1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /******************************************************************************* 3 * Filename: target_core_transport.c 4 * 5 * This file contains the Generic Target Engine Core. 6 * 7 * (c) Copyright 2002-2013 Datera, Inc. 8 * 9 * Nicholas A. Bellinger <nab@kernel.org> 10 * 11 ******************************************************************************/ 12 13 #include <linux/net.h> 14 #include <linux/delay.h> 15 #include <linux/string.h> 16 #include <linux/timer.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/kthread.h> 20 #include <linux/in.h> 21 #include <linux/cdrom.h> 22 #include <linux/module.h> 23 #include <linux/ratelimit.h> 24 #include <linux/vmalloc.h> 25 #include <asm/unaligned.h> 26 #include <net/sock.h> 27 #include <net/tcp.h> 28 #include <scsi/scsi_proto.h> 29 #include <scsi/scsi_common.h> 30 31 #include <target/target_core_base.h> 32 #include <target/target_core_backend.h> 33 #include <target/target_core_fabric.h> 34 35 #include "target_core_internal.h" 36 #include "target_core_alua.h" 37 #include "target_core_pr.h" 38 #include "target_core_ua.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/target.h> 42 43 static struct workqueue_struct *target_completion_wq; 44 static struct kmem_cache *se_sess_cache; 45 struct kmem_cache *se_ua_cache; 46 struct kmem_cache *t10_pr_reg_cache; 47 struct kmem_cache *t10_alua_lu_gp_cache; 48 struct kmem_cache *t10_alua_lu_gp_mem_cache; 49 struct kmem_cache *t10_alua_tg_pt_gp_cache; 50 struct kmem_cache *t10_alua_lba_map_cache; 51 struct kmem_cache *t10_alua_lba_map_mem_cache; 52 53 static void transport_complete_task_attr(struct se_cmd *cmd); 54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); 55 static void transport_handle_queue_full(struct se_cmd *cmd, 56 struct se_device *dev, int err, bool write_pending); 57 static void target_complete_ok_work(struct work_struct *work); 58 59 int init_se_kmem_caches(void) 60 { 61 se_sess_cache = kmem_cache_create("se_sess_cache", 62 sizeof(struct se_session), __alignof__(struct se_session), 63 0, NULL); 64 if (!se_sess_cache) { 65 pr_err("kmem_cache_create() for struct se_session" 66 " failed\n"); 67 goto out; 68 } 69 se_ua_cache = kmem_cache_create("se_ua_cache", 70 sizeof(struct se_ua), __alignof__(struct se_ua), 71 0, NULL); 72 if (!se_ua_cache) { 73 pr_err("kmem_cache_create() for struct se_ua failed\n"); 74 goto out_free_sess_cache; 75 } 76 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 77 sizeof(struct t10_pr_registration), 78 __alignof__(struct t10_pr_registration), 0, NULL); 79 if (!t10_pr_reg_cache) { 80 pr_err("kmem_cache_create() for struct t10_pr_registration" 81 " failed\n"); 82 goto out_free_ua_cache; 83 } 84 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 85 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 86 0, NULL); 87 if (!t10_alua_lu_gp_cache) { 88 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 89 " failed\n"); 90 goto out_free_pr_reg_cache; 91 } 92 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 93 sizeof(struct t10_alua_lu_gp_member), 94 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 95 if (!t10_alua_lu_gp_mem_cache) { 96 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 97 "cache failed\n"); 98 goto out_free_lu_gp_cache; 99 } 100 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 101 sizeof(struct t10_alua_tg_pt_gp), 102 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 103 if (!t10_alua_tg_pt_gp_cache) { 104 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 105 "cache failed\n"); 106 goto out_free_lu_gp_mem_cache; 107 } 108 t10_alua_lba_map_cache = kmem_cache_create( 109 "t10_alua_lba_map_cache", 110 sizeof(struct t10_alua_lba_map), 111 __alignof__(struct t10_alua_lba_map), 0, NULL); 112 if (!t10_alua_lba_map_cache) { 113 pr_err("kmem_cache_create() for t10_alua_lba_map_" 114 "cache failed\n"); 115 goto out_free_tg_pt_gp_cache; 116 } 117 t10_alua_lba_map_mem_cache = kmem_cache_create( 118 "t10_alua_lba_map_mem_cache", 119 sizeof(struct t10_alua_lba_map_member), 120 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 121 if (!t10_alua_lba_map_mem_cache) { 122 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 123 "cache failed\n"); 124 goto out_free_lba_map_cache; 125 } 126 127 target_completion_wq = alloc_workqueue("target_completion", 128 WQ_MEM_RECLAIM, 0); 129 if (!target_completion_wq) 130 goto out_free_lba_map_mem_cache; 131 132 return 0; 133 134 out_free_lba_map_mem_cache: 135 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 136 out_free_lba_map_cache: 137 kmem_cache_destroy(t10_alua_lba_map_cache); 138 out_free_tg_pt_gp_cache: 139 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 140 out_free_lu_gp_mem_cache: 141 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 142 out_free_lu_gp_cache: 143 kmem_cache_destroy(t10_alua_lu_gp_cache); 144 out_free_pr_reg_cache: 145 kmem_cache_destroy(t10_pr_reg_cache); 146 out_free_ua_cache: 147 kmem_cache_destroy(se_ua_cache); 148 out_free_sess_cache: 149 kmem_cache_destroy(se_sess_cache); 150 out: 151 return -ENOMEM; 152 } 153 154 void release_se_kmem_caches(void) 155 { 156 destroy_workqueue(target_completion_wq); 157 kmem_cache_destroy(se_sess_cache); 158 kmem_cache_destroy(se_ua_cache); 159 kmem_cache_destroy(t10_pr_reg_cache); 160 kmem_cache_destroy(t10_alua_lu_gp_cache); 161 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 162 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 163 kmem_cache_destroy(t10_alua_lba_map_cache); 164 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 165 } 166 167 /* This code ensures unique mib indexes are handed out. */ 168 static DEFINE_SPINLOCK(scsi_mib_index_lock); 169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 170 171 /* 172 * Allocate a new row index for the entry type specified 173 */ 174 u32 scsi_get_new_index(scsi_index_t type) 175 { 176 u32 new_index; 177 178 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 179 180 spin_lock(&scsi_mib_index_lock); 181 new_index = ++scsi_mib_index[type]; 182 spin_unlock(&scsi_mib_index_lock); 183 184 return new_index; 185 } 186 187 void transport_subsystem_check_init(void) 188 { 189 int ret; 190 static int sub_api_initialized; 191 192 if (sub_api_initialized) 193 return; 194 195 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock"); 196 if (ret != 0) 197 pr_err("Unable to load target_core_iblock\n"); 198 199 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file"); 200 if (ret != 0) 201 pr_err("Unable to load target_core_file\n"); 202 203 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi"); 204 if (ret != 0) 205 pr_err("Unable to load target_core_pscsi\n"); 206 207 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user"); 208 if (ret != 0) 209 pr_err("Unable to load target_core_user\n"); 210 211 sub_api_initialized = 1; 212 } 213 214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref) 215 { 216 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count); 217 218 wake_up(&sess->cmd_list_wq); 219 } 220 221 /** 222 * transport_init_session - initialize a session object 223 * @se_sess: Session object pointer. 224 * 225 * The caller must have zero-initialized @se_sess before calling this function. 226 */ 227 int transport_init_session(struct se_session *se_sess) 228 { 229 INIT_LIST_HEAD(&se_sess->sess_list); 230 INIT_LIST_HEAD(&se_sess->sess_acl_list); 231 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 232 spin_lock_init(&se_sess->sess_cmd_lock); 233 init_waitqueue_head(&se_sess->cmd_list_wq); 234 return percpu_ref_init(&se_sess->cmd_count, 235 target_release_sess_cmd_refcnt, 0, GFP_KERNEL); 236 } 237 EXPORT_SYMBOL(transport_init_session); 238 239 /** 240 * transport_alloc_session - allocate a session object and initialize it 241 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 242 */ 243 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops) 244 { 245 struct se_session *se_sess; 246 int ret; 247 248 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 249 if (!se_sess) { 250 pr_err("Unable to allocate struct se_session from" 251 " se_sess_cache\n"); 252 return ERR_PTR(-ENOMEM); 253 } 254 ret = transport_init_session(se_sess); 255 if (ret < 0) { 256 kmem_cache_free(se_sess_cache, se_sess); 257 return ERR_PTR(ret); 258 } 259 se_sess->sup_prot_ops = sup_prot_ops; 260 261 return se_sess; 262 } 263 EXPORT_SYMBOL(transport_alloc_session); 264 265 /** 266 * transport_alloc_session_tags - allocate target driver private data 267 * @se_sess: Session pointer. 268 * @tag_num: Maximum number of in-flight commands between initiator and target. 269 * @tag_size: Size in bytes of the private data a target driver associates with 270 * each command. 271 */ 272 int transport_alloc_session_tags(struct se_session *se_sess, 273 unsigned int tag_num, unsigned int tag_size) 274 { 275 int rc; 276 277 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num, 278 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 279 if (!se_sess->sess_cmd_map) { 280 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 281 return -ENOMEM; 282 } 283 284 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1, 285 false, GFP_KERNEL, NUMA_NO_NODE); 286 if (rc < 0) { 287 pr_err("Unable to init se_sess->sess_tag_pool," 288 " tag_num: %u\n", tag_num); 289 kvfree(se_sess->sess_cmd_map); 290 se_sess->sess_cmd_map = NULL; 291 return -ENOMEM; 292 } 293 294 return 0; 295 } 296 EXPORT_SYMBOL(transport_alloc_session_tags); 297 298 /** 299 * transport_init_session_tags - allocate a session and target driver private data 300 * @tag_num: Maximum number of in-flight commands between initiator and target. 301 * @tag_size: Size in bytes of the private data a target driver associates with 302 * each command. 303 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. 304 */ 305 static struct se_session * 306 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size, 307 enum target_prot_op sup_prot_ops) 308 { 309 struct se_session *se_sess; 310 int rc; 311 312 if (tag_num != 0 && !tag_size) { 313 pr_err("init_session_tags called with percpu-ida tag_num:" 314 " %u, but zero tag_size\n", tag_num); 315 return ERR_PTR(-EINVAL); 316 } 317 if (!tag_num && tag_size) { 318 pr_err("init_session_tags called with percpu-ida tag_size:" 319 " %u, but zero tag_num\n", tag_size); 320 return ERR_PTR(-EINVAL); 321 } 322 323 se_sess = transport_alloc_session(sup_prot_ops); 324 if (IS_ERR(se_sess)) 325 return se_sess; 326 327 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 328 if (rc < 0) { 329 transport_free_session(se_sess); 330 return ERR_PTR(-ENOMEM); 331 } 332 333 return se_sess; 334 } 335 336 /* 337 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 338 */ 339 void __transport_register_session( 340 struct se_portal_group *se_tpg, 341 struct se_node_acl *se_nacl, 342 struct se_session *se_sess, 343 void *fabric_sess_ptr) 344 { 345 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 346 unsigned char buf[PR_REG_ISID_LEN]; 347 unsigned long flags; 348 349 se_sess->se_tpg = se_tpg; 350 se_sess->fabric_sess_ptr = fabric_sess_ptr; 351 /* 352 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 353 * 354 * Only set for struct se_session's that will actually be moving I/O. 355 * eg: *NOT* discovery sessions. 356 */ 357 if (se_nacl) { 358 /* 359 * 360 * Determine if fabric allows for T10-PI feature bits exposed to 361 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 362 * 363 * If so, then always save prot_type on a per se_node_acl node 364 * basis and re-instate the previous sess_prot_type to avoid 365 * disabling PI from below any previously initiator side 366 * registered LUNs. 367 */ 368 if (se_nacl->saved_prot_type) 369 se_sess->sess_prot_type = se_nacl->saved_prot_type; 370 else if (tfo->tpg_check_prot_fabric_only) 371 se_sess->sess_prot_type = se_nacl->saved_prot_type = 372 tfo->tpg_check_prot_fabric_only(se_tpg); 373 /* 374 * If the fabric module supports an ISID based TransportID, 375 * save this value in binary from the fabric I_T Nexus now. 376 */ 377 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 378 memset(&buf[0], 0, PR_REG_ISID_LEN); 379 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 380 &buf[0], PR_REG_ISID_LEN); 381 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 382 } 383 384 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 385 /* 386 * The se_nacl->nacl_sess pointer will be set to the 387 * last active I_T Nexus for each struct se_node_acl. 388 */ 389 se_nacl->nacl_sess = se_sess; 390 391 list_add_tail(&se_sess->sess_acl_list, 392 &se_nacl->acl_sess_list); 393 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 394 } 395 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 396 397 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 398 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr); 399 } 400 EXPORT_SYMBOL(__transport_register_session); 401 402 void transport_register_session( 403 struct se_portal_group *se_tpg, 404 struct se_node_acl *se_nacl, 405 struct se_session *se_sess, 406 void *fabric_sess_ptr) 407 { 408 unsigned long flags; 409 410 spin_lock_irqsave(&se_tpg->session_lock, flags); 411 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 412 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 413 } 414 EXPORT_SYMBOL(transport_register_session); 415 416 struct se_session * 417 target_setup_session(struct se_portal_group *tpg, 418 unsigned int tag_num, unsigned int tag_size, 419 enum target_prot_op prot_op, 420 const char *initiatorname, void *private, 421 int (*callback)(struct se_portal_group *, 422 struct se_session *, void *)) 423 { 424 struct se_session *sess; 425 426 /* 427 * If the fabric driver is using percpu-ida based pre allocation 428 * of I/O descriptor tags, go ahead and perform that setup now.. 429 */ 430 if (tag_num != 0) 431 sess = transport_init_session_tags(tag_num, tag_size, prot_op); 432 else 433 sess = transport_alloc_session(prot_op); 434 435 if (IS_ERR(sess)) 436 return sess; 437 438 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, 439 (unsigned char *)initiatorname); 440 if (!sess->se_node_acl) { 441 transport_free_session(sess); 442 return ERR_PTR(-EACCES); 443 } 444 /* 445 * Go ahead and perform any remaining fabric setup that is 446 * required before transport_register_session(). 