1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2012 RisingTide Systems LLC. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/blkdev.h> 32 #include <linux/spinlock.h> 33 #include <linux/kthread.h> 34 #include <linux/in.h> 35 #include <linux/cdrom.h> 36 #include <linux/module.h> 37 #include <linux/ratelimit.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_tcq.h> 44 45 #include <target/target_core_base.h> 46 #include <target/target_core_backend.h> 47 #include <target/target_core_fabric.h> 48 #include <target/target_core_configfs.h> 49 50 #include "target_core_internal.h" 51 #include "target_core_alua.h" 52 #include "target_core_pr.h" 53 #include "target_core_ua.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/target.h> 57 58 static struct workqueue_struct *target_completion_wq; 59 static struct kmem_cache *se_sess_cache; 60 struct kmem_cache *se_ua_cache; 61 struct kmem_cache *t10_pr_reg_cache; 62 struct kmem_cache *t10_alua_lu_gp_cache; 63 struct kmem_cache *t10_alua_lu_gp_mem_cache; 64 struct kmem_cache *t10_alua_tg_pt_gp_cache; 65 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 66 67 static void transport_complete_task_attr(struct se_cmd *cmd); 68 static void transport_handle_queue_full(struct se_cmd *cmd, 69 struct se_device *dev); 70 static int transport_generic_get_mem(struct se_cmd *cmd); 71 static int transport_put_cmd(struct se_cmd *cmd); 72 static void target_complete_ok_work(struct work_struct *work); 73 74 int init_se_kmem_caches(void) 75 { 76 se_sess_cache = kmem_cache_create("se_sess_cache", 77 sizeof(struct se_session), __alignof__(struct se_session), 78 0, NULL); 79 if (!se_sess_cache) { 80 pr_err("kmem_cache_create() for struct se_session" 81 " failed\n"); 82 goto out; 83 } 84 se_ua_cache = kmem_cache_create("se_ua_cache", 85 sizeof(struct se_ua), __alignof__(struct se_ua), 86 0, NULL); 87 if (!se_ua_cache) { 88 pr_err("kmem_cache_create() for struct se_ua failed\n"); 89 goto out_free_sess_cache; 90 } 91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 92 sizeof(struct t10_pr_registration), 93 __alignof__(struct t10_pr_registration), 0, NULL); 94 if (!t10_pr_reg_cache) { 95 pr_err("kmem_cache_create() for struct t10_pr_registration" 96 " failed\n"); 97 goto out_free_ua_cache; 98 } 99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 101 0, NULL); 102 if (!t10_alua_lu_gp_cache) { 103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 104 " failed\n"); 105 goto out_free_pr_reg_cache; 106 } 107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 108 sizeof(struct t10_alua_lu_gp_member), 109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 110 if (!t10_alua_lu_gp_mem_cache) { 111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 112 "cache failed\n"); 113 goto out_free_lu_gp_cache; 114 } 115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 116 sizeof(struct t10_alua_tg_pt_gp), 117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 118 if (!t10_alua_tg_pt_gp_cache) { 119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 120 "cache failed\n"); 121 goto out_free_lu_gp_mem_cache; 122 } 123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 124 "t10_alua_tg_pt_gp_mem_cache", 125 sizeof(struct t10_alua_tg_pt_gp_member), 126 __alignof__(struct t10_alua_tg_pt_gp_member), 127 0, NULL); 128 if (!t10_alua_tg_pt_gp_mem_cache) { 129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 130 "mem_t failed\n"); 131 goto out_free_tg_pt_gp_cache; 132 } 133 134 target_completion_wq = alloc_workqueue("target_completion", 135 WQ_MEM_RECLAIM, 0); 136 if (!target_completion_wq) 137 goto out_free_tg_pt_gp_mem_cache; 138 139 return 0; 140 141 out_free_tg_pt_gp_mem_cache: 142 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 143 out_free_tg_pt_gp_cache: 144 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 145 out_free_lu_gp_mem_cache: 146 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 147 out_free_lu_gp_cache: 148 kmem_cache_destroy(t10_alua_lu_gp_cache); 149 out_free_pr_reg_cache: 150 kmem_cache_destroy(t10_pr_reg_cache); 151 out_free_ua_cache: 152 kmem_cache_destroy(se_ua_cache); 153 out_free_sess_cache: 154 kmem_cache_destroy(se_sess_cache); 155 out: 156 return -ENOMEM; 157 } 158 159 void release_se_kmem_caches(void) 160 { 161 destroy_workqueue(target_completion_wq); 162 kmem_cache_destroy(se_sess_cache); 163 kmem_cache_destroy(se_ua_cache); 164 kmem_cache_destroy(t10_pr_reg_cache); 165 kmem_cache_destroy(t10_alua_lu_gp_cache); 166 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 167 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 168 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 169 } 170 171 /* This code ensures unique mib indexes are handed out. */ 172 static DEFINE_SPINLOCK(scsi_mib_index_lock); 173 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 174 175 /* 176 * Allocate a new row index for the entry type specified 177 */ 178 u32 scsi_get_new_index(scsi_index_t type) 179 { 180 u32 new_index; 181 182 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 183 184 spin_lock(&scsi_mib_index_lock); 185 new_index = ++scsi_mib_index[type]; 186 spin_unlock(&scsi_mib_index_lock); 187 188 return new_index; 189 } 190 191 void transport_subsystem_check_init(void) 192 { 193 int ret; 194 static int sub_api_initialized; 195 196 if (sub_api_initialized) 197 return; 198 199 ret = request_module("target_core_iblock"); 200 if (ret != 0) 201 pr_err("Unable to load target_core_iblock\n"); 202 203 ret = request_module("target_core_file"); 204 if (ret != 0) 205 pr_err("Unable to load target_core_file\n"); 206 207 ret = request_module("target_core_pscsi"); 208 if (ret != 0) 209 pr_err("Unable to load target_core_pscsi\n"); 210 211 sub_api_initialized = 1; 212 } 213 214 struct se_session *transport_init_session(void) 215 { 216 struct se_session *se_sess; 217 218 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 219 if (!se_sess) { 220 pr_err("Unable to allocate struct se_session from" 221 " se_sess_cache\n"); 222 return ERR_PTR(-ENOMEM); 223 } 224 INIT_LIST_HEAD(&se_sess->sess_list); 225 INIT_LIST_HEAD(&se_sess->sess_acl_list); 226 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 227 INIT_LIST_HEAD(&se_sess->sess_wait_list); 228 spin_lock_init(&se_sess->sess_cmd_lock); 229 kref_init(&se_sess->sess_kref); 230 231 return se_sess; 232 } 233 EXPORT_SYMBOL(transport_init_session); 234 235 /* 236 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 237 */ 238 void __transport_register_session( 239 struct se_portal_group *se_tpg, 240 struct se_node_acl *se_nacl, 241 struct se_session *se_sess, 242 void *fabric_sess_ptr) 243 { 244 unsigned char buf[PR_REG_ISID_LEN]; 245 246 se_sess->se_tpg = se_tpg; 247 se_sess->fabric_sess_ptr = fabric_sess_ptr; 248 /* 249 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 250 * 251 * Only set for struct se_session's that will actually be moving I/O. 252 * eg: *NOT* discovery sessions. 253 */ 254 if (se_nacl) { 255 /* 256 * If the fabric module supports an ISID based TransportID, 257 * save this value in binary from the fabric I_T Nexus now. 258 */ 259 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 260 memset(&buf[0], 0, PR_REG_ISID_LEN); 261 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 262 &buf[0], PR_REG_ISID_LEN); 263 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 264 } 265 kref_get(&se_nacl->acl_kref); 266 267 spin_lock_irq(&se_nacl->nacl_sess_lock); 268 /* 269 * The se_nacl->nacl_sess pointer will be set to the 270 * last active I_T Nexus for each struct se_node_acl. 271 */ 272 se_nacl->nacl_sess = se_sess; 273 274 list_add_tail(&se_sess->sess_acl_list, 275 &se_nacl->acl_sess_list); 276 spin_unlock_irq(&se_nacl->nacl_sess_lock); 277 } 278 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 279 280 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 281 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 282 } 283 EXPORT_SYMBOL(__transport_register_session); 284 285 void transport_register_session( 286 struct se_portal_group *se_tpg, 287 struct se_node_acl *se_nacl, 288 struct se_session *se_sess, 289 void *fabric_sess_ptr) 290 { 291 unsigned long flags; 292 293 spin_lock_irqsave(&se_tpg->session_lock, flags); 294 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 295 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 296 } 297 EXPORT_SYMBOL(transport_register_session); 298 299 static void target_release_session(struct kref *kref) 300 { 301 struct se_session *se_sess = container_of(kref, 302 struct se_session, sess_kref); 303 struct se_portal_group *se_tpg = se_sess->se_tpg; 304 305 se_tpg->se_tpg_tfo->close_session(se_sess); 306 } 307 308 void target_get_session(struct se_session *se_sess) 309 { 310 kref_get(&se_sess->sess_kref); 311 } 312 EXPORT_SYMBOL(target_get_session); 313 314 void target_put_session(struct se_session *se_sess) 315 { 316 struct se_portal_group *tpg = se_sess->se_tpg; 317 318 if (tpg->se_tpg_tfo->put_session != NULL) { 319 tpg->se_tpg_tfo->put_session(se_sess); 320 return; 321 } 322 kref_put(&se_sess->sess_kref, target_release_session); 323 } 324 EXPORT_SYMBOL(target_put_session); 325 326 static void target_complete_nacl(struct kref *kref) 327 { 328 struct se_node_acl *nacl = container_of(kref, 329 struct se_node_acl, acl_kref); 330 331 complete(&nacl->acl_free_comp); 332 } 333 334 void target_put_nacl(struct se_node_acl *nacl) 335 { 336 kref_put(&nacl->acl_kref, target_complete_nacl); 337 } 338 339 void transport_deregister_session_configfs(struct se_session *se_sess) 340 { 341 struct se_node_acl *se_nacl; 342 unsigned long flags; 343 /* 344 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 345 */ 346 se_nacl = se_sess->se_node_acl; 347 if (se_nacl) { 348 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 349 if (se_nacl->acl_stop == 0) 350 list_del(&se_sess->sess_acl_list); 351 /* 352 * If the session list is empty, then clear the pointer. 353 * Otherwise, set the struct se_session pointer from the tail 354 * element of the per struct se_node_acl active session list. 355 */ 356 if (list_empty(&se_nacl->acl_sess_list)) 357 se_nacl->nacl_sess = NULL; 358 else { 359 se_nacl->nacl_sess = container_of( 360 se_nacl->acl_sess_list.prev, 361 struct se_session, sess_acl_list); 362 } 363 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 364 } 365 } 366 EXPORT_SYMBOL(transport_deregister_session_configfs); 367 368 void transport_free_session(struct se_session *se_sess) 369 { 370 kmem_cache_free(se_sess_cache, se_sess); 371 } 372 EXPORT_SYMBOL(transport_free_session); 373 374 void transport_deregister_session(struct se_session *se_sess) 375 { 376 struct se_portal_group *se_tpg = se_sess->se_tpg; 377 struct target_core_fabric_ops *se_tfo; 378 struct se_node_acl *se_nacl; 379 unsigned long flags; 380 bool comp_nacl = true; 381 382 if (!se_tpg) { 383 transport_free_session(se_sess); 384 return; 385 } 386 se_tfo = se_tpg->se_tpg_tfo; 387 388 spin_lock_irqsave(&se_tpg->session_lock, flags); 389 list_del(&se_sess->sess_list); 390 se_sess->se_tpg = NULL; 391 se_sess->fabric_sess_ptr = NULL; 392 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 393 394 /* 395 * Determine if we need to do extra work for this initiator node's 396 * struct se_node_acl if it had been previously dynamically generated. 