1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48 
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56 
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 		struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71 
72 int init_se_kmem_caches(void)
73 {
74 	se_sess_cache = kmem_cache_create("se_sess_cache",
75 			sizeof(struct se_session), __alignof__(struct se_session),
76 			0, NULL);
77 	if (!se_sess_cache) {
78 		pr_err("kmem_cache_create() for struct se_session"
79 				" failed\n");
80 		goto out;
81 	}
82 	se_ua_cache = kmem_cache_create("se_ua_cache",
83 			sizeof(struct se_ua), __alignof__(struct se_ua),
84 			0, NULL);
85 	if (!se_ua_cache) {
86 		pr_err("kmem_cache_create() for struct se_ua failed\n");
87 		goto out_free_sess_cache;
88 	}
89 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 			sizeof(struct t10_pr_registration),
91 			__alignof__(struct t10_pr_registration), 0, NULL);
92 	if (!t10_pr_reg_cache) {
93 		pr_err("kmem_cache_create() for struct t10_pr_registration"
94 				" failed\n");
95 		goto out_free_ua_cache;
96 	}
97 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 			0, NULL);
100 	if (!t10_alua_lu_gp_cache) {
101 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 				" failed\n");
103 		goto out_free_pr_reg_cache;
104 	}
105 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 			sizeof(struct t10_alua_lu_gp_member),
107 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 	if (!t10_alua_lu_gp_mem_cache) {
109 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 				"cache failed\n");
111 		goto out_free_lu_gp_cache;
112 	}
113 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 			sizeof(struct t10_alua_tg_pt_gp),
115 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 	if (!t10_alua_tg_pt_gp_cache) {
117 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 				"cache failed\n");
119 		goto out_free_lu_gp_mem_cache;
120 	}
121 	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
122 			"t10_alua_tg_pt_gp_mem_cache",
123 			sizeof(struct t10_alua_tg_pt_gp_member),
124 			__alignof__(struct t10_alua_tg_pt_gp_member),
125 			0, NULL);
126 	if (!t10_alua_tg_pt_gp_mem_cache) {
127 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 				"mem_t failed\n");
129 		goto out_free_tg_pt_gp_cache;
130 	}
131 
132 	target_completion_wq = alloc_workqueue("target_completion",
133 					       WQ_MEM_RECLAIM, 0);
134 	if (!target_completion_wq)
135 		goto out_free_tg_pt_gp_mem_cache;
136 
137 	return 0;
138 
139 out_free_tg_pt_gp_mem_cache:
140 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
141 out_free_tg_pt_gp_cache:
142 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
143 out_free_lu_gp_mem_cache:
144 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
145 out_free_lu_gp_cache:
146 	kmem_cache_destroy(t10_alua_lu_gp_cache);
147 out_free_pr_reg_cache:
148 	kmem_cache_destroy(t10_pr_reg_cache);
149 out_free_ua_cache:
150 	kmem_cache_destroy(se_ua_cache);
151 out_free_sess_cache:
152 	kmem_cache_destroy(se_sess_cache);
153 out:
154 	return -ENOMEM;
155 }
156 
157 void release_se_kmem_caches(void)
158 {
159 	destroy_workqueue(target_completion_wq);
160 	kmem_cache_destroy(se_sess_cache);
161 	kmem_cache_destroy(se_ua_cache);
162 	kmem_cache_destroy(t10_pr_reg_cache);
163 	kmem_cache_destroy(t10_alua_lu_gp_cache);
164 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
165 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
166 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
167 }
168 
169 /* This code ensures unique mib indexes are handed out. */
170 static DEFINE_SPINLOCK(scsi_mib_index_lock);
171 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
172 
173 /*
174  * Allocate a new row index for the entry type specified
175  */
176 u32 scsi_get_new_index(scsi_index_t type)
177 {
178 	u32 new_index;
179 
180 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
181 
182 	spin_lock(&scsi_mib_index_lock);
183 	new_index = ++scsi_mib_index[type];
184 	spin_unlock(&scsi_mib_index_lock);
185 
186 	return new_index;
187 }
188 
189 void transport_subsystem_check_init(void)
190 {
191 	int ret;
192 	static int sub_api_initialized;
193 
194 	if (sub_api_initialized)
195 		return;
196 
197 	ret = request_module("target_core_iblock");
198 	if (ret != 0)
199 		pr_err("Unable to load target_core_iblock\n");
200 
201 	ret = request_module("target_core_file");
202 	if (ret != 0)
203 		pr_err("Unable to load target_core_file\n");
204 
205 	ret = request_module("target_core_pscsi");
206 	if (ret != 0)
207 		pr_err("Unable to load target_core_pscsi\n");
208 
209 	sub_api_initialized = 1;
210 }
211 
212 struct se_session *transport_init_session(void)
213 {
214 	struct se_session *se_sess;
215 
216 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
217 	if (!se_sess) {
218 		pr_err("Unable to allocate struct se_session from"
219 				" se_sess_cache\n");
220 		return ERR_PTR(-ENOMEM);
221 	}
222 	INIT_LIST_HEAD(&se_sess->sess_list);
223 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
224 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
225 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
226 	spin_lock_init(&se_sess->sess_cmd_lock);
227 	kref_init(&se_sess->sess_kref);
228 
229 	return se_sess;
230 }
231 EXPORT_SYMBOL(transport_init_session);
232 
233 int transport_alloc_session_tags(struct se_session *se_sess,
234 			         unsigned int tag_num, unsigned int tag_size)
235 {
236 	int rc;
237 
238 	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, GFP_KERNEL);
239 	if (!se_sess->sess_cmd_map) {
240 		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
241 		return -ENOMEM;
242 	}
243 
244 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
245 	if (rc < 0) {
246 		pr_err("Unable to init se_sess->sess_tag_pool,"
247 			" tag_num: %u\n", tag_num);
248 		kfree(se_sess->sess_cmd_map);
249 		se_sess->sess_cmd_map = NULL;
250 		return -ENOMEM;
251 	}
252 
253 	return 0;
254 }
255 EXPORT_SYMBOL(transport_alloc_session_tags);
256 
257 struct se_session *transport_init_session_tags(unsigned int tag_num,
258 					       unsigned int tag_size)
259 {
260 	struct se_session *se_sess;
261 	int rc;
262 
263 	se_sess = transport_init_session();
264 	if (IS_ERR(se_sess))
265 		return se_sess;
266 
267 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
268 	if (rc < 0) {
269 		transport_free_session(se_sess);
270 		return ERR_PTR(-ENOMEM);
271 	}
272 
273 	return se_sess;
274 }
275 EXPORT_SYMBOL(transport_init_session_tags);
276 
277 /*
278  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
279  */
280 void __transport_register_session(
281 	struct se_portal_group *se_tpg,
282 	struct se_node_acl *se_nacl,
283 	struct se_session *se_sess,
284 	void *fabric_sess_ptr)
285 {
286 	unsigned char buf[PR_REG_ISID_LEN];
287 
288 	se_sess->se_tpg = se_tpg;
289 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
290 	/*
291 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
292 	 *
293 	 * Only set for struct se_session's that will actually be moving I/O.
294 	 * eg: *NOT* discovery sessions.
295 	 */
296 	if (se_nacl) {
297 		/*
298 		 * If the fabric module supports an ISID based TransportID,
299 		 * save this value in binary from the fabric I_T Nexus now.
300 		 */
301 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
302 			memset(&buf[0], 0, PR_REG_ISID_LEN);
303 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
304 					&buf[0], PR_REG_ISID_LEN);
305 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
306 		}
307 		kref_get(&se_nacl->acl_kref);
308 
309 		spin_lock_irq(&se_nacl->nacl_sess_lock);
310 		/*
311 		 * The se_nacl->nacl_sess pointer will be set to the
312 		 * last active I_T Nexus for each struct se_node_acl.