447 */ 448 if (callback != NULL) { 449 int rc = callback(tpg, sess, private); 450 if (rc) { 451 transport_free_session(sess); 452 return ERR_PTR(rc); 453 } 454 } 455 456 transport_register_session(tpg, sess->se_node_acl, sess, private); 457 return sess; 458 } 459 EXPORT_SYMBOL(target_setup_session); 460 461 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 462 { 463 struct se_session *se_sess; 464 ssize_t len = 0; 465 466 spin_lock_bh(&se_tpg->session_lock); 467 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 468 if (!se_sess->se_node_acl) 469 continue; 470 if (!se_sess->se_node_acl->dynamic_node_acl) 471 continue; 472 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 473 break; 474 475 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 476 se_sess->se_node_acl->initiatorname); 477 len += 1; /* Include NULL terminator */ 478 } 479 spin_unlock_bh(&se_tpg->session_lock); 480 481 return len; 482 } 483 EXPORT_SYMBOL(target_show_dynamic_sessions); 484 485 static void target_complete_nacl(struct kref *kref) 486 { 487 struct se_node_acl *nacl = container_of(kref, 488 struct se_node_acl, acl_kref); 489 struct se_portal_group *se_tpg = nacl->se_tpg; 490 491 if (!nacl->dynamic_stop) { 492 complete(&nacl->acl_free_comp); 493 return; 494 } 495 496 mutex_lock(&se_tpg->acl_node_mutex); 497 list_del_init(&nacl->acl_list); 498 mutex_unlock(&se_tpg->acl_node_mutex); 499 500 core_tpg_wait_for_nacl_pr_ref(nacl); 501 core_free_device_list_for_node(nacl, se_tpg); 502 kfree(nacl); 503 } 504 505 void target_put_nacl(struct se_node_acl *nacl) 506 { 507 kref_put(&nacl->acl_kref, target_complete_nacl); 508 } 509 EXPORT_SYMBOL(target_put_nacl); 510 511 void transport_deregister_session_configfs(struct se_session *se_sess) 512 { 513 struct se_node_acl *se_nacl; 514 unsigned long flags; 515 /* 516 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 517 */ 518 se_nacl = se_sess->se_node_acl; 519 if (se_nacl) { 520 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 521 if (!list_empty(&se_sess->sess_acl_list)) 522 list_del_init(&se_sess->sess_acl_list); 523 /* 524 * If the session list is empty, then clear the pointer. 525 * Otherwise, set the struct se_session pointer from the tail 526 * element of the per struct se_node_acl active session list. 527 */ 528 if (list_empty(&se_nacl->acl_sess_list)) 529 se_nacl->nacl_sess = NULL; 530 else { 531 se_nacl->nacl_sess = container_of( 532 se_nacl->acl_sess_list.prev, 533 struct se_session, sess_acl_list); 534 } 535 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 536 } 537 } 538 EXPORT_SYMBOL(transport_deregister_session_configfs); 539 540 void transport_free_session(struct se_session *se_sess) 541 { 542 struct se_node_acl *se_nacl = se_sess->se_node_acl; 543 544 /* 545 * Drop the se_node_acl->nacl_kref obtained from within 546 * core_tpg_get_initiator_node_acl(). 547 */ 548 if (se_nacl) { 549 struct se_portal_group *se_tpg = se_nacl->se_tpg; 550 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; 551 unsigned long flags; 552 553 se_sess->se_node_acl = NULL; 554 555 /* 556 * Also determine if we need to drop the extra ->cmd_kref if 557 * it had been previously dynamically generated, and 558 * the endpoint is not caching dynamic ACLs. 559 */ 560 mutex_lock(&se_tpg->acl_node_mutex); 561 if (se_nacl->dynamic_node_acl && 562 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 563 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 564 if (list_empty(&se_nacl->acl_sess_list)) 565 se_nacl->dynamic_stop = true; 566 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 567 568 if (se_nacl->dynamic_stop) 569 list_del_init(&se_nacl->acl_list); 570 } 571 mutex_unlock(&se_tpg->acl_node_mutex); 572 573 if (se_nacl->dynamic_stop) 574 target_put_nacl(se_nacl); 575 576 target_put_nacl(se_nacl); 577 } 578 if (se_sess->sess_cmd_map) { 579 sbitmap_queue_free(&se_sess->sess_tag_pool); 580 kvfree(se_sess->sess_cmd_map); 581 } 582 percpu_ref_exit(&se_sess->cmd_count); 583 kmem_cache_free(se_sess_cache, se_sess); 584 } 585 EXPORT_SYMBOL(transport_free_session); 586 587 static int target_release_res(struct se_device *dev, void *data) 588 { 589 struct se_session *sess = data; 590 591 if (dev->reservation_holder == sess) 592 target_release_reservation(dev); 593 return 0; 594 } 595 596 void transport_deregister_session(struct se_session *se_sess) 597 { 598 struct se_portal_group *se_tpg = se_sess->se_tpg; 599 unsigned long flags; 600 601 if (!se_tpg) { 602 transport_free_session(se_sess); 603 return; 604 } 605 606 spin_lock_irqsave(&se_tpg->session_lock, flags); 607 list_del(&se_sess->sess_list); 608 se_sess->se_tpg = NULL; 609 se_sess->fabric_sess_ptr = NULL; 610 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 611 612 /* 613 * Since the session is being removed, release SPC-2 614 * reservations held by the session that is disappearing. 615 */ 616 target_for_each_device(target_release_res, se_sess); 617 618 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 619 se_tpg->se_tpg_tfo->fabric_name); 620 /* 621 * If last kref is dropping now for an explicit NodeACL, awake sleeping 622 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 623 * removal context from within transport_free_session() code. 624 * 625 * For dynamic ACL, target_put_nacl() uses target_complete_nacl() 626 * to release all remaining generate_node_acl=1 created ACL resources. 627 */ 628 629 transport_free_session(se_sess); 630 } 631 EXPORT_SYMBOL(transport_deregister_session); 632 633 void target_remove_session(struct se_session *se_sess) 634 { 635 transport_deregister_session_configfs(se_sess); 636 transport_deregister_session(se_sess); 637 } 638 EXPORT_SYMBOL(target_remove_session); 639 640 static void target_remove_from_state_list(struct se_cmd *cmd) 641 { 642 struct se_device *dev = cmd->se_dev; 643 unsigned long flags; 644 645 if (!dev) 646 return; 647 648 spin_lock_irqsave(&dev->execute_task_lock, flags); 649 if (cmd->state_active) { 650 list_del(&cmd->state_list); 651 cmd->state_active = false; 652 } 653 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 654 } 655 656 /* 657 * This function is called by the target core after the target core has 658 * finished processing a SCSI command or SCSI TMF. Both the regular command 659 * processing code and the code for aborting commands can call this 660 * function. CMD_T_STOP is set if and only if another thread is waiting 661 * inside transport_wait_for_tasks() for t_transport_stop_comp. 662 */ 663 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 664 { 665 unsigned long flags; 666 667 target_remove_from_state_list(cmd); 668 669 /* 670 * Clear struct se_cmd->se_lun before the handoff to FE. 671 */ 672 cmd->se_lun = NULL; 673 674 spin_lock_irqsave(&cmd->t_state_lock, flags); 675 /* 676 * Determine if frontend context caller is requesting the stopping of 677 * this command for frontend exceptions. 678 */ 679 if (cmd->transport_state & CMD_T_STOP) { 680 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 681 __func__, __LINE__, cmd->tag); 682 683 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 684 685 complete_all(&cmd->t_transport_stop_comp); 686 return 1; 687 } 688 cmd->transport_state &= ~CMD_T_ACTIVE; 689 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 690 691 /* 692 * Some fabric modules like tcm_loop can release their internally 693 * allocated I/O reference and struct se_cmd now. 694 * 695 * Fabric modules are expected to return '1' here if the se_cmd being 696 * passed is released at this point, or zero if not being released. 697 */ 698 return cmd->se_tfo->check_stop_free(cmd); 699 } 700 701 static void transport_lun_remove_cmd(struct se_cmd *cmd) 702 { 703 struct se_lun *lun = cmd->se_lun; 704 705 if (!lun) 706 return; 707 708 if (cmpxchg(&cmd->lun_ref_active, true, false)) 709 percpu_ref_put(&lun->lun_ref); 710 } 711 712 static void target_complete_failure_work(struct work_struct *work) 713 { 714 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 715 716 transport_generic_request_failure(cmd, 717 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 718 } 719 720 /* 721 * Used when asking transport to copy Sense Data from the underlying 722 * Linux/SCSI struct scsi_cmnd 723 */ 724 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 725 { 726 struct se_device *dev = cmd->se_dev; 727 728 WARN_ON(!cmd->se_lun); 729 730 if (!dev) 731 return NULL; 732 733 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 734 return NULL; 735 736 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 737 738 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 739 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 740 return cmd->sense_buffer; 741 } 742 743 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense) 744 { 745 unsigned char *cmd_sense_buf; 746 unsigned long flags; 747 748 spin_lock_irqsave(&cmd->t_state_lock, flags); 749 cmd_sense_buf = transport_get_sense_buffer(cmd); 750 if (!cmd_sense_buf) { 751 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 752 return; 753 } 754 755 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; 756 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length); 757 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 758 } 759 EXPORT_SYMBOL(transport_copy_sense_to_cmd); 760 761 static void target_handle_abort(struct se_cmd *cmd) 762 { 763 bool tas = cmd->transport_state & CMD_T_TAS; 764 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF; 765 int ret; 766 767 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas); 768 769 if (tas) { 770 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 771 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 772 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 773 cmd->t_task_cdb[0], cmd->tag); 774 trace_target_cmd_complete(cmd); 775 ret = cmd->se_tfo->queue_status(cmd); 776 if (ret) { 777 transport_handle_queue_full(cmd, cmd->se_dev, 778 ret, false); 779 return; 780 } 781 } else { 782 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED; 783 cmd->se_tfo->queue_tm_rsp(cmd); 784 } 785 } else { 786 /* 787 * Allow the fabric driver to unmap any resources before 788 * releasing the descriptor via TFO->release_cmd(). 