incremented dev_cur_ordered_id: %u for"
1804 			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1805 			cmd->se_ordered_id);
1806 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1807 		atomic_dec(&dev->dev_ordered_sync);
1808 		smp_mb__after_atomic_dec();
1809 
1810 		dev->dev_cur_ordered_id++;
1811 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1812 			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1813 	}
1814 
1815 	target_restart_delayed_cmds(dev);
1816 }
1817 
1818 static void transport_complete_qf(struct se_cmd *cmd)
1819 {
1820 	int ret = 0;
1821 
1822 	transport_complete_task_attr(cmd);
1823 
1824 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1825 		trace_target_cmd_complete(cmd);
1826 		ret = cmd->se_tfo->queue_status(cmd);
1827 		if (ret)
1828 			goto out;
1829 	}
1830 
1831 	switch (cmd->data_direction) {
1832 	case DMA_FROM_DEVICE:
1833 		trace_target_cmd_complete(cmd);
1834 		ret = cmd->se_tfo->queue_data_in(cmd);
1835 		break;
1836 	case DMA_TO_DEVICE:
1837 		if (cmd->se_cmd_flags & SCF_BIDI) {
1838 			ret = cmd->se_tfo->queue_data_in(cmd);
1839 			if (ret < 0)
1840 				break;
1841 		}
1842 		/* Fall through for DMA_TO_DEVICE */
1843 	case DMA_NONE:
1844 		trace_target_cmd_complete(cmd);
1845 		ret = cmd->se_tfo->queue_status(cmd);
1846 		break;
1847 	default:
1848 		break;
1849 	}
1850 
1851 out:
1852 	if (ret < 0) {
1853 		transport_handle_queue_full(cmd, cmd->se_dev);
1854 		return;
1855 	}
1856 	transport_lun_remove_cmd(cmd);
1857 	transport_cmd_check_stop_to_fabric(cmd);
1858 }
1859 
1860 static void transport_handle_queue_full(
1861 	struct se_cmd *cmd,
1862 	struct se_device *dev)
1863 {
1864 	spin_lock_irq(&dev->qf_cmd_lock);
1865 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1866 	atomic_inc(&dev->dev_qf_count);
1867 	smp_mb__after_atomic_inc();
1868 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1869 
1870 	schedule_work(&cmd->se_dev->qf_work_queue);
1871 }
1872 
1873 static void target_complete_ok_work(struct work_struct *work)
1874 {
1875 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1876 	int ret;
1877 
1878 	/*
1879 	 * Check if we need to move delayed/dormant tasks from cmds on the
1880 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1881 	 * Attribute.
1882 	 */
1883 	transport_complete_task_attr(cmd);
1884 
1885 	/*
1886 	 * Check to schedule QUEUE_FULL work, or execute an existing
1887 	 * cmd->transport_qf_callback()
1888 	 */
1889 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1890 		schedule_work(&cmd->se_dev->qf_work_queue);
1891 
1892 	/*
1893 	 * Check if we need to send a sense buffer from
1894 	 * the struct se_cmd in question.
1895 	 */
1896 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1897 		WARN_ON(!cmd->scsi_status);
1898 		ret = transport_send_check_condition_and_sense(
1899 					cmd, 0, 1);
1900 		if (ret == -EAGAIN || ret == -ENOMEM)
1901 			goto queue_full;
1902 
1903 		transport_lun_remove_cmd(cmd);
1904 		transport_cmd_check_stop_to_fabric(cmd);
1905 		return;
1906 	}
1907 	/*
1908 	 * Check for a callback, used by amongst other things
1909 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1910 	 */
1911 	if (cmd->transport_complete_callback) {
1912 		sense_reason_t rc;
1913 
1914 		rc = cmd->transport_complete_callback(cmd);
1915 		if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1916 			return;
1917 		} else if (rc) {
1918 			ret = transport_send_check_condition_and_sense(cmd,
1919 						rc, 0);
1920 			if (ret == -EAGAIN || ret == -ENOMEM)
1921 				goto queue_full;
1922 
1923 			transport_lun_remove_cmd(cmd);
1924 			transport_cmd_check_stop_to_fabric(cmd);
1925 			return;
1926 		}
1927 	}
1928 
1929 	switch (cmd->data_direction) {
1930 	case DMA_FROM_DEVICE:
1931 		spin_lock(&cmd->se_lun->lun_sep_lock);
1932 		if (cmd->se_lun->lun_sep) {