313 		 */
314 		se_nacl->nacl_sess = se_sess;
315 
316 		list_add_tail(&se_sess->sess_acl_list,
317 			      &se_nacl->acl_sess_list);
318 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
319 	}
320 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
321 
322 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
323 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
324 }
325 EXPORT_SYMBOL(__transport_register_session);
326 
327 void transport_register_session(
328 	struct se_portal_group *se_tpg,
329 	struct se_node_acl *se_nacl,
330 	struct se_session *se_sess,
331 	void *fabric_sess_ptr)
332 {
333 	unsigned long flags;
334 
335 	spin_lock_irqsave(&se_tpg->session_lock, flags);
336 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
337 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
338 }
339 EXPORT_SYMBOL(transport_register_session);
340 
341 static void target_release_session(struct kref *kref)
342 {
343 	struct se_session *se_sess = container_of(kref,
344 			struct se_session, sess_kref);
345 	struct se_portal_group *se_tpg = se_sess->se_tpg;
346 
347 	se_tpg->se_tpg_tfo->close_session(se_sess);
348 }
349 
350 void target_get_session(struct se_session *se_sess)
351 {
352 	kref_get(&se_sess->sess_kref);
353 }
354 EXPORT_SYMBOL(target_get_session);
355 
356 void target_put_session(struct se_session *se_sess)
357 {
358 	struct se_portal_group *tpg = se_sess->se_tpg;
359 
360 	if (tpg->se_tpg_tfo->put_session != NULL) {
361 		tpg->se_tpg_tfo->put_session(se_sess);
362 		return;
363 	}
364 	kref_put(&se_sess->sess_kref, target_release_session);
365 }
366 EXPORT_SYMBOL(target_put_session);
367 
368 static void target_complete_nacl(struct kref *kref)
369 {
370 	struct se_node_acl *nacl = container_of(kref,
371 				struct se_node_acl, acl_kref);
372 
373 	complete(&nacl->acl_free_comp);
374 }
375 
376 void target_put_nacl(struct se_node_acl *nacl)
377 {
378 	kref_put(&nacl->acl_kref, target_complete_nacl);
379 }
380 
381 void transport_deregister_session_configfs(struct se_session *se_sess)
382 {
383 	struct se_node_acl *se_nacl;
384 	unsigned long flags;
385 	/*
386 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
387 	 */
388 	se_nacl = se_sess->se_node_acl;
389 	if (se_nacl) {
390 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
391 		if (se_nacl->acl_stop == 0)
392 			list_del(&se_sess->sess_acl_list);
393 		/*
394 		 * If the session list is empty, then clear the pointer.
395 		 * Otherwise, set the struct se_session pointer from the tail
396 		 * element of the per struct se_node_acl active session list.
397 		 */
398 		if (list_empty(&se_nacl->acl_sess_list))
399 			se_nacl->nacl_sess = NULL;
400 		else {
401 			se_nacl->nacl_sess = container_of(
402 					se_nacl->acl_sess_list.prev,
403 					struct se_session, sess_acl_list);
404 		}
405 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
406 	}
407 }
408 EXPORT_SYMBOL(transport_deregister_session_configfs);
409 
410 void transport_free_session(struct se_session *se_sess)
411 {
412 	if (se_sess->sess_cmd_map) {
413 		percpu_ida_destroy(&se_sess->sess_tag_pool);
414 		kfree(se_sess->sess_cmd_map);
415 	}
416 	kmem_cache_free(se_sess_cache, se_sess);
417 }
418 EXPORT_SYMBOL(transport_free_session);
419 
420 void transport_deregister_session(struct se_session *se_sess)
421 {
422 	struct se_portal_group *se_tpg = se_sess->se_tpg;
423 	struct target_core_fabric_ops *se_tfo;
424 	struct se_node_acl *se_nacl;
425 	unsigned long flags;
426 	bool comp_nacl = true;
427 
428 	if (!se_tpg) {
429 		transport_free_session(se_sess);
430 		return;
431 	}
432 	se_tfo = se_tpg->se_tpg_tfo;
433 
434 	spin_lock_irqsave(&se_tpg->session_lock, flags);
435 	list_del(&se_sess->sess_list);
436 	se_sess->se_tpg = NULL;
437 	se_sess->fabric_sess_ptr = NULL;
438 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
439 
440 	/*
441 	 * Determine if we need to do extra work for this initiator node's
442 	 * struct se_node_acl if it had been previously dynamically generated.
443 	 */
444 	se_nacl = se_sess->se_node_acl;
445 
446 	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
447 	if (se_nacl && se_nacl->dynamic_node_acl) {
448 		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
449 			list_del(&se_nacl->acl_list);
450 			se_tpg->num_node_acls--;
451 			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
452 			core_tpg_wait_for_nacl_pr_ref(se_nacl);
453 			core_free_device_list_for_node(se_nacl, se_tpg);
454 			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
455 
456 			comp_nacl = false;
457 			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
458 		}
459 	}
460 	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
461 
462 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
463 		se_tpg->se_tpg_tfo->get_fabric_name());
464 	/*
465 	 * If last kref is dropping now for an explict NodeACL, awake sleeping
466 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
467 	 * removal context.
468 	 */
469 	if (se_nacl && comp_nacl == true)
470 		target_put_nacl(se_nacl);
471 
472 	transport_free_session(se_sess);
473 }
474 EXPORT_SYMBOL(transport_deregister_session);
475 
476 /*
477  * Called with cmd->t_state_lock held.
478  */
479 static void target_remove_from_state_list(struct se_cmd *cmd)
480 {
481 	struct se_device *dev = cmd->se_dev;
482 	unsigned long flags;
483 
484 	if (!dev)
485 		return;
486 
487 	if (cmd->transport_state & CMD_T_BUSY)
488 		return;
489 
490 	spin_lock_irqsave(&dev->execute_task_lock, flags);
491 	if (cmd->state_active) {
492 		list_del(&cmd->state_list);
493 		cmd->state_active = false;
494 	}
495 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
496 }
497 
498 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
499 				    bool write_pending)
500 {
501 	unsigned long flags;
502 
503 	spin_lock_irqsave(&cmd->t_state_lock, flags);
504 	if (write_pending)
505 		cmd->t_state = TRANSPORT_WRITE_PENDING;
506 
507 	if (remove_from_lists) {
508 		target_remove_from_state_list(cmd);
509 
510 		/*
511 		 * Clear struct se_cmd->se_lun before the handoff to FE.
512 		 */
513 		cmd->se_lun = NULL;
514 	}
515 
516 	/*
517 	 * Determine if frontend context caller is requesting the stopping of
518 	 * this command for frontend exceptions.
519 	 */
520 	if (cmd->transport_state & CMD_T_STOP) {
521 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
522 			__func__, __LINE__,
523 			cmd->se_tfo->get_task_tag(cmd));
524 
525 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
526 
527 		complete(&cmd->t_transport_stop_comp);
528 		return 1;
529 	}
530 
531 	cmd->transport_state &= ~CMD_T_ACTIVE;
532 	if (remove_from_lists) {
533 		/*
534 		 * Some fabric modules like tcm_loop can release
535 		 * their internally allocated I/O reference now and
536 		 * struct se_cmd now.
537 		 *
538 		 * Fabric modules are expected to return '1' here if the
539 		 * se_cmd being passed is released at this point,
540 		 * or zero if not being released.