789 */ 790 cmd->se_tfo->aborted_task(cmd); 791 if (ack_kref) 792 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0); 793 /* 794 * To do: establish a unit attention condition on the I_T 795 * nexus associated with cmd. See also the paragraph "Aborting 796 * commands" in SAM. 797 */ 798 } 799 800 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0); 801 802 transport_lun_remove_cmd(cmd); 803 804 transport_cmd_check_stop_to_fabric(cmd); 805 } 806 807 static void target_abort_work(struct work_struct *work) 808 { 809 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 810 811 target_handle_abort(cmd); 812 } 813 814 static bool target_cmd_interrupted(struct se_cmd *cmd) 815 { 816 int post_ret; 817 818 if (cmd->transport_state & CMD_T_ABORTED) { 819 if (cmd->transport_complete_callback) 820 cmd->transport_complete_callback(cmd, false, &post_ret); 821 INIT_WORK(&cmd->work, target_abort_work); 822 queue_work(target_completion_wq, &cmd->work); 823 return true; 824 } else if (cmd->transport_state & CMD_T_STOP) { 825 if (cmd->transport_complete_callback) 826 cmd->transport_complete_callback(cmd, false, &post_ret); 827 complete_all(&cmd->t_transport_stop_comp); 828 return true; 829 } 830 831 return false; 832 } 833 834 /* May be called from interrupt context so must not sleep. */ 835 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 836 { 837 int success; 838 unsigned long flags; 839 840 if (target_cmd_interrupted(cmd)) 841 return; 842 843 cmd->scsi_status = scsi_status; 844 845 spin_lock_irqsave(&cmd->t_state_lock, flags); 846 switch (cmd->scsi_status) { 847 case SAM_STAT_CHECK_CONDITION: 848 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 849 success = 1; 850 else 851 success = 0; 852 break; 853 default: 854 success = 1; 855 break; 856 } 857 858 cmd->t_state = TRANSPORT_COMPLETE; 859 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 860 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 861 862 INIT_WORK(&cmd->work, success ? target_complete_ok_work : 863 target_complete_failure_work); 864 if (cmd->se_cmd_flags & SCF_USE_CPUID) 865 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 866 else 867 queue_work(target_completion_wq, &cmd->work); 868 } 869 EXPORT_SYMBOL(target_complete_cmd); 870 871 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 872 { 873 if ((scsi_status == SAM_STAT_GOOD || 874 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 875 length < cmd->data_length) { 876 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 877 cmd->residual_count += cmd->data_length - length; 878 } else { 879 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 880 cmd->residual_count = cmd->data_length - length; 881 } 882 883 cmd->data_length = length; 884 } 885 886 target_complete_cmd(cmd, scsi_status); 887 } 888 EXPORT_SYMBOL(target_complete_cmd_with_length); 889 890 static void target_add_to_state_list(struct se_cmd *cmd) 891 { 892 struct se_device *dev = cmd->se_dev; 893 unsigned long flags; 894 895 spin_lock_irqsave(&dev->execute_task_lock, flags); 896 if (!cmd->state_active) { 897 list_add_tail(&cmd->state_list, &dev->state_list); 898 cmd->state_active = true; 899 } 900 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 901 } 902 903 /* 904 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 905 */ 906 static void transport_write_pending_qf(struct se_cmd *cmd); 907 static void transport_complete_qf(struct se_cmd *cmd); 908 909 void target_qf_do_work(struct work_struct *work) 910 { 911 struct se_device *dev = container_of(work, struct se_device, 912 qf_work_queue); 913 LIST_HEAD(qf_cmd_list); 914 struct se_cmd *cmd, *cmd_tmp; 915 916 spin_lock_irq(&dev->qf_cmd_lock); 917 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 918 spin_unlock_irq(&dev->qf_cmd_lock); 919 920 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 921 list_del(&cmd->se_qf_node); 922 atomic_dec_mb(&dev->dev_qf_count); 923 924 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 925 " context: %s\n", cmd->se_tfo->fabric_name, cmd, 926 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 927 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 928 : "UNKNOWN"); 929 930 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 931 transport_write_pending_qf(cmd); 932 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || 933 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) 934 transport_complete_qf(cmd); 935 } 936 } 937 938 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 939 { 940 switch (cmd->data_direction) { 941 case DMA_NONE: 942 return "NONE"; 943 case DMA_FROM_DEVICE: 944 return "READ"; 945 case DMA_TO_DEVICE: 946 return "WRITE"; 947 case DMA_BIDIRECTIONAL: 948 return "BIDI"; 949 default: 950 break; 951 } 952 953 return "UNKNOWN"; 954 } 955 956 void transport_dump_dev_state( 957 struct se_device *dev, 958 char *b, 959 int *bl) 960 { 961 *bl += sprintf(b + *bl, "Status: "); 962 if (dev->export_count) 963 *bl += sprintf(b + *bl, "ACTIVATED"); 964 else 965 *bl += sprintf(b + *bl, "DEACTIVATED"); 966 967 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 968 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 969 dev->dev_attrib.block_size, 970 dev->dev_attrib.hw_max_sectors); 971 *bl += sprintf(b + *bl, " "); 972 } 973 974 void transport_dump_vpd_proto_id( 975 struct t10_vpd *vpd, 976 unsigned char *p_buf, 977 int p_buf_len) 978 { 979 unsigned char buf[VPD_TMP_BUF_SIZE]; 980 int len; 981 982 memset(buf, 0, VPD_TMP_BUF_SIZE); 983 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 984 985 switch (vpd->protocol_identifier) { 986 case 0x00: 987 sprintf(buf+len, "Fibre Channel\n"); 988 break; 989 case 0x10: 990 sprintf(buf+len, "Parallel SCSI\n"); 991 break; 992 case 0x20: 993 sprintf(buf+len, "SSA\n"); 994 break; 995 case 0x30: 996 sprintf(buf+len, "IEEE 1394\n"); 997 break; 998 case 0x40: 999 sprintf(buf+len, "SCSI Remote Direct Memory Access" 1000 " Protocol\n"); 1001 break; 1002 case 0x50: 1003 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 1004 break; 1005 case 0x60: 1006 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 1007 break; 1008 case 0x70: 1009 sprintf(buf+len, "Automation/Drive Interface Transport" 1010 " Protocol\n"); 1011 break; 1012 case 0x80: 1013 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 1014 break; 1015 default: 1016 sprintf(buf+len, "Unknown 0x%02x\n", 1017 vpd->protocol_identifier); 1018 break; 1019 } 1020 1021 if (p_buf) 1022 strncpy(p_buf, buf, p_buf_len); 1023 else 1024 pr_debug("%s", buf); 1025 } 1026 1027 void 1028 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 1029 { 1030 /* 1031 * Check if the Protocol Identifier Valid (PIV) bit is set.. 1032 * 1033 * from spc3r23.pdf section 7.5.1 1034 */ 1035 if (page_83[1] & 0x80) { 1036 vpd->protocol_identifier = (page_83[0] & 0xf0); 1037 vpd->protocol_identifier_set = 1; 1038 transport_dump_vpd_proto_id(vpd, NULL, 0); 1039 } 1040 } 1041 EXPORT_SYMBOL(transport_set_vpd_proto_id); 1042 1043 int transport_dump_vpd_assoc( 1044 struct t10_vpd *vpd, 1045 unsigned char *p_buf, 1046 int p_buf_len) 1047 { 1048 unsigned char buf[VPD_TMP_BUF_SIZE]; 1049 int ret = 0; 1050 int len; 1051 1052 memset(buf, 0, VPD_TMP_BUF_SIZE); 1053 len = sprintf(buf, "T10 VPD Identifier Association: "); 1054 1055 switch (vpd->association) { 1056 case 0x00: 1057 sprintf(buf+len, "addressed logical unit\n"); 1058 break; 1059 case 0x10: 1060 sprintf(buf+len, "target port\n"); 1061 break; 1062 case 0x20: 1063 sprintf(buf+len, "SCSI target device\n"); 1064 break; 1065 default: 1066 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 1067 ret = -EINVAL; 1068 break; 1069 } 1070 1071 if (p_buf) 1072 strncpy(p_buf, buf, p_buf_len); 1073 else 1074 pr_debug("%s", buf); 1075 1076 return ret; 1077 } 1078 1079 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 1080 { 1081 /* 1082 * The VPD identification association.. 1083 * 1084 * from spc3r23.pdf Section 7.6.3.1 Table 297 1085 */ 1086 vpd->association = (page_83[1] & 0x30); 1087 return transport_dump_vpd_assoc(vpd, NULL, 0); 1088 } 1089 EXPORT_SYMBOL(transport_set_vpd_assoc); 1090 1091 int transport_dump_vpd_ident_type( 1092 struct t10_vpd *vpd, 1093 unsigned char *p_buf, 1094 int p_buf_len) 1095 { 1096 unsigned char buf[VPD_TMP_BUF_SIZE]; 1097 int ret = 0; 1098 int len; 1099 1100 memset(buf, 0, VPD_TMP_BUF_SIZE); 1101 len = sprintf(buf, "T10 VPD Identifier Type: "); 1102 1103 switch (vpd->device_identifier_type) { 1104 case 0x00: 1105 sprintf(buf+len, "Vendor specific\n"); 1106 break; 1107 case 0x01: 1108 sprintf(buf+len, "T10 Vendor ID based\n"); 1109 break; 1110 case 0x02: 1111 sprintf(buf+len, "EUI-64 based\n"); 1112 break; 1113 case 0x03: 1114 sprintf(buf+len, "NAA\n"); 1115 break; 1116 case 0x04: 1117 sprintf(buf+len, "Relative target port identifier\n"); 1118 break; 1119 case 0x08: 1120 sprintf(buf+len, "SCSI name string\n"); 1121 break; 1122 default: 1123 sprintf(buf+len, "Unsupported: 0x%02x\n", 1124 vpd->device_identifier_type); 1125 ret = -EINVAL; 1126 break; 1127 } 1128 1129 if (p_buf) { 1130 if (p_buf_len < strlen(buf)+1) 1131 return -EINVAL; 1132 strncpy(p_buf, buf, p_buf_len); 1133 } else { 1134 pr_debug("%s", buf); 1135 } 1136 1137 return ret; 1138 } 1139 1140 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1141 { 1142 /* 1143 * The VPD identifier type.. 1144 * 1145 * from spc3r23.pdf Section 7.6.3.1 Table 298 1146 */ 1147 vpd->device_identifier_type = (page_83[1] & 0x0f); 1148 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1149 } 1150 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1151 1152 int transport_dump_vpd_ident( 1153 struct t10_vpd *vpd, 1154 unsigned char *p_buf, 1155 int p_buf_len) 1156 { 1157 unsigned char buf[VPD_TMP_BUF_SIZE]; 1158 int ret = 0; 1159 1160 memset(buf, 0, VPD_TMP_BUF_SIZE); 1161 1162 switch (vpd->device_identifier_code_set) { 1163 case 0x01: /* Binary */ 1164 snprintf(buf, sizeof(buf), 1165 "T10 VPD Binary Device Identifier: %s\n", 1166 &vpd->device_identifier[0]); 1167 break; 1168 case 0x02: /* ASCII */ 1169 snprintf(buf, sizeof(buf), 1170 "T10 VPD ASCII Device Identifier: %s\n", 1171 &vpd->device_identifier[0]); 1172 break; 1173 case 0x03: /* UTF-8 */ 1174 snprintf(buf, sizeof(buf), 1175 "T10 VPD UTF-8 Device Identifier: %s\n", 1176 &vpd->device_identifier[0]); 1177 break; 1178 default: 1179 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1180 " 0x%02x", vpd->device_identifier_code_set); 1181 ret = -EINVAL; 1182 break; 1183 } 1184 1185 if (p_buf) 1186 strncpy(p_buf, buf, p_buf_len); 1187 else 1188 pr_debug("%s", buf); 1189 1190 return ret; 1191 } 1192 1193 int 1194 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1195 { 1196 static const char hex_str[] = "0123456789abcdef"; 1197 int j = 0, i = 4; /* offset to start of the identifier */ 1198 1199 /* 1200 * The VPD Code Set (encoding) 1201 * 1202 * from spc3r23.pdf Section 7.6.3.1 Table 296 1203 */ 1204 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1205 switch (vpd->device_identifier_code_set) { 1206 case 0x01: /* Binary */ 1207 vpd->device_identifier[j++] = 1208 hex_str[vpd->device_identifier_type]; 1209 while (i < (4 + page_83[3])) { 1210 vpd->device_identifier[j++] = 1211 hex_str[(page_83[i] & 0xf0) >> 4]; 1212 vpd->device_identifier[j++] = 1213 hex_str[page_83[i] & 0x0f]; 1214 i++; 1215 } 1216 break; 1217 case 0x02: /* ASCII */ 1218 case 0x03: /* UTF-8 */ 1219 while (i < (4 + page_83[3])) 1220 vpd->device_identifier[j++] = page_83[i++]; 1221 break; 1222 default: 1223 break; 1224 } 1225 1226 return transport_dump_vpd_ident(vpd, NULL, 0); 1227 } 1228 EXPORT_SYMBOL(transport_set_vpd_ident); 1229 1230 static sense_reason_t 1231 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1232 unsigned int size) 1233 { 1234 u32 mtl; 1235 1236 if (!cmd->se_tfo->max_data_sg_nents) 1237 return TCM_NO_SENSE; 1238 /* 1239 * Check if fabric enforced maximum SGL entries per I/O descriptor 1240 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1241 * residual_count and reduce original cmd->data_length to maximum 1242 * length based on single PAGE_SIZE entry scatter-lists. 1243 */ 1244 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1245 if (cmd->data_length > mtl) { 1246 /* 1247 * If an existing CDB overflow is present, calculate new residual 1248 * based on CDB size minus fabric maximum transfer length. 1249 * 1250 * If an existing CDB underflow is present, calculate new residual 1251 * based on original cmd->data_length minus fabric maximum transfer 1252 * length. 1253 * 1254 * Otherwise, set the underflow residual based on cmd->data_length 1255 * minus fabric maximum transfer length. 1256 */ 1257 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1258 cmd->residual_count = (size - mtl); 1259 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1260 u32 orig_dl = size + cmd->residual_count; 1261 cmd->residual_count = (orig_dl - mtl); 1262 } else { 1263 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1264 cmd->residual_count = (cmd->data_length - mtl); 1265 } 1266 cmd->data_length = mtl; 1267 /* 1268 * Reset sbc_check_prot() calculated protection payload 1269 * length based upon the new smaller MTL. 1270 */ 1271 if (cmd->prot_length) { 1272 u32 sectors = (mtl / dev->dev_attrib.block_size); 1273 cmd->prot_length = dev->prot_length * sectors; 1274 } 1275 } 1276 return TCM_NO_SENSE; 1277 } 1278 1279 /** 1280 * target_cmd_size_check - Check whether there will be a residual. 1281 * @cmd: SCSI command. 1282 * @size: Data buffer size derived from CDB. The data buffer size provided by 1283 * the SCSI transport driver is available in @cmd->data_length. 1284 * 1285 * Compare the data buffer size from the CDB with the data buffer limit from the transport 1286 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary. 1287 * 1288 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd(). 