1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /******************************************************************************* 3 * Filename: target_core_transport.c 4 * 5 * This file contains the Generic Target Engine Core. 6 * 7 * (c) Copyright 2002-2013 Datera, Inc. 8 * 9 * Nicholas A. Bellinger <nab@kernel.org> 10 * 11 ******************************************************************************/ 12 13 #include <linux/net.h> 14 #include <linux/delay.h> 15 #include <linux/string.h> 16 #include <linux/timer.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/kthread.h> 20 #include <linux/in.h> 21 #include <linux/cdrom.h> 22 #include <linux/module.h> 23 #include <linux/ratelimit.h> 24 #include <linux/vmalloc.h> 25 #include <asm/unaligned.h> 26 #include <net/sock.h> 27 #include <net/tcp.h> 28 #include <scsi/scsi_proto.h> 29 #include <scsi/scsi_common.h> 30 31 #include <target/target_core_base.h> 32 #include <target/target_core_backend.h> 33 #include <target/target_core_fabric.h> 34 35 #include "target_core_internal.h" 36 #include "target_core_alua.h" 37 #include "target_core_pr.h" 38 #include "target_core_ua.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/target.h> 42 43 static struct workqueue_struct *target_completion_wq; 44 static struct kmem_cache *se_sess_cache; 45 struct kmem_cache *se_ua_cache; 46 struct kmem_cache *t10_pr_reg_cache; 47 struct kmem_cache *t10_alua_lu_gp_cache; 48 struct kmem_cache *t10_alua_lu_gp_mem_cache; 49 struct kmem_cache *t10_alua_tg_pt_gp_cache; 50 struct kmem_cache *t10_alua_lba_map_cache; 51 struct kmem_cache *t10_alua_lba_map_mem_cache; 52 53 static void transport_complete_task_attr(struct se_cmd *cmd); 54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 55 static void transport_handle_queue_full(struct se_cmd *cmd, 56 struct se_device *dev, int err, bool write_pending); 57 static void target_complete_ok_work(struct work_struct *work); 58 59 int init_se_kmem_caches(void) 60 { 61 se_sess_cache = kmem_cache_create("se_sess_cache", 62 sizeof(struct se_session), __alignof__(struct se_session), 63 0, NULL); 64 if (!se_sess_cache) { 65 pr_err("kmem_cache_create() for struct se_session" 66 " failed\n"); 67 goto out; 68 } 69 se_ua_cache = kmem_cache_create("se_ua_cache", 70 sizeof(struct se_ua), __alignof__(struct se_ua), 71 0, NULL); 72 if (!se_ua_cache) { 73 pr_err("kmem_cache_create() for struct se_ua failed\n"); 74 goto out_free_sess_cache; 75 } 76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 77 sizeof(struct t10_pr_registration), 78 __alignof__(struct t10_pr_registration), 0, NULL); 79 if (!t10_pr_reg_cache) { 80 pr_err("kmem_cache_create() for struct t10_pr_registration" 81 " failed\n"); 82 goto out_free_ua_cache; 83 } 84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 86 0, NULL); 87 if (!t10_alua_lu_gp_cache) { 88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 89 " failed\n"); 90 goto out_free_pr_reg_cache; 91 } 92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 93 sizeof(struct t10_alua_lu_gp_member), 94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 95 if (!t10_alua_lu_gp_mem_cache) { 96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 97 "cache failed\n"); 98 goto out_free_lu_gp_cache; 99 } 100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 101 sizeof(struct t10_alua_tg_pt_gp), 102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 103 if (!t10_alua_tg_pt_gp_cache) { 104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 105 "cache failed\n"); 106 goto out_free_lu_gp_mem_cache; 107 } 108 t10_alua_lba_map_cache = kmem_cache_create( 109 "t10_alua_lba_map_cache", 110 sizeof(struct t10_alua_lba_map), 111 __alignof__(struct t10_alua_lba_map), 0, NULL); 112 if (!t10_alua_lba_map_cache) { 113 pr_err("kmem_cache_create() for t10_alua_lba_map_" 114 "cache failed\n"); 115 goto out_free_tg_pt_gp_cache; 116 } 117 t10_alua_lba_map_mem_cache = kmem_cache_create( 118 "t10_alua_lba_map_mem_cache", 119 sizeof(struct t10_alua_lba_map_member), 120 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 121 if (!t10_alua_lba_map_mem_cache) { 122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 123 "cache failed\n"); 124 goto out_free_lba_map_cache; 125 } 126 127 target_completion_wq = alloc_workqueue("target_completion", 128 WQ_MEM_RECLAIM, 0); 129 if (!target_completion_wq) 130 goto out_free_lba_map_mem_cache; 131 132 return 0; 133 134 out_free_lba_map_mem_cache: 135 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 136 out_free_lba_map_cache: 137 kmem_cache_destroy(t10_alua_lba_map_cache); 138 out_free_tg_pt_gp_cache: 139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 140 out_free_lu_gp_mem_cache: 141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 142 out_free_lu_gp_cache: 143 kmem_cache_destroy(t10_alua_lu_gp_cache); 144 out_free_pr_reg_cache: 145 kmem_cache_destroy(t10_pr_reg_cache); 146 out_free_ua_cache: 147 kmem_cache_destroy(se_ua_cache); 148 out_free_sess_cache: 149 kmem_cache_destroy(se_sess_cache); 150 out: 151 return -ENOMEM; 152 } 153 154 void release_se_kmem_caches(void) 155 { 156 destroy_workqueue(target_completion_wq); 157 kmem_cache_destroy(se_sess_cache); 158 kmem_cache_destroy(se_ua_cache); 159 kmem_cache_destroy(t10_pr_reg_cache); 160 kmem_cache_destroy(t10_alua_lu_gp_cache); 161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 163 kmem_cache_destroy(t10_alua_lba_map_cache); 164 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 165 } 166 167 /* This code ensures unique mib indexes are handed out. */ 168 static DEFINE_SPINLOCK(scsi_mib_index_lock); 169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 170 171 /* 172 * Allocate a new row index for the entry type specified 173 */ 174 u32 scsi_get_new_index(scsi_index_t type) 175 { 176 u32 new_index; 177 178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 179 180 spin_lock(&scsi_mib_index_lock); 181 new_index = ++scsi_mib_index[type]; 182 spin_unlock(&scsi_mib_index_lock); 183 184 return new_index; 185 } 186 187 void transport_subsystem_check_init(void) 188 { 189 int ret; 190 static int sub_api_initialized; 191 192 if (sub_api_initialized) 193 return; 194 195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock"); 196 if (ret != 0) 197 pr_err("Unable to load target_core_iblock\n"); 198 199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file"); 200 if (ret != 0) 201 pr_err("Unable to load target_core_file\n"); 202 203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi"); 204 if (ret != 0) 205 pr_err("Unable to load target_core_pscsi\n"); 206 207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user"); 208 if (ret != 0) 209 pr_err("Unable to load target_core_user\n"); 210 211 sub_api_initialized = 1; 212 } 213 214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref) 215 { 216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count); 217 218 wake_up(&sess->cmd_list_wq); 219 } 220 221 /** 222 * transport_init_session - initialize a session object 223 * @se_sess: Session object pointer. 224 * 225 * The caller must have zero-initialized @se_sess before calling this function. 226 */ 227 int transport_init_session(struct se_session *se_sess) 228 { 229 INIT_LIST_HEAD(&se_sess->sess_list); 230 INIT_LIST_HEAD(&se_sess->sess_acl_list); 231 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 232 spin_lock_init(&se_sess->sess_cmd_lock); 233 init_waitqueue_head(&se_sess->cmd_list_wq); 234 return percpu_ref_init(&se_sess->cmd_count, 235 target_release_sess_cmd_refcnt, 0, GFP_KERNEL); 236 } 237 EXPORT_SYMBOL(transport_init_session); 238 239 /** 240 * transport_alloc_session - allocate a session object and initialize it 241 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 242 */ 243 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops) 244 { 245 struct se_session *se_sess; 246 int ret; 247 248 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 249 if (!se_sess) { 250 pr_err("Unable to allocate struct se_session from" 251 " se_sess_cache\n"); 252 return ERR_PTR(-ENOMEM); 253 } 254 ret = transport_init_session(se_sess); 255 if (ret < 0) { 256 kmem_cache_free(se_sess_cache, se_sess); 257 return ERR_PTR(ret); 258 } 259 se_sess->sup_prot_ops = sup_prot_ops; 260 261 return se_sess; 262 } 263 EXPORT_SYMBOL(transport_alloc_session); 264 265 /** 266 * transport_alloc_session_tags - allocate target driver private data 267 * @se_sess: Session pointer. 268 * @tag_num: Maximum number of in-flight commands between initiator and target. 269 * @tag_size: Size in bytes of the private data a target driver associates with 270 * each command. 271 */ 272 int transport_alloc_session_tags(struct se_session *se_sess, 273 unsigned int tag_num, unsigned int tag_size) 274 { 275 int rc; 276 277 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num, 278 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 279 if (!se_sess->sess_cmd_map) { 280 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 281 return -ENOMEM; 282 } 283 284 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1, 285 false, GFP_KERNEL, NUMA_NO_NODE); 286 if (rc < 0) { 287 pr_err("Unable to init se_sess->sess_tag_pool," 288 " tag_num: %u\n", tag_num); 289 kvfree(se_sess->sess_cmd_map); 290 se_sess->sess_cmd_map = NULL; 291 return -ENOMEM; 292 } 293 294 return 0; 295 } 296 EXPORT_SYMBOL(transport_alloc_session_tags); 297 298 /** 299 * transport_init_session_tags - allocate a session and target driver private data 300 * @tag_num: Maximum number of in-flight commands between initiator and target. 301 * @tag_size: Size in bytes of the private data a target driver associates with 302 * each command. 303 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 304 */ 305 static struct se_session * 306 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size, 307 enum target_prot_op sup_prot_ops) 308 { 309 struct se_session *se_sess; 310 int rc; 311 312 if (tag_num != 0 && !tag_size) { 313 pr_err("init_session_tags called with percpu-ida tag_num:" 314 " %u, but zero tag_size\n", tag_num); 315 return ERR_PTR(-EINVAL); 316 } 317 if (!tag_num && tag_size) { 318 pr_err("init_session_tags called with percpu-ida tag_size:" 319 " %u, but zero tag_num\n", tag_size); 320 return ERR_PTR(-EINVAL); 321 } 322 323 se_sess = transport_alloc_session(sup_prot_ops); 324 if (IS_ERR(se_sess)) 325 return se_sess; 326 327 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 328 if (rc < 0) { 329 transport_free_session(se_sess); 330 return ERR_PTR(-ENOMEM); 331 } 332 333 return se_sess; 334 } 335 336 /* 337 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 338 */ 339 void __transport_register_session( 340 struct se_portal_group *se_tpg, 341 struct se_node_acl *se_nacl, 342 struct se_session *se_sess, 343 void *fabric_sess_ptr) 344 { 345 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 346 unsigned char buf[PR_REG_ISID_LEN]; 347 unsigned long flags; 348 349 se_sess->se_tpg = se_tpg; 350 se_sess->fabric_sess_ptr = fabric_sess_ptr; 351 /* 352 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 353 * 354 * Only set for struct se_session's that will actually be moving I/O. 355 * eg: *NOT* discovery sessions. 356 */ 357 if (se_nacl) { 358 /* 359 * 360 * Determine if fabric allows for T10-PI feature bits exposed to 361 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 362 * 363 * If so, then always save prot_type on a per se_node_acl node 364 * basis and re-instate the previous sess_prot_type to avoid 365 * disabling PI from below any previously initiator side 366 * registered LUNs. 367 */ 368 if (se_nacl->saved_prot_type) 369 se_sess->sess_prot_type = se_nacl->saved_prot_type; 370 else if (tfo->tpg_check_prot_fabric_only) 371 se_sess->sess_prot_type = se_nacl->saved_prot_type = 372 tfo->tpg_check_prot_fabric_only(se_tpg); 373 /* 374 * If the fabric module supports an ISID based TransportID, 375 * save this value in binary from the fabric I_T Nexus now. 376 */ 377 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 378 memset(&buf[0], 0, PR_REG_ISID_LEN); 379 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 380 &buf[0], PR_REG_ISID_LEN); 381 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 382 } 383 384 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 385 /* 386 * The se_nacl->nacl_sess pointer will be set to the 387 * last active I_T Nexus for each struct se_node_acl. 388 */ 389 se_nacl->nacl_sess = se_sess; 390 391 list_add_tail(&se_sess->sess_acl_list, 392 &se_nacl->acl_sess_list); 393 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 394 } 395 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 396 397 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 398 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr); 399 } 400 EXPORT_SYMBOL(__transport_register_session); 401 402 void transport_register_session( 403 struct se_portal_group *se_tpg, 404 struct se_node_acl *se_nacl, 405 struct se_session *se_sess, 406 void *fabric_sess_ptr) 407 { 408 unsigned long flags; 409 410 spin_lock_irqsave(&se_tpg->session_lock, flags); 411 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 412 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 413 } 414 EXPORT_SYMBOL(transport_register_session); 415 416 struct se_session * 417 target_setup_session(struct se_portal_group *tpg, 418 unsigned int tag_num, unsigned int tag_size, 419 enum target_prot_op prot_op, 420 const char *initiatorname, void *private, 421 int (*callback)(struct se_portal_group *, 422 struct se_session *, void *)) 423 { 424 struct se_session *sess; 425 426 /* 427 * If the fabric driver is using percpu-ida based pre allocation 428 * of I/O descriptor tags, go ahead and perform that setup now.. 429 */ 430 if (tag_num != 0) 431 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 432 else 433 sess = transport_alloc_session(prot_op); 434 435 if (IS_ERR(sess)) 436 return sess; 437 438 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 439 (unsigned char *)initiatorname); 440 if (!sess->se_node_acl) { 441 transport_free_session(sess); 442 return ERR_PTR(-EACCES); 443 } 444 /* 445 * Go ahead and perform any remaining fabric setup that is 446 * required before transport_register_session(). 