1933 			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1934 					cmd->data_length;
1935 		}
1936 		spin_unlock(&cmd->se_lun->lun_sep_lock);
1937 
1938 		trace_target_cmd_complete(cmd);
1939 		ret = cmd->se_tfo->queue_data_in(cmd);
1940 		if (ret == -EAGAIN || ret == -ENOMEM)
1941 			goto queue_full;
1942 		break;
1943 	case DMA_TO_DEVICE:
1944 		spin_lock(&cmd->se_lun->lun_sep_lock);
1945 		if (cmd->se_lun->lun_sep) {
1946 			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1947 				cmd->data_length;
1948 		}
1949 		spin_unlock(&cmd->se_lun->lun_sep_lock);
1950 		/*
1951 		 * Check if we need to send READ payload for BIDI-COMMAND
1952 		 */
1953 		if (cmd->se_cmd_flags & SCF_BIDI) {
1954 			spin_lock(&cmd->se_lun->lun_sep_lock);
1955 			if (cmd->se_lun->lun_sep) {
1956 				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1957 					cmd->data_length;
1958 			}
1959 			spin_unlock(&cmd->se_lun->lun_sep_lock);
1960 			ret = cmd->se_tfo->queue_data_in(cmd);
1961 			if (ret == -EAGAIN || ret == -ENOMEM)
1962 				goto queue_full;
1963 			break;
1964 		}
1965 		/* Fall through for DMA_TO_DEVICE */
1966 	case DMA_NONE:
1967 		trace_target_cmd_complete(cmd);
1968 		ret = cmd->se_tfo->queue_status(cmd);
1969 		if (ret == -EAGAIN || ret == -ENOMEM)
1970 			goto queue_full;
1971 		break;
1972 	default:
1973 		break;
1974 	}
1975 
1976 	transport_lun_remove_cmd(cmd);
1977 	transport_cmd_check_stop_to_fabric(cmd);
1978 	return;
1979 
1980 queue_full:
1981 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1982 		" data_direction: %d\n", cmd, cmd->data_direction);
1983 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1984 	transport_handle_queue_full(cmd, cmd->se_dev);
1985 }
1986 
1987 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1988 {
1989 	struct scatterlist *sg;
1990 	int count;
1991 
1992 	for_each_sg(sgl, sg, nents, count)
1993 		__free_page(sg_page(sg));
1994 
1995 	kfree(sgl);
1996 }
1997 
1998 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
1999 {
2000 	/*
2001 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2002 	 * emulation, and free + reset pointers if necessary..
2003 	 */
2004 	if (!cmd->t_data_sg_orig)
2005 		return;
2006 
2007 	kfree(cmd->t_data_sg);
2008 	cmd->t_data_sg = cmd->t_data_sg_orig;
2009 	cmd->t_data_sg_orig = NULL;
2010 	cmd->t_data_nents = cmd->t_data_nents_orig;
2011 	cmd->t_data_nents_orig = 0;
2012 }
2013 
2014 static inline void transport_free_pages(struct se_cmd *cmd)
2015 {
2016 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2017 		transport_reset_sgl_orig(cmd);
2018 		return;
2019 	}
2020 	transport_reset_sgl_orig(cmd);
2021 
2022 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2023 	cmd->t_data_sg = NULL;
2024 	cmd->t_data_nents = 0;
2025 
2026 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2027 	cmd->t_bidi_data_sg = NULL;
2028 	cmd->t_bidi_data_nents = 0;
2029 }
2030 
2031 /**
2032  * transport_release_cmd - free a command
2033  * @cmd:       command to free
2034  *
2035  * This routine unconditionally frees a command, and reference counting
2036  * or list removal must be done in the caller.
2037  */
2038 static int transport_release_cmd(struct se_cmd *cmd)
2039 {
2040 	BUG_ON(!cmd->se_tfo);
2041 
2042 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2043 		core_tmr_release_req(cmd->se_tmr_req);
2044 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2045 		kfree(cmd->t_task_cdb);
2046 	/*
2047 	 * If this cmd has been setup with target_get_sess_cmd(), drop
2048 	 * the kref and call ->release_cmd() in kref callback.
2049 	 */
2050 	return target_put_sess_cmd(cmd->se_sess, cmd);
2051 }
2052 
2053 /**
2054  * transport_put_cmd - release a reference to a command
2055  * @cmd:       command to release
2056  *
2057  * This routine releases our reference to the command and frees it if possible.