1289 * 1290 * Return: TCM_NO_SENSE 1291 */ 1292 sense_reason_t 1293 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1294 { 1295 struct se_device *dev = cmd->se_dev; 1296 1297 if (cmd->unknown_data_length) { 1298 cmd->data_length = size; 1299 } else if (size != cmd->data_length) { 1300 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" 1301 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1302 " 0x%02x\n", cmd->se_tfo->fabric_name, 1303 cmd->data_length, size, cmd->t_task_cdb[0]); 1304 1305 if (cmd->data_direction == DMA_TO_DEVICE) { 1306 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1307 pr_err_ratelimited("Rejecting underflow/overflow" 1308 " for WRITE data CDB\n"); 1309 return TCM_INVALID_CDB_FIELD; 1310 } 1311 /* 1312 * Some fabric drivers like iscsi-target still expect to 1313 * always reject overflow writes. Reject this case until 1314 * full fabric driver level support for overflow writes 1315 * is introduced tree-wide. 1316 */ 1317 if (size > cmd->data_length) { 1318 pr_err_ratelimited("Rejecting overflow for" 1319 " WRITE control CDB\n"); 1320 return TCM_INVALID_CDB_FIELD; 1321 } 1322 } 1323 /* 1324 * Reject READ_* or WRITE_* with overflow/underflow for 1325 * type SCF_SCSI_DATA_CDB. 1326 */ 1327 if (dev->dev_attrib.block_size != 512) { 1328 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1329 " CDB on non 512-byte sector setup subsystem" 1330 " plugin: %s\n", dev->transport->name); 1331 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1332 return TCM_INVALID_CDB_FIELD; 1333 } 1334 /* 1335 * For the overflow case keep the existing fabric provided 1336 * ->data_length. Otherwise for the underflow case, reset 1337 * ->data_length to the smaller SCSI expected data transfer 1338 * length. 1339 */ 1340 if (size > cmd->data_length) { 1341 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1342 cmd->residual_count = (size - cmd->data_length); 1343 } else { 1344 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1345 cmd->residual_count = (cmd->data_length - size); 1346 cmd->data_length = size; 1347 } 1348 } 1349 1350 return target_check_max_data_sg_nents(cmd, dev, size); 1351 1352 } 1353 1354 /* 1355 * Used by fabric modules containing a local struct se_cmd within their 1356 * fabric dependent per I/O descriptor. 1357 * 1358 * Preserves the value of @cmd->tag. 1359 */ 1360 void transport_init_se_cmd( 1361 struct se_cmd *cmd, 1362 const struct target_core_fabric_ops *tfo, 1363 struct se_session *se_sess, 1364 u32 data_length, 1365 int data_direction, 1366 int task_attr, 1367 unsigned char *sense_buffer) 1368 { 1369 INIT_LIST_HEAD(&cmd->se_delayed_node); 1370 INIT_LIST_HEAD(&cmd->se_qf_node); 1371 INIT_LIST_HEAD(&cmd->se_cmd_list); 1372 INIT_LIST_HEAD(&cmd->state_list); 1373 init_completion(&cmd->t_transport_stop_comp); 1374 cmd->free_compl = NULL; 1375 cmd->abrt_compl = NULL; 1376 spin_lock_init(&cmd->t_state_lock); 1377 INIT_WORK(&cmd->work, NULL); 1378 kref_init(&cmd->cmd_kref); 1379 1380 cmd->se_tfo = tfo; 1381 cmd->se_sess = se_sess; 1382 cmd->data_length = data_length; 1383 cmd->data_direction = data_direction; 1384 cmd->sam_task_attr = task_attr; 1385 cmd->sense_buffer = sense_buffer; 1386 1387 cmd->state_active = false; 1388 } 1389 EXPORT_SYMBOL(transport_init_se_cmd); 1390 1391 static sense_reason_t 1392 transport_check_alloc_task_attr(struct se_cmd *cmd) 1393 { 1394 struct se_device *dev = cmd->se_dev; 1395 1396 /* 1397 * Check if SAM Task Attribute emulation is enabled for this 1398 * struct se_device storage object 1399 */ 1400 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1401 return 0; 1402 1403 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1404 pr_debug("SAM Task Attribute ACA" 1405 " emulation is not supported\n"); 1406 return TCM_INVALID_CDB_FIELD; 1407 } 1408 1409 return 0; 1410 } 1411 1412 sense_reason_t 1413 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1414 { 1415 struct se_device *dev = cmd->se_dev; 1416 sense_reason_t ret; 1417 1418 /* 1419 * Ensure that the received CDB is less than the max (252 + 8) bytes 1420 * for VARIABLE_LENGTH_CMD 1421 */ 1422 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1423 pr_err("Received SCSI CDB with command_size: %d that" 1424 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1425 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1426 return TCM_INVALID_CDB_FIELD; 1427 } 1428 /* 1429 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1430 * allocate the additional extended CDB buffer now.. Otherwise 1431 * setup the pointer from __t_task_cdb to t_task_cdb. 1432 */ 1433 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1434 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1435 GFP_KERNEL); 1436 if (!cmd->t_task_cdb) { 1437 pr_err("Unable to allocate cmd->t_task_cdb" 1438 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1439 scsi_command_size(cdb), 1440 (unsigned long)sizeof(cmd->__t_task_cdb)); 1441 return TCM_OUT_OF_RESOURCES; 1442 } 1443 } else 1444 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1445 /* 1446 * Copy the original CDB into cmd-> 1447 */ 1448 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1449 1450 trace_target_sequencer_start(cmd); 1451 1452 ret = dev->transport->parse_cdb(cmd); 1453 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1454 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1455 cmd->se_tfo->fabric_name, 1456 cmd->se_sess->se_node_acl->initiatorname, 1457 cmd->t_task_cdb[0]); 1458 if (ret) 1459 return ret; 1460 1461 ret = transport_check_alloc_task_attr(cmd); 1462 if (ret) 1463 return ret; 1464 1465 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1466 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1467 return 0; 1468 } 1469 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1470 1471 /* 1472 * Used by fabric module frontends to queue tasks directly. 1473 * May only be used from process context. 1474 */ 1475 int transport_handle_cdb_direct( 1476 struct se_cmd *cmd) 1477 { 1478 sense_reason_t ret; 1479 1480 if (!cmd->se_lun) { 1481 dump_stack(); 1482 pr_err("cmd->se_lun is NULL\n"); 1483 return -EINVAL; 1484 } 1485 if (in_interrupt()) { 1486 dump_stack(); 1487 pr_err("transport_generic_handle_cdb cannot be called" 1488 " from interrupt context\n"); 1489 return -EINVAL; 1490 } 1491 /* 1492 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1493 * outstanding descriptors are handled correctly during shutdown via 1494 * transport_wait_for_tasks() 1495 * 1496 * Also, we don't take cmd->t_state_lock here as we only expect 1497 * this to be called for initial descriptor submission. 1498 */ 1499 cmd->t_state = TRANSPORT_NEW_CMD; 1500 cmd->transport_state |= CMD_T_ACTIVE; 1501 1502 /* 1503 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1504 * so follow TRANSPORT_NEW_CMD processing thread context usage 1505 * and call transport_generic_request_failure() if necessary.. 1506 */ 1507 ret = transport_generic_new_cmd(cmd); 1508 if (ret) 1509 transport_generic_request_failure(cmd, ret); 1510 return 0; 1511 } 1512 EXPORT_SYMBOL(transport_handle_cdb_direct); 1513 1514 sense_reason_t 1515 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1516 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1517 { 1518 if (!sgl || !sgl_count) 1519 return 0; 1520 1521 /* 1522 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1523 * scatterlists already have been set to follow what the fabric 1524 * passes for the original expected data transfer length. 1525 */ 1526 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1527 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1528 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1529 return TCM_INVALID_CDB_FIELD; 1530 } 1531 1532 cmd->t_data_sg = sgl; 1533 cmd->t_data_nents = sgl_count; 1534 cmd->t_bidi_data_sg = sgl_bidi; 1535 cmd->t_bidi_data_nents = sgl_bidi_count; 1536 1537 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1538 return 0; 1539 } 1540 1541 /** 1542 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1543 * se_cmd + use pre-allocated SGL memory. 1544 * 1545 * @se_cmd: command descriptor to submit 1546 * @se_sess: associated se_sess for endpoint 1547 * @cdb: pointer to SCSI CDB 1548 * @sense: pointer to SCSI sense buffer 1549 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1550 * @data_length: fabric expected data transfer length 1551 * @task_attr: SAM task attribute 1552 * @data_dir: DMA data direction 1553 * @flags: flags for command submission from target_sc_flags_tables 1554 * @sgl: struct scatterlist memory for unidirectional mapping 1555 * @sgl_count: scatterlist count for unidirectional mapping 1556 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1557 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1558 * @sgl_prot: struct scatterlist memory protection information 1559 * @sgl_prot_count: scatterlist count for protection information 1560 * 1561 * Task tags are supported if the caller has set @se_cmd->tag. 1562 * 1563 * Returns non zero to signal active I/O shutdown failure. All other 1564 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1565 * but still return zero here. 1566 * 1567 * This may only be called from process context, and also currently 1568 * assumes internal allocation of fabric payload buffer by target-core. 1569 */ 1570 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1571 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1572 u32 data_length, int task_attr, int data_dir, int flags, 1573 struct scatterlist *sgl, u32 sgl_count, 1574 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1575 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1576 { 1577 struct se_portal_group *se_tpg; 1578 sense_reason_t rc; 1579 int ret; 1580 1581 se_tpg = se_sess->se_tpg; 1582 BUG_ON(!se_tpg); 1583 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1584 BUG_ON(in_interrupt()); 1585 /* 1586 * Initialize se_cmd for target operation. From this point 1587 * exceptions are handled by sending exception status via 1588 * target_core_fabric_ops->queue_status() callback 1589 */ 1590 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1591 data_length, data_dir, task_attr, sense); 1592 1593 if (flags & TARGET_SCF_USE_CPUID) 1594 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1595 else 1596 se_cmd->cpuid = WORK_CPU_UNBOUND; 1597 1598 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1599 se_cmd->unknown_data_length = 1; 1600 /* 1601 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1602 * se_sess->sess_cmd_list. A second kref_get here is necessary 1603 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1604 * kref_put() to happen during fabric packet acknowledgement. 1605 */ 1606 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1607 if (ret) 1608 return ret; 1609 /* 1610 * Signal bidirectional data payloads to target-core 1611 */ 1612 if (flags & TARGET_SCF_BIDI_OP) 1613 se_cmd->se_cmd_flags |= SCF_BIDI; 1614 /* 1615 * Locate se_lun pointer and attach it to struct se_cmd 1616 */ 1617 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1618 if (rc) { 1619 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1620 target_put_sess_cmd(se_cmd); 1621 return 0; 1622 } 1623 1624 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1625 if (rc != 0) { 1626 transport_generic_request_failure(se_cmd, rc); 1627 return 0; 1628 } 1629 1630 /* 1631 * Save pointers for SGLs containing protection information, 1632 * if present. 1633 */ 1634 if (sgl_prot_count) { 1635 se_cmd->t_prot_sg = sgl_prot; 1636 se_cmd->t_prot_nents = sgl_prot_count; 1637 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1638 } 1639 1640 /* 1641 * When a non zero sgl_count has been passed perform SGL passthrough 1642 * mapping for pre-allocated fabric memory instead of having target 1643 * core perform an internal SGL allocation.. 1644 */ 1645 if (sgl_count != 0) { 1646 BUG_ON(!sgl); 1647 1648 /* 1649 * A work-around for tcm_loop as some userspace code via 1650 * scsi-generic do not memset their associated read buffers, 1651 * so go ahead and do that here for type non-data CDBs. Also 1652 * note that this is currently guaranteed to be a single SGL 1653 * for this case by target core in target_setup_cmd_from_cdb() 1654 * -> transport_generic_cmd_sequencer(). 1655 */ 1656 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1657 se_cmd->data_direction == DMA_FROM_DEVICE) { 1658 unsigned char *buf = NULL; 1659 1660 if (sgl) 1661 buf = kmap(sg_page(sgl)) + sgl->offset; 1662 1663 if (buf) { 1664 memset(buf, 0, sgl->length); 1665 kunmap(sg_page(sgl)); 1666 } 1667 } 1668 1669 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1670 sgl_bidi, sgl_bidi_count); 1671 if (rc != 0) { 1672 transport_generic_request_failure(se_cmd, rc); 1673 return 0; 1674 } 1675 } 1676 1677 /* 1678 * Check if we need to delay processing because of ALUA 1679 * Active/NonOptimized primary access state.. 1680 */ 1681 core_alua_check_nonop_delay(se_cmd); 1682 1683 transport_handle_cdb_direct(se_cmd); 1684 return 0; 1685 } 1686 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1687 1688 /** 1689 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1690 * 1691 * @se_cmd: command descriptor to submit 1692 * @se_sess: associated se_sess for endpoint 1693 * @cdb: pointer to SCSI CDB 1694 * @sense: pointer to SCSI sense buffer 1695 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1696 * @data_length: fabric expected data transfer length 1697 * @task_attr: SAM task attribute 1698 * @data_dir: DMA data direction 1699 * @flags: flags for command submission from target_sc_flags_tables 1700 * 1701 * Task tags are supported if the caller has set @se_cmd->tag. 1702 * 1703 * Returns non zero to signal active I/O shutdown failure. All other 1704 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1705 * but still return zero here. 1706 * 1707 * This may only be called from process context, and also currently 1708 * assumes internal allocation of fabric payload buffer by target-core. 1709 * 1710 * It also assumes interal target core SGL memory allocation. 