541 		 */
542 		if (cmd->se_tfo->check_stop_free != NULL) {
543 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
544 			return cmd->se_tfo->check_stop_free(cmd);
545 		}
546 	}
547 
548 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
549 	return 0;
550 }
551 
552 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
553 {
554 	return transport_cmd_check_stop(cmd, true, false);
555 }
556 
557 static void transport_lun_remove_cmd(struct se_cmd *cmd)
558 {
559 	struct se_lun *lun = cmd->se_lun;
560 
561 	if (!lun || !cmd->lun_ref_active)
562 		return;
563 
564 	percpu_ref_put(&lun->lun_ref);
565 }
566 
567 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
568 {
569 	if (transport_cmd_check_stop_to_fabric(cmd))
570 		return;
571 	if (remove)
572 		transport_put_cmd(cmd);
573 }
574 
575 static void target_complete_failure_work(struct work_struct *work)
576 {
577 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
578 
579 	transport_generic_request_failure(cmd,
580 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
581 }
582 
583 /*
584  * Used when asking transport to copy Sense Data from the underlying
585  * Linux/SCSI struct scsi_cmnd
586  */
587 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
588 {
589 	struct se_device *dev = cmd->se_dev;
590 
591 	WARN_ON(!cmd->se_lun);
592 
593 	if (!dev)
594 		return NULL;
595 
596 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
597 		return NULL;
598 
599 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
600 
601 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
602 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
603 	return cmd->sense_buffer;
604 }
605 
606 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
607 {
608 	struct se_device *dev = cmd->se_dev;
609 	int success = scsi_status == GOOD;
610 	unsigned long flags;
611 
612 	cmd->scsi_status = scsi_status;
613 
614 
615 	spin_lock_irqsave(&cmd->t_state_lock, flags);
616 	cmd->transport_state &= ~CMD_T_BUSY;
617 
618 	if (dev && dev->transport->transport_complete) {
619 		dev->transport->transport_complete(cmd,
620 				cmd->t_data_sg,
621 				transport_get_sense_buffer(cmd));
622 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
623 			success = 1;
624 	}
625 
626 	/*
627 	 * See if we are waiting to complete for an exception condition.
628 	 */
629 	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
630 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631 		complete(&cmd->task_stop_comp);
632 		return;
633 	}
634 
635 	if (!success)
636 		cmd->transport_state |= CMD_T_FAILED;
637 
638 	/*
639 	 * Check for case where an explict ABORT_TASK has been received
640 	 * and transport_wait_for_tasks() will be waiting for completion..
641 	 */
642 	if (cmd->transport_state & CMD_T_ABORTED &&
643 	    cmd->transport_state & CMD_T_STOP) {
644 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
645 		complete(&cmd->t_transport_stop_comp);
646 		return;
647 	} else if (cmd->transport_state & CMD_T_FAILED) {
648 		INIT_WORK(&cmd->work, target_complete_failure_work);
649 	} else {
650 		INIT_WORK(&cmd->work, target_complete_ok_work);
651 	}
652 
653 	cmd->t_state = TRANSPORT_COMPLETE;
654 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
655 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
656 
657 	queue_work(target_completion_wq, &cmd->work);
658 }
659 EXPORT_SYMBOL(target_complete_cmd);
660 
661 static void target_add_to_state_list(struct se_cmd *cmd)
662 {
663 	struct se_device *dev = cmd->se_dev;
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&dev->execute_task_lock, flags);
667 	if (!cmd->state_active) {
668 		list_add_tail(&cmd->state_list, &dev->state_list);
669 		cmd->state_active = true;
670 	}
671 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
672 }
673 
674 /*
675  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
676  */
677 static void transport_write_pending_qf(struct se_cmd *cmd);
678 static void transport_complete_qf(struct se_cmd *cmd);
679 
680 void target_qf_do_work(struct work_struct *work)
681 {
682 	struct se_device *dev = container_of(work, struct se_device,
683 					qf_work_queue);
684 	LIST_HEAD(qf_cmd_list);
685 	struct se_cmd *cmd, *cmd_tmp;
686 
687 	spin_lock_irq(&dev->qf_cmd_lock);
688 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
689 	spin_unlock_irq(&dev->qf_cmd_lock);
690 
691 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
692 		list_del(&cmd->se_qf_node);
693 		atomic_dec(&dev->dev_qf_count);
694 		smp_mb__after_atomic_dec();
695 
696 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
697 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
698 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
699 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
700 			: "UNKNOWN");
701 
702 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
703 			transport_write_pending_qf(cmd);
704 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
705 			transport_complete_qf(cmd);
706 	}
707 }
708 
709 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
710 {
711 	switch (cmd->data_direction) {
712 	case DMA_NONE:
713 		return "NONE";
714 	case DMA_FROM_DEVICE:
715 		return "READ";
716 	case DMA_TO_DEVICE:
717 		return "WRITE";
718 	case DMA_BIDIRECTIONAL:
719 		return "BIDI";
720 	default:
721 		break;
722 	}
723 
724 	return "UNKNOWN";
725 }
726 
727 void transport_dump_dev_state(
728 	struct se_device *dev,
729 	char *b,
730 	int *bl)
731 {
732 	*bl += sprintf(b + *bl, "Status: ");
733 	if (dev->export_count)
734 		*bl += sprintf(b + *bl, "ACTIVATED");
735 	else
736 		*bl += sprintf(b + *bl, "DEACTIVATED");
737 
738 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
739 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
740 		dev->dev_attrib.block_size,
741 		dev->dev_attrib.hw_max_sectors);
742 	*bl += sprintf(b + *bl, "        ");
743 }
744 
745 void transport_dump_vpd_proto_id(
746 	struct t10_vpd *vpd,
747 	unsigned char *p_buf,
748 	int p_buf_len)
749 {
750 	unsigned char buf[VPD_TMP_BUF_SIZE];
751 	int len;
752 
753 	memset(buf, 0, VPD_TMP_BUF_SIZE);
754 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
755 
756 	switch (vpd->protocol_identifier) {
757 	case 0x00:
758 		sprintf(buf+len, "Fibre Channel\n");
759 		break;
760 	case 0x10:
761 		sprintf(buf+len, "Parallel SCSI\n");
762 		break;
763 	case 0x20:
764 		sprintf(buf+len, "SSA\n");
765 		break;
766 	case 0x30:
767 		sprintf(buf+len, "IEEE 1394\n");
768 		break;
769 	case 0x40:
770 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
771 				" Protocol\n");
772 		break;
773 	case 0x50:
774 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
775 		break;
776 	case 0x60:
777 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
778 		break;
779 	case 0x70:
780 		sprintf(buf+len, "Automation/Drive Interface Transport"
781 				" Protocol\n");
782 		break;
783 	case 0x80:
784 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
785 		break;
786 	default:
787 		sprintf(buf+len, "Unknown 0x%02x\n",
788 				vpd->protocol_identifier);
789 		break;
790 	}
791 
792 	if (p_buf)
793 		strncpy(p_buf, buf, p_buf_len);
794 	else
795 		pr_debug("%s", buf);
796 }
797 
798 void
799 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
800 {
801 	/*
802 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
803 	 *
804 	 * from spc3r23.pdf section 7.5.1
805 	 */
806 	 if (page_83[1] & 0x80) {
807 		vpd->protocol_identifier = (page_83[0] & 0xf0);
808 		vpd->protocol_identifier_set = 1;
809 		transport_dump_vpd_proto_id(vpd, NULL, 0);
810 	}
811 }
812 EXPORT_SYMBOL(transport_set_vpd_proto_id);
813 
814 int transport_dump_vpd_assoc(
815 	struct t10_vpd *vpd,
816 	unsigned char *p_buf,
817 	int p_buf_len)
818 {
819 	unsigned char buf[VPD_TMP_BUF_SIZE];
820 	int ret = 0;
821 	int len;
822 
823 	memset(buf, 0, VPD_TMP_BUF_SIZE);
824 	len = sprintf(buf, "T10 VPD Identifier Association: ");
825 
826 	switch (vpd->association) {
827 	case 0x00:
828 		sprintf(buf+len, "addressed logical unit\n");
829 		break;
830 	case 0x10:
831 		sprintf(buf+len, "target port\n");
832 		break;
833 	case 0x20:
834 		sprintf(buf+len, "SCSI target device\n");
835 		break;
836 	default:
837 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
838 		ret = -EINVAL;
839 		break;
840 	}
841 
842 	if (p_buf)
843 		strncpy(p_buf, buf, p_buf_len);
844 	else
845 		pr_debug("%s", buf);
846 
847 	return ret;
848 }
849 
850 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
851 {
852 	/*
853 	 * The VPD identification association..