397 */ 398 se_nacl = se_sess->se_node_acl; 399 400 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 401 if (se_nacl && se_nacl->dynamic_node_acl) { 402 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 403 list_del(&se_nacl->acl_list); 404 se_tpg->num_node_acls--; 405 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 406 core_tpg_wait_for_nacl_pr_ref(se_nacl); 407 core_free_device_list_for_node(se_nacl, se_tpg); 408 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 409 410 comp_nacl = false; 411 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 412 } 413 } 414 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 415 416 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 417 se_tpg->se_tpg_tfo->get_fabric_name()); 418 /* 419 * If last kref is dropping now for an explict NodeACL, awake sleeping 420 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 421 * removal context. 422 */ 423 if (se_nacl && comp_nacl == true) 424 target_put_nacl(se_nacl); 425 426 transport_free_session(se_sess); 427 } 428 EXPORT_SYMBOL(transport_deregister_session); 429 430 /* 431 * Called with cmd->t_state_lock held. 432 */ 433 static void target_remove_from_state_list(struct se_cmd *cmd) 434 { 435 struct se_device *dev = cmd->se_dev; 436 unsigned long flags; 437 438 if (!dev) 439 return; 440 441 if (cmd->transport_state & CMD_T_BUSY) 442 return; 443 444 spin_lock_irqsave(&dev->execute_task_lock, flags); 445 if (cmd->state_active) { 446 list_del(&cmd->state_list); 447 cmd->state_active = false; 448 } 449 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 450 } 451 452 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 453 bool write_pending) 454 { 455 unsigned long flags; 456 457 spin_lock_irqsave(&cmd->t_state_lock, flags); 458 if (write_pending) 459 cmd->t_state = TRANSPORT_WRITE_PENDING; 460 461 /* 462 * Determine if IOCTL context caller in requesting the stopping of this 463 * command for LUN shutdown purposes. 464 */ 465 if (cmd->transport_state & CMD_T_LUN_STOP) { 466 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 467 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 468 469 cmd->transport_state &= ~CMD_T_ACTIVE; 470 if (remove_from_lists) 471 target_remove_from_state_list(cmd); 472 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 473 474 complete(&cmd->transport_lun_stop_comp); 475 return 1; 476 } 477 478 if (remove_from_lists) { 479 target_remove_from_state_list(cmd); 480 481 /* 482 * Clear struct se_cmd->se_lun before the handoff to FE. 483 */ 484 cmd->se_lun = NULL; 485 } 486 487 /* 488 * Determine if frontend context caller is requesting the stopping of 489 * this command for frontend exceptions. 490 */ 491 if (cmd->transport_state & CMD_T_STOP) { 492 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 493 __func__, __LINE__, 494 cmd->se_tfo->get_task_tag(cmd)); 495 496 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 497 498 complete(&cmd->t_transport_stop_comp); 499 return 1; 500 } 501 502 cmd->transport_state &= ~CMD_T_ACTIVE; 503 if (remove_from_lists) { 504 /* 505 * Some fabric modules like tcm_loop can release 506 * their internally allocated I/O reference now and 507 * struct se_cmd now. 508 * 509 * Fabric modules are expected to return '1' here if the 510 * se_cmd being passed is released at this point, 511 * or zero if not being released. 512 */ 513 if (cmd->se_tfo->check_stop_free != NULL) { 514 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 515 return cmd->se_tfo->check_stop_free(cmd); 516 } 517 } 518 519 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 520 return 0; 521 } 522 523 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 524 { 525 return transport_cmd_check_stop(cmd, true, false); 526 } 527 528 static void transport_lun_remove_cmd(struct se_cmd *cmd) 529 { 530 struct se_lun *lun = cmd->se_lun; 531 unsigned long flags; 532 533 if (!lun) 534 return; 535 536 spin_lock_irqsave(&lun->lun_cmd_lock, flags); 537 if (!list_empty(&cmd->se_lun_node)) 538 list_del_init(&cmd->se_lun_node); 539 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); 540 } 541 542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 543 { 544 if (transport_cmd_check_stop_to_fabric(cmd)) 545 return; 546 if (remove) 547 transport_put_cmd(cmd); 548 } 549 550 static void target_complete_failure_work(struct work_struct *work) 551 { 552 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 553 554 transport_generic_request_failure(cmd, 555 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 556 } 557 558 /* 559 * Used when asking transport to copy Sense Data from the underlying 560 * Linux/SCSI struct scsi_cmnd 561 */ 562 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 563 { 564 struct se_device *dev = cmd->se_dev; 565 566 WARN_ON(!cmd->se_lun); 567 568 if (!dev) 569 return NULL; 570 571 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 572 return NULL; 573 574 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 575 576 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 577 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 578 return cmd->sense_buffer; 579 } 580 581 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 582 { 583 struct se_device *dev = cmd->se_dev; 584 int success = scsi_status == GOOD; 585 unsigned long flags; 586 587 cmd->scsi_status = scsi_status; 588 589 590 spin_lock_irqsave(&cmd->t_state_lock, flags); 591 cmd->transport_state &= ~CMD_T_BUSY; 592 593 if (dev && dev->transport->transport_complete) { 594 dev->transport->transport_complete(cmd, 595 cmd->t_data_sg, 596 transport_get_sense_buffer(cmd)); 597 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 598 success = 1; 599 } 600 601 /* 602 * See if we are waiting to complete for an exception condition. 603 */ 604 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 605 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 606 complete(&cmd->task_stop_comp); 607 return; 608 } 609 610 if (!success) 611 cmd->transport_state |= CMD_T_FAILED; 612 613 /* 614 * Check for case where an explict ABORT_TASK has been received 615 * and transport_wait_for_tasks() will be waiting for completion.. 616 */ 617 if (cmd->transport_state & CMD_T_ABORTED && 618 cmd->transport_state & CMD_T_STOP) { 619 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 620 complete(&cmd->t_transport_stop_comp); 621 return; 622 } else if (cmd->transport_state & CMD_T_FAILED) { 623 INIT_WORK(&cmd->work, target_complete_failure_work); 624 } else { 625 INIT_WORK(&cmd->work, target_complete_ok_work); 626 } 627 628 cmd->t_state = TRANSPORT_COMPLETE; 629 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 630 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 631 632 queue_work(target_completion_wq, &cmd->work); 633 } 634 EXPORT_SYMBOL(target_complete_cmd); 635 636 static void target_add_to_state_list(struct se_cmd *cmd) 637 { 638 struct se_device *dev = cmd->se_dev; 639 unsigned long flags; 640 641 spin_lock_irqsave(&dev->execute_task_lock, flags); 642 if (!cmd->state_active) { 643 list_add_tail(&cmd->state_list, &dev->state_list); 644 cmd->state_active = true; 645 } 646 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 647 } 648 649 /* 650 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 651 */ 652 static void transport_write_pending_qf(struct se_cmd *cmd); 653 static void transport_complete_qf(struct se_cmd *cmd); 654 655 void target_qf_do_work(struct work_struct *work) 656 { 657 struct se_device *dev = container_of(work, struct se_device, 658 qf_work_queue); 659 LIST_HEAD(qf_cmd_list); 660 struct se_cmd *cmd, *cmd_tmp; 661 662 spin_lock_irq(&dev->qf_cmd_lock); 663 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 664 spin_unlock_irq(&dev->qf_cmd_lock); 665 666 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 667 list_del(&cmd->se_qf_node); 668 atomic_dec(&dev->dev_qf_count); 669 smp_mb__after_atomic_dec(); 670 671 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 672 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 673 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 674 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 675 : "UNKNOWN"); 676 677 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 678 transport_write_pending_qf(cmd); 679 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 680 transport_complete_qf(cmd); 681 } 682 } 683 684 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 685 { 686 switch (cmd->data_direction) { 687 case DMA_NONE: 688 return "NONE"; 689 case DMA_FROM_DEVICE: 690 return "READ"; 691 case DMA_TO_DEVICE: 692 return "WRITE"; 693 case DMA_BIDIRECTIONAL: 694 return "BIDI"; 695 default: 696 break; 697 } 698 699 return "UNKNOWN"; 700 } 701 702 void transport_dump_dev_state( 703 struct se_device *dev, 704 char *b, 705 int *bl) 706 { 707 *bl += sprintf(b + *bl, "Status: "); 708 if (dev->export_count) 709 *bl += sprintf(b + *bl, "ACTIVATED"); 710 else 711 *bl += sprintf(b + *bl, "DEACTIVATED"); 712 713 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 714 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 715 dev->dev_attrib.block_size, 716 dev->dev_attrib.hw_max_sectors); 717 *bl += sprintf(b + *bl, " "); 718 } 719 720 void transport_dump_vpd_proto_id( 721 struct t10_vpd *vpd, 722 unsigned char *p_buf, 723 int p_buf_len) 724 { 725 unsigned char buf[VPD_TMP_BUF_SIZE]; 726 int len; 727 728 memset(buf, 0, VPD_TMP_BUF_SIZE); 729 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 730 731 switch (vpd->protocol_identifier) { 732 case 0x00: 733 sprintf(buf+len, "Fibre Channel\n"); 734 break; 735 case 0x10: 736 sprintf(buf+len, "Parallel SCSI\n"); 737 break; 738 case 0x20: 739 sprintf(buf+len, "SSA\n"); 740 break; 741 case 0x30: 742 sprintf(buf+len, "IEEE 1394\n"); 743 break; 744 case 0x40: 745 sprintf(buf+len, "SCSI Remote Direct Memory Access" 746 " Protocol\n"); 747 break; 748 case 0x50: 749 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 750 break; 751 case 0x60: 752 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 753 break; 754 case 0x70: 755 sprintf(buf+len, "Automation/Drive Interface Transport" 756 " Protocol\n"); 757 break; 758 case 0x80: 759 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 760 break; 761 default: 762 sprintf(buf+len, "Unknown 0x%02x\n", 763 vpd->protocol_identifier); 764 break; 765 } 766 767 if (p_buf) 768 strncpy(p_buf, buf, p_buf_len); 769 else 770 pr_debug("%s", buf); 771 } 772 773 void 774 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 775 { 776 /* 777 * Check if the Protocol Identifier Valid (PIV) bit is set.. 778 * 779 * from spc3r23.pdf section 7.5.1 780 */ 781 if (page_83[1] & 0x80) { 782 vpd->protocol_identifier = (page_83[0] & 0xf0); 783 vpd->protocol_identifier_set = 1; 784 transport_dump_vpd_proto_id(vpd, NULL, 0); 785 } 786 } 787 EXPORT_SYMBOL(transport_set_vpd_proto_id); 788 789 int transport_dump_vpd_assoc( 790 struct t10_vpd *vpd, 791 unsigned char *p_buf, 792 int p_buf_len) 793 { 794 unsigned char buf[VPD_TMP_BUF_SIZE]; 795 int ret = 0; 796 int len; 797 798 memset(buf, 0, VPD_TMP_BUF_SIZE); 799 len = sprintf(buf, "T10 VPD Identifier Association: "); 800 801 switch (vpd->association) { 802 case 0x00: 803 sprintf(buf+len, "addressed logical unit\n"); 804 break; 805 case 0x10: 806 sprintf(buf+len, "target port\n"); 807 break; 808 case 0x20: 809 sprintf(buf+len, "SCSI target device\n"); 810 break; 811 default: 812 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 813 ret = -EINVAL; 814 break; 815 } 816 817 if (p_buf) 818 strncpy(p_buf, buf, p_buf_len); 819 else 820 pr_debug("%s", buf); 821 822 return ret; 823 } 824 825 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 826 { 827 /* 828 * The VPD identification association.. 