1711 */ 1712 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1713 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1714 u32 data_length, int task_attr, int data_dir, int flags) 1715 { 1716 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1717 unpacked_lun, data_length, task_attr, data_dir, 1718 flags, NULL, 0, NULL, 0, NULL, 0); 1719 } 1720 EXPORT_SYMBOL(target_submit_cmd); 1721 1722 static void target_complete_tmr_failure(struct work_struct *work) 1723 { 1724 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1725 1726 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1727 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1728 1729 transport_lun_remove_cmd(se_cmd); 1730 transport_cmd_check_stop_to_fabric(se_cmd); 1731 } 1732 1733 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag, 1734 u64 *unpacked_lun) 1735 { 1736 struct se_cmd *se_cmd; 1737 unsigned long flags; 1738 bool ret = false; 1739 1740 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 1741 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) { 1742 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 1743 continue; 1744 1745 if (se_cmd->tag == tag) { 1746 *unpacked_lun = se_cmd->orig_fe_lun; 1747 ret = true; 1748 break; 1749 } 1750 } 1751 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 1752 1753 return ret; 1754 } 1755 1756 /** 1757 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1758 * for TMR CDBs 1759 * 1760 * @se_cmd: command descriptor to submit 1761 * @se_sess: associated se_sess for endpoint 1762 * @sense: pointer to SCSI sense buffer 1763 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1764 * @fabric_tmr_ptr: fabric context for TMR req 1765 * @tm_type: Type of TM request 1766 * @gfp: gfp type for caller 1767 * @tag: referenced task tag for TMR_ABORT_TASK 1768 * @flags: submit cmd flags 1769 * 1770 * Callable from all contexts. 1771 **/ 1772 1773 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1774 unsigned char *sense, u64 unpacked_lun, 1775 void *fabric_tmr_ptr, unsigned char tm_type, 1776 gfp_t gfp, u64 tag, int flags) 1777 { 1778 struct se_portal_group *se_tpg; 1779 int ret; 1780 1781 se_tpg = se_sess->se_tpg; 1782 BUG_ON(!se_tpg); 1783 1784 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1785 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1786 /* 1787 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1788 * allocation failure. 1789 */ 1790 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1791 if (ret < 0) 1792 return -ENOMEM; 1793 1794 if (tm_type == TMR_ABORT_TASK) 1795 se_cmd->se_tmr_req->ref_task_tag = tag; 1796 1797 /* See target_submit_cmd for commentary */ 1798 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1799 if (ret) { 1800 core_tmr_release_req(se_cmd->se_tmr_req); 1801 return ret; 1802 } 1803 /* 1804 * If this is ABORT_TASK with no explicit fabric provided LUN, 1805 * go ahead and search active session tags for a match to figure 1806 * out unpacked_lun for the original se_cmd. 1807 */ 1808 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) { 1809 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun)) 1810 goto failure; 1811 } 1812 1813 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1814 if (ret) 1815 goto failure; 1816 1817 transport_generic_handle_tmr(se_cmd); 1818 return 0; 1819 1820 /* 1821 * For callback during failure handling, push this work off 1822 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1823 */ 1824 failure: 1825 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1826 schedule_work(&se_cmd->work); 1827 return 0; 1828 } 1829 EXPORT_SYMBOL(target_submit_tmr); 1830 1831 /* 1832 * Handle SAM-esque emulation for generic transport request failures. 1833 */ 1834 void transport_generic_request_failure(struct se_cmd *cmd, 1835 sense_reason_t sense_reason) 1836 { 1837 int ret = 0, post_ret; 1838 1839 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n", 1840 sense_reason); 1841 target_show_cmd("-----[ ", cmd); 1842 1843 /* 1844 * For SAM Task Attribute emulation for failed struct se_cmd 1845 */ 1846 transport_complete_task_attr(cmd); 1847 1848 if (cmd->transport_complete_callback) 1849 cmd->transport_complete_callback(cmd, false, &post_ret); 1850 1851 if (cmd->transport_state & CMD_T_ABORTED) { 1852 INIT_WORK(&cmd->work, target_abort_work); 1853 queue_work(target_completion_wq, &cmd->work); 1854 return; 1855 } 1856 1857 switch (sense_reason) { 1858 case TCM_NON_EXISTENT_LUN: 1859 case TCM_UNSUPPORTED_SCSI_OPCODE: 1860 case TCM_INVALID_CDB_FIELD: 1861 case TCM_INVALID_PARAMETER_LIST: 1862 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1863 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1864 case TCM_UNKNOWN_MODE_PAGE: 1865 case TCM_WRITE_PROTECTED: 1866 case TCM_ADDRESS_OUT_OF_RANGE: 1867 case TCM_CHECK_CONDITION_ABORT_CMD: 1868 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1869 case TCM_CHECK_CONDITION_NOT_READY: 1870 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1871 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1872 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1873 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: 1874 case TCM_TOO_MANY_TARGET_DESCS: 1875 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: 1876 case TCM_TOO_MANY_SEGMENT_DESCS: 1877 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: 1878 break; 1879 case TCM_OUT_OF_RESOURCES: 1880 cmd->scsi_status = SAM_STAT_TASK_SET_FULL; 1881 goto queue_status; 1882 case TCM_LUN_BUSY: 1883 cmd->scsi_status = SAM_STAT_BUSY; 1884 goto queue_status; 1885 case TCM_RESERVATION_CONFLICT: 1886 /* 1887 * No SENSE Data payload for this case, set SCSI Status 1888 * and queue the response to $FABRIC_MOD. 1889 * 1890 * Uses linux/include/scsi/scsi.h SAM status codes defs 1891 */ 1892 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1893 /* 1894 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1895 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1896 * CONFLICT STATUS. 1897 * 1898 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1899 */ 1900 if (cmd->se_sess && 1901 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl 1902 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) { 1903 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1904 cmd->orig_fe_lun, 0x2C, 1905 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1906 } 1907 1908 goto queue_status; 1909 default: 1910 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1911 cmd->t_task_cdb[0], sense_reason); 1912 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1913 break; 1914 } 1915 1916 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1917 if (ret) 1918 goto queue_full; 1919 1920 check_stop: 1921 transport_lun_remove_cmd(cmd); 1922 transport_cmd_check_stop_to_fabric(cmd); 1923 return; 1924 1925 queue_status: 1926 trace_target_cmd_complete(cmd); 1927 ret = cmd->se_tfo->queue_status(cmd); 1928 if (!ret) 1929 goto check_stop; 1930 queue_full: 1931 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 1932 } 1933 EXPORT_SYMBOL(transport_generic_request_failure); 1934 1935 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) 1936 { 1937 sense_reason_t ret; 1938 1939 if (!cmd->execute_cmd) { 1940 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1941 goto err; 1942 } 1943 if (do_checks) { 1944 /* 1945 * Check for an existing UNIT ATTENTION condition after 1946 * target_handle_task_attr() has done SAM task attr 1947 * checking, and possibly have already defered execution 1948 * out to target_restart_delayed_cmds() context. 1949 */ 1950 ret = target_scsi3_ua_check(cmd); 1951 if (ret) 1952 goto err; 1953 1954 ret = target_alua_state_check(cmd); 1955 if (ret) 1956 goto err; 1957 1958 ret = target_check_reservation(cmd); 1959 if (ret) { 1960 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1961 goto err; 1962 } 1963 } 1964 1965 ret = cmd->execute_cmd(cmd); 1966 if (!ret) 1967 return; 1968 err: 1969 spin_lock_irq(&cmd->t_state_lock); 1970 cmd->transport_state &= ~CMD_T_SENT; 1971 spin_unlock_irq(&cmd->t_state_lock); 1972 1973 transport_generic_request_failure(cmd, ret); 1974 } 1975 1976 static int target_write_prot_action(struct se_cmd *cmd) 1977 { 1978 u32 sectors; 1979 /* 1980 * Perform WRITE_INSERT of PI using software emulation when backend 1981 * device has PI enabled, if the transport has not already generated 1982 * PI using hardware WRITE_INSERT offload. 1983 */ 1984 switch (cmd->prot_op) { 1985 case TARGET_PROT_DOUT_INSERT: 1986 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1987 sbc_dif_generate(cmd); 1988 break; 1989 case TARGET_PROT_DOUT_STRIP: 1990 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1991 break; 1992 1993 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1994 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1995 sectors, 0, cmd->t_prot_sg, 0); 1996 if (unlikely(cmd->pi_err)) { 1997 spin_lock_irq(&cmd->t_state_lock); 1998 cmd->transport_state &= ~CMD_T_SENT; 1999 spin_unlock_irq(&cmd->t_state_lock); 2000 transport_generic_request_failure(cmd, cmd->pi_err); 2001 return -1; 2002 } 2003 break; 2004 default: 2005 break; 2006 } 2007 2008 return 0; 2009 } 2010 2011 static bool target_handle_task_attr(struct se_cmd *cmd) 2012 { 2013 struct se_device *dev = cmd->se_dev; 2014 2015 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2016 return false; 2017 2018 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; 2019 2020 /* 2021 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 2022 * to allow the passed struct se_cmd list of tasks to the front of the list. 2023 */ 2024 switch (cmd->sam_task_attr) { 2025 case TCM_HEAD_TAG: 2026 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 2027 cmd->t_task_cdb[0]); 2028 return false; 2029 case TCM_ORDERED_TAG: 2030 atomic_inc_mb(&dev->dev_ordered_sync); 2031 2032 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 2033 cmd->t_task_cdb[0]); 2034 2035 /* 2036 * Execute an ORDERED command if no other older commands 2037 * exist that need to be completed first. 2038 */ 2039 if (!atomic_read(&dev->simple_cmds)) 2040 return false; 2041 break; 2042 default: 2043 /* 2044 * For SIMPLE and UNTAGGED Task Attribute commands 2045 */ 2046 atomic_inc_mb(&dev->simple_cmds); 2047 break; 2048 } 2049 2050 if (atomic_read(&dev->dev_ordered_sync) == 0) 2051 return false; 2052 2053 spin_lock(&dev->delayed_cmd_lock); 2054 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 2055 spin_unlock(&dev->delayed_cmd_lock); 2056 2057 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 2058 cmd->t_task_cdb[0], cmd->sam_task_attr); 2059 return true; 2060 } 2061 2062 void target_execute_cmd(struct se_cmd *cmd) 2063 { 2064 /* 2065 * Determine if frontend context caller is requesting the stopping of 2066 * this command for frontend exceptions. 2067 * 2068 * If the received CDB has already been aborted stop processing it here. 2069 */ 2070 if (target_cmd_interrupted(cmd)) 2071 return; 2072 2073 spin_lock_irq(&cmd->t_state_lock); 2074 cmd->t_state = TRANSPORT_PROCESSING; 2075 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; 2076 spin_unlock_irq(&cmd->t_state_lock); 2077 2078 if (target_write_prot_action(cmd)) 2079 return; 2080 2081 if (target_handle_task_attr(cmd)) { 2082 spin_lock_irq(&cmd->t_state_lock); 2083 cmd->transport_state &= ~CMD_T_SENT; 2084 spin_unlock_irq(&cmd->t_state_lock); 2085 return; 2086 } 2087 2088 __target_execute_cmd(cmd, true); 2089 } 2090 EXPORT_SYMBOL(target_execute_cmd); 2091 2092 /* 2093 * Process all commands up to the last received ORDERED task attribute which 2094 * requires another blocking boundary 2095 */ 2096 static void target_restart_delayed_cmds(struct se_device *dev) 2097 { 2098 for (;;) { 2099 struct se_cmd *cmd; 2100 2101 spin_lock(&dev->delayed_cmd_lock); 2102 if (list_empty(&dev->delayed_cmd_list)) { 2103 spin_unlock(&dev->delayed_cmd_lock); 2104 break; 2105 } 2106 2107 cmd = list_entry(dev->delayed_cmd_list.next, 2108 struct se_cmd, se_delayed_node); 2109 list_del(&cmd->se_delayed_node); 2110 spin_unlock(&dev->delayed_cmd_lock); 2111 2112 cmd->transport_state |= CMD_T_SENT; 2113 2114 __target_execute_cmd(cmd, true); 2115 2116 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 2117 break; 2118 } 2119 } 2120 2121 /* 2122 * Called from I/O completion to determine which dormant/delayed 2123 * and ordered cmds need to have their tasks added to the execution queue. 