854 	 *
855 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
856 	 */
857 	vpd->association = (page_83[1] & 0x30);
858 	return transport_dump_vpd_assoc(vpd, NULL, 0);
859 }
860 EXPORT_SYMBOL(transport_set_vpd_assoc);
861 
862 int transport_dump_vpd_ident_type(
863 	struct t10_vpd *vpd,
864 	unsigned char *p_buf,
865 	int p_buf_len)
866 {
867 	unsigned char buf[VPD_TMP_BUF_SIZE];
868 	int ret = 0;
869 	int len;
870 
871 	memset(buf, 0, VPD_TMP_BUF_SIZE);
872 	len = sprintf(buf, "T10 VPD Identifier Type: ");
873 
874 	switch (vpd->device_identifier_type) {
875 	case 0x00:
876 		sprintf(buf+len, "Vendor specific\n");
877 		break;
878 	case 0x01:
879 		sprintf(buf+len, "T10 Vendor ID based\n");
880 		break;
881 	case 0x02:
882 		sprintf(buf+len, "EUI-64 based\n");
883 		break;
884 	case 0x03:
885 		sprintf(buf+len, "NAA\n");
886 		break;
887 	case 0x04:
888 		sprintf(buf+len, "Relative target port identifier\n");
889 		break;
890 	case 0x08:
891 		sprintf(buf+len, "SCSI name string\n");
892 		break;
893 	default:
894 		sprintf(buf+len, "Unsupported: 0x%02x\n",
895 				vpd->device_identifier_type);
896 		ret = -EINVAL;
897 		break;
898 	}
899 
900 	if (p_buf) {
901 		if (p_buf_len < strlen(buf)+1)
902 			return -EINVAL;
903 		strncpy(p_buf, buf, p_buf_len);
904 	} else {
905 		pr_debug("%s", buf);
906 	}
907 
908 	return ret;
909 }
910 
911 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
912 {
913 	/*
914 	 * The VPD identifier type..
915 	 *
916 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
917 	 */
918 	vpd->device_identifier_type = (page_83[1] & 0x0f);
919 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
920 }
921 EXPORT_SYMBOL(transport_set_vpd_ident_type);
922 
923 int transport_dump_vpd_ident(
924 	struct t10_vpd *vpd,
925 	unsigned char *p_buf,
926 	int p_buf_len)
927 {
928 	unsigned char buf[VPD_TMP_BUF_SIZE];
929 	int ret = 0;
930 
931 	memset(buf, 0, VPD_TMP_BUF_SIZE);
932 
933 	switch (vpd->device_identifier_code_set) {
934 	case 0x01: /* Binary */
935 		snprintf(buf, sizeof(buf),
936 			"T10 VPD Binary Device Identifier: %s\n",
937 			&vpd->device_identifier[0]);
938 		break;
939 	case 0x02: /* ASCII */
940 		snprintf(buf, sizeof(buf),
941 			"T10 VPD ASCII Device Identifier: %s\n",
942 			&vpd->device_identifier[0]);
943 		break;
944 	case 0x03: /* UTF-8 */
945 		snprintf(buf, sizeof(buf),
946 			"T10 VPD UTF-8 Device Identifier: %s\n",
947 			&vpd->device_identifier[0]);
948 		break;
949 	default:
950 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
951 			" 0x%02x", vpd->device_identifier_code_set);
952 		ret = -EINVAL;
953 		break;
954 	}
955 
956 	if (p_buf)
957 		strncpy(p_buf, buf, p_buf_len);
958 	else
959 		pr_debug("%s", buf);
960 
961 	return ret;
962 }
963 
964 int
965 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
966 {
967 	static const char hex_str[] = "0123456789abcdef";
968 	int j = 0, i = 4; /* offset to start of the identifier */
969 
970 	/*
971 	 * The VPD Code Set (encoding)
972 	 *
973 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
974 	 */
975 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
976 	switch (vpd->device_identifier_code_set) {
977 	case 0x01: /* Binary */
978 		vpd->device_identifier[j++] =
979 				hex_str[vpd->device_identifier_type];
980 		while (i < (4 + page_83[3])) {
981 			vpd->device_identifier[j++] =
982 				hex_str[(page_83[i] & 0xf0) >> 4];
983 			vpd->device_identifier[j++] =
984 				hex_str[page_83[i] & 0x0f];
985 			i++;
986 		}
987 		break;
988 	case 0x02: /* ASCII */
989 	case 0x03: /* UTF-8 */
990 		while (i < (4 + page_83[3]))
991 			vpd->device_identifier[j++] = page_83[i++];
992 		break;
993 	default:
994 		break;
995 	}
996 
997 	return transport_dump_vpd_ident(vpd, NULL, 0);
998 }
999 EXPORT_SYMBOL(transport_set_vpd_ident);
1000 
1001 sense_reason_t
1002 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1003 {
1004 	struct se_device *dev = cmd->se_dev;
1005 
1006 	if (cmd->unknown_data_length) {
1007 		cmd->data_length = size;
1008 	} else if (size != cmd->data_length) {
1009 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1010 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1011 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1012 				cmd->data_length, size, cmd->t_task_cdb[0]);
1013 
1014 		if (cmd->data_direction == DMA_TO_DEVICE) {
1015 			pr_err("Rejecting underflow/overflow"
1016 					" WRITE data\n");
1017 			return TCM_INVALID_CDB_FIELD;
1018 		}
1019 		/*
1020 		 * Reject READ_* or WRITE_* with overflow/underflow for
1021 		 * type SCF_SCSI_DATA_CDB.
1022 		 */
1023 		if (dev->dev_attrib.block_size != 512)  {
1024 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1025 				" CDB on non 512-byte sector setup subsystem"
1026 				" plugin: %s\n", dev->transport->name);
1027 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1028 			return TCM_INVALID_CDB_FIELD;
1029 		}
1030 		/*
1031 		 * For the overflow case keep the existing fabric provided
1032 		 * ->data_length.  Otherwise for the underflow case, reset
1033 		 * ->data_length to the smaller SCSI expected data transfer
1034 		 * length.
1035 		 */
1036 		if (size > cmd->data_length) {
1037 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1038 			cmd->residual_count = (size - cmd->data_length);
1039 		} else {
1040 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1041 			cmd->residual_count = (cmd->data_length - size);
1042 			cmd->data_length = size;
1043 		}
1044 	}
1045 
1046 	return 0;
1047 
1048 }
1049 
1050 /*
1051  * Used by fabric modules containing a local struct se_cmd within their
1052  * fabric dependent per I/O descriptor.
1053  */
1054 void transport_init_se_cmd(
1055 	struct se_cmd *cmd,
1056 	struct target_core_fabric_ops *tfo,
1057 	struct se_session *se_sess,
1058 	u32 data_length,
1059 	int data_direction,
1060 	int task_attr,
1061 	unsigned char *sense_buffer)
1062 {
1063 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1064 	INIT_LIST_HEAD(&cmd->se_qf_node);
1065 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1066 	INIT_LIST_HEAD(&cmd->state_list);
1067 	init_completion(&cmd->t_transport_stop_comp);
1068 	init_completion(&cmd->cmd_wait_comp);
1069 	init_completion(&cmd->task_stop_comp);
1070 	spin_lock_init(&cmd->t_state_lock);
1071 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1072 
1073 	cmd->se_tfo = tfo;
1074 	cmd->se_sess = se_sess;
1075 	cmd->data_length = data_length;
1076 	cmd->data_direction = data_direction;
1077 	cmd->sam_task_attr = task_attr;
1078 	cmd->sense_buffer = sense_buffer;
1079 
1080 	cmd->state_active = false;
1081 }
1082 EXPORT_SYMBOL(transport_init_se_cmd);
1083 
1084 static sense_reason_t
1085 transport_check_alloc_task_attr(struct se_cmd *cmd)
1086 {
1087 	struct se_device *dev = cmd->se_dev;
1088 
1089 	/*
1090 	 * Check if SAM Task Attribute emulation is enabled for this
1091 	 * struct se_device storage object
1092 	 */
1093 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1094 		return 0;
1095 
1096 	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1097 		pr_debug("SAM Task Attribute ACA"
1098 			" emulation is not supported\n");
1099 		return TCM_INVALID_CDB_FIELD;
1100 	}
1101 	/*
1102 	 * Used to determine when ORDERED commands should go from
1103 	 * Dormant to Active status.