829 * 830 * from spc3r23.pdf Section 7.6.3.1 Table 297 831 */ 832 vpd->association = (page_83[1] & 0x30); 833 return transport_dump_vpd_assoc(vpd, NULL, 0); 834 } 835 EXPORT_SYMBOL(transport_set_vpd_assoc); 836 837 int transport_dump_vpd_ident_type( 838 struct t10_vpd *vpd, 839 unsigned char *p_buf, 840 int p_buf_len) 841 { 842 unsigned char buf[VPD_TMP_BUF_SIZE]; 843 int ret = 0; 844 int len; 845 846 memset(buf, 0, VPD_TMP_BUF_SIZE); 847 len = sprintf(buf, "T10 VPD Identifier Type: "); 848 849 switch (vpd->device_identifier_type) { 850 case 0x00: 851 sprintf(buf+len, "Vendor specific\n"); 852 break; 853 case 0x01: 854 sprintf(buf+len, "T10 Vendor ID based\n"); 855 break; 856 case 0x02: 857 sprintf(buf+len, "EUI-64 based\n"); 858 break; 859 case 0x03: 860 sprintf(buf+len, "NAA\n"); 861 break; 862 case 0x04: 863 sprintf(buf+len, "Relative target port identifier\n"); 864 break; 865 case 0x08: 866 sprintf(buf+len, "SCSI name string\n"); 867 break; 868 default: 869 sprintf(buf+len, "Unsupported: 0x%02x\n", 870 vpd->device_identifier_type); 871 ret = -EINVAL; 872 break; 873 } 874 875 if (p_buf) { 876 if (p_buf_len < strlen(buf)+1) 877 return -EINVAL; 878 strncpy(p_buf, buf, p_buf_len); 879 } else { 880 pr_debug("%s", buf); 881 } 882 883 return ret; 884 } 885 886 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 887 { 888 /* 889 * The VPD identifier type.. 890 * 891 * from spc3r23.pdf Section 7.6.3.1 Table 298 892 */ 893 vpd->device_identifier_type = (page_83[1] & 0x0f); 894 return transport_dump_vpd_ident_type(vpd, NULL, 0); 895 } 896 EXPORT_SYMBOL(transport_set_vpd_ident_type); 897 898 int transport_dump_vpd_ident( 899 struct t10_vpd *vpd, 900 unsigned char *p_buf, 901 int p_buf_len) 902 { 903 unsigned char buf[VPD_TMP_BUF_SIZE]; 904 int ret = 0; 905 906 memset(buf, 0, VPD_TMP_BUF_SIZE); 907 908 switch (vpd->device_identifier_code_set) { 909 case 0x01: /* Binary */ 910 snprintf(buf, sizeof(buf), 911 "T10 VPD Binary Device Identifier: %s\n", 912 &vpd->device_identifier[0]); 913 break; 914 case 0x02: /* ASCII */ 915 snprintf(buf, sizeof(buf), 916 "T10 VPD ASCII Device Identifier: %s\n", 917 &vpd->device_identifier[0]); 918 break; 919 case 0x03: /* UTF-8 */ 920 snprintf(buf, sizeof(buf), 921 "T10 VPD UTF-8 Device Identifier: %s\n", 922 &vpd->device_identifier[0]); 923 break; 924 default: 925 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 926 " 0x%02x", vpd->device_identifier_code_set); 927 ret = -EINVAL; 928 break; 929 } 930 931 if (p_buf) 932 strncpy(p_buf, buf, p_buf_len); 933 else 934 pr_debug("%s", buf); 935 936 return ret; 937 } 938 939 int 940 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 941 { 942 static const char hex_str[] = "0123456789abcdef"; 943 int j = 0, i = 4; /* offset to start of the identifier */ 944 945 /* 946 * The VPD Code Set (encoding) 947 * 948 * from spc3r23.pdf Section 7.6.3.1 Table 296 949 */ 950 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 951 switch (vpd->device_identifier_code_set) { 952 case 0x01: /* Binary */ 953 vpd->device_identifier[j++] = 954 hex_str[vpd->device_identifier_type]; 955 while (i < (4 + page_83[3])) { 956 vpd->device_identifier[j++] = 957 hex_str[(page_83[i] & 0xf0) >> 4]; 958 vpd->device_identifier[j++] = 959 hex_str[page_83[i] & 0x0f]; 960 i++; 961 } 962 break; 963 case 0x02: /* ASCII */ 964 case 0x03: /* UTF-8 */ 965 while (i < (4 + page_83[3])) 966 vpd->device_identifier[j++] = page_83[i++]; 967 break; 968 default: 969 break; 970 } 971 972 return transport_dump_vpd_ident(vpd, NULL, 0); 973 } 974 EXPORT_SYMBOL(transport_set_vpd_ident); 975 976 sense_reason_t 977 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 978 { 979 struct se_device *dev = cmd->se_dev; 980 981 if (cmd->unknown_data_length) { 982 cmd->data_length = size; 983 } else if (size != cmd->data_length) { 984 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 985 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 986 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 987 cmd->data_length, size, cmd->t_task_cdb[0]); 988 989 if (cmd->data_direction == DMA_TO_DEVICE) { 990 pr_err("Rejecting underflow/overflow" 991 " WRITE data\n"); 992 return TCM_INVALID_CDB_FIELD; 993 } 994 /* 995 * Reject READ_* or WRITE_* with overflow/underflow for 996 * type SCF_SCSI_DATA_CDB. 997 */ 998 if (dev->dev_attrib.block_size != 512) { 999 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1000 " CDB on non 512-byte sector setup subsystem" 1001 " plugin: %s\n", dev->transport->name); 1002 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1003 return TCM_INVALID_CDB_FIELD; 1004 } 1005 /* 1006 * For the overflow case keep the existing fabric provided 1007 * ->data_length. Otherwise for the underflow case, reset 1008 * ->data_length to the smaller SCSI expected data transfer 1009 * length. 1010 */ 1011 if (size > cmd->data_length) { 1012 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1013 cmd->residual_count = (size - cmd->data_length); 1014 } else { 1015 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1016 cmd->residual_count = (cmd->data_length - size); 1017 cmd->data_length = size; 1018 } 1019 } 1020 1021 return 0; 1022 1023 } 1024 1025 /* 1026 * Used by fabric modules containing a local struct se_cmd within their 1027 * fabric dependent per I/O descriptor. 1028 */ 1029 void transport_init_se_cmd( 1030 struct se_cmd *cmd, 1031 struct target_core_fabric_ops *tfo, 1032 struct se_session *se_sess, 1033 u32 data_length, 1034 int data_direction, 1035 int task_attr, 1036 unsigned char *sense_buffer) 1037 { 1038 INIT_LIST_HEAD(&cmd->se_lun_node); 1039 INIT_LIST_HEAD(&cmd->se_delayed_node); 1040 INIT_LIST_HEAD(&cmd->se_qf_node); 1041 INIT_LIST_HEAD(&cmd->se_cmd_list); 1042 INIT_LIST_HEAD(&cmd->state_list); 1043 init_completion(&cmd->transport_lun_fe_stop_comp); 1044 init_completion(&cmd->transport_lun_stop_comp); 1045 init_completion(&cmd->t_transport_stop_comp); 1046 init_completion(&cmd->cmd_wait_comp); 1047 init_completion(&cmd->task_stop_comp); 1048 spin_lock_init(&cmd->t_state_lock); 1049 cmd->transport_state = CMD_T_DEV_ACTIVE; 1050 1051 cmd->se_tfo = tfo; 1052 cmd->se_sess = se_sess; 1053 cmd->data_length = data_length; 1054 cmd->data_direction = data_direction; 1055 cmd->sam_task_attr = task_attr; 1056 cmd->sense_buffer = sense_buffer; 1057 1058 cmd->state_active = false; 1059 } 1060 EXPORT_SYMBOL(transport_init_se_cmd); 1061 1062 static sense_reason_t 1063 transport_check_alloc_task_attr(struct se_cmd *cmd) 1064 { 1065 struct se_device *dev = cmd->se_dev; 1066 1067 /* 1068 * Check if SAM Task Attribute emulation is enabled for this 1069 * struct se_device storage object 1070 */ 1071 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1072 return 0; 1073 1074 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1075 pr_debug("SAM Task Attribute ACA" 1076 " emulation is not supported\n"); 1077 return TCM_INVALID_CDB_FIELD; 1078 } 1079 /* 1080 * Used to determine when ORDERED commands should go from 1081 * Dormant to Active status. 1082 */ 1083 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1084 smp_mb__after_atomic_inc(); 1085 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1086 cmd->se_ordered_id, cmd->sam_task_attr, 1087 dev->transport->name); 1088 return 0; 1089 } 1090 1091 sense_reason_t 1092 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1093 { 1094 struct se_device *dev = cmd->se_dev; 1095 sense_reason_t ret; 1096 1097 /* 1098 * Ensure that the received CDB is less than the max (252 + 8) bytes 1099 * for VARIABLE_LENGTH_CMD 1100 */ 1101 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1102 pr_err("Received SCSI CDB with command_size: %d that" 1103 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1104 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1105 return TCM_INVALID_CDB_FIELD; 1106 } 1107 /* 1108 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1109 * allocate the additional extended CDB buffer now.. Otherwise 1110 * setup the pointer from __t_task_cdb to t_task_cdb. 1111 */ 1112 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1113 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1114 GFP_KERNEL); 1115 if (!cmd->t_task_cdb) { 1116 pr_err("Unable to allocate cmd->t_task_cdb" 1117 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1118 scsi_command_size(cdb), 1119 (unsigned long)sizeof(cmd->__t_task_cdb)); 1120 return TCM_OUT_OF_RESOURCES; 1121 } 1122 } else 1123 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1124 /* 1125 * Copy the original CDB into cmd-> 1126 */ 1127 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1128 1129 trace_target_sequencer_start(cmd); 1130 1131 /* 1132 * Check for an existing UNIT ATTENTION condition 1133 */ 1134 ret = target_scsi3_ua_check(cmd); 1135 if (ret) 1136 return ret; 1137 1138 ret = target_alua_state_check(cmd); 1139 if (ret) 1140 return ret; 1141 1142 ret = target_check_reservation(cmd); 1143 if (ret) { 1144 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1145 return ret; 1146 } 1147 1148 ret = dev->transport->parse_cdb(cmd); 1149 if (ret) 1150 return ret; 1151 1152 ret = transport_check_alloc_task_attr(cmd); 1153 if (ret) 1154 return ret; 1155 1156 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1157 1158 spin_lock(&cmd->se_lun->lun_sep_lock); 1159 if (cmd->se_lun->lun_sep) 1160 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1161 spin_unlock(&cmd->se_lun->lun_sep_lock); 1162 return 0; 1163 } 1164 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1165 1166 /* 1167 * Used by fabric module frontends to queue tasks directly. 