447 */ 448 if (callback != NULL) { 449 int rc = callback(tpg, sess, private); 450 if (rc) { 451 transport_free_session(sess); 452 return ERR_PTR(rc); 453 } 454 } 455 456 transport_register_session(tpg, sess->se_node_acl, sess, private); 457 return sess; 458 } 459 EXPORT_SYMBOL(target_setup_session); 460 461 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 462 { 463 struct se_session *se_sess; 464 ssize_t len = 0; 465 466 spin_lock_bh(&se_tpg->session_lock); 467 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 468 if (!se_sess->se_node_acl) 469 continue; 470 if (!se_sess->se_node_acl->dynamic_node_acl) 471 continue; 472 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 473 break; 474 475 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 476 se_sess->se_node_acl->initiatorname); 477 len += 1; /* Include NULL terminator */ 478 } 479 spin_unlock_bh(&se_tpg->session_lock); 480 481 return len; 482 } 483 EXPORT_SYMBOL(target_show_dynamic_sessions); 484 485 static void target_complete_nacl(struct kref *kref) 486 { 487 struct se_node_acl *nacl = container_of(kref, 488 struct se_node_acl, acl_kref); 489 struct se_portal_group *se_tpg = nacl->se_tpg; 490 491 if (!nacl->dynamic_stop) { 492 complete(&nacl->acl_free_comp); 493 return; 494 } 495 496 mutex_lock(&se_tpg->acl_node_mutex); 497 list_del_init(&nacl->acl_list); 498 mutex_unlock(&se_tpg->acl_node_mutex); 499 500 core_tpg_wait_for_nacl_pr_ref(nacl); 501 core_free_device_list_for_node(nacl, se_tpg); 502 kfree(nacl); 503 } 504 505 void target_put_nacl(struct se_node_acl *nacl) 506 { 507 kref_put(&nacl->acl_kref, target_complete_nacl); 508 } 509 EXPORT_SYMBOL(target_put_nacl); 510 511 void transport_deregister_session_configfs(struct se_session *se_sess) 512 { 513 struct se_node_acl *se_nacl; 514 unsigned long flags; 515 /* 516 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 517 */ 518 se_nacl = se_sess->se_node_acl; 519 if (se_nacl) { 520 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 521 if (!list_empty(&se_sess->sess_acl_list)) 522 list_del_init(&se_sess->sess_acl_list); 523 /* 524 * If the session list is empty, then clear the pointer. 525 * Otherwise, set the struct se_session pointer from the tail 526 * element of the per struct se_node_acl active session list. 527 */ 528 if (list_empty(&se_nacl->acl_sess_list)) 529 se_nacl->nacl_sess = NULL; 530 else { 531 se_nacl->nacl_sess = container_of( 532 se_nacl->acl_sess_list.prev, 533 struct se_session, sess_acl_list); 534 } 535 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 536 } 537 } 538 EXPORT_SYMBOL(transport_deregister_session_configfs); 539 540 void transport_free_session(struct se_session *se_sess) 541 { 542 struct se_node_acl *se_nacl = se_sess->se_node_acl; 543 544 /* 545 * Drop the se_node_acl->nacl_kref obtained from within 546 * core_tpg_get_initiator_node_acl(). 547 */ 548 if (se_nacl) { 549 struct se_portal_group *se_tpg = se_nacl->se_tpg; 550 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 551 unsigned long flags; 552 553 se_sess->se_node_acl = NULL; 554 555 /* 556 * Also determine if we need to drop the extra ->cmd_kref if 557 * it had been previously dynamically generated, and 558 * the endpoint is not caching dynamic ACLs. 559 */ 560 mutex_lock(&se_tpg->acl_node_mutex); 561 if (se_nacl->dynamic_node_acl && 562 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 563 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 564 if (list_empty(&se_nacl->acl_sess_list)) 565 se_nacl->dynamic_stop = true; 566 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 567 568 if (se_nacl->dynamic_stop) 569 list_del_init(&se_nacl->acl_list); 570 } 571 mutex_unlock(&se_tpg->acl_node_mutex); 572 573 if (se_nacl->dynamic_stop) 574 target_put_nacl(se_nacl); 575 576 target_put_nacl(se_nacl); 577 } 578 if (se_sess->sess_cmd_map) { 579 sbitmap_queue_free(&se_sess->sess_tag_pool); 580 kvfree(se_sess->sess_cmd_map); 581 } 582 percpu_ref_exit(&se_sess->cmd_count); 583 kmem_cache_free(se_sess_cache, se_sess); 584 } 585 EXPORT_SYMBOL(transport_free_session); 586 587 static int target_release_res(struct se_device *dev, void *data) 588 { 589 struct se_session *sess = data; 590 591 if (dev->reservation_holder == sess) 592 target_release_reservation(dev); 593 return 0; 594 } 595 596 void transport_deregister_session(struct se_session *se_sess) 597 { 598 struct se_portal_group *se_tpg = se_sess->se_tpg; 599 unsigned long flags; 600 601 if (!se_tpg) { 602 transport_free_session(se_sess); 603 return; 604 } 605 606 spin_lock_irqsave(&se_tpg->session_lock, flags); 607 list_del(&se_sess->sess_list); 608 se_sess->se_tpg = NULL; 609 se_sess->fabric_sess_ptr = NULL; 610 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 611 612 /* 613 * Since the session is being removed, release SPC-2 614 * reservations held by the session that is disappearing. 615 */ 616 target_for_each_device(target_release_res, se_sess); 617 618 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 619 se_tpg->se_tpg_tfo->fabric_name); 620 /* 621 * If last kref is dropping now for an explicit NodeACL, awake sleeping 622 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 623 * removal context from within transport_free_session() code. 624 * 625 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 626 * to release all remaining generate_node_acl=1 created ACL resources. 627 */ 628 629 transport_free_session(se_sess); 630 } 631 EXPORT_SYMBOL(transport_deregister_session); 632 633 void target_remove_session(struct se_session *se_sess) 634 { 635 transport_deregister_session_configfs(se_sess); 636 transport_deregister_session(se_sess); 637 } 638 EXPORT_SYMBOL(target_remove_session); 639 640 static void target_remove_from_state_list(struct se_cmd *cmd) 641 { 642 struct se_device *dev = cmd->se_dev; 643 unsigned long flags; 644 645 if (!dev) 646 return; 647 648 spin_lock_irqsave(&dev->execute_task_lock, flags); 649 if (cmd->state_active) { 650 list_del(&cmd->state_list); 651 cmd->state_active = false; 652 } 653 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 654 } 655 656 /* 657 * This function is called by the target core after the target core has 658 * finished processing a SCSI command or SCSI TMF. Both the regular command 659 * processing code and the code for aborting commands can call this 660 * function. CMD_T_STOP is set if and only if another thread is waiting 661 * inside transport_wait_for_tasks() for t_transport_stop_comp. 662 */ 663 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 664 { 665 unsigned long flags; 666 667 target_remove_from_state_list(cmd); 668 669 /* 670 * Clear struct se_cmd->se_lun before the handoff to FE. 671 */ 672 cmd->se_lun = NULL; 673 674 spin_lock_irqsave(&cmd->t_state_lock, flags); 675 /* 676 * Determine if frontend context caller is requesting the stopping of 677 * this command for frontend exceptions. 678 */ 679 if (cmd->transport_state & CMD_T_STOP) { 680 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 681 __func__, __LINE__, cmd->tag); 682 683 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 684 685 complete_all(&cmd->t_transport_stop_comp); 686 return 1; 687 } 688 cmd->transport_state &= ~CMD_T_ACTIVE; 689 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 690 691 /* 692 * Some fabric modules like tcm_loop can release their internally 693 * allocated I/O reference and struct se_cmd now. 694 * 695 * Fabric modules are expected to return '1' here if the se_cmd being 696 * passed is released at this point, or zero if not being released. 697 */ 698 return cmd->se_tfo->check_stop_free(cmd); 699 } 700 701 static void transport_lun_remove_cmd(struct se_cmd *cmd) 702 { 703 struct se_lun *lun = cmd->se_lun; 704 705 if (!lun) 706 return; 707 708 if (cmpxchg(&cmd->lun_ref_active, true, false)) 709 percpu_ref_put(&lun->lun_ref); 710 } 711 712 static void target_complete_failure_work(struct work_struct *work) 713 { 714 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 715 716 transport_generic_request_failure(cmd, 717 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 718 } 719 720 /* 721 * Used when asking transport to copy Sense Data from the underlying 722 * Linux/SCSI struct scsi_cmnd 723 */ 724 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 725 { 726 struct se_device *dev = cmd->se_dev; 727 728 WARN_ON(!cmd->se_lun); 729 730 if (!dev) 731 return NULL; 732 733 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 734 return NULL; 735 736 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 737 738 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 739 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 740 return cmd->sense_buffer; 741 } 742 743 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense) 744 { 745 unsigned char *cmd_sense_buf; 746 unsigned long flags; 747 748 spin_lock_irqsave(&cmd->t_state_lock, flags); 749 cmd_sense_buf = transport_get_sense_buffer(cmd); 750 if (!cmd_sense_buf) { 751 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 752 return; 753 } 754 755 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 756 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length); 757 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 758 } 759 EXPORT_SYMBOL(transport_copy_sense_to_cmd); 760 761 static void target_handle_abort(struct se_cmd *cmd) 762 { 763 bool tas = cmd->transport_state & CMD_T_TAS; 764 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF; 765 int ret; 766 767 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas); 768 769 if (tas) { 770 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 771 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 772 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 773 cmd->t_task_cdb[0], cmd->tag); 774 trace_target_cmd_complete(cmd); 775 ret = cmd->se_tfo->queue_status(cmd); 776 if (ret) { 777 transport_handle_queue_full(cmd, cmd->se_dev, 778 ret, false); 779 return; 780 } 781 } else { 782 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED; 783 cmd->se_tfo->queue_tm_rsp(cmd); 784 } 785 } else { 786 /* 787 * Allow the fabric driver to unmap any resources before 788 * releasing the descriptor via TFO->release_cmd(). 