2124 */ 2125 static void transport_complete_task_attr(struct se_cmd *cmd) 2126 { 2127 struct se_device *dev = cmd->se_dev; 2128 2129 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 2130 return; 2131 2132 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) 2133 goto restart; 2134 2135 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 2136 atomic_dec_mb(&dev->simple_cmds); 2137 dev->dev_cur_ordered_id++; 2138 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 2139 dev->dev_cur_ordered_id++; 2140 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 2141 dev->dev_cur_ordered_id); 2142 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 2143 atomic_dec_mb(&dev->dev_ordered_sync); 2144 2145 dev->dev_cur_ordered_id++; 2146 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 2147 dev->dev_cur_ordered_id); 2148 } 2149 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET; 2150 2151 restart: 2152 target_restart_delayed_cmds(dev); 2153 } 2154 2155 static void transport_complete_qf(struct se_cmd *cmd) 2156 { 2157 int ret = 0; 2158 2159 transport_complete_task_attr(cmd); 2160 /* 2161 * If a fabric driver ->write_pending() or ->queue_data_in() callback 2162 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and 2163 * the same callbacks should not be retried. Return CHECK_CONDITION 2164 * if a scsi_status is not already set. 2165 * 2166 * If a fabric driver ->queue_status() has returned non zero, always 2167 * keep retrying no matter what.. 2168 */ 2169 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { 2170 if (cmd->scsi_status) 2171 goto queue_status; 2172 2173 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 2174 goto queue_status; 2175 } 2176 2177 /* 2178 * Check if we need to send a sense buffer from 2179 * the struct se_cmd in question. We do NOT want 2180 * to take this path of the IO has been marked as 2181 * needing to be treated like a "normal read". This 2182 * is the case if it's a tape read, and either the 2183 * FM, EOM, or ILI bits are set, but there is no 2184 * sense data. 2185 */ 2186 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2187 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 2188 goto queue_status; 2189 2190 switch (cmd->data_direction) { 2191 case DMA_FROM_DEVICE: 2192 /* queue status if not treating this as a normal read */ 2193 if (cmd->scsi_status && 2194 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2195 goto queue_status; 2196 2197 trace_target_cmd_complete(cmd); 2198 ret = cmd->se_tfo->queue_data_in(cmd); 2199 break; 2200 case DMA_TO_DEVICE: 2201 if (cmd->se_cmd_flags & SCF_BIDI) { 2202 ret = cmd->se_tfo->queue_data_in(cmd); 2203 break; 2204 } 2205 /* fall through */ 2206 case DMA_NONE: 2207 queue_status: 2208 trace_target_cmd_complete(cmd); 2209 ret = cmd->se_tfo->queue_status(cmd); 2210 break; 2211 default: 2212 break; 2213 } 2214 2215 if (ret < 0) { 2216 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2217 return; 2218 } 2219 transport_lun_remove_cmd(cmd); 2220 transport_cmd_check_stop_to_fabric(cmd); 2221 } 2222 2223 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, 2224 int err, bool write_pending) 2225 { 2226 /* 2227 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or 2228 * ->queue_data_in() callbacks from new process context. 2229 * 2230 * Otherwise for other errors, transport_complete_qf() will send 2231 * CHECK_CONDITION via ->queue_status() instead of attempting to 2232 * retry associated fabric driver data-transfer callbacks. 2233 */ 2234 if (err == -EAGAIN || err == -ENOMEM) { 2235 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : 2236 TRANSPORT_COMPLETE_QF_OK; 2237 } else { 2238 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); 2239 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; 2240 } 2241 2242 spin_lock_irq(&dev->qf_cmd_lock); 2243 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 2244 atomic_inc_mb(&dev->dev_qf_count); 2245 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 2246 2247 schedule_work(&cmd->se_dev->qf_work_queue); 2248 } 2249 2250 static bool target_read_prot_action(struct se_cmd *cmd) 2251 { 2252 switch (cmd->prot_op) { 2253 case TARGET_PROT_DIN_STRIP: 2254 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 2255 u32 sectors = cmd->data_length >> 2256 ilog2(cmd->se_dev->dev_attrib.block_size); 2257 2258 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 2259 sectors, 0, cmd->t_prot_sg, 2260 0); 2261 if (cmd->pi_err) 2262 return true; 2263 } 2264 break; 2265 case TARGET_PROT_DIN_INSERT: 2266 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2267 break; 2268 2269 sbc_dif_generate(cmd); 2270 break; 2271 default: 2272 break; 2273 } 2274 2275 return false; 2276 } 2277 2278 static void target_complete_ok_work(struct work_struct *work) 2279 { 2280 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2281 int ret; 2282 2283 /* 2284 * Check if we need to move delayed/dormant tasks from cmds on the 2285 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2286 * Attribute. 2287 */ 2288 transport_complete_task_attr(cmd); 2289 2290 /* 2291 * Check to schedule QUEUE_FULL work, or execute an existing 2292 * cmd->transport_qf_callback() 2293 */ 2294 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2295 schedule_work(&cmd->se_dev->qf_work_queue); 2296 2297 /* 2298 * Check if we need to send a sense buffer from 2299 * the struct se_cmd in question. We do NOT want 2300 * to take this path of the IO has been marked as 2301 * needing to be treated like a "normal read". This 2302 * is the case if it's a tape read, and either the 2303 * FM, EOM, or ILI bits are set, but there is no 2304 * sense data. 2305 */ 2306 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && 2307 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2308 WARN_ON(!cmd->scsi_status); 2309 ret = transport_send_check_condition_and_sense( 2310 cmd, 0, 1); 2311 if (ret) 2312 goto queue_full; 2313 2314 transport_lun_remove_cmd(cmd); 2315 transport_cmd_check_stop_to_fabric(cmd); 2316 return; 2317 } 2318 /* 2319 * Check for a callback, used by amongst other things 2320 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2321 */ 2322 if (cmd->transport_complete_callback) { 2323 sense_reason_t rc; 2324 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2325 bool zero_dl = !(cmd->data_length); 2326 int post_ret = 0; 2327 2328 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2329 if (!rc && !post_ret) { 2330 if (caw && zero_dl) 2331 goto queue_rsp; 2332 2333 return; 2334 } else if (rc) { 2335 ret = transport_send_check_condition_and_sense(cmd, 2336 rc, 0); 2337 if (ret) 2338 goto queue_full; 2339 2340 transport_lun_remove_cmd(cmd); 2341 transport_cmd_check_stop_to_fabric(cmd); 2342 return; 2343 } 2344 } 2345 2346 queue_rsp: 2347 switch (cmd->data_direction) { 2348 case DMA_FROM_DEVICE: 2349 /* 2350 * if this is a READ-type IO, but SCSI status 2351 * is set, then skip returning data and just 2352 * return the status -- unless this IO is marked 2353 * as needing to be treated as a normal read, 2354 * in which case we want to go ahead and return 2355 * the data. This happens, for example, for tape 2356 * reads with the FM, EOM, or ILI bits set, with 2357 * no sense data. 2358 */ 2359 if (cmd->scsi_status && 2360 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) 2361 goto queue_status; 2362 2363 atomic_long_add(cmd->data_length, 2364 &cmd->se_lun->lun_stats.tx_data_octets); 2365 /* 2366 * Perform READ_STRIP of PI using software emulation when 2367 * backend had PI enabled, if the transport will not be 2368 * performing hardware READ_STRIP offload. 2369 */ 2370 if (target_read_prot_action(cmd)) { 2371 ret = transport_send_check_condition_and_sense(cmd, 2372 cmd->pi_err, 0); 2373 if (ret) 2374 goto queue_full; 2375 2376 transport_lun_remove_cmd(cmd); 2377 transport_cmd_check_stop_to_fabric(cmd); 2378 return; 2379 } 2380 2381 trace_target_cmd_complete(cmd); 2382 ret = cmd->se_tfo->queue_data_in(cmd); 2383 if (ret) 2384 goto queue_full; 2385 break; 2386 case DMA_TO_DEVICE: 2387 atomic_long_add(cmd->data_length, 2388 &cmd->se_lun->lun_stats.rx_data_octets); 2389 /* 2390 * Check if we need to send READ payload for BIDI-COMMAND 2391 */ 2392 if (cmd->se_cmd_flags & SCF_BIDI) { 2393 atomic_long_add(cmd->data_length, 2394 &cmd->se_lun->lun_stats.tx_data_octets); 2395 ret = cmd->se_tfo->queue_data_in(cmd); 2396 if (ret) 2397 goto queue_full; 2398 break; 2399 } 2400 /* fall through */ 2401 case DMA_NONE: 2402 queue_status: 2403 trace_target_cmd_complete(cmd); 2404 ret = cmd->se_tfo->queue_status(cmd); 2405 if (ret) 2406 goto queue_full; 2407 break; 2408 default: 2409 break; 2410 } 2411 2412 transport_lun_remove_cmd(cmd); 2413 transport_cmd_check_stop_to_fabric(cmd); 2414 return; 2415 2416 queue_full: 2417 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2418 " data_direction: %d\n", cmd, cmd->data_direction); 2419 2420 transport_handle_queue_full(cmd, cmd->se_dev, ret, false); 2421 } 2422 2423 void target_free_sgl(struct scatterlist *sgl, int nents) 2424 { 2425 sgl_free_n_order(sgl, nents, 0); 2426 } 2427 EXPORT_SYMBOL(target_free_sgl); 2428 2429 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2430 { 2431 /* 2432 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2433 * emulation, and free + reset pointers if necessary.. 2434 */ 2435 if (!cmd->t_data_sg_orig) 2436 return; 2437 2438 kfree(cmd->t_data_sg); 2439 cmd->t_data_sg = cmd->t_data_sg_orig; 2440 cmd->t_data_sg_orig = NULL; 2441 cmd->t_data_nents = cmd->t_data_nents_orig; 2442 cmd->t_data_nents_orig = 0; 2443 } 2444 2445 static inline void transport_free_pages(struct se_cmd *cmd) 2446 { 2447 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2448 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2449 cmd->t_prot_sg = NULL; 2450 cmd->t_prot_nents = 0; 2451 } 2452 2453 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2454 /* 2455 * Release special case READ buffer payload required for 2456 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2457 */ 2458 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2459 target_free_sgl(cmd->t_bidi_data_sg, 2460 cmd->t_bidi_data_nents); 2461 cmd->t_bidi_data_sg = NULL; 2462 cmd->t_bidi_data_nents = 0; 2463 } 2464 transport_reset_sgl_orig(cmd); 2465 return; 2466 } 2467 transport_reset_sgl_orig(cmd); 2468 2469 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2470 cmd->t_data_sg = NULL; 2471 cmd->t_data_nents = 0; 2472 2473 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2474 cmd->t_bidi_data_sg = NULL; 2475 cmd->t_bidi_data_nents = 0; 2476 } 2477 2478 void *transport_kmap_data_sg(struct se_cmd *cmd) 2479 { 2480 struct scatterlist *sg = cmd->t_data_sg; 2481 struct page **pages; 2482 int i; 2483 2484 /* 2485 * We need to take into account a possible offset here for fabrics like 2486 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2487 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2488 */ 2489 if (!cmd->t_data_nents) 2490 return NULL; 2491 2492 BUG_ON(!sg); 2493 if (cmd->t_data_nents == 1) 2494 return kmap(sg_page(sg)) + sg->offset; 2495 2496 /* >1 page. use vmap */ 2497 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); 2498 if (!pages) 2499 return NULL; 2500 2501 /* convert sg[] to pages[] */ 2502 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2503 pages[i] = sg_page(sg); 2504 } 2505 2506 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2507 kfree(pages); 2508 if (!cmd->t_data_vmap) 2509 return NULL; 2510 2511 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2512 } 2513 EXPORT_SYMBOL(transport_kmap_data_sg); 2514 2515 void transport_kunmap_data_sg(struct se_cmd *cmd) 2516 { 2517 if (!cmd->t_data_nents) { 2518 return; 2519 } else if (cmd->t_data_nents == 1) { 2520 kunmap(sg_page(cmd->t_data_sg)); 2521 return; 2522 } 2523 2524 vunmap(cmd->t_data_vmap); 2525 cmd->t_data_vmap = NULL; 2526 } 2527 EXPORT_SYMBOL(transport_kunmap_data_sg); 2528 2529 int 2530 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2531 bool zero_page, bool chainable) 2532 { 2533 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0); 2534 2535 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents); 2536 return *sgl ? 0 : -ENOMEM; 2537 } 2538 EXPORT_SYMBOL(target_alloc_sgl); 2539 2540 /* 2541 * Allocate any required resources to execute the command. For writes we 2542 * might not have the payload yet, so notify the fabric via a call to 2543 * ->write_pending instead. Otherwise place it on the execution queue. 2544 */ 2545 sense_reason_t 2546 transport_generic_new_cmd(struct se_cmd *cmd) 2547 { 2548 unsigned long flags; 2549 int ret = 0; 2550 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2551 2552 if (cmd->prot_op != TARGET_PROT_NORMAL && 2553 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2554 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2555 cmd->prot_length, true, false); 2556 if (ret < 0) 2557 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2558 } 2559 2560 /* 2561 * Determine if the TCM fabric module has already allocated physical 2562 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2563 * beforehand. 