2058  */
2059 static int transport_put_cmd(struct se_cmd *cmd)
2060 {
2061 	transport_free_pages(cmd);
2062 	return transport_release_cmd(cmd);
2063 }
2064 
2065 void *transport_kmap_data_sg(struct se_cmd *cmd)
2066 {
2067 	struct scatterlist *sg = cmd->t_data_sg;
2068 	struct page **pages;
2069 	int i;
2070 
2071 	/*
2072 	 * We need to take into account a possible offset here for fabrics like
2073 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2074 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2075 	 */
2076 	if (!cmd->t_data_nents)
2077 		return NULL;
2078 
2079 	BUG_ON(!sg);
2080 	if (cmd->t_data_nents == 1)
2081 		return kmap(sg_page(sg)) + sg->offset;
2082 
2083 	/* >1 page. use vmap */
2084 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2085 	if (!pages)
2086 		return NULL;
2087 
2088 	/* convert sg[] to pages[] */
2089 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2090 		pages[i] = sg_page(sg);
2091 	}
2092 
2093 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2094 	kfree(pages);
2095 	if (!cmd->t_data_vmap)
2096 		return NULL;
2097 
2098 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2099 }
2100 EXPORT_SYMBOL(transport_kmap_data_sg);
2101 
2102 void transport_kunmap_data_sg(struct se_cmd *cmd)
2103 {
2104 	if (!cmd->t_data_nents) {
2105 		return;
2106 	} else if (cmd->t_data_nents == 1) {
2107 		kunmap(sg_page(cmd->t_data_sg));
2108 		return;
2109 	}
2110 
2111 	vunmap(cmd->t_data_vmap);
2112 	cmd->t_data_vmap = NULL;
2113 }
2114 EXPORT_SYMBOL(transport_kunmap_data_sg);
2115 
2116 int
2117 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2118 		 bool zero_page)
2119 {
2120 	struct scatterlist *sg;
2121 	struct page *page;
2122 	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2123 	unsigned int nent;
2124 	int i = 0;
2125 
2126 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
2127 	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2128 	if (!sg)
2129 		return -ENOMEM;
2130 
2131 	sg_init_table(sg, nent);
2132 
2133 	while (length) {
2134 		u32 page_len = min_t(u32, length, PAGE_SIZE);
2135 		page = alloc_page(GFP_KERNEL | zero_flag);
2136 		if (!page)
2137 			goto out;
2138 
2139 		sg_set_page(&sg[i], page, page_len, 0);
2140 		length -= page_len;
2141 		i++;
2142 	}
2143 	*sgl = sg;
2144 	*nents = nent;
2145 	return 0;
2146 
2147 out:
2148 	while (i > 0) {
2149 		i--;
2150 		__free_page(sg_page(&sg[i]));
2151 	}
2152 	kfree(sg);
2153 	return -ENOMEM;
2154 }
2155 
2156 /*
2157  * Allocate any required resources to execute the command.  For writes we
2158  * might not have the payload yet, so notify the fabric via a call to
2159  * ->write_pending instead. Otherwise place it on the execution queue.
2160  */
2161 sense_reason_t
2162 transport_generic_new_cmd(struct se_cmd *cmd)
2163 {
2164 	int ret = 0;
2165 
2166 	/*
2167 	 * Determine is the TCM fabric module has already allocated physical
2168 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2169 	 * beforehand.
2170 	 */
2171 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2172 	    cmd->data_length) {
2173 		bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2174 
2175 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2176 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2177 			u32 bidi_length;
2178 
2179 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2180 				bidi_length = cmd->t_task_nolb *
2181 					      cmd->se_dev->dev_attrib.block_size;
2182 			else
2183 				bidi_length = cmd->data_length;
2184 
2185 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2186 					       &cmd->t_bidi_data_nents,
2187 					       bidi_length, zero_flag);
2188 			if (ret < 0)
2189 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2190 		}
2191 
2192 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2193 				       cmd->data_length, zero_flag);
2194 		if (ret < 0)
2195 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2196 	}
2197 	/*
2198 	 * If this command is not a write we can execute it right here,
2199 	 * for write buffers we need to notify the fabric driver first
2200 	 * and let it call back once the write buffers are ready.
2201 	 */
2202 	target_add_to_state_list(cmd);
2203 	if (cmd->data_direction != DMA_TO_DEVICE) {
2204 		target_execute_cmd(cmd);
2205 		return 0;
2206 	}
2207 	transport_cmd_check_stop(cmd, false, true);
2208 
2209 	ret = cmd->se_tfo->write_pending(cmd);
2210 	if (ret == -EAGAIN || ret == -ENOMEM)
2211 		goto queue_full;
2212 
2213 	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2214 	WARN_ON(ret);
2215 
2216 	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2217 
2218 queue_full:
2219 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2220 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2221 	transport_handle_queue_full(cmd, cmd->se_dev);
2222 	return 0;
2223 }
2224 EXPORT_SYMBOL(transport_generic_new_cmd);
2225 
2226 static void transport_write_pending_qf(struct se_cmd *cmd)
2227 {
2228 	int ret;
2229 
2230 	ret = cmd->se_tfo->write_pending(cmd);
2231 	if (ret == -EAGAIN || ret == -ENOMEM) {
2232 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2233 			 cmd);
2234 		transport_handle_queue_full(cmd, cmd->se_dev);
2235 	}
2236 }
2237 
2238 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2239 {
2240 	unsigned long flags;
2241 	int ret = 0;
2242 
2243 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2244 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2245 			 transport_wait_for_tasks(cmd);
2246 
2247 		ret = transport_release_cmd(cmd);
2248 	} else {
2249 		if (wait_for_tasks)
2250 			transport_wait_for_tasks(cmd);
2251 		/*
2252 		 * Handle WRITE failure case where transport_generic_new_cmd()
2253 		 * has already added se_cmd to state_list, but fabric has
2254 		 * failed command before I/O submission.