789 */ 790 cmd->se_tfo->aborted_task(cmd); 791 if (ack_kref) 792 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0); 793 /* 794 * To do: establish a unit attention condition on the I_T 795 * nexus associated with cmd. See also the paragraph "Aborting 796 * commands" in SAM. 797 */ 798 } 799 800 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0); 801 802 transport_lun_remove_cmd(cmd); 803 804 transport_cmd_check_stop_to_fabric(cmd); 805 } 806 807 static void target_abort_work(struct work_struct *work) 808 { 809 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 810 811 target_handle_abort(cmd); 812 } 813 814 static bool target_cmd_interrupted(struct se_cmd *cmd) 815 { 816 int post_ret; 817 818 if (cmd->transport_state & CMD_T_ABORTED) { 819 if (cmd->transport_complete_callback) 820 cmd->transport_complete_callback(cmd, false, &post_ret); 821 INIT_WORK(&cmd->work, target_abort_work); 822 queue_work(target_completion_wq, &cmd->work); 823 return true; 824 } else if (cmd->transport_state & CMD_T_STOP) { 825 if (cmd->transport_complete_callback) 826 cmd->transport_complete_callback(cmd, false, &post_ret); 827 complete_all(&cmd->t_transport_stop_comp); 828 return true; 829 } 830 831 return false; 832 } 833 834 /* May be called from interrupt context so must not sleep. */ 835 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 836 { 837 int success; 838 unsigned long flags; 839 840 if (target_cmd_interrupted(cmd)) 841 return; 842 843 cmd->scsi_status = scsi_status; 844 845 spin_lock_irqsave(&cmd->t_state_lock, flags); 846 switch (cmd->scsi_status) { 847 case SAM_STAT_CHECK_CONDITION: 848 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 849 success = 1; 850 else 851 success = 0; 852 break; 853 default: 854 success = 1; 855 break; 856 } 857 858 cmd->t_state = TRANSPORT_COMPLETE; 859 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 860 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 861 862 INIT_WORK(&cmd->work, success ? target_complete_ok_work : 863 target_complete_failure_work); 864 if (cmd->se_cmd_flags & SCF_USE_CPUID) 865 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 866 else 867 queue_work(target_completion_wq, &cmd->work); 868 } 869 EXPORT_SYMBOL(target_complete_cmd); 870 871 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 872 { 873 if ((scsi_status == SAM_STAT_GOOD || 874 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 875 length < cmd->data_length) { 876 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 877 cmd->residual_count += cmd->data_length - length; 878 } else { 879 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 880 cmd->residual_count = cmd->data_length - length; 881 } 882 883 cmd->data_length = length; 884 } 885 886 target_complete_cmd(cmd, scsi_status); 887 } 888 EXPORT_SYMBOL(target_complete_cmd_with_length); 889 890 static void target_add_to_state_list(struct se_cmd *cmd) 891 { 892 struct se_device *dev = cmd->se_dev; 893 unsigned long flags; 894 895 spin_lock_irqsave(&dev->execute_task_lock, flags); 896 if (!cmd->state_active) { 897 list_add_tail(&cmd->state_list, &dev->state_list); 898 cmd->state_active = true; 899 } 900 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 901 } 902 903 /* 904 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 905 */ 906 static void transport_write_pending_qf(struct se_cmd *cmd); 907 static void transport_complete_qf(struct se_cmd *cmd); 908 909 void target_qf_do_work(struct work_struct *work) 910 { 911 struct se_device *dev = container_of(work, struct se_device, 912 qf_work_queue); 913 LIST_HEAD(qf_cmd_list); 914 struct se_cmd *cmd, *cmd_tmp; 915 916 spin_lock_irq(&dev->qf_cmd_lock); 917 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 918 spin_unlock_irq(&dev->qf_cmd_lock); 919 920 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 921 list_del(&cmd->se_qf_node); 922 atomic_dec_mb(&dev->dev_qf_count); 923 924 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 925 " context: %s\n", cmd->se_tfo->fabric_name, cmd, 926 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 927 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 928 : "UNKNOWN"); 929 930 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 931 transport_write_pending_qf(cmd); 932 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 933 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 934 transport_complete_qf(cmd); 935 } 936 } 937 938 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 939 { 940 switch (cmd->data_direction) { 941 case DMA_NONE: 942 return "NONE"; 943 case DMA_FROM_DEVICE: 944 return "READ"; 945 case DMA_TO_DEVICE: 946 return "WRITE"; 947 case DMA_BIDIRECTIONAL: 948 return "BIDI"; 949 default: 950 break; 951 } 952 953 return "UNKNOWN"; 954 } 955 956 void transport_dump_dev_state( 957 struct se_device *dev, 958 char *b, 959 int *bl) 960 { 961 *bl += sprintf(b + *bl, "Status: "); 962 if (dev->export_count) 963 *bl += sprintf(b + *bl, "ACTIVATED"); 964 else 965 *bl += sprintf(b + *bl, "DEACTIVATED"); 966 967 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 968 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 969 dev->dev_attrib.block_size, 970 dev->dev_attrib.hw_max_sectors); 971 *bl += sprintf(b + *bl, " "); 972 } 973 974 void transport_dump_vpd_proto_id( 975 struct t10_vpd *vpd, 976 unsigned char *p_buf, 977 int p_buf_len) 978 { 979 unsigned char buf[VPD_TMP_BUF_SIZE]; 980 int len; 981 982 memset(buf, 0, VPD_TMP_BUF_SIZE); 983 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 984 985 switch (vpd->protocol_identifier) { 986 case 0x00: 987 sprintf(buf+len, "Fibre Channel\n"); 988 break; 989 case 0x10: 990 sprintf(buf+len, "Parallel SCSI\n"); 991 break; 992 case 0x20: 993 sprintf(buf+len, "SSA\n"); 994 break; 995 case 0x30: 996 sprintf(buf+len, "IEEE 1394\n"); 997 break; 998 case 0x40: 999 sprintf(buf+len, "SCSI Remote Direct Memory Access" 1000 " Protocol\n"); 1001 break; 1002 case 0x50: 1003 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 1004 break; 1005 case 0x60: 1006 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 1007 break; 1008 case 0x70: 1009 sprintf(buf+len, "Automation/Drive Interface Transport" 1010 " Protocol\n"); 1011 break; 1012 case 0x80: 1013 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 1014 break; 1015 default: 1016 sprintf(buf+len, "Unknown 0x%02x\n", 1017 vpd->protocol_identifier); 1018 break; 1019 } 1020 1021 if (p_buf) 1022 strncpy(p_buf, buf, p_buf_len); 1023 else 1024 pr_debug("%s", buf); 1025 } 1026 1027 void 1028 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 1029 { 1030 /* 1031 * Check if the Protocol Identifier Valid (PIV) bit is set.. 1032 * 1033 * from spc3r23.pdf section 7.5.1 1034 */ 1035 if (page_83[1] & 0x80) { 1036 vpd->protocol_identifier = (page_83[0] & 0xf0); 1037 vpd->protocol_identifier_set = 1; 1038 transport_dump_vpd_proto_id(vpd, NULL, 0); 1039 } 1040 } 1041 EXPORT_SYMBOL(transport_set_vpd_proto_id); 1042 1043 int transport_dump_vpd_assoc( 1044 struct t10_vpd *vpd, 1045 unsigned char *p_buf, 1046 int p_buf_len) 1047 { 1048 unsigned char buf[VPD_TMP_BUF_SIZE]; 1049 int ret = 0; 1050 int len; 1051 1052 memset(buf, 0, VPD_TMP_BUF_SIZE); 1053 len = sprintf(buf, "T10 VPD Identifier Association: "); 1054 1055 switch (vpd->association) { 1056 case 0x00: 1057 sprintf(buf+len, "addressed logical unit\n"); 1058 break; 1059 case 0x10: 1060 sprintf(buf+len, "target port\n"); 1061 break; 1062 case 0x20: 1063 sprintf(buf+len, "SCSI target device\n"); 1064 break; 1065 default: 1066 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 1067 ret = -EINVAL; 1068 break; 1069 } 1070 1071 if (p_buf) 1072 strncpy(p_buf, buf, p_buf_len); 1073 else 1074 pr_debug("%s", buf); 1075 1076 return ret; 1077 } 1078 1079 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 1080 { 1081 /* 1082 * The VPD identification association.. 1083 * 1084 * from spc3r23.pdf Section 7.6.3.1 Table 297 1085 */ 1086 vpd->association = (page_83[1] & 0x30); 1087 return transport_dump_vpd_assoc(vpd, NULL, 0); 1088 } 1089 EXPORT_SYMBOL(transport_set_vpd_assoc); 1090 1091 int transport_dump_vpd_ident_type( 1092 struct t10_vpd *vpd, 1093 unsigned char *p_buf, 1094 int p_buf_len) 1095 { 1096 unsigned char buf[VPD_TMP_BUF_SIZE]; 1097 int ret = 0; 1098 int len; 1099 1100 memset(buf, 0, VPD_TMP_BUF_SIZE); 1101 len = sprintf(buf, "T10 VPD Identifier Type: "); 1102 1103 switch (vpd->device_identifier_type) { 1104 case 0x00: 1105 sprintf(buf+len, "Vendor specific\n"); 1106 break; 1107 case 0x01: 1108 sprintf(buf+len, "T10 Vendor ID based\n"); 1109 break; 1110 case 0x02: 1111 sprintf(buf+len, "EUI-64 based\n"); 1112 break; 1113 case 0x03: 1114 sprintf(buf+len, "NAA\n"); 1115 break; 1116 case 0x04: 1117 sprintf(buf+len, "Relative target port identifier\n"); 1118 break; 1119 case 0x08: 1120 sprintf(buf+len, "SCSI name string\n"); 1121 break; 1122 default: 1123 sprintf(buf+len, "Unsupported: 0x%02x\n", 1124 vpd->device_identifier_type); 1125 ret = -EINVAL; 1126 break; 1127 } 1128 1129 if (p_buf) { 1130 if (p_buf_len < strlen(buf)+1) 1131 return -EINVAL; 1132 strncpy(p_buf, buf, p_buf_len); 1133 } else { 1134 pr_debug("%s", buf); 1135 } 1136 1137 return ret; 1138 } 1139 1140 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1141 { 1142 /* 1143 * The VPD identifier type.. 1144 * 1145 * from spc3r23.pdf Section 7.6.3.1 Table 298 1146 */ 1147 vpd->device_identifier_type = (page_83[1] & 0x0f); 1148 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1149 } 1150 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1151 1152 int transport_dump_vpd_ident( 1153 struct t10_vpd *vpd, 1154 unsigned char *p_buf, 1155 int p_buf_len) 1156 { 1157 unsigned char buf[VPD_TMP_BUF_SIZE]; 1158 int ret = 0; 1159 1160 memset(buf, 0, VPD_TMP_BUF_SIZE); 1161 1162 switch (vpd->device_identifier_code_set) { 1163 case 0x01: /* Binary */ 1164 snprintf(buf, sizeof(buf), 1165 "T10 VPD Binary Device Identifier: %s\n", 1166 &vpd->device_identifier[0]); 1167 break; 1168 case 0x02: /* ASCII */ 1169 snprintf(buf, sizeof(buf), 1170 "T10 VPD ASCII Device Identifier: %s\n", 1171 &vpd->device_identifier[0]); 1172 break; 1173 case 0x03: /* UTF-8 */ 1174 snprintf(buf, sizeof(buf), 1175 "T10 VPD UTF-8 Device Identifier: %s\n", 1176 &vpd->device_identifier[0]); 1177 break; 1178 default: 1179 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1180 " 0x%02x", vpd->device_identifier_code_set); 1181 ret = -EINVAL; 1182 break; 1183 } 1184 1185 if (p_buf) 1186 strncpy(p_buf, buf, p_buf_len); 1187 else 1188 pr_debug("%s", buf); 1189 1190 return ret; 1191 } 1192 1193 int 1194 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1195 { 1196 static const char hex_str[] = "0123456789abcdef"; 1197 int j = 0, i = 4; /* offset to start of the identifier */ 1198 1199 /* 1200 * The VPD Code Set (encoding) 1201 * 1202 * from spc3r23.pdf Section 7.6.3.1 Table 296 1203 */ 1204 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1205 switch (vpd->device_identifier_code_set) { 1206 case 0x01: /* Binary */ 1207 vpd->device_identifier[j++] = 1208 hex_str[vpd->device_identifier_type]; 1209 while (i < (4 + page_83[3])) { 1210 vpd->device_identifier[j++] = 1211 hex_str[(page_83[i] & 0xf0) >> 4]; 1212 vpd->device_identifier[j++] = 1213 hex_str[page_83[i] & 0x0f]; 1214 i++; 1215 } 1216 break; 1217 case 0x02: /* ASCII */ 1218 case 0x03: /* UTF-8 */ 1219 while (i < (4 + page_83[3])) 1220 vpd->device_identifier[j++] = page_83[i++]; 1221 break; 1222 default: 1223 break; 1224 } 1225 1226 return transport_dump_vpd_ident(vpd, NULL, 0); 1227 } 1228 EXPORT_SYMBOL(transport_set_vpd_ident); 1229 1230 static sense_reason_t 1231 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1232 unsigned int size) 1233 { 1234 u32 mtl; 1235 1236 if (!cmd->se_tfo->max_data_sg_nents) 1237 return TCM_NO_SENSE; 1238 /* 1239 * Check if fabric enforced maximum SGL entries per I/O descriptor 1240 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1241 * residual_count and reduce original cmd->data_length to maximum 1242 * length based on single PAGE_SIZE entry scatter-lists. 1243 */ 1244 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1245 if (cmd->data_length > mtl) { 1246 /* 1247 * If an existing CDB overflow is present, calculate new residual 1248 * based on CDB size minus fabric maximum transfer length. 1249 * 1250 * If an existing CDB underflow is present, calculate new residual 1251 * based on original cmd->data_length minus fabric maximum transfer 1252 * length. 1253 * 1254 * Otherwise, set the underflow residual based on cmd->data_length 1255 * minus fabric maximum transfer length. 1256 */ 1257 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1258 cmd->residual_count = (size - mtl); 1259 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1260 u32 orig_dl = size + cmd->residual_count; 1261 cmd->residual_count = (orig_dl - mtl); 1262 } else { 1263 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1264 cmd->residual_count = (cmd->data_length - mtl); 1265 } 1266 cmd->data_length = mtl; 1267 /* 1268 * Reset sbc_check_prot() calculated protection payload 1269 * length based upon the new smaller MTL. 1270 */ 1271 if (cmd->prot_length) { 1272 u32 sectors = (mtl / dev->dev_attrib.block_size); 1273 cmd->prot_length = dev->prot_length * sectors; 1274 } 1275 } 1276 return TCM_NO_SENSE; 1277 } 1278 1279 /** 1280 * target_cmd_size_check - Check whether there will be a residual. 1281 * @cmd: SCSI command. 1282 * @size: Data buffer size derived from CDB. The data buffer size provided by 1283 * the SCSI transport driver is available in @cmd->data_length. 1284 * 1285 * Compare the data buffer size from the CDB with the data buffer limit from the transport 1286 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary. 1287 * 1288 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd(). 1289 * 1290 * Return: TCM_NO_SENSE 1291 */ 1292 sense_reason_t 1293 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1294 { 1295 struct se_device *dev = cmd->se_dev; 1296 1297 if (cmd->unknown_data_length) { 1298 cmd->data_length = size; 1299 } else if (size != cmd->data_length) { 1300 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" 1301 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1302 " 0x%02x\n", cmd->se_tfo->fabric_name, 1303 cmd->data_length, size, cmd->t_task_cdb[0]); 1304 1305 if (cmd->data_direction == DMA_TO_DEVICE) { 1306 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1307 pr_err_ratelimited("Rejecting underflow/overflow" 1308 " for WRITE data CDB\n"); 1309 return TCM_INVALID_CDB_FIELD; 1310 } 1311 /* 1312 * Some fabric drivers like iscsi-target still expect to 1313 * always reject overflow writes. Reject this case until 1314 * full fabric driver level support for overflow writes 1315 * is introduced tree-wide. 1316 */ 1317 if (size > cmd->data_length) { 1318 pr_err_ratelimited("Rejecting overflow for" 1319 " WRITE control CDB\n"); 1320 return TCM_INVALID_CDB_FIELD; 1321 } 1322 } 1323 /* 1324 * Reject READ_* or WRITE_* with overflow/underflow for 1325 * type SCF_SCSI_DATA_CDB. 1326 */ 1327 if (dev->dev_attrib.block_size != 512) { 1328 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1329 " CDB on non 512-byte sector setup subsystem" 1330 " plugin: %s\n", dev->transport->name); 1331 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1332 return TCM_INVALID_CDB_FIELD; 1333 } 1334 /* 1335 * For the overflow case keep the existing fabric provided 1336 * ->data_length. Otherwise for the underflow case, reset 1337 * ->data_length to the smaller SCSI expected data transfer 1338 * length. 