1168 * Many only be used from process context only 1169 */ 1170 int transport_handle_cdb_direct( 1171 struct se_cmd *cmd) 1172 { 1173 sense_reason_t ret; 1174 1175 if (!cmd->se_lun) { 1176 dump_stack(); 1177 pr_err("cmd->se_lun is NULL\n"); 1178 return -EINVAL; 1179 } 1180 if (in_interrupt()) { 1181 dump_stack(); 1182 pr_err("transport_generic_handle_cdb cannot be called" 1183 " from interrupt context\n"); 1184 return -EINVAL; 1185 } 1186 /* 1187 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1188 * outstanding descriptors are handled correctly during shutdown via 1189 * transport_wait_for_tasks() 1190 * 1191 * Also, we don't take cmd->t_state_lock here as we only expect 1192 * this to be called for initial descriptor submission. 1193 */ 1194 cmd->t_state = TRANSPORT_NEW_CMD; 1195 cmd->transport_state |= CMD_T_ACTIVE; 1196 1197 /* 1198 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1199 * so follow TRANSPORT_NEW_CMD processing thread context usage 1200 * and call transport_generic_request_failure() if necessary.. 1201 */ 1202 ret = transport_generic_new_cmd(cmd); 1203 if (ret) 1204 transport_generic_request_failure(cmd, ret); 1205 return 0; 1206 } 1207 EXPORT_SYMBOL(transport_handle_cdb_direct); 1208 1209 static sense_reason_t 1210 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1211 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1212 { 1213 if (!sgl || !sgl_count) 1214 return 0; 1215 1216 /* 1217 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1218 * scatterlists already have been set to follow what the fabric 1219 * passes for the original expected data transfer length. 1220 */ 1221 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1222 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1223 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1224 return TCM_INVALID_CDB_FIELD; 1225 } 1226 1227 cmd->t_data_sg = sgl; 1228 cmd->t_data_nents = sgl_count; 1229 1230 if (sgl_bidi && sgl_bidi_count) { 1231 cmd->t_bidi_data_sg = sgl_bidi; 1232 cmd->t_bidi_data_nents = sgl_bidi_count; 1233 } 1234 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1235 return 0; 1236 } 1237 1238 /* 1239 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1240 * se_cmd + use pre-allocated SGL memory. 1241 * 1242 * @se_cmd: command descriptor to submit 1243 * @se_sess: associated se_sess for endpoint 1244 * @cdb: pointer to SCSI CDB 1245 * @sense: pointer to SCSI sense buffer 1246 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1247 * @data_length: fabric expected data transfer length 1248 * @task_addr: SAM task attribute 1249 * @data_dir: DMA data direction 1250 * @flags: flags for command submission from target_sc_flags_tables 1251 * @sgl: struct scatterlist memory for unidirectional mapping 1252 * @sgl_count: scatterlist count for unidirectional mapping 1253 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1254 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1255 * 1256 * Returns non zero to signal active I/O shutdown failure. All other 1257 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1258 * but still return zero here. 1259 * 1260 * This may only be called from process context, and also currently 1261 * assumes internal allocation of fabric payload buffer by target-core. 1262 */ 1263 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1264 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1265 u32 data_length, int task_attr, int data_dir, int flags, 1266 struct scatterlist *sgl, u32 sgl_count, 1267 struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1268 { 1269 struct se_portal_group *se_tpg; 1270 sense_reason_t rc; 1271 int ret; 1272 1273 se_tpg = se_sess->se_tpg; 1274 BUG_ON(!se_tpg); 1275 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1276 BUG_ON(in_interrupt()); 1277 /* 1278 * Initialize se_cmd for target operation. From this point 1279 * exceptions are handled by sending exception status via 1280 * target_core_fabric_ops->queue_status() callback 1281 */ 1282 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1283 data_length, data_dir, task_attr, sense); 1284 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1285 se_cmd->unknown_data_length = 1; 1286 /* 1287 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1288 * se_sess->sess_cmd_list. A second kref_get here is necessary 1289 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1290 * kref_put() to happen during fabric packet acknowledgement. 1291 */ 1292 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1293 if (ret) 1294 return ret; 1295 /* 1296 * Signal bidirectional data payloads to target-core 1297 */ 1298 if (flags & TARGET_SCF_BIDI_OP) 1299 se_cmd->se_cmd_flags |= SCF_BIDI; 1300 /* 1301 * Locate se_lun pointer and attach it to struct se_cmd 1302 */ 1303 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1304 if (rc) { 1305 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1306 target_put_sess_cmd(se_sess, se_cmd); 1307 return 0; 1308 } 1309 1310 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1311 if (rc != 0) { 1312 transport_generic_request_failure(se_cmd, rc); 1313 return 0; 1314 } 1315 /* 1316 * When a non zero sgl_count has been passed perform SGL passthrough 1317 * mapping for pre-allocated fabric memory instead of having target 1318 * core perform an internal SGL allocation.. 1319 */ 1320 if (sgl_count != 0) { 1321 BUG_ON(!sgl); 1322 1323 /* 1324 * A work-around for tcm_loop as some userspace code via 1325 * scsi-generic do not memset their associated read buffers, 1326 * so go ahead and do that here for type non-data CDBs. Also 1327 * note that this is currently guaranteed to be a single SGL 1328 * for this case by target core in target_setup_cmd_from_cdb() 1329 * -> transport_generic_cmd_sequencer(). 1330 */ 1331 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1332 se_cmd->data_direction == DMA_FROM_DEVICE) { 1333 unsigned char *buf = NULL; 1334 1335 if (sgl) 1336 buf = kmap(sg_page(sgl)) + sgl->offset; 1337 1338 if (buf) { 1339 memset(buf, 0, sgl->length); 1340 kunmap(sg_page(sgl)); 1341 } 1342 } 1343 1344 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1345 sgl_bidi, sgl_bidi_count); 1346 if (rc != 0) { 1347 transport_generic_request_failure(se_cmd, rc); 1348 return 0; 1349 } 1350 } 1351 /* 1352 * Check if we need to delay processing because of ALUA 1353 * Active/NonOptimized primary access state.. 1354 */ 1355 core_alua_check_nonop_delay(se_cmd); 1356 1357 transport_handle_cdb_direct(se_cmd); 1358 return 0; 1359 } 1360 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1361 1362 /* 1363 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1364 * 1365 * @se_cmd: command descriptor to submit 1366 * @se_sess: associated se_sess for endpoint 1367 * @cdb: pointer to SCSI CDB 1368 * @sense: pointer to SCSI sense buffer 1369 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1370 * @data_length: fabric expected data transfer length 1371 * @task_addr: SAM task attribute 1372 * @data_dir: DMA data direction 1373 * @flags: flags for command submission from target_sc_flags_tables 1374 * 1375 * Returns non zero to signal active I/O shutdown failure. All other 1376 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1377 * but still return zero here. 1378 * 1379 * This may only be called from process context, and also currently 1380 * assumes internal allocation of fabric payload buffer by target-core. 1381 * 1382 * It also assumes interal target core SGL memory allocation. 1383 */ 1384 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1385 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1386 u32 data_length, int task_attr, int data_dir, int flags) 1387 { 1388 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1389 unpacked_lun, data_length, task_attr, data_dir, 1390 flags, NULL, 0, NULL, 0); 1391 } 1392 EXPORT_SYMBOL(target_submit_cmd); 1393 1394 static void target_complete_tmr_failure(struct work_struct *work) 1395 { 1396 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1397 1398 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1399 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1400 1401 transport_cmd_check_stop_to_fabric(se_cmd); 1402 } 1403 1404 /** 1405 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1406 * for TMR CDBs 1407 * 1408 * @se_cmd: command descriptor to submit 1409 * @se_sess: associated se_sess for endpoint 1410 * @sense: pointer to SCSI sense buffer 1411 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1412 * @fabric_context: fabric context for TMR req 1413 * @tm_type: Type of TM request 1414 * @gfp: gfp type for caller 1415 * @tag: referenced task tag for TMR_ABORT_TASK 1416 * @flags: submit cmd flags 1417 * 1418 * Callable from all contexts. 1419 **/ 1420 1421 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1422 unsigned char *sense, u32 unpacked_lun, 1423 void *fabric_tmr_ptr, unsigned char tm_type, 1424 gfp_t gfp, unsigned int tag, int flags) 1425 { 1426 struct se_portal_group *se_tpg; 1427 int ret; 1428 1429 se_tpg = se_sess->se_tpg; 1430 BUG_ON(!se_tpg); 1431 1432 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1433 0, DMA_NONE, MSG_SIMPLE_TAG, sense); 1434 /* 1435 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1436 * allocation failure. 1437 */ 1438 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1439 if (ret < 0) 1440 return -ENOMEM; 1441 1442 if (tm_type == TMR_ABORT_TASK) 1443 se_cmd->se_tmr_req->ref_task_tag = tag; 1444 1445 /* See target_submit_cmd for commentary */ 1446 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1447 if (ret) { 1448 core_tmr_release_req(se_cmd->se_tmr_req); 1449 return ret; 1450 } 1451 1452 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1453 if (ret) { 1454 /* 1455 * For callback during failure handling, push this work off 1456 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1457 */ 1458 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1459 schedule_work(&se_cmd->work); 1460 return 0; 1461 } 1462 transport_generic_handle_tmr(se_cmd); 1463 return 0; 1464 } 1465 EXPORT_SYMBOL(target_submit_tmr); 1466 1467 /* 1468 * If the cmd is active, request it to be stopped and sleep until it 1469 * has completed. 1470 */ 1471 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1472 { 1473 bool was_active = false; 1474 1475 if (cmd->transport_state & CMD_T_BUSY) { 1476 cmd->transport_state |= CMD_T_REQUEST_STOP; 1477 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1478 1479 pr_debug("cmd %p waiting to complete\n", cmd); 1480 wait_for_completion(&cmd->task_stop_comp); 1481 pr_debug("cmd %p stopped successfully\n", cmd); 1482 1483 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1484 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1485 cmd->transport_state &= ~CMD_T_BUSY; 1486 was_active = true; 1487 } 1488 1489 return was_active; 1490 } 1491 1492 /* 1493 * Handle SAM-esque emulation for generic transport request failures. 