2255 		 */
2256 		if (cmd->state_active) {
2257 			spin_lock_irqsave(&cmd->t_state_lock, flags);
2258 			target_remove_from_state_list(cmd);
2259 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2260 		}
2261 
2262 		if (cmd->se_lun)
2263 			transport_lun_remove_cmd(cmd);
2264 
2265 		ret = transport_put_cmd(cmd);
2266 	}
2267 	return ret;
2268 }
2269 EXPORT_SYMBOL(transport_generic_free_cmd);
2270 
2271 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2272  * @se_sess:	session to reference
2273  * @se_cmd:	command descriptor to add
2274  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2275  */
2276 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2277 			       bool ack_kref)
2278 {
2279 	unsigned long flags;
2280 	int ret = 0;
2281 
2282 	kref_init(&se_cmd->cmd_kref);
2283 	/*
2284 	 * Add a second kref if the fabric caller is expecting to handle
2285 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2286 	 * invocations before se_cmd descriptor release.
2287 	 */
2288 	if (ack_kref == true) {
2289 		kref_get(&se_cmd->cmd_kref);
2290 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2291 	}
2292 
2293 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2294 	if (se_sess->sess_tearing_down) {
2295 		ret = -ESHUTDOWN;
2296 		goto out;
2297 	}
2298 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2299 out:
2300 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2301 	return ret;
2302 }
2303 EXPORT_SYMBOL(target_get_sess_cmd);
2304 
2305 static void target_release_cmd_kref(struct kref *kref)
2306 {
2307 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2308 	struct se_session *se_sess = se_cmd->se_sess;
2309 
2310 	if (list_empty(&se_cmd->se_cmd_list)) {
2311 		spin_unlock(&se_sess->sess_cmd_lock);
2312 		se_cmd->se_tfo->release_cmd(se_cmd);
2313 		return;
2314 	}
2315 	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2316 		spin_unlock(&se_sess->sess_cmd_lock);
2317 		complete(&se_cmd->cmd_wait_comp);
2318 		return;
2319 	}
2320 	list_del(&se_cmd->se_cmd_list);
2321 	spin_unlock(&se_sess->sess_cmd_lock);
2322 
2323 	se_cmd->se_tfo->release_cmd(se_cmd);
2324 }
2325 
2326 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2327  * @se_sess:	session to reference
2328  * @se_cmd:	command descriptor to drop
2329  */
2330 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2331 {
2332 	return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2333 			&se_sess->sess_cmd_lock);
2334 }
2335 EXPORT_SYMBOL(target_put_sess_cmd);
2336 
2337 /* target_sess_cmd_list_set_waiting - Flag all commands in
2338  *         sess_cmd_list to complete cmd_wait_comp.  Set
2339  *         sess_tearing_down so no more commands are queued.
2340  * @se_sess:	session to flag
2341  */
2342 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2343 {
2344 	struct se_cmd *se_cmd;
2345 	unsigned long flags;
2346 
2347 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2348 	if (se_sess->sess_tearing_down) {
2349 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2350 		return;
2351 	}
2352 	se_sess->sess_tearing_down = 1;
2353 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2354 
2355 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2356 		se_cmd->cmd_wait_set = 1;
2357 
2358 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2359 }
2360 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2361 
2362 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2363  * @se_sess:    session to wait for active I/O
2364  */
2365 void target_wait_for_sess_cmds(struct se_session *se_sess)
2366 {
2367 	struct se_cmd *se_cmd, *tmp_cmd;
2368 	unsigned long flags;
2369 
2370 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2371 				&se_sess->sess_wait_list, se_cmd_list) {
2372 		list_del(&se_cmd->se_cmd_list);
2373 
2374 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2375 			" %d\n", se_cmd, se_cmd->t_state,
2376 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2377 
2378 		wait_for_completion(&se_cmd->cmd_wait_comp);
2379 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2380 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2381 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2382 
2383 		se_cmd->se_tfo->release_cmd(se_cmd);
2384 	}
2385 
2386 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2387 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2388 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2389 
2390 }
2391 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2392 
2393 /*	transport_lun_wait_for_tasks():
2394  *
2395  *	Called from ConfigFS context to stop the passed struct se_cmd to allow
2396  *	an struct se_lun to be successfully shutdown.