1339 */ 1340 if (size > cmd->data_length) { 1341 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1342 cmd->residual_count = (size - cmd->data_length); 1343 } else { 1344 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1345 cmd->residual_count = (cmd->data_length - size); 1346 cmd->data_length = size; 1347 } 1348 } 1349 1350 return target_check_max_data_sg_nents(cmd, dev, size); 1351 1352 } 1353 1354 /* 1355 * Used by fabric modules containing a local struct se_cmd within their 1356 * fabric dependent per I/O descriptor. 1357 * 1358 * Preserves the value of @cmd->tag. 1359 */ 1360 void transport_init_se_cmd( 1361 struct se_cmd *cmd, 1362 const struct target_core_fabric_ops *tfo, 1363 struct se_session *se_sess, 1364 u32 data_length, 1365 int data_direction, 1366 int task_attr, 1367 unsigned char *sense_buffer, u64 unpacked_lun) 1368 { 1369 INIT_LIST_HEAD(&cmd->se_delayed_node); 1370 INIT_LIST_HEAD(&cmd->se_qf_node); 1371 INIT_LIST_HEAD(&cmd->se_cmd_list); 1372 INIT_LIST_HEAD(&cmd->state_list); 1373 init_completion(&cmd->t_transport_stop_comp); 1374 cmd->free_compl = NULL; 1375 cmd->abrt_compl = NULL; 1376 spin_lock_init(&cmd->t_state_lock); 1377 INIT_WORK(&cmd->work, NULL); 1378 kref_init(&cmd->cmd_kref); 1379 1380 cmd->se_tfo = tfo; 1381 cmd->se_sess = se_sess; 1382 cmd->data_length = data_length; 1383 cmd->data_direction = data_direction; 1384 cmd->sam_task_attr = task_attr; 1385 cmd->sense_buffer = sense_buffer; 1386 cmd->orig_fe_lun = unpacked_lun; 1387 1388 cmd->state_active = false; 1389 } 1390 EXPORT_SYMBOL(transport_init_se_cmd); 1391 1392 static sense_reason_t 1393 transport_check_alloc_task_attr(struct se_cmd *cmd) 1394 { 1395 struct se_device *dev = cmd->se_dev; 1396 1397 /* 1398 * Check if SAM Task Attribute emulation is enabled for this 1399 * struct se_device storage object 1400 */ 1401 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1402 return 0; 1403 1404 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1405 pr_debug("SAM Task Attribute ACA" 1406 " emulation is not supported\n"); 1407 return TCM_INVALID_CDB_FIELD; 1408 } 1409 1410 return 0; 1411 } 1412 1413 sense_reason_t 1414 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb) 1415 { 1416 sense_reason_t ret; 1417 1418 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1419 /* 1420 * Ensure that the received CDB is less than the max (252 + 8) bytes 1421 * for VARIABLE_LENGTH_CMD 1422 */ 1423 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1424 pr_err("Received SCSI CDB with command_size: %d that" 1425 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1426 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1427 ret = TCM_INVALID_CDB_FIELD; 1428 goto err; 1429 } 1430 /* 1431 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1432 * allocate the additional extended CDB buffer now.. Otherwise 1433 * setup the pointer from __t_task_cdb to t_task_cdb. 1434 */ 1435 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1436 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1437 GFP_KERNEL); 1438 if (!cmd->t_task_cdb) { 1439 pr_err("Unable to allocate cmd->t_task_cdb" 1440 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1441 scsi_command_size(cdb), 1442 (unsigned long)sizeof(cmd->__t_task_cdb)); 1443 ret = TCM_OUT_OF_RESOURCES; 1444 goto err; 1445 } 1446 } 1447 /* 1448 * Copy the original CDB into cmd-> 1449 */ 1450 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1451 1452 trace_target_sequencer_start(cmd); 1453 return 0; 1454 1455 err: 1456 /* 1457 * Copy the CDB here to allow trace_target_cmd_complete() to 1458 * print the cdb to the trace buffers. 1459 */ 1460 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb), 1461 (unsigned int)TCM_MAX_COMMAND_SIZE)); 1462 return ret; 1463 } 1464 EXPORT_SYMBOL(target_cmd_init_cdb); 1465 1466 sense_reason_t 1467 target_cmd_parse_cdb(struct se_cmd *cmd) 1468 { 1469 struct se_device *dev = cmd->se_dev; 1470 sense_reason_t ret; 1471 1472 ret = dev->transport->parse_cdb(cmd); 1473 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1474 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1475 cmd->se_tfo->fabric_name, 1476 cmd->se_sess->se_node_acl->initiatorname, 1477 cmd->t_task_cdb[0]); 1478 if (ret) 1479 return ret; 1480 1481 ret = transport_check_alloc_task_attr(cmd); 1482 if (ret) 1483 return ret; 1484 1485 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1486 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1487 return 0; 1488 } 1489 EXPORT_SYMBOL(target_cmd_parse_cdb); 1490 1491 /* 1492 * Used by fabric module frontends to queue tasks directly. 1493 * May only be used from process context. 1494 */ 1495 int transport_handle_cdb_direct( 1496 struct se_cmd *cmd) 1497 { 1498 sense_reason_t ret; 1499 1500 if (!cmd->se_lun) { 1501 dump_stack(); 1502 pr_err("cmd->se_lun is NULL\n"); 1503 return -EINVAL; 1504 } 1505 if (in_interrupt()) { 1506 dump_stack(); 1507 pr_err("transport_generic_handle_cdb cannot be called" 1508 " from interrupt context\n"); 1509 return -EINVAL; 1510 } 1511 /* 1512 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1513 * outstanding descriptors are handled correctly during shutdown via 1514 * transport_wait_for_tasks() 1515 * 1516 * Also, we don't take cmd->t_state_lock here as we only expect 1517 * this to be called for initial descriptor submission. 1518 */ 1519 cmd->t_state = TRANSPORT_NEW_CMD; 1520 cmd->transport_state |= CMD_T_ACTIVE; 1521 1522 /* 1523 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1524 * so follow TRANSPORT_NEW_CMD processing thread context usage 1525 * and call transport_generic_request_failure() if necessary.. 1526 */ 1527 ret = transport_generic_new_cmd(cmd); 1528 if (ret) 1529 transport_generic_request_failure(cmd, ret); 1530 return 0; 1531 } 1532 EXPORT_SYMBOL(transport_handle_cdb_direct); 1533 1534 sense_reason_t 1535 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1536 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1537 { 1538 if (!sgl || !sgl_count) 1539 return 0; 1540 1541 /* 1542 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1543 * scatterlists already have been set to follow what the fabric 1544 * passes for the original expected data transfer length. 1545 */ 1546 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1547 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1548 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1549 return TCM_INVALID_CDB_FIELD; 1550 } 1551 1552 cmd->t_data_sg = sgl; 1553 cmd->t_data_nents = sgl_count; 1554 cmd->t_bidi_data_sg = sgl_bidi; 1555 cmd->t_bidi_data_nents = sgl_bidi_count; 1556 1557 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1558 return 0; 1559 } 1560 1561 /** 1562 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1563 * se_cmd + use pre-allocated SGL memory. 1564 * 1565 * @se_cmd: command descriptor to submit 1566 * @se_sess: associated se_sess for endpoint 1567 * @cdb: pointer to SCSI CDB 1568 * @sense: pointer to SCSI sense buffer 1569 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1570 * @data_length: fabric expected data transfer length 1571 * @task_attr: SAM task attribute 1572 * @data_dir: DMA data direction 1573 * @flags: flags for command submission from target_sc_flags_tables 1574 * @sgl: struct scatterlist memory for unidirectional mapping 1575 * @sgl_count: scatterlist count for unidirectional mapping 1576 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1577 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1578 * @sgl_prot: struct scatterlist memory protection information 1579 * @sgl_prot_count: scatterlist count for protection information 1580 * 1581 * Task tags are supported if the caller has set @se_cmd->tag. 1582 * 1583 * Returns non zero to signal active I/O shutdown failure. All other 1584 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1585 * but still return zero here. 1586 * 1587 * This may only be called from process context, and also currently 1588 * assumes internal allocation of fabric payload buffer by target-core. 1589 */ 1590 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1591 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1592 u32 data_length, int task_attr, int data_dir, int flags, 1593 struct scatterlist *sgl, u32 sgl_count, 1594 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1595 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1596 { 1597 struct se_portal_group *se_tpg; 1598 sense_reason_t rc; 1599 int ret; 1600 1601 se_tpg = se_sess->se_tpg; 1602 BUG_ON(!se_tpg); 1603 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1604 BUG_ON(in_interrupt()); 1605 /* 1606 * Initialize se_cmd for target operation. From this point 1607 * exceptions are handled by sending exception status via 1608 * target_core_fabric_ops->queue_status() callback 1609 */ 1610 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1611 data_length, data_dir, task_attr, sense, 1612 unpacked_lun); 1613 1614 if (flags & TARGET_SCF_USE_CPUID) 1615 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1616 else 1617 se_cmd->cpuid = WORK_CPU_UNBOUND; 1618 1619 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1620 se_cmd->unknown_data_length = 1; 1621 /* 1622 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1623 * se_sess->sess_cmd_list. A second kref_get here is necessary 1624 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1625 * kref_put() to happen during fabric packet acknowledgement. 1626 */ 1627 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1628 if (ret) 1629 return ret; 1630 /* 1631 * Signal bidirectional data payloads to target-core 1632 */ 1633 if (flags & TARGET_SCF_BIDI_OP) 1634 se_cmd->se_cmd_flags |= SCF_BIDI; 1635 1636 rc = target_cmd_init_cdb(se_cmd, cdb); 1637 if (rc) { 1638 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1639 target_put_sess_cmd(se_cmd); 1640 return 0; 1641 } 1642 1643 /* 1644 * Locate se_lun pointer and attach it to struct se_cmd 1645 */ 1646 rc = transport_lookup_cmd_lun(se_cmd); 1647 if (rc) { 1648 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1649 target_put_sess_cmd(se_cmd); 1650 return 0; 1651 } 1652 1653 rc = target_cmd_parse_cdb(se_cmd); 1654 if (rc != 0) { 1655 transport_generic_request_failure(se_cmd, rc); 1656 return 0; 1657 } 1658 1659 /* 1660 * Save pointers for SGLs containing protection information, 1661 * if present. 1662 */ 1663 if (sgl_prot_count) { 1664 se_cmd->t_prot_sg = sgl_prot; 1665 se_cmd->t_prot_nents = sgl_prot_count; 1666 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1667 } 1668 1669 /* 1670 * When a non zero sgl_count has been passed perform SGL passthrough 1671 * mapping for pre-allocated fabric memory instead of having target 1672 * core perform an internal SGL allocation.. 1673 */ 1674 if (sgl_count != 0) { 1675 BUG_ON(!sgl); 1676 1677 /* 1678 * A work-around for tcm_loop as some userspace code via 1679 * scsi-generic do not memset their associated read buffers, 1680 * so go ahead and do that here for type non-data CDBs. Also 1681 * note that this is currently guaranteed to be a single SGL 1682 * for this case by target core in target_setup_cmd_from_cdb() 1683 * -> transport_generic_cmd_sequencer(). 1684 */ 1685 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1686 se_cmd->data_direction == DMA_FROM_DEVICE) { 1687 unsigned char *buf = NULL; 1688 1689 if (sgl) 1690 buf = kmap(sg_page(sgl)) + sgl->offset; 1691 1692 if (buf) { 1693 memset(buf, 0, sgl->length); 1694 kunmap(sg_page(sgl)); 1695 } 1696 } 1697 1698 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1699 sgl_bidi, sgl_bidi_count); 1700 if (rc != 0) { 1701 transport_generic_request_failure(se_cmd, rc); 1702 return 0; 1703 } 1704 } 1705 1706 /* 1707 * Check if we need to delay processing because of ALUA 1708 * Active/NonOptimized primary access state.. 1709 */ 1710 core_alua_check_nonop_delay(se_cmd); 1711 1712 transport_handle_cdb_direct(se_cmd); 1713 return 0; 1714 } 1715 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1716 1717 /** 1718 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1719 * 1720 * @se_cmd: command descriptor to submit 1721 * @se_sess: associated se_sess for endpoint 1722 * @cdb: pointer to SCSI CDB 1723 * @sense: pointer to SCSI sense buffer 1724 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1725 * @data_length: fabric expected data transfer length 1726 * @task_attr: SAM task attribute 1727 * @data_dir: DMA data direction 1728 * @flags: flags for command submission from target_sc_flags_tables 1729 * 1730 * Task tags are supported if the caller has set @se_cmd->tag. 1731 * 1732 * Returns non zero to signal active I/O shutdown failure. All other 1733 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1734 * but still return zero here. 1735 * 1736 * This may only be called from process context, and also currently 1737 * assumes internal allocation of fabric payload buffer by target-core. 1738 * 1739 * It also assumes interal target core SGL memory allocation. 