1494 */ 1495 void transport_generic_request_failure(struct se_cmd *cmd, 1496 sense_reason_t sense_reason) 1497 { 1498 int ret = 0; 1499 1500 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1501 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1502 cmd->t_task_cdb[0]); 1503 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1504 cmd->se_tfo->get_cmd_state(cmd), 1505 cmd->t_state, sense_reason); 1506 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1507 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1508 (cmd->transport_state & CMD_T_STOP) != 0, 1509 (cmd->transport_state & CMD_T_SENT) != 0); 1510 1511 /* 1512 * For SAM Task Attribute emulation for failed struct se_cmd 1513 */ 1514 transport_complete_task_attr(cmd); 1515 1516 switch (sense_reason) { 1517 case TCM_NON_EXISTENT_LUN: 1518 case TCM_UNSUPPORTED_SCSI_OPCODE: 1519 case TCM_INVALID_CDB_FIELD: 1520 case TCM_INVALID_PARAMETER_LIST: 1521 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1522 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1523 case TCM_UNKNOWN_MODE_PAGE: 1524 case TCM_WRITE_PROTECTED: 1525 case TCM_ADDRESS_OUT_OF_RANGE: 1526 case TCM_CHECK_CONDITION_ABORT_CMD: 1527 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1528 case TCM_CHECK_CONDITION_NOT_READY: 1529 break; 1530 case TCM_OUT_OF_RESOURCES: 1531 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1532 break; 1533 case TCM_RESERVATION_CONFLICT: 1534 /* 1535 * No SENSE Data payload for this case, set SCSI Status 1536 * and queue the response to $FABRIC_MOD. 1537 * 1538 * Uses linux/include/scsi/scsi.h SAM status codes defs 1539 */ 1540 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1541 /* 1542 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1543 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1544 * CONFLICT STATUS. 1545 * 1546 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1547 */ 1548 if (cmd->se_sess && 1549 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1550 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1551 cmd->orig_fe_lun, 0x2C, 1552 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1553 1554 trace_target_cmd_complete(cmd); 1555 ret = cmd->se_tfo-> queue_status(cmd); 1556 if (ret == -EAGAIN || ret == -ENOMEM) 1557 goto queue_full; 1558 goto check_stop; 1559 default: 1560 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1561 cmd->t_task_cdb[0], sense_reason); 1562 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1563 break; 1564 } 1565 1566 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1567 if (ret == -EAGAIN || ret == -ENOMEM) 1568 goto queue_full; 1569 1570 check_stop: 1571 transport_lun_remove_cmd(cmd); 1572 if (!transport_cmd_check_stop_to_fabric(cmd)) 1573 ; 1574 return; 1575 1576 queue_full: 1577 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1578 transport_handle_queue_full(cmd, cmd->se_dev); 1579 } 1580 EXPORT_SYMBOL(transport_generic_request_failure); 1581 1582 static void __target_execute_cmd(struct se_cmd *cmd) 1583 { 1584 sense_reason_t ret; 1585 1586 if (cmd->execute_cmd) { 1587 ret = cmd->execute_cmd(cmd); 1588 if (ret) { 1589 spin_lock_irq(&cmd->t_state_lock); 1590 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1591 spin_unlock_irq(&cmd->t_state_lock); 1592 1593 transport_generic_request_failure(cmd, ret); 1594 } 1595 } 1596 } 1597 1598 static bool target_handle_task_attr(struct se_cmd *cmd) 1599 { 1600 struct se_device *dev = cmd->se_dev; 1601 1602 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1603 return false; 1604 1605 /* 1606 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1607 * to allow the passed struct se_cmd list of tasks to the front of the list. 1608 */ 1609 switch (cmd->sam_task_attr) { 1610 case MSG_HEAD_TAG: 1611 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1612 "se_ordered_id: %u\n", 1613 cmd->t_task_cdb[0], cmd->se_ordered_id); 1614 return false; 1615 case MSG_ORDERED_TAG: 1616 atomic_inc(&dev->dev_ordered_sync); 1617 smp_mb__after_atomic_inc(); 1618 1619 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1620 " se_ordered_id: %u\n", 1621 cmd->t_task_cdb[0], cmd->se_ordered_id); 1622 1623 /* 1624 * Execute an ORDERED command if no other older commands 1625 * exist that need to be completed first. 1626 */ 1627 if (!atomic_read(&dev->simple_cmds)) 1628 return false; 1629 break; 1630 default: 1631 /* 1632 * For SIMPLE and UNTAGGED Task Attribute commands 1633 */ 1634 atomic_inc(&dev->simple_cmds); 1635 smp_mb__after_atomic_inc(); 1636 break; 1637 } 1638 1639 if (atomic_read(&dev->dev_ordered_sync) == 0) 1640 return false; 1641 1642 spin_lock(&dev->delayed_cmd_lock); 1643 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1644 spin_unlock(&dev->delayed_cmd_lock); 1645 1646 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1647 " delayed CMD list, se_ordered_id: %u\n", 1648 cmd->t_task_cdb[0], cmd->sam_task_attr, 1649 cmd->se_ordered_id); 1650 return true; 1651 } 1652 1653 void target_execute_cmd(struct se_cmd *cmd) 1654 { 1655 /* 1656 * If the received CDB has aleady been aborted stop processing it here. 1657 */ 1658 if (transport_check_aborted_status(cmd, 1)) { 1659 complete(&cmd->transport_lun_stop_comp); 1660 return; 1661 } 1662 1663 /* 1664 * Determine if IOCTL context caller in requesting the stopping of this 1665 * command for LUN shutdown purposes. 1666 */ 1667 spin_lock_irq(&cmd->t_state_lock); 1668 if (cmd->transport_state & CMD_T_LUN_STOP) { 1669 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 1670 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 1671 1672 cmd->transport_state &= ~CMD_T_ACTIVE; 1673 spin_unlock_irq(&cmd->t_state_lock); 1674 complete(&cmd->transport_lun_stop_comp); 1675 return; 1676 } 1677 /* 1678 * Determine if frontend context caller is requesting the stopping of 1679 * this command for frontend exceptions. 1680 */ 1681 if (cmd->transport_state & CMD_T_STOP) { 1682 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1683 __func__, __LINE__, 1684 cmd->se_tfo->get_task_tag(cmd)); 1685 1686 spin_unlock_irq(&cmd->t_state_lock); 1687 complete(&cmd->t_transport_stop_comp); 1688 return; 1689 } 1690 1691 cmd->t_state = TRANSPORT_PROCESSING; 1692 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1693 spin_unlock_irq(&cmd->t_state_lock); 1694 1695 if (target_handle_task_attr(cmd)) { 1696 spin_lock_irq(&cmd->t_state_lock); 1697 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT; 1698 spin_unlock_irq(&cmd->t_state_lock); 1699 return; 1700 } 1701 1702 __target_execute_cmd(cmd); 1703 } 1704 EXPORT_SYMBOL(target_execute_cmd); 1705 1706 /* 1707 * Process all commands up to the last received ORDERED task attribute which 1708 * requires another blocking boundary 1709 */ 1710 static void target_restart_delayed_cmds(struct se_device *dev) 1711 { 1712 for (;;) { 1713 struct se_cmd *cmd; 1714 1715 spin_lock(&dev->delayed_cmd_lock); 1716 if (list_empty(&dev->delayed_cmd_list)) { 1717 spin_unlock(&dev->delayed_cmd_lock); 1718 break; 1719 } 1720 1721 cmd = list_entry(dev->delayed_cmd_list.next, 1722 struct se_cmd, se_delayed_node); 1723 list_del(&cmd->se_delayed_node); 1724 spin_unlock(&dev->delayed_cmd_lock); 1725 1726 __target_execute_cmd(cmd); 1727 1728 if (cmd->sam_task_attr == MSG_ORDERED_TAG) 1729 break; 1730 } 1731 } 1732 1733 /* 1734 * Called from I/O completion to determine which dormant/delayed 1735 * and ordered cmds need to have their tasks added to the execution queue. 1736 */ 1737 static void transport_complete_task_attr(struct se_cmd *cmd) 1738 { 1739 struct se_device *dev = cmd->se_dev; 1740 1741 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1742 return; 1743 1744 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 1745 atomic_dec(&dev->simple_cmds); 1746 smp_mb__after_atomic_dec(); 1747 dev->dev_cur_ordered_id++; 1748 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1749 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1750 cmd->se_ordered_id); 1751 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 1752 dev->dev_cur_ordered_id++; 1753 pr_debug("Incremented dev_cur_ordered_id: %u for" 1754 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1755 cmd->se_ordered_id); 1756 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 1757 atomic_dec(&dev->dev_ordered_sync); 1758 smp_mb__after_atomic_dec(); 1759 1760 dev->dev_cur_ordered_id++; 1761 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1762 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1763 } 1764 1765 target_restart_delayed_cmds(dev); 1766 } 1767 1768 static void transport_complete_qf(struct se_cmd *cmd) 1769 { 1770 int ret = 0; 1771 1772 transport_complete_task_attr(cmd); 1773 1774 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1775 trace_target_cmd_complete(cmd); 1776 ret = cmd->se_tfo->queue_status(cmd); 1777 if (ret) 1778 goto out; 1779 } 1780 1781 switch (cmd->data_direction) { 1782 case DMA_FROM_DEVICE: 1783 trace_target_cmd_complete(cmd); 1784 ret = cmd->se_tfo->queue_data_in(cmd); 1785 break; 1786 case DMA_TO_DEVICE: 1787 if (cmd->t_bidi_data_sg) { 1788 ret = cmd->se_tfo->queue_data_in(cmd); 1789 if (ret < 0) 1790 break; 1791 } 1792 /* Fall through for DMA_TO_DEVICE */ 1793 case DMA_NONE: 1794 trace_target_cmd_complete(cmd); 1795 ret = cmd->se_tfo->queue_status(cmd); 1796 break; 1797 default: 1798 break; 1799 } 1800 1801 out: 1802 if (ret < 0) { 1803 transport_handle_queue_full(cmd, cmd->se_dev); 1804 return; 1805 } 1806 transport_lun_remove_cmd(cmd); 1807 transport_cmd_check_stop_to_fabric(cmd); 1808 } 1809 1810 static void transport_handle_queue_full( 1811 struct se_cmd *cmd, 1812 struct se_device *dev) 1813 { 1814 spin_lock_irq(&dev->qf_cmd_lock); 1815 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1816 atomic_inc(&dev->dev_qf_count); 1817 smp_mb__after_atomic_inc(); 1818 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1819 1820 schedule_work(&cmd->se_dev->qf_work_queue); 1821 } 1822 1823 static void target_complete_ok_work(struct work_struct *work) 1824 { 1825 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1826 int ret; 1827 1828 /* 1829 * Check if we need to move delayed/dormant tasks from cmds on the 1830 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1831 * Attribute. 1832 */ 1833 transport_complete_task_attr(cmd); 1834 1835 /* 1836 * Check to schedule QUEUE_FULL work, or execute an existing 1837 * cmd->transport_qf_callback() 1838 */ 1839 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 1840 schedule_work(&cmd->se_dev->qf_work_queue); 1841 1842 /* 1843 * Check if we need to send a sense buffer from 1844 * the struct se_cmd in question. 1845 */ 1846 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1847 WARN_ON(!cmd->scsi_status); 1848 ret = transport_send_check_condition_and_sense( 1849 cmd, 0, 1); 1850 if (ret == -EAGAIN || ret == -ENOMEM) 1851 goto queue_full; 1852 1853 transport_lun_remove_cmd(cmd); 1854 transport_cmd_check_stop_to_fabric(cmd); 1855 return; 1856 } 1857 /* 1858 * Check for a callback, used by amongst other things 1859 * XDWRITE_READ_10 emulation. 