1104 	 */
1105 	cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1106 	smp_mb__after_atomic_inc();
1107 	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1108 			cmd->se_ordered_id, cmd->sam_task_attr,
1109 			dev->transport->name);
1110 	return 0;
1111 }
1112 
1113 sense_reason_t
1114 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1115 {
1116 	struct se_device *dev = cmd->se_dev;
1117 	sense_reason_t ret;
1118 
1119 	/*
1120 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1121 	 * for VARIABLE_LENGTH_CMD
1122 	 */
1123 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1124 		pr_err("Received SCSI CDB with command_size: %d that"
1125 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1126 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1127 		return TCM_INVALID_CDB_FIELD;
1128 	}
1129 	/*
1130 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1131 	 * allocate the additional extended CDB buffer now..  Otherwise
1132 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1133 	 */
1134 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1135 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1136 						GFP_KERNEL);
1137 		if (!cmd->t_task_cdb) {
1138 			pr_err("Unable to allocate cmd->t_task_cdb"
1139 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1140 				scsi_command_size(cdb),
1141 				(unsigned long)sizeof(cmd->__t_task_cdb));
1142 			return TCM_OUT_OF_RESOURCES;
1143 		}
1144 	} else
1145 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1146 	/*
1147 	 * Copy the original CDB into cmd->
1148 	 */
1149 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1150 
1151 	trace_target_sequencer_start(cmd);
1152 
1153 	/*
1154 	 * Check for an existing UNIT ATTENTION condition
1155 	 */
1156 	ret = target_scsi3_ua_check(cmd);
1157 	if (ret)
1158 		return ret;
1159 
1160 	ret = target_alua_state_check(cmd);
1161 	if (ret)
1162 		return ret;
1163 
1164 	ret = target_check_reservation(cmd);
1165 	if (ret) {
1166 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1167 		return ret;
1168 	}
1169 
1170 	ret = dev->transport->parse_cdb(cmd);
1171 	if (ret)
1172 		return ret;
1173 
1174 	ret = transport_check_alloc_task_attr(cmd);
1175 	if (ret)
1176 		return ret;
1177 
1178 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1179 
1180 	spin_lock(&cmd->se_lun->lun_sep_lock);
1181 	if (cmd->se_lun->lun_sep)
1182 		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1183 	spin_unlock(&cmd->se_lun->lun_sep_lock);
1184 	return 0;
1185 }
1186 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1187 
1188 /*
1189  * Used by fabric module frontends to queue tasks directly.
1190  * Many only be used from process context only
1191  */
1192 int transport_handle_cdb_direct(
1193 	struct se_cmd *cmd)
1194 {
1195 	sense_reason_t ret;
1196 
1197 	if (!cmd->se_lun) {
1198 		dump_stack();
1199 		pr_err("cmd->se_lun is NULL\n");
1200 		return -EINVAL;
1201 	}
1202 	if (in_interrupt()) {
1203 		dump_stack();
1204 		pr_err("transport_generic_handle_cdb cannot be called"
1205 				" from interrupt context\n");
1206 		return -EINVAL;
1207 	}
1208 	/*
1209 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1210 	 * outstanding descriptors are handled correctly during shutdown via
1211 	 * transport_wait_for_tasks()
1212 	 *
1213 	 * Also, we don't take cmd->t_state_lock here as we only expect
1214 	 * this to be called for initial descriptor submission.
1215 	 */
1216 	cmd->t_state = TRANSPORT_NEW_CMD;
1217 	cmd->transport_state |= CMD_T_ACTIVE;
1218 
1219 	/*
1220 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1221 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1222 	 * and call transport_generic_request_failure() if necessary..
1223 	 */
1224 	ret = transport_generic_new_cmd(cmd);
1225 	if (ret)
1226 		transport_generic_request_failure(cmd, ret);
1227 	return 0;
1228 }
1229 EXPORT_SYMBOL(transport_handle_cdb_direct);
1230 
1231 sense_reason_t
1232 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1233 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1234 {
1235 	if (!sgl || !sgl_count)
1236 		return 0;
1237 
1238 	/*
1239 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1240 	 * scatterlists already have been set to follow what the fabric
1241 	 * passes for the original expected data transfer length.
1242 	 */
1243 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1244 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1245 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1246 		return TCM_INVALID_CDB_FIELD;
1247 	}
1248 
1249 	cmd->t_data_sg = sgl;
1250 	cmd->t_data_nents = sgl_count;
1251 
1252 	if (sgl_bidi && sgl_bidi_count) {
1253 		cmd->t_bidi_data_sg = sgl_bidi;
1254 		cmd->t_bidi_data_nents = sgl_bidi_count;
1255 	}
1256 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1257 	return 0;
1258 }
1259 
1260 /*
1261  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1262  * 			 se_cmd + use pre-allocated SGL memory.
1263  *
1264  * @se_cmd: command descriptor to submit
1265  * @se_sess: associated se_sess for endpoint
1266  * @cdb: pointer to SCSI CDB
1267  * @sense: pointer to SCSI sense buffer
1268  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1269  * @data_length: fabric expected data transfer length
1270  * @task_addr: SAM task attribute
1271  * @data_dir: DMA data direction
1272  * @flags: flags for command submission from target_sc_flags_tables
1273  * @sgl: struct scatterlist memory for unidirectional mapping
1274  * @sgl_count: scatterlist count for unidirectional mapping
1275  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1276  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1277  *
1278  * Returns non zero to signal active I/O shutdown failure.  All other
1279  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1280  * but still return zero here.
1281  *
1282  * This may only be called from process context, and also currently
1283  * assumes internal allocation of fabric payload buffer by target-core.
1284  */
1285 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1286 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1287 		u32 data_length, int task_attr, int data_dir, int flags,
1288 		struct scatterlist *sgl, u32 sgl_count,
1289 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1290 {
1291 	struct se_portal_group *se_tpg;
1292 	sense_reason_t rc;
1293 	int ret;
1294 
1295 	se_tpg = se_sess->se_tpg;
1296 	BUG_ON(!se_tpg);
1297 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1298 	BUG_ON(in_interrupt());
1299 	/*
1300 	 * Initialize se_cmd for target operation.  From this point
1301 	 * exceptions are handled by sending exception status via
1302 	 * target_core_fabric_ops->queue_status() callback
1303 	 */
1304 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1305 				data_length, data_dir, task_attr, sense);
1306 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1307 		se_cmd->unknown_data_length = 1;
1308 	/*
1309 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1310 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1311 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1312 	 * kref_put() to happen during fabric packet acknowledgement.
1313 	 */
1314 	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1315 	if (ret)
1316 		return ret;
1317 	/*
1318 	 * Signal bidirectional data payloads to target-core
1319 	 */
1320 	if (flags & TARGET_SCF_BIDI_OP)
1321 		se_cmd->se_cmd_flags |= SCF_BIDI;
1322 	/*
1323 	 * Locate se_lun pointer and attach it to struct se_cmd
1324 	 */
1325 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1326 	if (rc) {
1327 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1328 		target_put_sess_cmd(se_sess, se_cmd);
1329 		return 0;
1330 	}
1331 
1332 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1333 	if (rc != 0) {
1334 		transport_generic_request_failure(se_cmd, rc);
1335 		return 0;
1336 	}
1337 	/*
1338 	 * When a non zero sgl_count has been passed perform SGL passthrough
1339 	 * mapping for pre-allocated fabric memory instead of having target
1340 	 * core perform an internal SGL allocation..