1740 */ 1741 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1742 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1743 u32 data_length, int task_attr, int data_dir, int flags) 1744 { 1745 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1746 unpacked_lun, data_length, task_attr, data_dir, 1747 flags, NULL, 0, NULL, 0, NULL, 0); 1748 } 1749 EXPORT_SYMBOL(target_submit_cmd); 1750 1751 static void target_complete_tmr_failure(struct work_struct *work) 1752 { 1753 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1754 1755 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1756 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1757 1758 transport_lun_remove_cmd(se_cmd); 1759 transport_cmd_check_stop_to_fabric(se_cmd); 1760 } 1761 1762 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag, 1763 u64 *unpacked_lun) 1764 { 1765 struct se_cmd *se_cmd; 1766 unsigned long flags; 1767 bool ret = false; 1768 1769 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 1770 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) { 1771 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 1772 continue; 1773 1774 if (se_cmd->tag == tag) { 1775 *unpacked_lun = se_cmd->orig_fe_lun; 1776 ret = true; 1777 break; 1778 } 1779 } 1780 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 1781 1782 return ret; 1783 } 1784 1785 /** 1786 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1787 * for TMR CDBs 1788 * 1789 * @se_cmd: command descriptor to submit 1790 * @se_sess: associated se_sess for endpoint 1791 * @sense: pointer to SCSI sense buffer 1792 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1793 * @fabric_tmr_ptr: fabric context for TMR req 1794 * @tm_type: Type of TM request 1795 * @gfp: gfp type for caller 1796 * @tag: referenced task tag for TMR_ABORT_TASK 1797 * @flags: submit cmd flags 1798 * 1799 * Callable from all contexts. 1800 **/ 1801 1802 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1803 unsigned char *sense, u64 unpacked_lun, 1804 void *fabric_tmr_ptr, unsigned char tm_type, 1805 gfp_t gfp, u64 tag, int flags) 1806 { 1807 struct se_portal_group *se_tpg; 1808 int ret; 1809 1810 se_tpg = se_sess->se_tpg; 1811 BUG_ON(!se_tpg); 1812 1813 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1814 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun); 1815 /* 1816 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1817 * allocation failure. 1818 */ 1819 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1820 if (ret < 0) 1821 return -ENOMEM; 1822 1823 if (tm_type == TMR_ABORT_TASK) 1824 se_cmd->se_tmr_req->ref_task_tag = tag; 1825 1826 /* See target_submit_cmd for commentary */ 1827 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1828 if (ret) { 1829 core_tmr_release_req(se_cmd->se_tmr_req); 1830 return ret; 1831 } 1832 /* 1833 * If this is ABORT_TASK with no explicit fabric provided LUN, 1834 * go ahead and search active session tags for a match to figure 1835 * out unpacked_lun for the original se_cmd. 1836 */ 1837 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) { 1838 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun)) 1839 goto failure; 1840 } 1841 1842 ret = transport_lookup_tmr_lun(se_cmd); 1843 if (ret) 1844 goto failure; 1845 1846 transport_generic_handle_tmr(se_cmd); 1847 return 0; 1848 1849 /* 1850 * For callback during failure handling, push this work off 1851 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1852 */ 1853 failure: 1854 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1855 schedule_work(&se_cmd->work); 1856 return 0; 1857 } 1858 EXPORT_SYMBOL(target_submit_tmr); 1859 1860 /* 1861 * Handle SAM-esque emulation for generic transport request failures. 1862 */ 1863 void transport_generic_request_failure(struct se_cmd *cmd, 1864 sense_reason_t sense_reason) 1865 { 1866 int ret = 0, post_ret; 1867 1868 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n", 1869 sense_reason); 1870 target_show_cmd("-----[ ", cmd); 1871 1872 /* 1873 * For SAM Task Attribute emulation for failed struct se_cmd 1874 */ 1875 transport_complete_task_attr(cmd); 1876 1877 if (cmd->transport_complete_callback) 1878 cmd->transport_complete_callback(cmd, false, &post_ret); 1879 1880 if (cmd->transport_state & CMD_T_ABORTED) { 1881 INIT_WORK(&cmd->work, target_abort_work); 1882 queue_work(target_completion_wq, &cmd->work); 1883 return; 1884 } 1885 1886 switch (sense_reason) { 1887 case TCM_NON_EXISTENT_LUN: 1888 case TCM_UNSUPPORTED_SCSI_OPCODE: 1889 case TCM_INVALID_CDB_FIELD: 1890 case TCM_INVALID_PARAMETER_LIST: 1891 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1892 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1893 case TCM_UNKNOWN_MODE_PAGE: 1894 case TCM_WRITE_PROTECTED: 1895 case TCM_ADDRESS_OUT_OF_RANGE: 1896 case TCM_CHECK_CONDITION_ABORT_CMD: 1897 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1898 case TCM_CHECK_CONDITION_NOT_READY: 1899 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1900 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1901 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1902 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1903 case TCM_TOO_MANY_TARGET_DESCS: 1904 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1905 case TCM_TOO_MANY_SEGMENT_DESCS: 1906 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1907 break; 1908 case TCM_OUT_OF_RESOURCES: 1909 cmd->scsi_status = SAM_STAT_TASK_SET_FULL; 1910 goto queue_status; 1911 case TCM_LUN_BUSY: 1912 cmd->scsi_status = SAM_STAT_BUSY; 1913 goto queue_status; 1914 case TCM_RESERVATION_CONFLICT: 1915 /* 1916 * No SENSE Data payload for this case, set SCSI Status 1917 * and queue the response to $FABRIC_MOD. 1918 * 1919 * Uses linux/include/scsi/scsi.h SAM status codes defs 1920 */ 1921 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1922 /* 1923 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1924 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1925 * CONFLICT STATUS. 1926 * 1927 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1928 */ 1929 if (cmd->se_sess && 1930 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl 1931 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) { 1932 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1933 cmd->orig_fe_lun, 0x2C, 1934 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1935 } 1936 1937 goto queue_status; 1938 default: 1939 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1940 cmd->t_task_cdb[0], sense_reason); 1941 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1942 break; 1943 } 1944 1945 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1946 if (ret) 1947 goto queue_full; 1948 1949 check_stop: 1950 transport_lun_remove_cmd(cmd); 1951 transport_cmd_check_stop_to_fabric(cmd); 1952 return; 1953 1954 queue_status: 1955 trace_target_cmd_complete(cmd); 1956 ret = cmd->se_tfo->queue_status(cmd); 1957 if (!ret) 1958 goto check_stop; 1959 queue_full: 1960 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 1961 } 1962 EXPORT_SYMBOL(transport_generic_request_failure); 1963 1964 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1965 { 1966 sense_reason_t ret; 1967 1968 if (!cmd->execute_cmd) { 1969 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1970 goto err; 1971 } 1972 if (do_checks) { 1973 /* 1974 * Check for an existing UNIT ATTENTION condition after 1975 * target_handle_task_attr() has done SAM task attr 1976 * checking, and possibly have already defered execution 1977 * out to target_restart_delayed_cmds() context. 1978 */ 1979 ret = target_scsi3_ua_check(cmd); 1980 if (ret) 1981 goto err; 1982 1983 ret = target_alua_state_check(cmd); 1984 if (ret) 1985 goto err; 1986 1987 ret = target_check_reservation(cmd); 1988 if (ret) { 1989 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1990 goto err; 1991 } 1992 } 1993 1994 ret = cmd->execute_cmd(cmd); 1995 if (!ret) 1996 return; 1997 err: 1998 spin_lock_irq(&cmd->t_state_lock); 1999 cmd->transport_state &= ~CMD_T_SENT; 2000 spin_unlock_irq(&cmd->t_state_lock); 2001 2002 transport_generic_request_failure(cmd, ret); 2003 } 2004 2005 static int target_write_prot_action(struct se_cmd *cmd) 2006 { 2007 u32 sectors; 2008 /* 2009 * Perform WRITE_INSERT of PI using software emulation when backend 2010 * device has PI enabled, if the transport has not already generated 2011 * PI using hardware WRITE_INSERT offload. 2012 */ 2013 switch (cmd->prot_op) { 2014 case TARGET_PROT_DOUT_INSERT: 2015 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 2016 sbc_dif_generate(cmd); 2017 break; 2018 case TARGET_PROT_DOUT_STRIP: 2019 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 2020 break; 2021 2022 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 2023 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2024 sectors, 0, cmd->t_prot_sg, 0); 2025 if (unlikely(cmd->pi_err)) { 2026 spin_lock_irq(&cmd->t_state_lock); 2027 cmd->transport_state &= ~CMD_T_SENT; 2028 spin_unlock_irq(&cmd->t_state_lock); 2029 transport_generic_request_failure(cmd, cmd->pi_err); 2030 return -1; 2031 } 2032 break; 2033 default: 2034 break; 2035 } 2036 2037 return 0; 2038 } 2039 2040 static bool target_handle_task_attr(struct se_cmd *cmd) 2041 { 2042 struct se_device *dev = cmd->se_dev; 2043 2044 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2045 return false; 2046 2047 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 2048 2049 /* 2050 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 2051 * to allow the passed struct se_cmd list of tasks to the front of the list. 2052 */ 2053 switch (cmd->sam_task_attr) { 2054 case TCM_HEAD_TAG: 2055 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 2056 cmd->t_task_cdb[0]); 2057 return false; 2058 case TCM_ORDERED_TAG: 2059 atomic_inc_mb(&dev->dev_ordered_sync); 2060 2061 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 2062 cmd->t_task_cdb[0]); 2063 2064 /* 2065 * Execute an ORDERED command if no other older commands 2066 * exist that need to be completed first. 2067 */ 2068 if (!atomic_read(&dev->simple_cmds)) 2069 return false; 2070 break; 2071 default: 2072 /* 2073 * For SIMPLE and UNTAGGED Task Attribute commands 2074 */ 2075 atomic_inc_mb(&dev->simple_cmds); 2076 break; 2077 } 2078 2079 if (atomic_read(&dev->dev_ordered_sync) == 0) 2080 return false; 2081 2082 spin_lock(&dev->delayed_cmd_lock); 2083 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 2084 spin_unlock(&dev->delayed_cmd_lock); 2085 2086 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 2087 cmd->t_task_cdb[0], cmd->sam_task_attr); 2088 return true; 2089 } 2090 2091 void target_execute_cmd(struct se_cmd *cmd) 2092 { 2093 /* 2094 * Determine if frontend context caller is requesting the stopping of 2095 * this command for frontend exceptions. 2096 * 2097 * If the received CDB has already been aborted stop processing it here. 2098 */ 2099 if (target_cmd_interrupted(cmd)) 2100 return; 2101 2102 spin_lock_irq(&cmd->t_state_lock); 2103 cmd->t_state = TRANSPORT_PROCESSING; 2104 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 2105 spin_unlock_irq(&cmd->t_state_lock); 2106 2107 if (target_write_prot_action(cmd)) 2108 return; 2109 2110 if (target_handle_task_attr(cmd)) { 2111 spin_lock_irq(&cmd->t_state_lock); 2112 cmd->transport_state &= ~CMD_T_SENT; 2113 spin_unlock_irq(&cmd->t_state_lock); 2114 return; 2115 } 2116 2117 __target_execute_cmd(cmd, true); 2118 } 2119 EXPORT_SYMBOL(target_execute_cmd); 2120 2121 /* 2122 * Process all commands up to the last received ORDERED task attribute which 2123 * requires another blocking boundary 2124 */ 2125 static void target_restart_delayed_cmds(struct se_device *dev) 2126 { 2127 for (;;) { 2128 struct se_cmd *cmd; 2129 2130 spin_lock(&dev->delayed_cmd_lock); 2131 if (list_empty(&dev->delayed_cmd_list)) { 2132 spin_unlock(&dev->delayed_cmd_lock); 2133 break; 2134 } 2135 2136 cmd = list_entry(dev->delayed_cmd_list.next, 2137 struct se_cmd, se_delayed_node); 2138 list_del(&cmd->se_delayed_node); 2139 spin_unlock(&dev->delayed_cmd_lock); 2140 2141 cmd->transport_state |= CMD_T_SENT; 2142 2143 __target_execute_cmd(cmd, true); 2144 2145 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 2146 break; 2147 } 2148 } 2149 2150 /* 2151 * Called from I/O completion to determine which dormant/delayed 2152 * and ordered cmds need to have their tasks added to the execution queue. 