1860 */ 1861 if (cmd->transport_complete_callback) 1862 cmd->transport_complete_callback(cmd); 1863 1864 switch (cmd->data_direction) { 1865 case DMA_FROM_DEVICE: 1866 spin_lock(&cmd->se_lun->lun_sep_lock); 1867 if (cmd->se_lun->lun_sep) { 1868 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1869 cmd->data_length; 1870 } 1871 spin_unlock(&cmd->se_lun->lun_sep_lock); 1872 1873 trace_target_cmd_complete(cmd); 1874 ret = cmd->se_tfo->queue_data_in(cmd); 1875 if (ret == -EAGAIN || ret == -ENOMEM) 1876 goto queue_full; 1877 break; 1878 case DMA_TO_DEVICE: 1879 spin_lock(&cmd->se_lun->lun_sep_lock); 1880 if (cmd->se_lun->lun_sep) { 1881 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 1882 cmd->data_length; 1883 } 1884 spin_unlock(&cmd->se_lun->lun_sep_lock); 1885 /* 1886 * Check if we need to send READ payload for BIDI-COMMAND 1887 */ 1888 if (cmd->t_bidi_data_sg) { 1889 spin_lock(&cmd->se_lun->lun_sep_lock); 1890 if (cmd->se_lun->lun_sep) { 1891 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1892 cmd->data_length; 1893 } 1894 spin_unlock(&cmd->se_lun->lun_sep_lock); 1895 ret = cmd->se_tfo->queue_data_in(cmd); 1896 if (ret == -EAGAIN || ret == -ENOMEM) 1897 goto queue_full; 1898 break; 1899 } 1900 /* Fall through for DMA_TO_DEVICE */ 1901 case DMA_NONE: 1902 trace_target_cmd_complete(cmd); 1903 ret = cmd->se_tfo->queue_status(cmd); 1904 if (ret == -EAGAIN || ret == -ENOMEM) 1905 goto queue_full; 1906 break; 1907 default: 1908 break; 1909 } 1910 1911 transport_lun_remove_cmd(cmd); 1912 transport_cmd_check_stop_to_fabric(cmd); 1913 return; 1914 1915 queue_full: 1916 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 1917 " data_direction: %d\n", cmd, cmd->data_direction); 1918 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1919 transport_handle_queue_full(cmd, cmd->se_dev); 1920 } 1921 1922 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 1923 { 1924 struct scatterlist *sg; 1925 int count; 1926 1927 for_each_sg(sgl, sg, nents, count) 1928 __free_page(sg_page(sg)); 1929 1930 kfree(sgl); 1931 } 1932 1933 static inline void transport_free_pages(struct se_cmd *cmd) 1934 { 1935 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) 1936 return; 1937 1938 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 1939 cmd->t_data_sg = NULL; 1940 cmd->t_data_nents = 0; 1941 1942 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 1943 cmd->t_bidi_data_sg = NULL; 1944 cmd->t_bidi_data_nents = 0; 1945 } 1946 1947 /** 1948 * transport_release_cmd - free a command 1949 * @cmd: command to free 1950 * 1951 * This routine unconditionally frees a command, and reference counting 1952 * or list removal must be done in the caller. 1953 */ 1954 static int transport_release_cmd(struct se_cmd *cmd) 1955 { 1956 BUG_ON(!cmd->se_tfo); 1957 1958 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 1959 core_tmr_release_req(cmd->se_tmr_req); 1960 if (cmd->t_task_cdb != cmd->__t_task_cdb) 1961 kfree(cmd->t_task_cdb); 1962 /* 1963 * If this cmd has been setup with target_get_sess_cmd(), drop 1964 * the kref and call ->release_cmd() in kref callback. 1965 */ 1966 return target_put_sess_cmd(cmd->se_sess, cmd); 1967 } 1968 1969 /** 1970 * transport_put_cmd - release a reference to a command 1971 * @cmd: command to release 1972 * 1973 * This routine releases our reference to the command and frees it if possible. 1974 */ 1975 static int transport_put_cmd(struct se_cmd *cmd) 1976 { 1977 transport_free_pages(cmd); 1978 return transport_release_cmd(cmd); 1979 } 1980 1981 void *transport_kmap_data_sg(struct se_cmd *cmd) 1982 { 1983 struct scatterlist *sg = cmd->t_data_sg; 1984 struct page **pages; 1985 int i; 1986 1987 /* 1988 * We need to take into account a possible offset here for fabrics like 1989 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 1990 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 1991 */ 1992 if (!cmd->t_data_nents) 1993 return NULL; 1994 1995 BUG_ON(!sg); 1996 if (cmd->t_data_nents == 1) 1997 return kmap(sg_page(sg)) + sg->offset; 1998 1999 /* >1 page. use vmap */ 2000 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2001 if (!pages) 2002 return NULL; 2003 2004 /* convert sg[] to pages[] */ 2005 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2006 pages[i] = sg_page(sg); 2007 } 2008 2009 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2010 kfree(pages); 2011 if (!cmd->t_data_vmap) 2012 return NULL; 2013 2014 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2015 } 2016 EXPORT_SYMBOL(transport_kmap_data_sg); 2017 2018 void transport_kunmap_data_sg(struct se_cmd *cmd) 2019 { 2020 if (!cmd->t_data_nents) { 2021 return; 2022 } else if (cmd->t_data_nents == 1) { 2023 kunmap(sg_page(cmd->t_data_sg)); 2024 return; 2025 } 2026 2027 vunmap(cmd->t_data_vmap); 2028 cmd->t_data_vmap = NULL; 2029 } 2030 EXPORT_SYMBOL(transport_kunmap_data_sg); 2031 2032 static int 2033 transport_generic_get_mem(struct se_cmd *cmd) 2034 { 2035 u32 length = cmd->data_length; 2036 unsigned int nents; 2037 struct page *page; 2038 gfp_t zero_flag; 2039 int i = 0; 2040 2041 nents = DIV_ROUND_UP(length, PAGE_SIZE); 2042 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL); 2043 if (!cmd->t_data_sg) 2044 return -ENOMEM; 2045 2046 cmd->t_data_nents = nents; 2047 sg_init_table(cmd->t_data_sg, nents); 2048 2049 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO; 2050 2051 while (length) { 2052 u32 page_len = min_t(u32, length, PAGE_SIZE); 2053 page = alloc_page(GFP_KERNEL | zero_flag); 2054 if (!page) 2055 goto out; 2056 2057 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0); 2058 length -= page_len; 2059 i++; 2060 } 2061 return 0; 2062 2063 out: 2064 while (i > 0) { 2065 i--; 2066 __free_page(sg_page(&cmd->t_data_sg[i])); 2067 } 2068 kfree(cmd->t_data_sg); 2069 cmd->t_data_sg = NULL; 2070 return -ENOMEM; 2071 } 2072 2073 /* 2074 * Allocate any required resources to execute the command. For writes we 2075 * might not have the payload yet, so notify the fabric via a call to 2076 * ->write_pending instead. Otherwise place it on the execution queue. 2077 */ 2078 sense_reason_t 2079 transport_generic_new_cmd(struct se_cmd *cmd) 2080 { 2081 int ret = 0; 2082 2083 /* 2084 * Determine is the TCM fabric module has already allocated physical 2085 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2086 * beforehand. 2087 */ 2088 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2089 cmd->data_length) { 2090 ret = transport_generic_get_mem(cmd); 2091 if (ret < 0) 2092 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2093 } 2094 /* 2095 * If this command is not a write we can execute it right here, 2096 * for write buffers we need to notify the fabric driver first 2097 * and let it call back once the write buffers are ready. 2098 */ 2099 target_add_to_state_list(cmd); 2100 if (cmd->data_direction != DMA_TO_DEVICE) { 2101 target_execute_cmd(cmd); 2102 return 0; 2103 } 2104 transport_cmd_check_stop(cmd, false, true); 2105 2106 ret = cmd->se_tfo->write_pending(cmd); 2107 if (ret == -EAGAIN || ret == -ENOMEM) 2108 goto queue_full; 2109 2110 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2111 WARN_ON(ret); 2112 2113 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2114 2115 queue_full: 2116 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2117 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2118 transport_handle_queue_full(cmd, cmd->se_dev); 2119 return 0; 2120 } 2121 EXPORT_SYMBOL(transport_generic_new_cmd); 2122 2123 static void transport_write_pending_qf(struct se_cmd *cmd) 2124 { 2125 int ret; 2126 2127 ret = cmd->se_tfo->write_pending(cmd); 2128 if (ret == -EAGAIN || ret == -ENOMEM) { 2129 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2130 cmd); 2131 transport_handle_queue_full(cmd, cmd->se_dev); 2132 } 2133 } 2134 2135 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2136 { 2137 int ret = 0; 2138 2139 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2140 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2141 transport_wait_for_tasks(cmd); 2142 2143 ret = transport_release_cmd(cmd); 2144 } else { 2145 if (wait_for_tasks) 2146 transport_wait_for_tasks(cmd); 2147 2148 if (cmd->se_lun) 2149 transport_lun_remove_cmd(cmd); 2150 2151 ret = transport_put_cmd(cmd); 2152 } 2153 return ret; 2154 } 2155 EXPORT_SYMBOL(transport_generic_free_cmd); 2156 2157 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2158 * @se_sess: session to reference 2159 * @se_cmd: command descriptor to add 2160 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2161 */ 2162 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2163 bool ack_kref) 2164 { 2165 unsigned long flags; 2166 int ret = 0; 2167 2168 kref_init(&se_cmd->cmd_kref); 2169 /* 2170 * Add a second kref if the fabric caller is expecting to handle 2171 * fabric acknowledgement that requires two target_put_sess_cmd() 2172 * invocations before se_cmd descriptor release. 2173 */ 2174 if (ack_kref == true) { 2175 kref_get(&se_cmd->cmd_kref); 2176 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2177 } 2178 2179 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2180 if (se_sess->sess_tearing_down) { 2181 ret = -ESHUTDOWN; 2182 goto out; 2183 } 2184 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2185 out: 2186 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2187 return ret; 2188 } 2189 EXPORT_SYMBOL(target_get_sess_cmd); 2190 2191 static void target_release_cmd_kref(struct kref *kref) 2192 { 2193 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2194 struct se_session *se_sess = se_cmd->se_sess; 2195 2196 if (list_empty(&se_cmd->se_cmd_list)) { 2197 spin_unlock(&se_sess->sess_cmd_lock); 2198 se_cmd->se_tfo->release_cmd(se_cmd); 2199 return; 2200 } 2201 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2202 spin_unlock(&se_sess->sess_cmd_lock); 2203 complete(&se_cmd->cmd_wait_comp); 2204 return; 2205 } 2206 list_del(&se_cmd->se_cmd_list); 2207 spin_unlock(&se_sess->sess_cmd_lock); 2208 2209 se_cmd->se_tfo->release_cmd(se_cmd); 2210 } 2211 2212 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2213 * @se_sess: session to reference 2214 * @se_cmd: command descriptor to drop 2215 */ 2216 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2217 { 2218 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2219 &se_sess->sess_cmd_lock); 2220 } 2221 EXPORT_SYMBOL(target_put_sess_cmd); 2222 2223 /* target_sess_cmd_list_set_waiting - Flag all commands in 2224 * sess_cmd_list to complete cmd_wait_comp. Set 2225 * sess_tearing_down so no more commands are queued. 