1341 	 */
1342 	if (sgl_count != 0) {
1343 		BUG_ON(!sgl);
1344 
1345 		/*
1346 		 * A work-around for tcm_loop as some userspace code via
1347 		 * scsi-generic do not memset their associated read buffers,
1348 		 * so go ahead and do that here for type non-data CDBs.  Also
1349 		 * note that this is currently guaranteed to be a single SGL
1350 		 * for this case by target core in target_setup_cmd_from_cdb()
1351 		 * -> transport_generic_cmd_sequencer().
1352 		 */
1353 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1354 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1355 			unsigned char *buf = NULL;
1356 
1357 			if (sgl)
1358 				buf = kmap(sg_page(sgl)) + sgl->offset;
1359 
1360 			if (buf) {
1361 				memset(buf, 0, sgl->length);
1362 				kunmap(sg_page(sgl));
1363 			}
1364 		}
1365 
1366 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1367 				sgl_bidi, sgl_bidi_count);
1368 		if (rc != 0) {
1369 			transport_generic_request_failure(se_cmd, rc);
1370 			return 0;
1371 		}
1372 	}
1373 	/*
1374 	 * Check if we need to delay processing because of ALUA
1375 	 * Active/NonOptimized primary access state..
1376 	 */
1377 	core_alua_check_nonop_delay(se_cmd);
1378 
1379 	transport_handle_cdb_direct(se_cmd);
1380 	return 0;
1381 }
1382 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1383 
1384 /*
1385  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1386  *
1387  * @se_cmd: command descriptor to submit
1388  * @se_sess: associated se_sess for endpoint
1389  * @cdb: pointer to SCSI CDB
1390  * @sense: pointer to SCSI sense buffer
1391  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1392  * @data_length: fabric expected data transfer length
1393  * @task_addr: SAM task attribute
1394  * @data_dir: DMA data direction
1395  * @flags: flags for command submission from target_sc_flags_tables
1396  *
1397  * Returns non zero to signal active I/O shutdown failure.  All other
1398  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1399  * but still return zero here.
1400  *
1401  * This may only be called from process context, and also currently
1402  * assumes internal allocation of fabric payload buffer by target-core.
1403  *
1404  * It also assumes interal target core SGL memory allocation.
1405  */
1406 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1407 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1408 		u32 data_length, int task_attr, int data_dir, int flags)
1409 {
1410 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1411 			unpacked_lun, data_length, task_attr, data_dir,
1412 			flags, NULL, 0, NULL, 0);
1413 }
1414 EXPORT_SYMBOL(target_submit_cmd);
1415 
1416 static void target_complete_tmr_failure(struct work_struct *work)
1417 {
1418 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1419 
1420 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1421 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1422 
1423 	transport_cmd_check_stop_to_fabric(se_cmd);
1424 }
1425 
1426 /**
1427  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1428  *                     for TMR CDBs
1429  *
1430  * @se_cmd: command descriptor to submit
1431  * @se_sess: associated se_sess for endpoint
1432  * @sense: pointer to SCSI sense buffer
1433  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1434  * @fabric_context: fabric context for TMR req
1435  * @tm_type: Type of TM request
1436  * @gfp: gfp type for caller
1437  * @tag: referenced task tag for TMR_ABORT_TASK
1438  * @flags: submit cmd flags
1439  *
1440  * Callable from all contexts.
1441  **/
1442 
1443 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1444 		unsigned char *sense, u32 unpacked_lun,
1445 		void *fabric_tmr_ptr, unsigned char tm_type,
1446 		gfp_t gfp, unsigned int tag, int flags)
1447 {
1448 	struct se_portal_group *se_tpg;
1449 	int ret;
1450 
1451 	se_tpg = se_sess->se_tpg;
1452 	BUG_ON(!se_tpg);
1453 
1454 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1455 			      0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1456 	/*
1457 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1458 	 * allocation failure.
1459 	 */
1460 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1461 	if (ret < 0)
1462 		return -ENOMEM;
1463 
1464 	if (tm_type == TMR_ABORT_TASK)
1465 		se_cmd->se_tmr_req->ref_task_tag = tag;
1466 
1467 	/* See target_submit_cmd for commentary */
1468 	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1469 	if (ret) {
1470 		core_tmr_release_req(se_cmd->se_tmr_req);
1471 		return ret;
1472 	}
1473 
1474 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1475 	if (ret) {
1476 		/*
1477 		 * For callback during failure handling, push this work off
1478 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1479 		 */
1480 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1481 		schedule_work(&se_cmd->work);
1482 		return 0;
1483 	}
1484 	transport_generic_handle_tmr(se_cmd);
1485 	return 0;
1486 }
1487 EXPORT_SYMBOL(target_submit_tmr);
1488 
1489 /*
1490  * If the cmd is active, request it to be stopped and sleep until it
1491  * has completed.
1492  */
1493 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1494 {
1495 	bool was_active = false;
1496 
1497 	if (cmd->transport_state & CMD_T_BUSY) {
1498 		cmd->transport_state |= CMD_T_REQUEST_STOP;
1499 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1500 
1501 		pr_debug("cmd %p waiting to complete\n", cmd);
1502 		wait_for_completion(&cmd->task_stop_comp);
1503 		pr_debug("cmd %p stopped successfully\n", cmd);
1504 
1505 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1506 		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1507 		cmd->transport_state &= ~CMD_T_BUSY;
1508 		was_active = true;
1509 	}
1510 
1511 	return was_active;
1512 }
1513 
1514 /*
1515  * Handle SAM-esque emulation for generic transport request failures.
1516  */
1517 void transport_generic_request_failure(struct se_cmd *cmd,
1518 		sense_reason_t sense_reason)
1519 {
1520 	int ret = 0;
1521 
1522 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1523 		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1524 		cmd->t_task_cdb[0]);
1525 	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1526 		cmd->se_tfo->get_cmd_state(cmd),
1527 		cmd->t_state, sense_reason);
1528 	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1529 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1530 		(cmd->transport_state & CMD_T_STOP) != 0,
1531 		(cmd->transport_state & CMD_T_SENT) != 0);
1532 
1533 	/*
1534 	 * For SAM Task Attribute emulation for failed struct se_cmd
1535 	 */
1536 	transport_complete_task_attr(cmd);
1537 	/*
1538 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1539 	 * callback is expected to drop the per device ->caw_mutex.
1540 	 */
1541 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1542 	     cmd->transport_complete_callback)
1543 		cmd->transport_complete_callback(cmd);
1544 
1545 	switch (sense_reason) {
1546 	case TCM_NON_EXISTENT_LUN:
1547 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1548 	case TCM_INVALID_CDB_FIELD:
1549 	case TCM_INVALID_PARAMETER_LIST:
1550 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1551 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1552 	case TCM_UNKNOWN_MODE_PAGE:
1553 	case TCM_WRITE_PROTECTED:
1554 	case TCM_ADDRESS_OUT_OF_RANGE:
1555 	case TCM_CHECK_CONDITION_ABORT_CMD:
1556 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1557 	case TCM_CHECK_CONDITION_NOT_READY:
1558 		break;
1559 	case TCM_OUT_OF_RESOURCES:
1560 		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1561 		break;
1562 	case TCM_RESERVATION_CONFLICT:
1563 		/*
1564 		 * No SENSE Data payload for this case, set SCSI Status
1565 		 * and queue the response to $FABRIC_MOD.
1566 		 *
1567 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1568 		 */
1569 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1570 		/*
1571 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1572 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1573 		 * CONFLICT STATUS.