2153 */ 2154 static void transport_complete_task_attr(struct se_cmd *cmd) 2155 { 2156 struct se_device *dev = cmd->se_dev; 2157 2158 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2159 return; 2160 2161 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 2162 goto restart; 2163 2164 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 2165 atomic_dec_mb(&dev->simple_cmds); 2166 dev->dev_cur_ordered_id++; 2167 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 2168 dev->dev_cur_ordered_id++; 2169 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 2170 dev->dev_cur_ordered_id); 2171 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 2172 atomic_dec_mb(&dev->dev_ordered_sync); 2173 2174 dev->dev_cur_ordered_id++; 2175 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 2176 dev->dev_cur_ordered_id); 2177 } 2178 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET; 2179 2180 restart: 2181 target_restart_delayed_cmds(dev); 2182 } 2183 2184 static void transport_complete_qf(struct se_cmd *cmd) 2185 { 2186 int ret = 0; 2187 2188 transport_complete_task_attr(cmd); 2189 /* 2190 * If a fabric driver ->write_pending() or ->queue_data_in() callback 2191 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 2192 * the same callbacks should not be retried. Return CHECK_CONDITION 2193 * if a scsi_status is not already set. 2194 * 2195 * If a fabric driver ->queue_status() has returned non zero, always 2196 * keep retrying no matter what.. 2197 */ 2198 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 2199 if (cmd->scsi_status) 2200 goto queue_status; 2201 2202 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 2203 goto queue_status; 2204 } 2205 2206 /* 2207 * Check if we need to send a sense buffer from 2208 * the struct se_cmd in question. We do NOT want 2209 * to take this path of the IO has been marked as 2210 * needing to be treated like a "normal read". This 2211 * is the case if it's a tape read, and either the 2212 * FM, EOM, or ILI bits are set, but there is no 2213 * sense data. 2214 */ 2215 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2216 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2217 goto queue_status; 2218 2219 switch (cmd->data_direction) { 2220 case DMA_FROM_DEVICE: 2221 /* queue status if not treating this as a normal read */ 2222 if (cmd->scsi_status && 2223 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2224 goto queue_status; 2225 2226 trace_target_cmd_complete(cmd); 2227 ret = cmd->se_tfo->queue_data_in(cmd); 2228 break; 2229 case DMA_TO_DEVICE: 2230 if (cmd->se_cmd_flags & SCF_BIDI) { 2231 ret = cmd->se_tfo->queue_data_in(cmd); 2232 break; 2233 } 2234 /* fall through */ 2235 case DMA_NONE: 2236 queue_status: 2237 trace_target_cmd_complete(cmd); 2238 ret = cmd->se_tfo->queue_status(cmd); 2239 break; 2240 default: 2241 break; 2242 } 2243 2244 if (ret < 0) { 2245 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2246 return; 2247 } 2248 transport_lun_remove_cmd(cmd); 2249 transport_cmd_check_stop_to_fabric(cmd); 2250 } 2251 2252 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2253 int err, bool write_pending) 2254 { 2255 /* 2256 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2257 * ->queue_data_in() callbacks from new process context. 2258 * 2259 * Otherwise for other errors, transport_complete_qf() will send 2260 * CHECK_CONDITION via ->queue_status() instead of attempting to 2261 * retry associated fabric driver data-transfer callbacks. 2262 */ 2263 if (err == -EAGAIN || err == -ENOMEM) { 2264 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2265 TRANSPORT_COMPLETE_QF_OK; 2266 } else { 2267 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2268 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2269 } 2270 2271 spin_lock_irq(&dev->qf_cmd_lock); 2272 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2273 atomic_inc_mb(&dev->dev_qf_count); 2274 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2275 2276 schedule_work(&cmd->se_dev->qf_work_queue); 2277 } 2278 2279 static bool target_read_prot_action(struct se_cmd *cmd) 2280 { 2281 switch (cmd->prot_op) { 2282 case TARGET_PROT_DIN_STRIP: 2283 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2284 u32 sectors = cmd->data_length >> 2285 ilog2(cmd->se_dev->dev_attrib.block_size); 2286 2287 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2288 sectors, 0, cmd->t_prot_sg, 2289 0); 2290 if (cmd->pi_err) 2291 return true; 2292 } 2293 break; 2294 case TARGET_PROT_DIN_INSERT: 2295 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2296 break; 2297 2298 sbc_dif_generate(cmd); 2299 break; 2300 default: 2301 break; 2302 } 2303 2304 return false; 2305 } 2306 2307 static void target_complete_ok_work(struct work_struct *work) 2308 { 2309 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2310 int ret; 2311 2312 /* 2313 * Check if we need to move delayed/dormant tasks from cmds on the 2314 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2315 * Attribute. 2316 */ 2317 transport_complete_task_attr(cmd); 2318 2319 /* 2320 * Check to schedule QUEUE_FULL work, or execute an existing 2321 * cmd->transport_qf_callback() 2322 */ 2323 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2324 schedule_work(&cmd->se_dev->qf_work_queue); 2325 2326 /* 2327 * Check if we need to send a sense buffer from 2328 * the struct se_cmd in question. We do NOT want 2329 * to take this path of the IO has been marked as 2330 * needing to be treated like a "normal read". This 2331 * is the case if it's a tape read, and either the 2332 * FM, EOM, or ILI bits are set, but there is no 2333 * sense data. 2334 */ 2335 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2336 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2337 WARN_ON(!cmd->scsi_status); 2338 ret = transport_send_check_condition_and_sense( 2339 cmd, 0, 1); 2340 if (ret) 2341 goto queue_full; 2342 2343 transport_lun_remove_cmd(cmd); 2344 transport_cmd_check_stop_to_fabric(cmd); 2345 return; 2346 } 2347 /* 2348 * Check for a callback, used by amongst other things 2349 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2350 */ 2351 if (cmd->transport_complete_callback) { 2352 sense_reason_t rc; 2353 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2354 bool zero_dl = !(cmd->data_length); 2355 int post_ret = 0; 2356 2357 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2358 if (!rc && !post_ret) { 2359 if (caw && zero_dl) 2360 goto queue_rsp; 2361 2362 return; 2363 } else if (rc) { 2364 ret = transport_send_check_condition_and_sense(cmd, 2365 rc, 0); 2366 if (ret) 2367 goto queue_full; 2368 2369 transport_lun_remove_cmd(cmd); 2370 transport_cmd_check_stop_to_fabric(cmd); 2371 return; 2372 } 2373 } 2374 2375 queue_rsp: 2376 switch (cmd->data_direction) { 2377 case DMA_FROM_DEVICE: 2378 /* 2379 * if this is a READ-type IO, but SCSI status 2380 * is set, then skip returning data and just 2381 * return the status -- unless this IO is marked 2382 * as needing to be treated as a normal read, 2383 * in which case we want to go ahead and return 2384 * the data. This happens, for example, for tape 2385 * reads with the FM, EOM, or ILI bits set, with 2386 * no sense data. 2387 */ 2388 if (cmd->scsi_status && 2389 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2390 goto queue_status; 2391 2392 atomic_long_add(cmd->data_length, 2393 &cmd->se_lun->lun_stats.tx_data_octets); 2394 /* 2395 * Perform READ_STRIP of PI using software emulation when 2396 * backend had PI enabled, if the transport will not be 2397 * performing hardware READ_STRIP offload. 2398 */ 2399 if (target_read_prot_action(cmd)) { 2400 ret = transport_send_check_condition_and_sense(cmd, 2401 cmd->pi_err, 0); 2402 if (ret) 2403 goto queue_full; 2404 2405 transport_lun_remove_cmd(cmd); 2406 transport_cmd_check_stop_to_fabric(cmd); 2407 return; 2408 } 2409 2410 trace_target_cmd_complete(cmd); 2411 ret = cmd->se_tfo->queue_data_in(cmd); 2412 if (ret) 2413 goto queue_full; 2414 break; 2415 case DMA_TO_DEVICE: 2416 atomic_long_add(cmd->data_length, 2417 &cmd->se_lun->lun_stats.rx_data_octets); 2418 /* 2419 * Check if we need to send READ payload for BIDI-COMMAND 2420 */ 2421 if (cmd->se_cmd_flags & SCF_BIDI) { 2422 atomic_long_add(cmd->data_length, 2423 &cmd->se_lun->lun_stats.tx_data_octets); 2424 ret = cmd->se_tfo->queue_data_in(cmd); 2425 if (ret) 2426 goto queue_full; 2427 break; 2428 } 2429 /* fall through */ 2430 case DMA_NONE: 2431 queue_status: 2432 trace_target_cmd_complete(cmd); 2433 ret = cmd->se_tfo->queue_status(cmd); 2434 if (ret) 2435 goto queue_full; 2436 break; 2437 default: 2438 break; 2439 } 2440 2441 transport_lun_remove_cmd(cmd); 2442 transport_cmd_check_stop_to_fabric(cmd); 2443 return; 2444 2445 queue_full: 2446 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2447 " data_direction: %d\n", cmd, cmd->data_direction); 2448 2449 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2450 } 2451 2452 void target_free_sgl(struct scatterlist *sgl, int nents) 2453 { 2454 sgl_free_n_order(sgl, nents, 0); 2455 } 2456 EXPORT_SYMBOL(target_free_sgl); 2457 2458 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2459 { 2460 /* 2461 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2462 * emulation, and free + reset pointers if necessary.. 2463 */ 2464 if (!cmd->t_data_sg_orig) 2465 return; 2466 2467 kfree(cmd->t_data_sg); 2468 cmd->t_data_sg = cmd->t_data_sg_orig; 2469 cmd->t_data_sg_orig = NULL; 2470 cmd->t_data_nents = cmd->t_data_nents_orig; 2471 cmd->t_data_nents_orig = 0; 2472 } 2473 2474 static inline void transport_free_pages(struct se_cmd *cmd) 2475 { 2476 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2477 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2478 cmd->t_prot_sg = NULL; 2479 cmd->t_prot_nents = 0; 2480 } 2481 2482 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2483 /* 2484 * Release special case READ buffer payload required for 2485 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2486 */ 2487 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2488 target_free_sgl(cmd->t_bidi_data_sg, 2489 cmd->t_bidi_data_nents); 2490 cmd->t_bidi_data_sg = NULL; 2491 cmd->t_bidi_data_nents = 0; 2492 } 2493 transport_reset_sgl_orig(cmd); 2494 return; 2495 } 2496 transport_reset_sgl_orig(cmd); 2497 2498 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2499 cmd->t_data_sg = NULL; 2500 cmd->t_data_nents = 0; 2501 2502 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2503 cmd->t_bidi_data_sg = NULL; 2504 cmd->t_bidi_data_nents = 0; 2505 } 2506 2507 void *transport_kmap_data_sg(struct se_cmd *cmd) 2508 { 2509 struct scatterlist *sg = cmd->t_data_sg; 2510 struct page **pages; 2511 int i; 2512 2513 /* 2514 * We need to take into account a possible offset here for fabrics like 2515 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2516 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2517 */ 2518 if (!cmd->t_data_nents) 2519 return NULL; 2520 2521 BUG_ON(!sg); 2522 if (cmd->t_data_nents == 1) 2523 return kmap(sg_page(sg)) + sg->offset; 2524 2525 /* >1 page. use vmap */ 2526 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); 2527 if (!pages) 2528 return NULL; 2529 2530 /* convert sg[] to pages[] */ 2531 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2532 pages[i] = sg_page(sg); 2533 } 2534 2535 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2536 kfree(pages); 2537 if (!cmd->t_data_vmap) 2538 return NULL; 2539 2540 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2541 } 2542 EXPORT_SYMBOL(transport_kmap_data_sg); 2543 2544 void transport_kunmap_data_sg(struct se_cmd *cmd) 2545 { 2546 if (!cmd->t_data_nents) { 2547 return; 2548 } else if (cmd->t_data_nents == 1) { 2549 kunmap(sg_page(cmd->t_data_sg)); 2550 return; 2551 } 2552 2553 vunmap(cmd->t_data_vmap); 2554 cmd->t_data_vmap = NULL; 2555 } 2556 EXPORT_SYMBOL(transport_kunmap_data_sg); 2557 2558 int 2559 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2560 bool zero_page, bool chainable) 2561 { 2562 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0); 2563 2564 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents); 2565 return *sgl ? 0 : -ENOMEM; 2566 } 2567 EXPORT_SYMBOL(target_alloc_sgl); 2568 2569 /* 2570 * Allocate any required resources to execute the command. For writes we 2571 * might not have the payload yet, so notify the fabric via a call to 2572 * ->write_pending instead. Otherwise place it on the execution queue. 2573 */ 2574 sense_reason_t 2575 transport_generic_new_cmd(struct se_cmd *cmd) 2576 { 2577 unsigned long flags; 2578 int ret = 0; 2579 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2580 2581 if (cmd->prot_op != TARGET_PROT_NORMAL && 2582 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2583 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2584 cmd->prot_length, true, false); 2585 if (ret < 0) 2586 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2587 } 2588 2589 /* 2590 * Determine if the TCM fabric module has already allocated physical 2591 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2592 * beforehand. 