2397  */
2398 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2399 {
2400 	unsigned long flags;
2401 	int ret = 0;
2402 
2403 	/*
2404 	 * If the frontend has already requested this struct se_cmd to
2405 	 * be stopped, we can safely ignore this struct se_cmd.
2406 	 */
2407 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2408 	if (cmd->transport_state & CMD_T_STOP) {
2409 		cmd->transport_state &= ~CMD_T_LUN_STOP;
2410 
2411 		pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2412 			 cmd->se_tfo->get_task_tag(cmd));
2413 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2414 		transport_cmd_check_stop(cmd, false, false);
2415 		return -EPERM;
2416 	}
2417 	cmd->transport_state |= CMD_T_LUN_FE_STOP;
2418 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2419 
2420 	// XXX: audit task_flags checks.
2421 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2422 	if ((cmd->transport_state & CMD_T_BUSY) &&
2423 	    (cmd->transport_state & CMD_T_SENT)) {
2424 		if (!target_stop_cmd(cmd, &flags))
2425 			ret++;
2426 	}
2427 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2428 
2429 	pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2430 			" %d\n", cmd, ret);
2431 	if (!ret) {
2432 		pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2433 				cmd->se_tfo->get_task_tag(cmd));
2434 		wait_for_completion(&cmd->transport_lun_stop_comp);
2435 		pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2436 				cmd->se_tfo->get_task_tag(cmd));
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2443 {
2444 	struct se_cmd *cmd = NULL;
2445 	unsigned long lun_flags, cmd_flags;
2446 	/*
2447 	 * Do exception processing and return CHECK_CONDITION status to the
2448 	 * Initiator Port.
2449 	 */
2450 	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2451 	while (!list_empty(&lun->lun_cmd_list)) {
2452 		cmd = list_first_entry(&lun->lun_cmd_list,
2453 		       struct se_cmd, se_lun_node);
2454 		list_del_init(&cmd->se_lun_node);
2455 
2456 		spin_lock(&cmd->t_state_lock);
2457 		pr_debug("SE_LUN[%d] - Setting cmd->transport"
2458 			"_lun_stop for  ITT: 0x%08x\n",
2459 			cmd->se_lun->unpacked_lun,
2460 			cmd->se_tfo->get_task_tag(cmd));
2461 		cmd->transport_state |= CMD_T_LUN_STOP;
2462 		spin_unlock(&cmd->t_state_lock);
2463 
2464 		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2465 
2466 		if (!cmd->se_lun) {
2467 			pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2468 				cmd->se_tfo->get_task_tag(cmd),
2469 				cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2470 			BUG();
2471 		}
2472 		/*
2473 		 * If the Storage engine still owns the iscsi_cmd_t, determine
2474 		 * and/or stop its context.
2475 		 */
2476 		pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2477 			"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2478 			cmd->se_tfo->get_task_tag(cmd));
2479 
2480 		if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2481 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2482 			continue;
2483 		}
2484 
2485 		pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2486 			"_wait_for_tasks(): SUCCESS\n",
2487 			cmd->se_lun->unpacked_lun,
2488 			cmd->se_tfo->get_task_tag(cmd));
2489 
2490 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2491 		if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2492 			spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2493 			goto check_cond;
2494 		}
2495 		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2496 		target_remove_from_state_list(cmd);
2497 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2498 
2499 		/*
2500 		 * The Storage engine stopped this struct se_cmd before it was
2501 		 * send to the fabric frontend for delivery back to the
2502 		 * Initiator Node.  Return this SCSI CDB back with an
2503 		 * CHECK_CONDITION status.
2504 		 */
2505 check_cond:
2506 		transport_send_check_condition_and_sense(cmd,
2507 				TCM_NON_EXISTENT_LUN, 0);
2508 		/*
2509 		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
2510 		 * be released, notify the waiting thread now that LU has
2511 		 * finished accessing it.
2512 		 */
2513 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2514 		if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2515 			pr_debug("SE_LUN[%d] - Detected FE stop for"
2516 				" struct se_cmd: %p ITT: 0x%08x\n",
2517 				lun->unpacked_lun,
2518 				cmd, cmd->se_tfo->get_task_tag(cmd));
2519 
2520 			spin_unlock_irqrestore(&cmd->t_state_lock,
2521 					cmd_flags);
2522 			transport_cmd_check_stop(cmd, false, false);
2523 			complete(&cmd->transport_lun_fe_stop_comp);
2524 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2525 			continue;
2526 		}
2527 		pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2528 			lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2529 
2530 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2531 		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2532 	}
2533 	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2534 }
2535 
2536 static int transport_clear_lun_ref_thread(void *p)
2537 {
2538 	struct se_lun *lun = p;
2539 
2540 	percpu_ref_kill(&lun->lun_ref);
2541 
2542 	wait_for_completion(&lun->lun_ref_comp);
2543 	complete(&lun->lun_shutdown_comp);
2544 
2545 	return 0;
2546 }
2547 
2548 int transport_clear_lun_ref(struct se_lun *lun)
2549 {
2550 	struct task_struct *kt;
2551 
2552 	kt = kthread_run(transport_clear_lun_ref_thread, lun,
2553 			"tcm_cl_%u", lun->unpacked_lun);
2554 	if (IS_ERR(kt)) {
2555 		pr_err("Unable to start clear_lun thread\n");
2556 		return PTR_ERR(kt);
2557 	}
2558 	wait_for_completion(&lun->lun_shutdown_comp);
2559 
2560 	return 0;
2561 }
2562 
2563 /**
2564  * transport_wait_for_tasks - wait for completion to occur
2565  * @cmd:	command to wait
2566  *
2567  * Called from frontend fabric context to wait for storage engine
2568  * to pause and/or release frontend generated struct se_cmd.