1574 		 *
1575 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1576 		 */
1577 		if (cmd->se_sess &&
1578 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1579 			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1580 				cmd->orig_fe_lun, 0x2C,
1581 				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1582 
1583 		trace_target_cmd_complete(cmd);
1584 		ret = cmd->se_tfo-> queue_status(cmd);
1585 		if (ret == -EAGAIN || ret == -ENOMEM)
1586 			goto queue_full;
1587 		goto check_stop;
1588 	default:
1589 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1590 			cmd->t_task_cdb[0], sense_reason);
1591 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1592 		break;
1593 	}
1594 
1595 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1596 	if (ret == -EAGAIN || ret == -ENOMEM)
1597 		goto queue_full;
1598 
1599 check_stop:
1600 	transport_lun_remove_cmd(cmd);
1601 	if (!transport_cmd_check_stop_to_fabric(cmd))
1602 		;
1603 	return;
1604 
1605 queue_full:
1606 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1607 	transport_handle_queue_full(cmd, cmd->se_dev);
1608 }
1609 EXPORT_SYMBOL(transport_generic_request_failure);
1610 
1611 void __target_execute_cmd(struct se_cmd *cmd)
1612 {
1613 	sense_reason_t ret;
1614 
1615 	if (cmd->execute_cmd) {
1616 		ret = cmd->execute_cmd(cmd);
1617 		if (ret) {
1618 			spin_lock_irq(&cmd->t_state_lock);
1619 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1620 			spin_unlock_irq(&cmd->t_state_lock);
1621 
1622 			transport_generic_request_failure(cmd, ret);
1623 		}
1624 	}
1625 }
1626 
1627 static bool target_handle_task_attr(struct se_cmd *cmd)
1628 {
1629 	struct se_device *dev = cmd->se_dev;
1630 
1631 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1632 		return false;
1633 
1634 	/*
1635 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1636 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1637 	 */
1638 	switch (cmd->sam_task_attr) {
1639 	case MSG_HEAD_TAG:
1640 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1641 			 "se_ordered_id: %u\n",
1642 			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1643 		return false;
1644 	case MSG_ORDERED_TAG:
1645 		atomic_inc(&dev->dev_ordered_sync);
1646 		smp_mb__after_atomic_inc();
1647 
1648 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1649 			 " se_ordered_id: %u\n",
1650 			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1651 
1652 		/*
1653 		 * Execute an ORDERED command if no other older commands
1654 		 * exist that need to be completed first.
1655 		 */
1656 		if (!atomic_read(&dev->simple_cmds))
1657 			return false;
1658 		break;
1659 	default:
1660 		/*
1661 		 * For SIMPLE and UNTAGGED Task Attribute commands
1662 		 */
1663 		atomic_inc(&dev->simple_cmds);
1664 		smp_mb__after_atomic_inc();
1665 		break;
1666 	}
1667 
1668 	if (atomic_read(&dev->dev_ordered_sync) == 0)
1669 		return false;
1670 
1671 	spin_lock(&dev->delayed_cmd_lock);
1672 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1673 	spin_unlock(&dev->delayed_cmd_lock);
1674 
1675 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1676 		" delayed CMD list, se_ordered_id: %u\n",
1677 		cmd->t_task_cdb[0], cmd->sam_task_attr,
1678 		cmd->se_ordered_id);
1679 	return true;
1680 }
1681 
1682 void target_execute_cmd(struct se_cmd *cmd)
1683 {
1684 	/*
1685 	 * If the received CDB has aleady been aborted stop processing it here.
1686 	 */
1687 	if (transport_check_aborted_status(cmd, 1))
1688 		return;
1689 
1690 	/*
1691 	 * Determine if frontend context caller is requesting the stopping of
1692 	 * this command for frontend exceptions.
1693 	 */
1694 	spin_lock_irq(&cmd->t_state_lock);
1695 	if (cmd->transport_state & CMD_T_STOP) {
1696 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1697 			__func__, __LINE__,
1698 			cmd->se_tfo->get_task_tag(cmd));
1699 
1700 		spin_unlock_irq(&cmd->t_state_lock);
1701 		complete(&cmd->t_transport_stop_comp);
1702 		return;
1703 	}
1704 
1705 	cmd->t_state = TRANSPORT_PROCESSING;
1706 	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1707 	spin_unlock_irq(&cmd->t_state_lock);
1708 
1709 	if (target_handle_task_attr(cmd)) {
1710 		spin_lock_irq(&cmd->t_state_lock);
1711 		cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1712 		spin_unlock_irq(&cmd->t_state_lock);
1713 		return;
1714 	}
1715 
1716 	__target_execute_cmd(cmd);
1717 }
1718 EXPORT_SYMBOL(target_execute_cmd);
1719 
1720 /*
1721  * Process all commands up to the last received ORDERED task attribute which
1722  * requires another blocking boundary
1723  */
1724 static void target_restart_delayed_cmds(struct se_device *dev)
1725 {
1726 	for (;;) {
1727 		struct se_cmd *cmd;
1728 
1729 		spin_lock(&dev->delayed_cmd_lock);
1730 		if (list_empty(&dev->delayed_cmd_list)) {
1731 			spin_unlock(&dev->delayed_cmd_lock);
1732 			break;
1733 		}
1734 
1735 		cmd = list_entry(dev->delayed_cmd_list.next,
1736 				 struct se_cmd, se_delayed_node);
1737 		list_del(&cmd->se_delayed_node);
1738 		spin_unlock(&dev->delayed_cmd_lock);
1739 
1740 		__target_execute_cmd(cmd);
1741 
1742 		if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1743 			break;
1744 	}
1745 }
1746 
1747 /*
1748  * Called from I/O completion to determine which dormant/delayed
1749  * and ordered cmds need to have their tasks added to the execution queue.
1750  */
1751 static void transport_complete_task_attr(struct se_cmd *cmd)
1752 {
1753 	struct se_device *dev = cmd->se_dev;
1754 
1755 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1756 		return;
1757 
1758 	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1759 		atomic_dec(&dev->simple_cmds);
1760 		smp_mb__after_atomic_dec();
1761 		dev->dev_cur_ordered_id++;
1762 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1763 			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
1764 			cmd->se_ordered_id);
1765 	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1766 		dev->dev_cur_ordered_id++;
1767 		pr_debug("Incremented dev_cur_ordered_id: %u for"
1768 			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1769 			cmd->se_ordered_id);
1770 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1771 		atomic_dec(&dev->dev_ordered_sync);
1772 		smp_mb__after_atomic_dec();
1773 
1774 		dev->dev_cur_ordered_id++;
1775 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1776 			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1777 	}
1778 
1779 	target_restart_delayed_cmds(dev);
1780 }
1781 
1782 static void transport_complete_qf(struct se_cmd *cmd)
1783 {
1784 	int ret = 0;
1785 
1786 	transport_complete_task_attr(cmd);
1787 
1788 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1789 		trace_target_cmd_complete(cmd);
1790 		ret = cmd->se_tfo->queue_status(cmd);
1791 		if (ret)
1792 			goto out;
1793 	}
1794 
1795 	switch (cmd->data_direction) {
1796 	case DMA_FROM_DEVICE:
1797 		trace_target_cmd_complete(cmd);
1798 		ret = cmd->se_tfo->queue_data_in(cmd);
1799 		break;
1800 	case DMA_TO_DEVICE:
1801 		if (cmd->se_cmd_flags & SCF_BIDI) {
1802 			ret = cmd->se_tfo->queue_data_in(cmd);
1803 			if (ret < 0)
1804 				break;
1805 		}
1806 		/* Fall through for DMA_TO_DEVICE */
1807 	case DMA_NONE:
1808 		trace_target_cmd_complete(cmd);
1809 		ret = cmd->se_tfo->queue_status(cmd);
1810 		break;
1811 	default:
1812 		break;
1813 	}
1814 
1815 out:
1816 	if (ret < 0) {
1817 		transport_handle_queue_full(cmd, cmd->se_dev);
1818 		return;
1819 	}
1820 	transport_lun_remove_cmd(cmd);
1821 	transport_cmd_check_stop_to_fabric(cmd);
1822 }
1823 
1824 static void transport_handle_queue_full(
1825 	struct se_cmd *cmd,
1826 	struct se_device *dev)
1827 {
1828 	spin_lock_irq(&dev->qf_cmd_lock);
1829 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1830 	atomic_inc(&dev->dev_qf_count);
1831 	smp_mb__after_atomic_inc();
1832 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1833 
1834 	schedule_work(&cmd->se_dev->qf_work_queue);
1835 }
1836 
1837 static void target_complete_ok_work(struct work_struct *work)
1838 {
1839 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1840 	int ret;
1841 
1842 	/*
1843 	 * Check if we need to move delayed/dormant tasks from cmds on the
1844 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1845 	 * Attribute.