2593 */ 2594 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2595 cmd->data_length) { 2596 2597 if ((cmd->se_cmd_flags & SCF_BIDI) || 2598 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2599 u32 bidi_length; 2600 2601 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2602 bidi_length = cmd->t_task_nolb * 2603 cmd->se_dev->dev_attrib.block_size; 2604 else 2605 bidi_length = cmd->data_length; 2606 2607 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2608 &cmd->t_bidi_data_nents, 2609 bidi_length, zero_flag, false); 2610 if (ret < 0) 2611 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2612 } 2613 2614 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2615 cmd->data_length, zero_flag, false); 2616 if (ret < 0) 2617 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2618 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2619 cmd->data_length) { 2620 /* 2621 * Special case for COMPARE_AND_WRITE with fabrics 2622 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2623 */ 2624 u32 caw_length = cmd->t_task_nolb * 2625 cmd->se_dev->dev_attrib.block_size; 2626 2627 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2628 &cmd->t_bidi_data_nents, 2629 caw_length, zero_flag, false); 2630 if (ret < 0) 2631 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2632 } 2633 /* 2634 * If this command is not a write we can execute it right here, 2635 * for write buffers we need to notify the fabric driver first 2636 * and let it call back once the write buffers are ready. 2637 */ 2638 target_add_to_state_list(cmd); 2639 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2640 target_execute_cmd(cmd); 2641 return 0; 2642 } 2643 2644 spin_lock_irqsave(&cmd->t_state_lock, flags); 2645 cmd->t_state = TRANSPORT_WRITE_PENDING; 2646 /* 2647 * Determine if frontend context caller is requesting the stopping of 2648 * this command for frontend exceptions. 2649 */ 2650 if (cmd->transport_state & CMD_T_STOP && 2651 !cmd->se_tfo->write_pending_must_be_called) { 2652 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2653 __func__, __LINE__, cmd->tag); 2654 2655 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2656 2657 complete_all(&cmd->t_transport_stop_comp); 2658 return 0; 2659 } 2660 cmd->transport_state &= ~CMD_T_ACTIVE; 2661 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2662 2663 ret = cmd->se_tfo->write_pending(cmd); 2664 if (ret) 2665 goto queue_full; 2666 2667 return 0; 2668 2669 queue_full: 2670 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2671 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2672 return 0; 2673 } 2674 EXPORT_SYMBOL(transport_generic_new_cmd); 2675 2676 static void transport_write_pending_qf(struct se_cmd *cmd) 2677 { 2678 unsigned long flags; 2679 int ret; 2680 bool stop; 2681 2682 spin_lock_irqsave(&cmd->t_state_lock, flags); 2683 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED)); 2684 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2685 2686 if (stop) { 2687 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n", 2688 __func__, __LINE__, cmd->tag); 2689 complete_all(&cmd->t_transport_stop_comp); 2690 return; 2691 } 2692 2693 ret = cmd->se_tfo->write_pending(cmd); 2694 if (ret) { 2695 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2696 cmd); 2697 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2698 } 2699 } 2700 2701 static bool 2702 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2703 unsigned long *flags); 2704 2705 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2706 { 2707 unsigned long flags; 2708 2709 spin_lock_irqsave(&cmd->t_state_lock, flags); 2710 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2711 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2712 } 2713 2714 /* 2715 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has 2716 * finished. 2717 */ 2718 void target_put_cmd_and_wait(struct se_cmd *cmd) 2719 { 2720 DECLARE_COMPLETION_ONSTACK(compl); 2721 2722 WARN_ON_ONCE(cmd->abrt_compl); 2723 cmd->abrt_compl = &compl; 2724 target_put_sess_cmd(cmd); 2725 wait_for_completion(&compl); 2726 } 2727 2728 /* 2729 * This function is called by frontend drivers after processing of a command 2730 * has finished. 2731 * 2732 * The protocol for ensuring that either the regular frontend command 2733 * processing flow or target_handle_abort() code drops one reference is as 2734 * follows: 2735 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause 2736 * the frontend driver to call this function synchronously or asynchronously. 2737 * That will cause one reference to be dropped. 2738 * - During regular command processing the target core sets CMD_T_COMPLETE 2739 * before invoking one of the .queue_*() functions. 2740 * - The code that aborts commands skips commands and TMFs for which 2741 * CMD_T_COMPLETE has been set. 2742 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for 2743 * commands that will be aborted. 2744 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set 2745 * transport_generic_free_cmd() skips its call to target_put_sess_cmd(). 2746 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will 2747 * be called and will drop a reference. 2748 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task() 2749 * will be called. target_handle_abort() will drop the final reference. 2750 */ 2751 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2752 { 2753 DECLARE_COMPLETION_ONSTACK(compl); 2754 int ret = 0; 2755 bool aborted = false, tas = false; 2756 2757 if (wait_for_tasks) 2758 target_wait_free_cmd(cmd, &aborted, &tas); 2759 2760 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) { 2761 /* 2762 * Handle WRITE failure case where transport_generic_new_cmd() 2763 * has already added se_cmd to state_list, but fabric has 2764 * failed command before I/O submission. 2765 */ 2766 if (cmd->state_active) 2767 target_remove_from_state_list(cmd); 2768 2769 if (cmd->se_lun) 2770 transport_lun_remove_cmd(cmd); 2771 } 2772 if (aborted) 2773 cmd->free_compl = &compl; 2774 ret = target_put_sess_cmd(cmd); 2775 if (aborted) { 2776 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2777 wait_for_completion(&compl); 2778 ret = 1; 2779 } 2780 return ret; 2781 } 2782 EXPORT_SYMBOL(transport_generic_free_cmd); 2783 2784 /** 2785 * target_get_sess_cmd - Add command to active ->sess_cmd_list 2786 * @se_cmd: command descriptor to add 2787 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2788 */ 2789 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2790 { 2791 struct se_session *se_sess = se_cmd->se_sess; 2792 unsigned long flags; 2793 int ret = 0; 2794 2795 /* 2796 * Add a second kref if the fabric caller is expecting to handle 2797 * fabric acknowledgement that requires two target_put_sess_cmd() 2798 * invocations before se_cmd descriptor release. 2799 */ 2800 if (ack_kref) { 2801 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2802 return -EINVAL; 2803 2804 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2805 } 2806 2807 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2808 if (se_sess->sess_tearing_down) { 2809 ret = -ESHUTDOWN; 2810 goto out; 2811 } 2812 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2813 percpu_ref_get(&se_sess->cmd_count); 2814 out: 2815 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2816 2817 if (ret && ack_kref) 2818 target_put_sess_cmd(se_cmd); 2819 2820 return ret; 2821 } 2822 EXPORT_SYMBOL(target_get_sess_cmd); 2823 2824 static void target_free_cmd_mem(struct se_cmd *cmd) 2825 { 2826 transport_free_pages(cmd); 2827 2828 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2829 core_tmr_release_req(cmd->se_tmr_req); 2830 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2831 kfree(cmd->t_task_cdb); 2832 } 2833 2834 static void target_release_cmd_kref(struct kref *kref) 2835 { 2836 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2837 struct se_session *se_sess = se_cmd->se_sess; 2838 struct completion *free_compl = se_cmd->free_compl; 2839 struct completion *abrt_compl = se_cmd->abrt_compl; 2840 unsigned long flags; 2841 2842 if (se_sess) { 2843 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2844 list_del_init(&se_cmd->se_cmd_list); 2845 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2846 } 2847 2848 target_free_cmd_mem(se_cmd); 2849 se_cmd->se_tfo->release_cmd(se_cmd); 2850 if (free_compl) 2851 complete(free_compl); 2852 if (abrt_compl) 2853 complete(abrt_compl); 2854 2855 percpu_ref_put(&se_sess->cmd_count); 2856 } 2857 2858 /** 2859 * target_put_sess_cmd - decrease the command reference count 2860 * @se_cmd: command to drop a reference from 2861 * 2862 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2863 * refcount to drop to zero. Returns zero otherwise. 2864 */ 2865 int target_put_sess_cmd(struct se_cmd *se_cmd) 2866 { 2867 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2868 } 2869 EXPORT_SYMBOL(target_put_sess_cmd); 2870 2871 static const char *data_dir_name(enum dma_data_direction d) 2872 { 2873 switch (d) { 2874 case DMA_BIDIRECTIONAL: return "BIDI"; 2875 case DMA_TO_DEVICE: return "WRITE"; 2876 case DMA_FROM_DEVICE: return "READ"; 2877 case DMA_NONE: return "NONE"; 2878 } 2879 2880 return "(?)"; 2881 } 2882 2883 static const char *cmd_state_name(enum transport_state_table t) 2884 { 2885 switch (t) { 2886 case TRANSPORT_NO_STATE: return "NO_STATE"; 2887 case TRANSPORT_NEW_CMD: return "NEW_CMD"; 2888 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING"; 2889 case TRANSPORT_PROCESSING: return "PROCESSING"; 2890 case TRANSPORT_COMPLETE: return "COMPLETE"; 2891 case TRANSPORT_ISTATE_PROCESSING: 2892 return "ISTATE_PROCESSING"; 2893 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP"; 2894 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK"; 2895 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR"; 2896 } 2897 2898 return "(?)"; 2899 } 2900 2901 static void target_append_str(char **str, const char *txt) 2902 { 2903 char *prev = *str; 2904 2905 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) : 2906 kstrdup(txt, GFP_ATOMIC); 2907 kfree(prev); 2908 } 2909 2910 /* 2911 * Convert a transport state bitmask into a string. The caller is 2912 * responsible for freeing the returned pointer. 2913 */ 2914 static char *target_ts_to_str(u32 ts) 2915 { 2916 char *str = NULL; 2917 2918 if (ts & CMD_T_ABORTED) 2919 target_append_str(&str, "aborted"); 2920 if (ts & CMD_T_ACTIVE) 2921 target_append_str(&str, "active"); 2922 if (ts & CMD_T_COMPLETE) 2923 target_append_str(&str, "complete"); 2924 if (ts & CMD_T_SENT) 2925 target_append_str(&str, "sent"); 2926 if (ts & CMD_T_STOP) 2927 target_append_str(&str, "stop"); 2928 if (ts & CMD_T_FABRIC_STOP) 2929 target_append_str(&str, "fabric_stop"); 2930 2931 return str; 2932 } 2933 2934 static const char *target_tmf_name(enum tcm_tmreq_table tmf) 2935 { 2936 switch (tmf) { 2937 case TMR_ABORT_TASK: return "ABORT_TASK"; 2938 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET"; 2939 case TMR_CLEAR_ACA: return "CLEAR_ACA"; 2940 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET"; 2941 case TMR_LUN_RESET: return "LUN_RESET"; 2942 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET"; 2943 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET"; 2944 case TMR_UNKNOWN: break; 2945 } 2946 return "(?)"; 2947 } 2948 2949 void target_show_cmd(const char *pfx, struct se_cmd *cmd) 2950 { 2951 char *ts_str = target_ts_to_str(cmd->transport_state); 2952 const u8 *cdb = cmd->t_task_cdb; 2953 struct se_tmr_req *tmf = cmd->se_tmr_req; 2954 2955 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2956 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n", 2957 pfx, cdb[0], cdb[1], cmd->tag, 2958 data_dir_name(cmd->data_direction), 2959 cmd->se_tfo->get_cmd_state(cmd), 2960 cmd_state_name(cmd->t_state), cmd->data_length, 2961 kref_read(&cmd->cmd_kref), ts_str); 2962 } else { 2963 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n", 2964 pfx, target_tmf_name(tmf->function), cmd->tag, 2965 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd), 2966 cmd_state_name(cmd->t_state), 2967 kref_read(&cmd->cmd_kref), ts_str); 2968 } 2969 kfree(ts_str); 2970 } 2971 EXPORT_SYMBOL(target_show_cmd); 2972 2973 /** 2974 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued. 2975 * @se_sess: session to flag 2976 */ 2977 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2978 { 2979 unsigned long flags; 2980 2981 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2982 se_sess->sess_tearing_down = 1; 2983 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2984 2985 percpu_ref_kill(&se_sess->cmd_count); 2986 } 2987 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2988 2989 /** 2990 * target_wait_for_sess_cmds - Wait for outstanding commands 2991 * @se_sess: session to wait for active I/O 2992 */ 2993 void target_wait_for_sess_cmds(struct se_session *se_sess) 2994 { 2995 struct se_cmd *cmd; 2996 int ret; 2997 2998 WARN_ON_ONCE(!se_sess->sess_tearing_down); 2999 3000 do { 3001 ret = wait_event_timeout(se_sess->cmd_list_wq, 3002 percpu_ref_is_zero(&se_sess->cmd_count), 3003 180 * HZ); 3004 list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list) 3005 target_show_cmd("session shutdown: still waiting for ", 3006 cmd); 3007 } while (ret <= 0); 3008 } 3009 EXPORT_SYMBOL(target_wait_for_sess_cmds); 3010 3011 /* 3012 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until 3013 * all references to the LUN have been released. Called during LUN shutdown. 