2569  */
2570 bool transport_wait_for_tasks(struct se_cmd *cmd)
2571 {
2572 	unsigned long flags;
2573 
2574 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2575 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2576 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2577 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2578 		return false;
2579 	}
2580 
2581 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2582 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2583 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2584 		return false;
2585 	}
2586 	/*
2587 	 * If we are already stopped due to an external event (ie: LUN shutdown)
2588 	 * sleep until the connection can have the passed struct se_cmd back.
2589 	 * The cmd->transport_lun_stopped_sem will be upped by
2590 	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2591 	 * has completed its operation on the struct se_cmd.
2592 	 */
2593 	if (cmd->transport_state & CMD_T_LUN_STOP) {
2594 		pr_debug("wait_for_tasks: Stopping"
2595 			" wait_for_completion(&cmd->t_tasktransport_lun_fe"
2596 			"_stop_comp); for ITT: 0x%08x\n",
2597 			cmd->se_tfo->get_task_tag(cmd));
2598 		/*
2599 		 * There is a special case for WRITES where a FE exception +
2600 		 * LUN shutdown means ConfigFS context is still sleeping on
2601 		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2602 		 * We go ahead and up transport_lun_stop_comp just to be sure
2603 		 * here.
2604 		 */
2605 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2606 		complete(&cmd->transport_lun_stop_comp);
2607 		wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2608 		spin_lock_irqsave(&cmd->t_state_lock, flags);
2609 
2610 		target_remove_from_state_list(cmd);
2611 		/*
2612 		 * At this point, the frontend who was the originator of this
2613 		 * struct se_cmd, now owns the structure and can be released through
2614 		 * normal means below.
2615 		 */
2616 		pr_debug("wait_for_tasks: Stopped"
2617 			" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2618 			"stop_comp); for ITT: 0x%08x\n",
2619 			cmd->se_tfo->get_task_tag(cmd));
2620 
2621 		cmd->transport_state &= ~CMD_T_LUN_STOP;
2622 	}
2623 
2624 	if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2625 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2626 		return false;
2627 	}
2628 
2629 	cmd->transport_state |= CMD_T_STOP;
2630 
2631 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2632 		" i_state: %d, t_state: %d, CMD_T_STOP\n",
2633 		cmd, cmd->se_tfo->get_task_tag(cmd),
2634 		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2635 
2636 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2637 
2638 	wait_for_completion(&cmd->t_transport_stop_comp);
2639 
2640 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2641 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2642 
2643 	pr_debug("wait_for_tasks: Stopped wait_for_completion("
2644 		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2645 		cmd->se_tfo->get_task_tag(cmd));
2646 
2647 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2648 
2649 	return true;
2650 }
2651 EXPORT_SYMBOL(transport_wait_for_tasks);
2652 
2653 static int transport_get_sense_codes(
2654 	struct se_cmd *cmd,
2655 	u8 *asc,
2656 	u8 *ascq)
2657 {
2658 	*asc = cmd->scsi_asc;
2659 	*ascq = cmd->scsi_ascq;
2660 
2661 	return 0;
2662 }
2663 
2664 int
2665 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2666 		sense_reason_t reason, int from_transport)
2667 {
2668 	unsigned char *buffer = cmd->sense_buffer;
2669 	unsigned long flags;
2670 	u8 asc = 0, ascq = 0;
2671 
2672 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2673 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2674 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2675 		return 0;
2676 	}
2677 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2678 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2679 
2680 	if (!reason && from_transport)
2681 		goto after_reason;
2682 
2683 	if (!from_transport)
2684 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2685 
2686 	/*
2687 	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2688 	 * SENSE KEY values from include/scsi/scsi.h
2689 	 */
2690 	switch (reason) {
2691 	case TCM_NO_SENSE:
2692 		/* CURRENT ERROR */
2693 		buffer[0] = 0x70;
2694 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2695 		/* Not Ready */
2696 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2697 		/* NO ADDITIONAL SENSE INFORMATION */
2698 		buffer[SPC_ASC_KEY_OFFSET] = 0;
2699 		buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2700 		break;
2701 	case TCM_NON_EXISTENT_LUN:
2702 		/* CURRENT ERROR */
2703 		buffer[0] = 0x70;
2704 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2705 		/* ILLEGAL REQUEST */
2706 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2707 		/* LOGICAL UNIT NOT SUPPORTED */
2708 		buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2709 		break;
2710 	case TCM_UNSUPPORTED_SCSI_OPCODE:
2711 	case TCM_SECTOR_COUNT_TOO_MANY:
2712 		/* CURRENT ERROR */
2713 		buffer[0] = 0x70;
2714 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2715 		/* ILLEGAL REQUEST */
2716 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2717 		/* INVALID COMMAND OPERATION CODE */
2718 		buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2719 		break;
2720 	case TCM_UNKNOWN_MODE_PAGE:
2721 		/* CURRENT ERROR */
2722 		buffer[0] = 0x70;
2723 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2724 		/* ILLEGAL REQUEST */
2725 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2726 		/* INVALID FIELD IN CDB */