2226 * @se_sess: session to flag 2227 */ 2228 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2229 { 2230 struct se_cmd *se_cmd; 2231 unsigned long flags; 2232 2233 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2234 if (se_sess->sess_tearing_down) { 2235 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2236 return; 2237 } 2238 se_sess->sess_tearing_down = 1; 2239 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2240 2241 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2242 se_cmd->cmd_wait_set = 1; 2243 2244 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2245 } 2246 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2247 2248 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2249 * @se_sess: session to wait for active I/O 2250 */ 2251 void target_wait_for_sess_cmds(struct se_session *se_sess) 2252 { 2253 struct se_cmd *se_cmd, *tmp_cmd; 2254 unsigned long flags; 2255 2256 list_for_each_entry_safe(se_cmd, tmp_cmd, 2257 &se_sess->sess_wait_list, se_cmd_list) { 2258 list_del(&se_cmd->se_cmd_list); 2259 2260 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2261 " %d\n", se_cmd, se_cmd->t_state, 2262 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2263 2264 wait_for_completion(&se_cmd->cmd_wait_comp); 2265 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2266 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2267 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2268 2269 se_cmd->se_tfo->release_cmd(se_cmd); 2270 } 2271 2272 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2273 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2274 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2275 2276 } 2277 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2278 2279 /* transport_lun_wait_for_tasks(): 2280 * 2281 * Called from ConfigFS context to stop the passed struct se_cmd to allow 2282 * an struct se_lun to be successfully shutdown. 2283 */ 2284 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) 2285 { 2286 unsigned long flags; 2287 int ret = 0; 2288 2289 /* 2290 * If the frontend has already requested this struct se_cmd to 2291 * be stopped, we can safely ignore this struct se_cmd. 2292 */ 2293 spin_lock_irqsave(&cmd->t_state_lock, flags); 2294 if (cmd->transport_state & CMD_T_STOP) { 2295 cmd->transport_state &= ~CMD_T_LUN_STOP; 2296 2297 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n", 2298 cmd->se_tfo->get_task_tag(cmd)); 2299 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2300 transport_cmd_check_stop(cmd, false, false); 2301 return -EPERM; 2302 } 2303 cmd->transport_state |= CMD_T_LUN_FE_STOP; 2304 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2305 2306 // XXX: audit task_flags checks. 2307 spin_lock_irqsave(&cmd->t_state_lock, flags); 2308 if ((cmd->transport_state & CMD_T_BUSY) && 2309 (cmd->transport_state & CMD_T_SENT)) { 2310 if (!target_stop_cmd(cmd, &flags)) 2311 ret++; 2312 } 2313 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2314 2315 pr_debug("ConfigFS: cmd: %p stop tasks ret:" 2316 " %d\n", cmd, ret); 2317 if (!ret) { 2318 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n", 2319 cmd->se_tfo->get_task_tag(cmd)); 2320 wait_for_completion(&cmd->transport_lun_stop_comp); 2321 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n", 2322 cmd->se_tfo->get_task_tag(cmd)); 2323 } 2324 2325 return 0; 2326 } 2327 2328 static void __transport_clear_lun_from_sessions(struct se_lun *lun) 2329 { 2330 struct se_cmd *cmd = NULL; 2331 unsigned long lun_flags, cmd_flags; 2332 /* 2333 * Do exception processing and return CHECK_CONDITION status to the 2334 * Initiator Port. 2335 */ 2336 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2337 while (!list_empty(&lun->lun_cmd_list)) { 2338 cmd = list_first_entry(&lun->lun_cmd_list, 2339 struct se_cmd, se_lun_node); 2340 list_del_init(&cmd->se_lun_node); 2341 2342 spin_lock(&cmd->t_state_lock); 2343 pr_debug("SE_LUN[%d] - Setting cmd->transport" 2344 "_lun_stop for ITT: 0x%08x\n", 2345 cmd->se_lun->unpacked_lun, 2346 cmd->se_tfo->get_task_tag(cmd)); 2347 cmd->transport_state |= CMD_T_LUN_STOP; 2348 spin_unlock(&cmd->t_state_lock); 2349 2350 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2351 2352 if (!cmd->se_lun) { 2353 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n", 2354 cmd->se_tfo->get_task_tag(cmd), 2355 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2356 BUG(); 2357 } 2358 /* 2359 * If the Storage engine still owns the iscsi_cmd_t, determine 2360 * and/or stop its context. 2361 */ 2362 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport" 2363 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun, 2364 cmd->se_tfo->get_task_tag(cmd)); 2365 2366 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) { 2367 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2368 continue; 2369 } 2370 2371 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun" 2372 "_wait_for_tasks(): SUCCESS\n", 2373 cmd->se_lun->unpacked_lun, 2374 cmd->se_tfo->get_task_tag(cmd)); 2375 2376 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2377 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) { 2378 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2379 goto check_cond; 2380 } 2381 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 2382 target_remove_from_state_list(cmd); 2383 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2384 2385 /* 2386 * The Storage engine stopped this struct se_cmd before it was 2387 * send to the fabric frontend for delivery back to the 2388 * Initiator Node. Return this SCSI CDB back with an 2389 * CHECK_CONDITION status. 2390 */ 2391 check_cond: 2392 transport_send_check_condition_and_sense(cmd, 2393 TCM_NON_EXISTENT_LUN, 0); 2394 /* 2395 * If the fabric frontend is waiting for this iscsi_cmd_t to 2396 * be released, notify the waiting thread now that LU has 2397 * finished accessing it. 2398 */ 2399 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2400 if (cmd->transport_state & CMD_T_LUN_FE_STOP) { 2401 pr_debug("SE_LUN[%d] - Detected FE stop for" 2402 " struct se_cmd: %p ITT: 0x%08x\n", 2403 lun->unpacked_lun, 2404 cmd, cmd->se_tfo->get_task_tag(cmd)); 2405 2406 spin_unlock_irqrestore(&cmd->t_state_lock, 2407 cmd_flags); 2408 transport_cmd_check_stop(cmd, false, false); 2409 complete(&cmd->transport_lun_fe_stop_comp); 2410 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2411 continue; 2412 } 2413 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n", 2414 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); 2415 2416 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2417 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2418 } 2419 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2420 } 2421 2422 static int transport_clear_lun_thread(void *p) 2423 { 2424 struct se_lun *lun = p; 2425 2426 __transport_clear_lun_from_sessions(lun); 2427 complete(&lun->lun_shutdown_comp); 2428 2429 return 0; 2430 } 2431 2432 int transport_clear_lun_from_sessions(struct se_lun *lun) 2433 { 2434 struct task_struct *kt; 2435 2436 kt = kthread_run(transport_clear_lun_thread, lun, 2437 "tcm_cl_%u", lun->unpacked_lun); 2438 if (IS_ERR(kt)) { 2439 pr_err("Unable to start clear_lun thread\n"); 2440 return PTR_ERR(kt); 2441 } 2442 wait_for_completion(&lun->lun_shutdown_comp); 2443 2444 return 0; 2445 } 2446 2447 /** 2448 * transport_wait_for_tasks - wait for completion to occur 2449 * @cmd: command to wait 2450 * 2451 * Called from frontend fabric context to wait for storage engine 2452 * to pause and/or release frontend generated struct se_cmd. 2453 */ 2454 bool transport_wait_for_tasks(struct se_cmd *cmd) 2455 { 2456 unsigned long flags; 2457 2458 spin_lock_irqsave(&cmd->t_state_lock, flags); 2459 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2460 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2461 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2462 return false; 2463 } 2464 2465 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2466 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2467 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2468 return false; 2469 } 2470 /* 2471 * If we are already stopped due to an external event (ie: LUN shutdown) 2472 * sleep until the connection can have the passed struct se_cmd back. 2473 * The cmd->transport_lun_stopped_sem will be upped by 2474 * transport_clear_lun_from_sessions() once the ConfigFS context caller 2475 * has completed its operation on the struct se_cmd. 2476 */ 2477 if (cmd->transport_state & CMD_T_LUN_STOP) { 2478 pr_debug("wait_for_tasks: Stopping" 2479 " wait_for_completion(&cmd->t_tasktransport_lun_fe" 2480 "_stop_comp); for ITT: 0x%08x\n", 2481 cmd->se_tfo->get_task_tag(cmd)); 2482 /* 2483 * There is a special case for WRITES where a FE exception + 2484 * LUN shutdown means ConfigFS context is still sleeping on 2485 * transport_lun_stop_comp in transport_lun_wait_for_tasks(). 2486 * We go ahead and up transport_lun_stop_comp just to be sure 2487 * here. 2488 */ 2489 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2490 complete(&cmd->transport_lun_stop_comp); 2491 wait_for_completion(&cmd->transport_lun_fe_stop_comp); 2492 spin_lock_irqsave(&cmd->t_state_lock, flags); 2493 2494 target_remove_from_state_list(cmd); 2495 /* 2496 * At this point, the frontend who was the originator of this 2497 * struct se_cmd, now owns the structure and can be released through 2498 * normal means below. 2499 */ 2500 pr_debug("wait_for_tasks: Stopped" 2501 " wait_for_completion(&cmd->t_tasktransport_lun_fe_" 2502 "stop_comp); for ITT: 0x%08x\n", 2503 cmd->se_tfo->get_task_tag(cmd)); 2504 2505 cmd->transport_state &= ~CMD_T_LUN_STOP; 2506 } 2507 2508 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2509 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2510 return false; 2511 } 2512 2513 cmd->transport_state |= CMD_T_STOP; 2514 2515 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2516 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2517 cmd, cmd->se_tfo->get_task_tag(cmd), 2518 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2519 2520 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2521 2522 wait_for_completion(&cmd->t_transport_stop_comp); 2523 2524 spin_lock_irqsave(&cmd->t_state_lock, flags); 2525 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2526 2527 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2528 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2529 cmd->se_tfo->get_task_tag(cmd)); 2530 2531 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2532 2533 return true; 2534 } 2535 EXPORT_SYMBOL(transport_wait_for_tasks); 2536 2537 static int transport_get_sense_codes( 2538 struct se_cmd *cmd, 2539 u8 *asc, 2540 u8 *ascq) 2541 { 2542 *asc = cmd->scsi_asc; 2543 *ascq = cmd->scsi_ascq; 2544 2545 return 0; 2546 } 2547 2548 int 2549 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2550 sense_reason_t reason, int from_transport) 2551 { 2552 unsigned char *buffer = cmd->sense_buffer; 2553 unsigned long flags; 2554 u8 asc = 0, ascq = 0; 2555 2556 spin_lock_irqsave(&cmd->t_state_lock, flags); 