3014 */ 3015 void transport_clear_lun_ref(struct se_lun *lun) 3016 { 3017 percpu_ref_kill(&lun->lun_ref); 3018 wait_for_completion(&lun->lun_shutdown_comp); 3019 } 3020 3021 static bool 3022 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 3023 bool *aborted, bool *tas, unsigned long *flags) 3024 __releases(&cmd->t_state_lock) 3025 __acquires(&cmd->t_state_lock) 3026 { 3027 3028 assert_spin_locked(&cmd->t_state_lock); 3029 WARN_ON_ONCE(!irqs_disabled()); 3030 3031 if (fabric_stop) 3032 cmd->transport_state |= CMD_T_FABRIC_STOP; 3033 3034 if (cmd->transport_state & CMD_T_ABORTED) 3035 *aborted = true; 3036 3037 if (cmd->transport_state & CMD_T_TAS) 3038 *tas = true; 3039 3040 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 3041 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3042 return false; 3043 3044 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 3045 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3046 return false; 3047 3048 if (!(cmd->transport_state & CMD_T_ACTIVE)) 3049 return false; 3050 3051 if (fabric_stop && *aborted) 3052 return false; 3053 3054 cmd->transport_state |= CMD_T_STOP; 3055 3056 target_show_cmd("wait_for_tasks: Stopping ", cmd); 3057 3058 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 3059 3060 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp, 3061 180 * HZ)) 3062 target_show_cmd("wait for tasks: ", cmd); 3063 3064 spin_lock_irqsave(&cmd->t_state_lock, *flags); 3065 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 3066 3067 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 3068 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 3069 3070 return true; 3071 } 3072 3073 /** 3074 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 3075 * @cmd: command to wait on 3076 */ 3077 bool transport_wait_for_tasks(struct se_cmd *cmd) 3078 { 3079 unsigned long flags; 3080 bool ret, aborted = false, tas = false; 3081 3082 spin_lock_irqsave(&cmd->t_state_lock, flags); 3083 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 3084 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3085 3086 return ret; 3087 } 3088 EXPORT_SYMBOL(transport_wait_for_tasks); 3089 3090 struct sense_info { 3091 u8 key; 3092 u8 asc; 3093 u8 ascq; 3094 bool add_sector_info; 3095 }; 3096 3097 static const struct sense_info sense_info_table[] = { 3098 [TCM_NO_SENSE] = { 3099 .key = NOT_READY 3100 }, 3101 [TCM_NON_EXISTENT_LUN] = { 3102 .key = ILLEGAL_REQUEST, 3103 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 3104 }, 3105 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 3106 .key = ILLEGAL_REQUEST, 3107 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3108 }, 3109 [TCM_SECTOR_COUNT_TOO_MANY] = { 3110 .key = ILLEGAL_REQUEST, 3111 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3112 }, 3113 [TCM_UNKNOWN_MODE_PAGE] = { 3114 .key = ILLEGAL_REQUEST, 3115 .asc = 0x24, /* INVALID FIELD IN CDB */ 3116 }, 3117 [TCM_CHECK_CONDITION_ABORT_CMD] = { 3118 .key = ABORTED_COMMAND, 3119 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 3120 .ascq = 0x03, 3121 }, 3122 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 3123 .key = ABORTED_COMMAND, 3124 .asc = 0x0c, /* WRITE ERROR */ 3125 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 3126 }, 3127 [TCM_INVALID_CDB_FIELD] = { 3128 .key = ILLEGAL_REQUEST, 3129 .asc = 0x24, /* INVALID FIELD IN CDB */ 3130 }, 3131 [TCM_INVALID_PARAMETER_LIST] = { 3132 .key = ILLEGAL_REQUEST, 3133 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 3134 }, 3135 [TCM_TOO_MANY_TARGET_DESCS] = { 3136 .key = ILLEGAL_REQUEST, 3137 .asc = 0x26, 3138 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 3139 }, 3140 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 3141 .key = ILLEGAL_REQUEST, 3142 .asc = 0x26, 3143 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 3144 }, 3145 [TCM_TOO_MANY_SEGMENT_DESCS] = { 3146 .key = ILLEGAL_REQUEST, 3147 .asc = 0x26, 3148 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 3149 }, 3150 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 3151 .key = ILLEGAL_REQUEST, 3152 .asc = 0x26, 3153 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 3154 }, 3155 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 3156 .key = ILLEGAL_REQUEST, 3157 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 3158 }, 3159 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 3160 .key = ILLEGAL_REQUEST, 3161 .asc = 0x0c, /* WRITE ERROR */ 3162 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 3163 }, 3164 [TCM_SERVICE_CRC_ERROR] = { 3165 .key = ABORTED_COMMAND, 3166 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 3167 .ascq = 0x05, /* N/A */ 3168 }, 3169 [TCM_SNACK_REJECTED] = { 3170 .key = ABORTED_COMMAND, 3171 .asc = 0x11, /* READ ERROR */ 3172 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 3173 }, 3174 [TCM_WRITE_PROTECTED] = { 3175 .key = DATA_PROTECT, 3176 .asc = 0x27, /* WRITE PROTECTED */ 3177 }, 3178 [TCM_ADDRESS_OUT_OF_RANGE] = { 3179 .key = ILLEGAL_REQUEST, 3180 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 3181 }, 3182 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 3183 .key = UNIT_ATTENTION, 3184 }, 3185 [TCM_CHECK_CONDITION_NOT_READY] = { 3186 .key = NOT_READY, 3187 }, 3188 [TCM_MISCOMPARE_VERIFY] = { 3189 .key = MISCOMPARE, 3190 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 3191 .ascq = 0x00, 3192 }, 3193 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 3194 .key = ABORTED_COMMAND, 3195 .asc = 0x10, 3196 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 3197 .add_sector_info = true, 3198 }, 3199 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 3200 .key = ABORTED_COMMAND, 3201 .asc = 0x10, 3202 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 3203 .add_sector_info = true, 3204 }, 3205 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 3206 .key = ABORTED_COMMAND, 3207 .asc = 0x10, 3208 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 3209 .add_sector_info = true, 3210 }, 3211 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 3212 .key = COPY_ABORTED, 3213 .asc = 0x0d, 3214 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 3215 3216 }, 3217 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 3218 /* 3219 * Returning ILLEGAL REQUEST would cause immediate IO errors on 3220 * Solaris initiators. Returning NOT READY instead means the 3221 * operations will be retried a finite number of times and we 3222 * can survive intermittent errors. 3223 */ 3224 .key = NOT_READY, 3225 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 3226 }, 3227 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = { 3228 /* 3229 * From spc4r22 section5.7.7,5.7.8 3230 * If a PERSISTENT RESERVE OUT command with a REGISTER service action 3231 * or a REGISTER AND IGNORE EXISTING KEY service action or 3232 * REGISTER AND MOVE service actionis attempted, 3233 * but there are insufficient device server resources to complete the 3234 * operation, then the command shall be terminated with CHECK CONDITION 3235 * status, with the sense key set to ILLEGAL REQUEST,and the additonal 3236 * sense code set to INSUFFICIENT REGISTRATION RESOURCES. 3237 */ 3238 .key = ILLEGAL_REQUEST, 3239 .asc = 0x55, 3240 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */ 3241 }, 3242 }; 3243 3244 /** 3245 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq 3246 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will 3247 * be stored. 3248 * @reason: LIO sense reason code. If this argument has the value 3249 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If 3250 * dequeuing a unit attention fails due to multiple commands being processed 3251 * concurrently, set the command status to BUSY. 3252 * 3253 * Return: 0 upon success or -EINVAL if the sense buffer is too small. 3254 */ 3255 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 3256 { 3257 const struct sense_info *si; 3258 u8 *buffer = cmd->sense_buffer; 3259 int r = (__force int)reason; 3260 u8 key, asc, ascq; 3261 bool desc_format = target_sense_desc_format(cmd->se_dev); 3262 3263 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 3264 si = &sense_info_table[r]; 3265 else 3266 si = &sense_info_table[(__force int) 3267 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 3268 3269 key = si->key; 3270 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 3271 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc, 3272 &ascq)) { 3273 cmd->scsi_status = SAM_STAT_BUSY; 3274 return; 3275 } 3276 } else if (si->asc == 0) { 3277 WARN_ON_ONCE(cmd->scsi_asc == 0); 3278 asc = cmd->scsi_asc; 3279 ascq = cmd->scsi_ascq; 3280 } else { 3281 asc = si->asc; 3282 ascq = si->ascq; 3283 } 3284 3285 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3286 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3287 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3288 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq); 3289 if (si->add_sector_info) 3290 WARN_ON_ONCE(scsi_set_sense_information(buffer, 3291 cmd->scsi_sense_length, 3292 cmd->bad_sector) < 0); 3293 } 3294 3295 int 3296 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3297 sense_reason_t reason, int from_transport) 3298 { 3299 unsigned long flags; 3300 3301 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3302 3303 spin_lock_irqsave(&cmd->t_state_lock, flags); 3304 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3305 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3306 return 0; 3307 } 3308 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3309 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3310 3311 if (!from_transport) 3312 translate_sense_reason(cmd, reason); 3313 3314 trace_target_cmd_complete(cmd); 3315 return cmd->se_tfo->queue_status(cmd); 3316 } 3317 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3318 3319 /** 3320 * target_send_busy - Send SCSI BUSY status back to the initiator 3321 * @cmd: SCSI command for which to send a BUSY reply. 3322 * 3323 * Note: Only call this function if target_submit_cmd*() failed. 3324 */ 3325 int target_send_busy(struct se_cmd *cmd) 3326 { 3327 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3328 3329 cmd->scsi_status = SAM_STAT_BUSY; 3330 trace_target_cmd_complete(cmd); 3331 return cmd->se_tfo->queue_status(cmd); 3332 } 3333 EXPORT_SYMBOL(target_send_busy); 3334 3335 static void target_tmr_work(struct work_struct *work) 3336 { 3337 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3338 struct se_device *dev = cmd->se_dev; 3339 struct se_tmr_req *tmr = cmd->se_tmr_req; 3340 int ret; 3341 3342 if (cmd->transport_state & CMD_T_ABORTED) 3343 goto aborted; 3344 3345 switch (tmr->function) { 3346 case TMR_ABORT_TASK: 3347 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3348 break; 3349 case TMR_ABORT_TASK_SET: 3350 case TMR_CLEAR_ACA: 3351 case TMR_CLEAR_TASK_SET: 3352 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3353 break; 3354 case TMR_LUN_RESET: 3355 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3356 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3357 TMR_FUNCTION_REJECTED; 3358 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3359 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3360 cmd->orig_fe_lun, 0x29, 3361 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3362 } 3363 break; 3364 case TMR_TARGET_WARM_RESET: 3365 tmr->response = TMR_FUNCTION_REJECTED; 3366 break; 3367 case TMR_TARGET_COLD_RESET: 3368 tmr->response = TMR_FUNCTION_REJECTED; 3369 break; 3370 default: 3371 pr_err("Unknown TMR function: 0x%02x.\n", 3372 tmr->function); 3373 tmr->response = TMR_FUNCTION_REJECTED; 3374 break; 3375 } 3376 3377 if (cmd->transport_state & CMD_T_ABORTED) 3378 goto aborted; 3379 3380 cmd->se_tfo->queue_tm_rsp(cmd); 3381 3382 transport_lun_remove_cmd(cmd); 3383 transport_cmd_check_stop_to_fabric(cmd); 3384 return; 3385 3386 aborted: 3387 target_handle_abort(cmd); 3388 } 3389 3390 int transport_generic_handle_tmr( 3391 struct se_cmd *cmd) 3392 { 3393 unsigned long flags; 3394 bool aborted = false; 3395 3396 spin_lock_irqsave(&cmd->t_state_lock, flags); 3397 if (cmd->transport_state & CMD_T_ABORTED) { 3398 aborted = true; 3399 } else { 3400 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3401 cmd->transport_state |= CMD_T_ACTIVE; 3402 } 3403 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3404 3405 if (aborted) { 3406 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n", 3407 cmd->se_tmr_req->function, 3408 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3409 target_handle_abort(cmd); 3410 return 0; 3411 } 3412 3413 INIT_WORK(&cmd->work, target_tmr_work); 3414 schedule_work(&cmd->work); 3415 return 0; 3416 } 3417 EXPORT_SYMBOL(transport_generic_handle_tmr); 3418 3419 bool 3420 target_check_wce(struct se_device *dev) 3421 { 3422 bool wce = false; 3423 3424 if (dev->transport->get_write_cache) 3425 wce = dev->transport->get_write_cache(dev); 3426 else if (dev->dev_attrib.emulate_write_cache > 0) 3427 wce = true; 3428 3429 return wce; 3430 } 3431 3432 bool 3433 target_check_fua(struct se_device *dev) 3434 { 3435 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3436 } 3437