2727 		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2728 		break;
2729 	case TCM_CHECK_CONDITION_ABORT_CMD:
2730 		/* CURRENT ERROR */
2731 		buffer[0] = 0x70;
2732 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2733 		/* ABORTED COMMAND */
2734 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2735 		/* BUS DEVICE RESET FUNCTION OCCURRED */
2736 		buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2737 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2738 		break;
2739 	case TCM_INCORRECT_AMOUNT_OF_DATA:
2740 		/* CURRENT ERROR */
2741 		buffer[0] = 0x70;
2742 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2743 		/* ABORTED COMMAND */
2744 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2745 		/* WRITE ERROR */
2746 		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2747 		/* NOT ENOUGH UNSOLICITED DATA */
2748 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2749 		break;
2750 	case TCM_INVALID_CDB_FIELD:
2751 		/* CURRENT ERROR */
2752 		buffer[0] = 0x70;
2753 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2754 		/* ILLEGAL REQUEST */
2755 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2756 		/* INVALID FIELD IN CDB */
2757 		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2758 		break;
2759 	case TCM_INVALID_PARAMETER_LIST:
2760 		/* CURRENT ERROR */
2761 		buffer[0] = 0x70;
2762 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2763 		/* ILLEGAL REQUEST */
2764 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2765 		/* INVALID FIELD IN PARAMETER LIST */
2766 		buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2767 		break;
2768 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
2769 		/* CURRENT ERROR */
2770 		buffer[0] = 0x70;
2771 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2772 		/* ILLEGAL REQUEST */
2773 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2774 		/* PARAMETER LIST LENGTH ERROR */
2775 		buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2776 		break;
2777 	case TCM_UNEXPECTED_UNSOLICITED_DATA:
2778 		/* CURRENT ERROR */
2779 		buffer[0] = 0x70;
2780 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2781 		/* ABORTED COMMAND */
2782 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2783 		/* WRITE ERROR */
2784 		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2785 		/* UNEXPECTED_UNSOLICITED_DATA */
2786 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2787 		break;
2788 	case TCM_SERVICE_CRC_ERROR:
2789 		/* CURRENT ERROR */
2790 		buffer[0] = 0x70;
2791 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2792 		/* ABORTED COMMAND */
2793 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2794 		/* PROTOCOL SERVICE CRC ERROR */
2795 		buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2796 		/* N/A */
2797 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2798 		break;
2799 	case TCM_SNACK_REJECTED:
2800 		/* CURRENT ERROR */
2801 		buffer[0] = 0x70;
2802 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2803 		/* ABORTED COMMAND */
2804 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2805 		/* READ ERROR */
2806 		buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2807 		/* FAILED RETRANSMISSION REQUEST */
2808 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2809 		break;
2810 	case TCM_WRITE_PROTECTED:
2811 		/* CURRENT ERROR */
2812 		buffer[0] = 0x70;
2813 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2814 		/* DATA PROTECT */
2815 		buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2816 		/* WRITE PROTECTED */
2817 		buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2818 		break;
2819 	case TCM_ADDRESS_OUT_OF_RANGE:
2820 		/* CURRENT ERROR */
2821 		buffer[0] = 0x70;
2822 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2823 		/* ILLEGAL REQUEST */
2824 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2825 		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2826 		buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2827 		break;
2828 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2829 		/* CURRENT ERROR */
2830 		buffer[0] = 0x70;
2831 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2832 		/* UNIT ATTENTION */
2833 		buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2834 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2835 		buffer[SPC_ASC_KEY_OFFSET] = asc;
2836 		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2837 		break;
2838 	case TCM_CHECK_CONDITION_NOT_READY:
2839 		/* CURRENT ERROR */
2840 		buffer[0] = 0x70;
2841 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2842 		/* Not Ready */
2843 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2844 		transport_get_sense_codes(cmd, &asc, &ascq);
2845 		buffer[SPC_ASC_KEY_OFFSET] = asc;
2846 		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2847 		break;
2848 	case TCM_MISCOMPARE_VERIFY:
2849 		/* CURRENT ERROR */
2850 		buffer[0] = 0x70;
2851 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2852 		buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2853 		/* MISCOMPARE DURING VERIFY OPERATION */
2854 		buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2855 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2856 		break;
2857 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2858 	default:
2859 		/* CURRENT ERROR */
2860 		buffer[0] = 0x70;
2861 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2862 		/*
2863 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2864 		 * Solaris initiators.  Returning NOT READY instead means the
2865 		 * operations will be retried a finite number of times and we
2866 		 * can survive intermittent errors.