2557 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2558 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2559 return 0; 2560 } 2561 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2562 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2563 2564 if (!reason && from_transport) 2565 goto after_reason; 2566 2567 if (!from_transport) 2568 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2569 2570 /* 2571 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2572 * SENSE KEY values from include/scsi/scsi.h 2573 */ 2574 switch (reason) { 2575 case TCM_NO_SENSE: 2576 /* CURRENT ERROR */ 2577 buffer[0] = 0x70; 2578 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2579 /* Not Ready */ 2580 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2581 /* NO ADDITIONAL SENSE INFORMATION */ 2582 buffer[SPC_ASC_KEY_OFFSET] = 0; 2583 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2584 break; 2585 case TCM_NON_EXISTENT_LUN: 2586 /* CURRENT ERROR */ 2587 buffer[0] = 0x70; 2588 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2589 /* ILLEGAL REQUEST */ 2590 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2591 /* LOGICAL UNIT NOT SUPPORTED */ 2592 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2593 break; 2594 case TCM_UNSUPPORTED_SCSI_OPCODE: 2595 case TCM_SECTOR_COUNT_TOO_MANY: 2596 /* CURRENT ERROR */ 2597 buffer[0] = 0x70; 2598 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2599 /* ILLEGAL REQUEST */ 2600 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2601 /* INVALID COMMAND OPERATION CODE */ 2602 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2603 break; 2604 case TCM_UNKNOWN_MODE_PAGE: 2605 /* CURRENT ERROR */ 2606 buffer[0] = 0x70; 2607 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2608 /* ILLEGAL REQUEST */ 2609 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2610 /* INVALID FIELD IN CDB */ 2611 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2612 break; 2613 case TCM_CHECK_CONDITION_ABORT_CMD: 2614 /* CURRENT ERROR */ 2615 buffer[0] = 0x70; 2616 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2617 /* ABORTED COMMAND */ 2618 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2619 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2620 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2621 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2622 break; 2623 case TCM_INCORRECT_AMOUNT_OF_DATA: 2624 /* CURRENT ERROR */ 2625 buffer[0] = 0x70; 2626 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2627 /* ABORTED COMMAND */ 2628 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2629 /* WRITE ERROR */ 2630 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2631 /* NOT ENOUGH UNSOLICITED DATA */ 2632 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2633 break; 2634 case TCM_INVALID_CDB_FIELD: 2635 /* CURRENT ERROR */ 2636 buffer[0] = 0x70; 2637 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2638 /* ILLEGAL REQUEST */ 2639 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2640 /* INVALID FIELD IN CDB */ 2641 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2642 break; 2643 case TCM_INVALID_PARAMETER_LIST: 2644 /* CURRENT ERROR */ 2645 buffer[0] = 0x70; 2646 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2647 /* ILLEGAL REQUEST */ 2648 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2649 /* INVALID FIELD IN PARAMETER LIST */ 2650 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2651 break; 2652 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2653 /* CURRENT ERROR */ 2654 buffer[0] = 0x70; 2655 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2656 /* ILLEGAL REQUEST */ 2657 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2658 /* PARAMETER LIST LENGTH ERROR */ 2659 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2660 break; 2661 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2662 /* CURRENT ERROR */ 2663 buffer[0] = 0x70; 2664 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2665 /* ABORTED COMMAND */ 2666 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2667 /* WRITE ERROR */ 2668 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2669 /* UNEXPECTED_UNSOLICITED_DATA */ 2670 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2671 break; 2672 case TCM_SERVICE_CRC_ERROR: 2673 /* CURRENT ERROR */ 2674 buffer[0] = 0x70; 2675 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2676 /* ABORTED COMMAND */ 2677 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2678 /* PROTOCOL SERVICE CRC ERROR */ 2679 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2680 /* N/A */ 2681 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2682 break; 2683 case TCM_SNACK_REJECTED: 2684 /* CURRENT ERROR */ 2685 buffer[0] = 0x70; 2686 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2687 /* ABORTED COMMAND */ 2688 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2689 /* READ ERROR */ 2690 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2691 /* FAILED RETRANSMISSION REQUEST */ 2692 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2693 break; 2694 case TCM_WRITE_PROTECTED: 2695 /* CURRENT ERROR */ 2696 buffer[0] = 0x70; 2697 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2698 /* DATA PROTECT */ 2699 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2700 /* WRITE PROTECTED */ 2701 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2702 break; 2703 case TCM_ADDRESS_OUT_OF_RANGE: 2704 /* CURRENT ERROR */ 2705 buffer[0] = 0x70; 2706 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2707 /* ILLEGAL REQUEST */ 2708 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2709 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2710 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2711 break; 2712 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2713 /* CURRENT ERROR */ 2714 buffer[0] = 0x70; 2715 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2716 /* UNIT ATTENTION */ 2717 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2718 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2719 buffer[SPC_ASC_KEY_OFFSET] = asc; 2720 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2721 break; 2722 case TCM_CHECK_CONDITION_NOT_READY: 2723 /* CURRENT ERROR */ 2724 buffer[0] = 0x70; 2725 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2726 /* Not Ready */ 2727 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2728 transport_get_sense_codes(cmd, &asc, &ascq); 2729 buffer[SPC_ASC_KEY_OFFSET] = asc; 2730 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2731 break; 2732 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2733 default: 2734 /* CURRENT ERROR */ 2735 buffer[0] = 0x70; 2736 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2737 /* 2738 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2739 * Solaris initiators. Returning NOT READY instead means the 2740 * operations will be retried a finite number of times and we 2741 * can survive intermittent errors. 2742 */ 2743 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2744 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2745 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2746 break; 2747 } 2748 /* 2749 * This code uses linux/include/scsi/scsi.h SAM status codes! 2750 */ 2751 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2752 /* 2753 * Automatically padded, this value is encoded in the fabric's 2754 * data_length response PDU containing the SCSI defined sense data. 2755 */ 2756 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2757 2758 after_reason: 2759 trace_target_cmd_complete(cmd); 2760 return cmd->se_tfo->queue_status(cmd); 2761 } 2762 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2763 2764 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2765 { 2766 if (!(cmd->transport_state & CMD_T_ABORTED)) 2767 return 0; 2768 2769 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 2770 return 1; 2771 2772 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2773 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2774 2775 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 2776 trace_target_cmd_complete(cmd); 2777 cmd->se_tfo->queue_status(cmd); 2778 2779 return 1; 2780 } 2781 EXPORT_SYMBOL(transport_check_aborted_status); 2782 2783 void transport_send_task_abort(struct se_cmd *cmd) 2784 { 2785 unsigned long flags; 2786 2787 spin_lock_irqsave(&cmd->t_state_lock, flags); 2788 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) { 2789 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2790 return; 2791 } 2792 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2793 2794 /* 2795 * If there are still expected incoming fabric WRITEs, we wait 2796 * until until they have completed before sending a TASK_ABORTED 2797 * response. This response with TASK_ABORTED status will be 2798 * queued back to fabric module by transport_check_aborted_status(). 2799 */ 2800 if (cmd->data_direction == DMA_TO_DEVICE) { 2801 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2802 cmd->transport_state |= CMD_T_ABORTED; 2803 smp_mb__after_atomic_inc(); 2804 } 2805 } 2806 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2807 2808 transport_lun_remove_cmd(cmd); 2809 2810 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 2811 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 2812 cmd->se_tfo->get_task_tag(cmd)); 2813 2814 trace_target_cmd_complete(cmd); 2815 cmd->se_tfo->queue_status(cmd); 2816 } 2817 2818 static void target_tmr_work(struct work_struct *work) 2819 { 2820 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2821 struct se_device *dev = cmd->se_dev; 2822 struct se_tmr_req *tmr = cmd->se_tmr_req; 2823 int ret; 2824 2825 switch (tmr->function) { 2826 case TMR_ABORT_TASK: 2827 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2828 break; 2829 case TMR_ABORT_TASK_SET: 2830 case TMR_CLEAR_ACA: 2831 case TMR_CLEAR_TASK_SET: 2832 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2833 break; 2834 case TMR_LUN_RESET: 2835 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2836 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2837 TMR_FUNCTION_REJECTED; 2838 break; 2839 case TMR_TARGET_WARM_RESET: 2840 tmr->response = TMR_FUNCTION_REJECTED; 2841 break; 2842 case TMR_TARGET_COLD_RESET: 2843 tmr->response = TMR_FUNCTION_REJECTED; 2844 break; 2845 default: 2846 pr_err("Uknown TMR function: 0x%02x.\n", 2847 tmr->function); 2848 tmr->response = TMR_FUNCTION_REJECTED; 2849 break; 2850 } 2851 2852 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2853 cmd->se_tfo->queue_tm_rsp(cmd); 2854 2855 transport_cmd_check_stop_to_fabric(cmd); 2856 } 2857 2858 int transport_generic_handle_tmr( 2859 struct se_cmd *cmd) 2860 { 2861 INIT_WORK(&cmd->work, target_tmr_work); 2862 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 2863 return 0; 2864 } 2865 EXPORT_SYMBOL(transport_generic_handle_tmr); 2866