2564 */ 2565 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2566 cmd->data_length) { 2567 2568 if ((cmd->se_cmd_flags & SCF_BIDI) || 2569 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2570 u32 bidi_length; 2571 2572 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2573 bidi_length = cmd->t_task_nolb * 2574 cmd->se_dev->dev_attrib.block_size; 2575 else 2576 bidi_length = cmd->data_length; 2577 2578 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2579 &cmd->t_bidi_data_nents, 2580 bidi_length, zero_flag, false); 2581 if (ret < 0) 2582 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2583 } 2584 2585 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2586 cmd->data_length, zero_flag, false); 2587 if (ret < 0) 2588 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2589 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2590 cmd->data_length) { 2591 /* 2592 * Special case for COMPARE_AND_WRITE with fabrics 2593 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2594 */ 2595 u32 caw_length = cmd->t_task_nolb * 2596 cmd->se_dev->dev_attrib.block_size; 2597 2598 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2599 &cmd->t_bidi_data_nents, 2600 caw_length, zero_flag, false); 2601 if (ret < 0) 2602 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2603 } 2604 /* 2605 * If this command is not a write we can execute it right here, 2606 * for write buffers we need to notify the fabric driver first 2607 * and let it call back once the write buffers are ready. 2608 */ 2609 target_add_to_state_list(cmd); 2610 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2611 target_execute_cmd(cmd); 2612 return 0; 2613 } 2614 2615 spin_lock_irqsave(&cmd->t_state_lock, flags); 2616 cmd->t_state = TRANSPORT_WRITE_PENDING; 2617 /* 2618 * Determine if frontend context caller is requesting the stopping of 2619 * this command for frontend exceptions. 2620 */ 2621 if (cmd->transport_state & CMD_T_STOP && 2622 !cmd->se_tfo->write_pending_must_be_called) { 2623 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 2624 __func__, __LINE__, cmd->tag); 2625 2626 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2627 2628 complete_all(&cmd->t_transport_stop_comp); 2629 return 0; 2630 } 2631 cmd->transport_state &= ~CMD_T_ACTIVE; 2632 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2633 2634 ret = cmd->se_tfo->write_pending(cmd); 2635 if (ret) 2636 goto queue_full; 2637 2638 return 0; 2639 2640 queue_full: 2641 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2642 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2643 return 0; 2644 } 2645 EXPORT_SYMBOL(transport_generic_new_cmd); 2646 2647 static void transport_write_pending_qf(struct se_cmd *cmd) 2648 { 2649 unsigned long flags; 2650 int ret; 2651 bool stop; 2652 2653 spin_lock_irqsave(&cmd->t_state_lock, flags); 2654 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED)); 2655 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2656 2657 if (stop) { 2658 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n", 2659 __func__, __LINE__, cmd->tag); 2660 complete_all(&cmd->t_transport_stop_comp); 2661 return; 2662 } 2663 2664 ret = cmd->se_tfo->write_pending(cmd); 2665 if (ret) { 2666 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2667 cmd); 2668 transport_handle_queue_full(cmd, cmd->se_dev, ret, true); 2669 } 2670 } 2671 2672 static bool 2673 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2674 unsigned long *flags); 2675 2676 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2677 { 2678 unsigned long flags; 2679 2680 spin_lock_irqsave(&cmd->t_state_lock, flags); 2681 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2682 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2683 } 2684 2685 /* 2686 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has 2687 * finished. 2688 */ 2689 void target_put_cmd_and_wait(struct se_cmd *cmd) 2690 { 2691 DECLARE_COMPLETION_ONSTACK(compl); 2692 2693 WARN_ON_ONCE(cmd->abrt_compl); 2694 cmd->abrt_compl = &compl; 2695 target_put_sess_cmd(cmd); 2696 wait_for_completion(&compl); 2697 } 2698 2699 /* 2700 * This function is called by frontend drivers after processing of a command 2701 * has finished. 2702 * 2703 * The protocol for ensuring that either the regular frontend command 2704 * processing flow or target_handle_abort() code drops one reference is as 2705 * follows: 2706 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause 2707 * the frontend driver to call this function synchronously or asynchronously. 2708 * That will cause one reference to be dropped. 2709 * - During regular command processing the target core sets CMD_T_COMPLETE 2710 * before invoking one of the .queue_*() functions. 2711 * - The code that aborts commands skips commands and TMFs for which 2712 * CMD_T_COMPLETE has been set. 2713 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for 2714 * commands that will be aborted. 2715 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set 2716 * transport_generic_free_cmd() skips its call to target_put_sess_cmd(). 2717 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will 2718 * be called and will drop a reference. 2719 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task() 2720 * will be called. target_handle_abort() will drop the final reference. 2721 */ 2722 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2723 { 2724 DECLARE_COMPLETION_ONSTACK(compl); 2725 int ret = 0; 2726 bool aborted = false, tas = false; 2727 2728 if (wait_for_tasks) 2729 target_wait_free_cmd(cmd, &aborted, &tas); 2730 2731 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) { 2732 /* 2733 * Handle WRITE failure case where transport_generic_new_cmd() 2734 * has already added se_cmd to state_list, but fabric has 2735 * failed command before I/O submission. 2736 */ 2737 if (cmd->state_active) 2738 target_remove_from_state_list(cmd); 2739 2740 if (cmd->se_lun) 2741 transport_lun_remove_cmd(cmd); 2742 } 2743 if (aborted) 2744 cmd->free_compl = &compl; 2745 ret = target_put_sess_cmd(cmd); 2746 if (aborted) { 2747 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2748 wait_for_completion(&compl); 2749 ret = 1; 2750 } 2751 return ret; 2752 } 2753 EXPORT_SYMBOL(transport_generic_free_cmd); 2754 2755 /** 2756 * target_get_sess_cmd - Add command to active ->sess_cmd_list 2757 * @se_cmd: command descriptor to add 2758 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2759 */ 2760 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2761 { 2762 struct se_session *se_sess = se_cmd->se_sess; 2763 unsigned long flags; 2764 int ret = 0; 2765 2766 /* 2767 * Add a second kref if the fabric caller is expecting to handle 2768 * fabric acknowledgement that requires two target_put_sess_cmd() 2769 * invocations before se_cmd descriptor release. 2770 */ 2771 if (ack_kref) { 2772 if (!kref_get_unless_zero(&se_cmd->cmd_kref)) 2773 return -EINVAL; 2774 2775 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2776 } 2777 2778 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2779 if (se_sess->sess_tearing_down) { 2780 ret = -ESHUTDOWN; 2781 goto out; 2782 } 2783 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2784 percpu_ref_get(&se_sess->cmd_count); 2785 out: 2786 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2787 2788 if (ret && ack_kref) 2789 target_put_sess_cmd(se_cmd); 2790 2791 return ret; 2792 } 2793 EXPORT_SYMBOL(target_get_sess_cmd); 2794 2795 static void target_free_cmd_mem(struct se_cmd *cmd) 2796 { 2797 transport_free_pages(cmd); 2798 2799 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2800 core_tmr_release_req(cmd->se_tmr_req); 2801 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2802 kfree(cmd->t_task_cdb); 2803 } 2804 2805 static void target_release_cmd_kref(struct kref *kref) 2806 { 2807 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2808 struct se_session *se_sess = se_cmd->se_sess; 2809 struct completion *free_compl = se_cmd->free_compl; 2810 struct completion *abrt_compl = se_cmd->abrt_compl; 2811 unsigned long flags; 2812 2813 if (se_sess) { 2814 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2815 list_del_init(&se_cmd->se_cmd_list); 2816 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2817 } 2818 2819 target_free_cmd_mem(se_cmd); 2820 se_cmd->se_tfo->release_cmd(se_cmd); 2821 if (free_compl) 2822 complete(free_compl); 2823 if (abrt_compl) 2824 complete(abrt_compl); 2825 2826 percpu_ref_put(&se_sess->cmd_count); 2827 } 2828 2829 /** 2830 * target_put_sess_cmd - decrease the command reference count 2831 * @se_cmd: command to drop a reference from 2832 * 2833 * Returns 1 if and only if this target_put_sess_cmd() call caused the 2834 * refcount to drop to zero. Returns zero otherwise. 2835 */ 2836 int target_put_sess_cmd(struct se_cmd *se_cmd) 2837 { 2838 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2839 } 2840 EXPORT_SYMBOL(target_put_sess_cmd); 2841 2842 static const char *data_dir_name(enum dma_data_direction d) 2843 { 2844 switch (d) { 2845 case DMA_BIDIRECTIONAL: return "BIDI"; 2846 case DMA_TO_DEVICE: return "WRITE"; 2847 case DMA_FROM_DEVICE: return "READ"; 2848 case DMA_NONE: return "NONE"; 2849 } 2850 2851 return "(?)"; 2852 } 2853 2854 static const char *cmd_state_name(enum transport_state_table t) 2855 { 2856 switch (t) { 2857 case TRANSPORT_NO_STATE: return "NO_STATE"; 2858 case TRANSPORT_NEW_CMD: return "NEW_CMD"; 2859 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING"; 2860 case TRANSPORT_PROCESSING: return "PROCESSING"; 2861 case TRANSPORT_COMPLETE: return "COMPLETE"; 2862 case TRANSPORT_ISTATE_PROCESSING: 2863 return "ISTATE_PROCESSING"; 2864 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP"; 2865 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK"; 2866 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR"; 2867 } 2868 2869 return "(?)"; 2870 } 2871 2872 static void target_append_str(char **str, const char *txt) 2873 { 2874 char *prev = *str; 2875 2876 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) : 2877 kstrdup(txt, GFP_ATOMIC); 2878 kfree(prev); 2879 } 2880 2881 /* 2882 * Convert a transport state bitmask into a string. The caller is 2883 * responsible for freeing the returned pointer. 2884 */ 2885 static char *target_ts_to_str(u32 ts) 2886 { 2887 char *str = NULL; 2888 2889 if (ts & CMD_T_ABORTED) 2890 target_append_str(&str, "aborted"); 2891 if (ts & CMD_T_ACTIVE) 2892 target_append_str(&str, "active"); 2893 if (ts & CMD_T_COMPLETE) 2894 target_append_str(&str, "complete"); 2895 if (ts & CMD_T_SENT) 2896 target_append_str(&str, "sent"); 2897 if (ts & CMD_T_STOP) 2898 target_append_str(&str, "stop"); 2899 if (ts & CMD_T_FABRIC_STOP) 2900 target_append_str(&str, "fabric_stop"); 2901 2902 return str; 2903 } 2904 2905 static const char *target_tmf_name(enum tcm_tmreq_table tmf) 2906 { 2907 switch (tmf) { 2908 case TMR_ABORT_TASK: return "ABORT_TASK"; 2909 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET"; 2910 case TMR_CLEAR_ACA: return "CLEAR_ACA"; 2911 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET"; 2912 case TMR_LUN_RESET: return "LUN_RESET"; 2913 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET"; 2914 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET"; 2915 case TMR_UNKNOWN: break; 2916 } 2917 return "(?)"; 2918 } 2919 2920 void target_show_cmd(const char *pfx, struct se_cmd *cmd) 2921 { 2922 char *ts_str = target_ts_to_str(cmd->transport_state); 2923 const u8 *cdb = cmd->t_task_cdb; 2924 struct se_tmr_req *tmf = cmd->se_tmr_req; 2925 2926 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2927 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n", 2928 pfx, cdb[0], cdb[1], cmd->tag, 2929 data_dir_name(cmd->data_direction), 2930 cmd->se_tfo->get_cmd_state(cmd), 2931 cmd_state_name(cmd->t_state), cmd->data_length, 2932 kref_read(&cmd->cmd_kref), ts_str); 2933 } else { 2934 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n", 2935 pfx, target_tmf_name(tmf->function), cmd->tag, 2936 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd), 2937 cmd_state_name(cmd->t_state), 2938 kref_read(&cmd->cmd_kref), ts_str); 2939 } 2940 kfree(ts_str); 2941 } 2942 EXPORT_SYMBOL(target_show_cmd); 2943 2944 /** 2945 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued. 2946 * @se_sess: session to flag 2947 */ 2948 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2949 { 2950 unsigned long flags; 2951 2952 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2953 se_sess->sess_tearing_down = 1; 2954 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2955 2956 percpu_ref_kill(&se_sess->cmd_count); 2957 } 2958 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2959 2960 /** 2961 * target_wait_for_sess_cmds - Wait for outstanding commands 2962 * @se_sess: session to wait for active I/O 2963 */ 2964 void target_wait_for_sess_cmds(struct se_session *se_sess) 2965 { 2966 struct se_cmd *cmd; 2967 int ret; 2968 2969 WARN_ON_ONCE(!se_sess->sess_tearing_down); 2970 2971 do { 2972 ret = wait_event_timeout(se_sess->cmd_list_wq, 2973 percpu_ref_is_zero(&se_sess->cmd_count), 2974 180 * HZ); 2975 list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list) 2976 target_show_cmd("session shutdown: still waiting for ", 2977 cmd); 2978 } while (ret <= 0); 2979 } 2980 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2981 2982 /* 2983 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until 2984 * all references to the LUN have been released. Called during LUN shutdown. 