2867 		 */
2868 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2869 		/* LOGICAL UNIT COMMUNICATION FAILURE */
2870 		buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2871 		break;
2872 	}
2873 	/*
2874 	 * This code uses linux/include/scsi/scsi.h SAM status codes!
2875 	 */
2876 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2877 	/*
2878 	 * Automatically padded, this value is encoded in the fabric's
2879 	 * data_length response PDU containing the SCSI defined sense data.
2880 	 */
2881 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2882 
2883 after_reason:
2884 	trace_target_cmd_complete(cmd);
2885 	return cmd->se_tfo->queue_status(cmd);
2886 }
2887 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2888 
2889 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2890 {
2891 	if (!(cmd->transport_state & CMD_T_ABORTED))
2892 		return 0;
2893 
2894 	if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2895 		return 1;
2896 
2897 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2898 		 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2899 
2900 	cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2901 	trace_target_cmd_complete(cmd);
2902 	cmd->se_tfo->queue_status(cmd);
2903 
2904 	return 1;
2905 }
2906 EXPORT_SYMBOL(transport_check_aborted_status);
2907 
2908 void transport_send_task_abort(struct se_cmd *cmd)
2909 {
2910 	unsigned long flags;
2911 
2912 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2913 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2914 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2915 		return;
2916 	}
2917 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2918 
2919 	/*
2920 	 * If there are still expected incoming fabric WRITEs, we wait
2921 	 * until until they have completed before sending a TASK_ABORTED
2922 	 * response.  This response with TASK_ABORTED status will be
2923 	 * queued back to fabric module by transport_check_aborted_status().
2924 	 */
2925 	if (cmd->data_direction == DMA_TO_DEVICE) {
2926 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2927 			cmd->transport_state |= CMD_T_ABORTED;
2928 			smp_mb__after_atomic_inc();
2929 		}
2930 	}
2931 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2932 
2933 	transport_lun_remove_cmd(cmd);
2934 
2935 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2936 		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
2937 		cmd->se_tfo->get_task_tag(cmd));
2938 
2939 	trace_target_cmd_complete(cmd);
2940 	cmd->se_tfo->queue_status(cmd);
2941 }
2942 
2943 static void target_tmr_work(struct work_struct *work)
2944 {
2945 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2946 	struct se_device *dev = cmd->se_dev;
2947 	struct se_tmr_req *tmr = cmd->se_tmr_req;
2948 	int ret;
2949 
2950 	switch (tmr->function) {
2951 	case TMR_ABORT_TASK:
2952 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
2953 		break;
2954 	case TMR_ABORT_TASK_SET:
2955 	case TMR_CLEAR_ACA:
2956 	case TMR_CLEAR_TASK_SET:
2957 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2958 		break;
2959 	case TMR_LUN_RESET:
2960 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2961 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2962 					 TMR_FUNCTION_REJECTED;
2963 		break;
2964 	case TMR_TARGET_WARM_RESET:
2965 		tmr->response = TMR_FUNCTION_REJECTED;
2966 		break;
2967 	case TMR_TARGET_COLD_RESET:
2968 		tmr->response = TMR_FUNCTION_REJECTED;
2969 		break;
2970 	default:
2971 		pr_err("Uknown TMR function: 0x%02x.\n",
2972 				tmr->function);
2973 		tmr->response = TMR_FUNCTION_REJECTED;
2974 		break;
2975 	}
2976 
2977 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2978 	cmd->se_tfo->queue_tm_rsp(cmd);
2979 
2980 	transport_cmd_check_stop_to_fabric(cmd);
2981 }
2982 
2983 int transport_generic_handle_tmr(
2984 	struct se_cmd *cmd)
2985 {
2986 	INIT_WORK(&cmd->work, target_tmr_work);
2987 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2988 	return 0;
2989 }
2990 EXPORT_SYMBOL(transport_generic_handle_tmr);
2991