2985 */ 2986 void transport_clear_lun_ref(struct se_lun *lun) 2987 { 2988 percpu_ref_kill(&lun->lun_ref); 2989 wait_for_completion(&lun->lun_shutdown_comp); 2990 } 2991 2992 static bool 2993 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2994 bool *aborted, bool *tas, unsigned long *flags) 2995 __releases(&cmd->t_state_lock) 2996 __acquires(&cmd->t_state_lock) 2997 { 2998 2999 assert_spin_locked(&cmd->t_state_lock); 3000 WARN_ON_ONCE(!irqs_disabled()); 3001 3002 if (fabric_stop) 3003 cmd->transport_state |= CMD_T_FABRIC_STOP; 3004 3005 if (cmd->transport_state & CMD_T_ABORTED) 3006 *aborted = true; 3007 3008 if (cmd->transport_state & CMD_T_TAS) 3009 *tas = true; 3010 3011 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 3012 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3013 return false; 3014 3015 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 3016 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 3017 return false; 3018 3019 if (!(cmd->transport_state & CMD_T_ACTIVE)) 3020 return false; 3021 3022 if (fabric_stop && *aborted) 3023 return false; 3024 3025 cmd->transport_state |= CMD_T_STOP; 3026 3027 target_show_cmd("wait_for_tasks: Stopping ", cmd); 3028 3029 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 3030 3031 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp, 3032 180 * HZ)) 3033 target_show_cmd("wait for tasks: ", cmd); 3034 3035 spin_lock_irqsave(&cmd->t_state_lock, *flags); 3036 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 3037 3038 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 3039 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 3040 3041 return true; 3042 } 3043 3044 /** 3045 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp 3046 * @cmd: command to wait on 3047 */ 3048 bool transport_wait_for_tasks(struct se_cmd *cmd) 3049 { 3050 unsigned long flags; 3051 bool ret, aborted = false, tas = false; 3052 3053 spin_lock_irqsave(&cmd->t_state_lock, flags); 3054 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 3055 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3056 3057 return ret; 3058 } 3059 EXPORT_SYMBOL(transport_wait_for_tasks); 3060 3061 struct sense_info { 3062 u8 key; 3063 u8 asc; 3064 u8 ascq; 3065 bool add_sector_info; 3066 }; 3067 3068 static const struct sense_info sense_info_table[] = { 3069 [TCM_NO_SENSE] = { 3070 .key = NOT_READY 3071 }, 3072 [TCM_NON_EXISTENT_LUN] = { 3073 .key = ILLEGAL_REQUEST, 3074 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 3075 }, 3076 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 3077 .key = ILLEGAL_REQUEST, 3078 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3079 }, 3080 [TCM_SECTOR_COUNT_TOO_MANY] = { 3081 .key = ILLEGAL_REQUEST, 3082 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 3083 }, 3084 [TCM_UNKNOWN_MODE_PAGE] = { 3085 .key = ILLEGAL_REQUEST, 3086 .asc = 0x24, /* INVALID FIELD IN CDB */ 3087 }, 3088 [TCM_CHECK_CONDITION_ABORT_CMD] = { 3089 .key = ABORTED_COMMAND, 3090 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 3091 .ascq = 0x03, 3092 }, 3093 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 3094 .key = ABORTED_COMMAND, 3095 .asc = 0x0c, /* WRITE ERROR */ 3096 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 3097 }, 3098 [TCM_INVALID_CDB_FIELD] = { 3099 .key = ILLEGAL_REQUEST, 3100 .asc = 0x24, /* INVALID FIELD IN CDB */ 3101 }, 3102 [TCM_INVALID_PARAMETER_LIST] = { 3103 .key = ILLEGAL_REQUEST, 3104 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 3105 }, 3106 [TCM_TOO_MANY_TARGET_DESCS] = { 3107 .key = ILLEGAL_REQUEST, 3108 .asc = 0x26, 3109 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */ 3110 }, 3111 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = { 3112 .key = ILLEGAL_REQUEST, 3113 .asc = 0x26, 3114 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */ 3115 }, 3116 [TCM_TOO_MANY_SEGMENT_DESCS] = { 3117 .key = ILLEGAL_REQUEST, 3118 .asc = 0x26, 3119 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */ 3120 }, 3121 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = { 3122 .key = ILLEGAL_REQUEST, 3123 .asc = 0x26, 3124 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */ 3125 }, 3126 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 3127 .key = ILLEGAL_REQUEST, 3128 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 3129 }, 3130 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 3131 .key = ILLEGAL_REQUEST, 3132 .asc = 0x0c, /* WRITE ERROR */ 3133 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 3134 }, 3135 [TCM_SERVICE_CRC_ERROR] = { 3136 .key = ABORTED_COMMAND, 3137 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 3138 .ascq = 0x05, /* N/A */ 3139 }, 3140 [TCM_SNACK_REJECTED] = { 3141 .key = ABORTED_COMMAND, 3142 .asc = 0x11, /* READ ERROR */ 3143 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 3144 }, 3145 [TCM_WRITE_PROTECTED] = { 3146 .key = DATA_PROTECT, 3147 .asc = 0x27, /* WRITE PROTECTED */ 3148 }, 3149 [TCM_ADDRESS_OUT_OF_RANGE] = { 3150 .key = ILLEGAL_REQUEST, 3151 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 3152 }, 3153 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 3154 .key = UNIT_ATTENTION, 3155 }, 3156 [TCM_CHECK_CONDITION_NOT_READY] = { 3157 .key = NOT_READY, 3158 }, 3159 [TCM_MISCOMPARE_VERIFY] = { 3160 .key = MISCOMPARE, 3161 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 3162 .ascq = 0x00, 3163 }, 3164 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 3165 .key = ABORTED_COMMAND, 3166 .asc = 0x10, 3167 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 3168 .add_sector_info = true, 3169 }, 3170 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 3171 .key = ABORTED_COMMAND, 3172 .asc = 0x10, 3173 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 3174 .add_sector_info = true, 3175 }, 3176 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 3177 .key = ABORTED_COMMAND, 3178 .asc = 0x10, 3179 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 3180 .add_sector_info = true, 3181 }, 3182 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = { 3183 .key = COPY_ABORTED, 3184 .asc = 0x0d, 3185 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */ 3186 3187 }, 3188 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 3189 /* 3190 * Returning ILLEGAL REQUEST would cause immediate IO errors on 3191 * Solaris initiators. Returning NOT READY instead means the 3192 * operations will be retried a finite number of times and we 3193 * can survive intermittent errors. 3194 */ 3195 .key = NOT_READY, 3196 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 3197 }, 3198 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = { 3199 /* 3200 * From spc4r22 section5.7.7,5.7.8 3201 * If a PERSISTENT RESERVE OUT command with a REGISTER service action 3202 * or a REGISTER AND IGNORE EXISTING KEY service action or 3203 * REGISTER AND MOVE service actionis attempted, 3204 * but there are insufficient device server resources to complete the 3205 * operation, then the command shall be terminated with CHECK CONDITION 3206 * status, with the sense key set to ILLEGAL REQUEST,and the additonal 3207 * sense code set to INSUFFICIENT REGISTRATION RESOURCES. 3208 */ 3209 .key = ILLEGAL_REQUEST, 3210 .asc = 0x55, 3211 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */ 3212 }, 3213 }; 3214 3215 /** 3216 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq 3217 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will 3218 * be stored. 3219 * @reason: LIO sense reason code. If this argument has the value 3220 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If 3221 * dequeuing a unit attention fails due to multiple commands being processed 3222 * concurrently, set the command status to BUSY. 3223 * 3224 * Return: 0 upon success or -EINVAL if the sense buffer is too small. 3225 */ 3226 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 3227 { 3228 const struct sense_info *si; 3229 u8 *buffer = cmd->sense_buffer; 3230 int r = (__force int)reason; 3231 u8 key, asc, ascq; 3232 bool desc_format = target_sense_desc_format(cmd->se_dev); 3233 3234 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 3235 si = &sense_info_table[r]; 3236 else 3237 si = &sense_info_table[(__force int) 3238 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 3239 3240 key = si->key; 3241 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 3242 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc, 3243 &ascq)) { 3244 cmd->scsi_status = SAM_STAT_BUSY; 3245 return; 3246 } 3247 } else if (si->asc == 0) { 3248 WARN_ON_ONCE(cmd->scsi_asc == 0); 3249 asc = cmd->scsi_asc; 3250 ascq = cmd->scsi_ascq; 3251 } else { 3252 asc = si->asc; 3253 ascq = si->ascq; 3254 } 3255 3256 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 3257 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 3258 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 3259 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq); 3260 if (si->add_sector_info) 3261 WARN_ON_ONCE(scsi_set_sense_information(buffer, 3262 cmd->scsi_sense_length, 3263 cmd->bad_sector) < 0); 3264 } 3265 3266 int 3267 transport_send_check_condition_and_sense(struct se_cmd *cmd, 3268 sense_reason_t reason, int from_transport) 3269 { 3270 unsigned long flags; 3271 3272 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3273 3274 spin_lock_irqsave(&cmd->t_state_lock, flags); 3275 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 3276 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3277 return 0; 3278 } 3279 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 3280 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3281 3282 if (!from_transport) 3283 translate_sense_reason(cmd, reason); 3284 3285 trace_target_cmd_complete(cmd); 3286 return cmd->se_tfo->queue_status(cmd); 3287 } 3288 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 3289 3290 /** 3291 * target_send_busy - Send SCSI BUSY status back to the initiator 3292 * @cmd: SCSI command for which to send a BUSY reply. 3293 * 3294 * Note: Only call this function if target_submit_cmd*() failed. 3295 */ 3296 int target_send_busy(struct se_cmd *cmd) 3297 { 3298 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB); 3299 3300 cmd->scsi_status = SAM_STAT_BUSY; 3301 trace_target_cmd_complete(cmd); 3302 return cmd->se_tfo->queue_status(cmd); 3303 } 3304 EXPORT_SYMBOL(target_send_busy); 3305 3306 static void target_tmr_work(struct work_struct *work) 3307 { 3308 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3309 struct se_device *dev = cmd->se_dev; 3310 struct se_tmr_req *tmr = cmd->se_tmr_req; 3311 int ret; 3312 3313 if (cmd->transport_state & CMD_T_ABORTED) 3314 goto aborted; 3315 3316 switch (tmr->function) { 3317 case TMR_ABORT_TASK: 3318 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3319 break; 3320 case TMR_ABORT_TASK_SET: 3321 case TMR_CLEAR_ACA: 3322 case TMR_CLEAR_TASK_SET: 3323 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3324 break; 3325 case TMR_LUN_RESET: 3326 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3327 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3328 TMR_FUNCTION_REJECTED; 3329 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3330 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3331 cmd->orig_fe_lun, 0x29, 3332 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3333 } 3334 break; 3335 case TMR_TARGET_WARM_RESET: 3336 tmr->response = TMR_FUNCTION_REJECTED; 3337 break; 3338 case TMR_TARGET_COLD_RESET: 3339 tmr->response = TMR_FUNCTION_REJECTED; 3340 break; 3341 default: 3342 pr_err("Unknown TMR function: 0x%02x.\n", 3343 tmr->function); 3344 tmr->response = TMR_FUNCTION_REJECTED; 3345 break; 3346 } 3347 3348 if (cmd->transport_state & CMD_T_ABORTED) 3349 goto aborted; 3350 3351 cmd->se_tfo->queue_tm_rsp(cmd); 3352 3353 transport_cmd_check_stop_to_fabric(cmd); 3354 return; 3355 3356 aborted: 3357 target_handle_abort(cmd); 3358 } 3359 3360 int transport_generic_handle_tmr( 3361 struct se_cmd *cmd) 3362 { 3363 unsigned long flags; 3364 bool aborted = false; 3365 3366 spin_lock_irqsave(&cmd->t_state_lock, flags); 3367 if (cmd->transport_state & CMD_T_ABORTED) { 3368 aborted = true; 3369 } else { 3370 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3371 cmd->transport_state |= CMD_T_ACTIVE; 3372 } 3373 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3374 3375 if (aborted) { 3376 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n", 3377 cmd->se_tmr_req->function, 3378 cmd->se_tmr_req->ref_task_tag, cmd->tag); 3379 target_handle_abort(cmd); 3380 return 0; 3381 } 3382 3383 INIT_WORK(&cmd->work, target_tmr_work); 3384 schedule_work(&cmd->work); 3385 return 0; 3386 } 3387 EXPORT_SYMBOL(transport_generic_handle_tmr); 3388 3389 bool 3390 target_check_wce(struct se_device *dev) 3391 { 3392 bool wce = false; 3393 3394 if (dev->transport->get_write_cache) 3395 wce = dev->transport->get_write_cache(dev); 3396 else if (dev->dev_attrib.emulate_write_cache > 0) 3397 wce = true; 3398 3399 return wce; 3400 } 3401 3402 bool 3403 target_check_fua(struct se_device *dev) 3404 { 3405 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3406 } 3407