1846 	 */
1847 	transport_complete_task_attr(cmd);
1848 
1849 	/*
1850 	 * Check to schedule QUEUE_FULL work, or execute an existing
1851 	 * cmd->transport_qf_callback()
1852 	 */
1853 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1854 		schedule_work(&cmd->se_dev->qf_work_queue);
1855 
1856 	/*
1857 	 * Check if we need to send a sense buffer from
1858 	 * the struct se_cmd in question.
1859 	 */
1860 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1861 		WARN_ON(!cmd->scsi_status);
1862 		ret = transport_send_check_condition_and_sense(
1863 					cmd, 0, 1);
1864 		if (ret == -EAGAIN || ret == -ENOMEM)
1865 			goto queue_full;
1866 
1867 		transport_lun_remove_cmd(cmd);
1868 		transport_cmd_check_stop_to_fabric(cmd);
1869 		return;
1870 	}
1871 	/*
1872 	 * Check for a callback, used by amongst other things
1873 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1874 	 */
1875 	if (cmd->transport_complete_callback) {
1876 		sense_reason_t rc;
1877 
1878 		rc = cmd->transport_complete_callback(cmd);
1879 		if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1880 			return;
1881 		} else if (rc) {
1882 			ret = transport_send_check_condition_and_sense(cmd,
1883 						rc, 0);
1884 			if (ret == -EAGAIN || ret == -ENOMEM)
1885 				goto queue_full;
1886 
1887 			transport_lun_remove_cmd(cmd);
1888 			transport_cmd_check_stop_to_fabric(cmd);
1889 			return;
1890 		}
1891 	}
1892 
1893 	switch (cmd->data_direction) {
1894 	case DMA_FROM_DEVICE:
1895 		spin_lock(&cmd->se_lun->lun_sep_lock);
1896 		if (cmd->se_lun->lun_sep) {
1897 			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1898 					cmd->data_length;
1899 		}
1900 		spin_unlock(&cmd->se_lun->lun_sep_lock);
1901 
1902 		trace_target_cmd_complete(cmd);
1903 		ret = cmd->se_tfo->queue_data_in(cmd);
1904 		if (ret == -EAGAIN || ret == -ENOMEM)
1905 			goto queue_full;
1906 		break;
1907 	case DMA_TO_DEVICE:
1908 		spin_lock(&cmd->se_lun->lun_sep_lock);
1909 		if (cmd->se_lun->lun_sep) {
1910 			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1911 				cmd->data_length;
1912 		}
1913 		spin_unlock(&cmd->se_lun->lun_sep_lock);
1914 		/*
1915 		 * Check if we need to send READ payload for BIDI-COMMAND
1916 		 */
1917 		if (cmd->se_cmd_flags & SCF_BIDI) {
1918 			spin_lock(&cmd->se_lun->lun_sep_lock);
1919 			if (cmd->se_lun->lun_sep) {
1920 				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1921 					cmd->data_length;
1922 			}
1923 			spin_unlock(&cmd->se_lun->lun_sep_lock);
1924 			ret = cmd->se_tfo->queue_data_in(cmd);
1925 			if (ret == -EAGAIN || ret == -ENOMEM)
1926 				goto queue_full;
1927 			break;
1928 		}
1929 		/* Fall through for DMA_TO_DEVICE */
1930 	case DMA_NONE:
1931 		trace_target_cmd_complete(cmd);
1932 		ret = cmd->se_tfo->queue_status(cmd);
1933 		if (ret == -EAGAIN || ret == -ENOMEM)
1934 			goto queue_full;
1935 		break;
1936 	default:
1937 		break;
1938 	}
1939 
1940 	transport_lun_remove_cmd(cmd);
1941 	transport_cmd_check_stop_to_fabric(cmd);
1942 	return;
1943 
1944 queue_full:
1945 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1946 		" data_direction: %d\n", cmd, cmd->data_direction);
1947 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1948 	transport_handle_queue_full(cmd, cmd->se_dev);
1949 }
1950 
1951 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1952 {
1953 	struct scatterlist *sg;
1954 	int count;
1955 
1956 	for_each_sg(sgl, sg, nents, count)
1957 		__free_page(sg_page(sg));
1958 
1959 	kfree(sgl);
1960 }
1961 
1962 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
1963 {
1964 	/*
1965 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
1966 	 * emulation, and free + reset pointers if necessary..
1967 	 */
1968 	if (!cmd->t_data_sg_orig)
1969 		return;
1970 
1971 	kfree(cmd->t_data_sg);
1972 	cmd->t_data_sg = cmd->t_data_sg_orig;
1973 	cmd->t_data_sg_orig = NULL;
1974 	cmd->t_data_nents = cmd->t_data_nents_orig;
1975 	cmd->t_data_nents_orig = 0;
1976 }
1977 
1978 static inline void transport_free_pages(struct se_cmd *cmd)
1979 {
1980 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
1981 		transport_reset_sgl_orig(cmd);
1982 		return;
1983 	}
1984 	transport_reset_sgl_orig(cmd);
1985 
1986 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1987 	cmd->t_data_sg = NULL;
1988 	cmd->t_data_nents = 0;
1989 
1990 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1991 	cmd->t_bidi_data_sg = NULL;
1992 	cmd->t_bidi_data_nents = 0;
1993 }
1994 
1995 /**
1996  * transport_release_cmd - free a command
1997  * @cmd:       command to free
1998  *
1999  * This routine unconditionally frees a command, and reference counting
2000  * or list removal must be done in the caller.
2001  */
2002 static int transport_release_cmd(struct se_cmd *cmd)
2003 {
2004 	BUG_ON(!cmd->se_tfo);
2005 
2006 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2007 		core_tmr_release_req(cmd->se_tmr_req);
2008 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2009 		kfree(cmd->t_task_cdb);
2010 	/*
2011 	 * If this cmd has been setup with target_get_sess_cmd(), drop
2012 	 * the kref and call ->release_cmd() in kref callback.
2013 	 */
2014 	return target_put_sess_cmd(cmd->se_sess, cmd);
2015 }
2016 
2017 /**
2018  * transport_put_cmd - release a reference to a command
2019  * @cmd:       command to release
2020  *
2021  * This routine releases our reference to the command and frees it if possible.
2022  */
2023 static int transport_put_cmd(struct se_cmd *cmd)
2024 {
2025 	transport_free_pages(cmd);
2026 	return transport_release_cmd(cmd);
2027 }
2028 
2029 void *transport_kmap_data_sg(struct se_cmd *cmd)
2030 {
2031 	struct scatterlist *sg = cmd->t_data_sg;
2032 	struct page **pages;
2033 	int i;
2034 
2035 	/*
2036 	 * We need to take into account a possible offset here for fabrics like
2037 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2038 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2039 	 */
2040 	if (!cmd->t_data_nents)
2041 		return NULL;
2042 
2043 	BUG_ON(!sg);
2044 	if (cmd->t_data_nents == 1)
2045 		return kmap(sg_page(sg)) + sg->offset;
2046 
2047 	/* >1 page. use vmap */
2048 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2049 	if (!pages)
2050 		return NULL;
2051 
2052 	/* convert sg[] to pages[] */
2053 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2054 		pages[i] = sg_page(sg);
2055 	}
2056 
2057 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2058 	kfree(pages);
2059 	if (!cmd->t_data_vmap)
2060 		return NULL;
2061 
2062 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2063 }
2064 EXPORT_SYMBOL(transport_kmap_data_sg);
2065 
2066 void transport_kunmap_data_sg(struct se_cmd *cmd)
2067 {
2068 	if (!cmd->t_data_nents) {
2069 		return;
2070 	} else if (cmd->t_data_nents == 1) {
2071 		kunmap(sg_page(cmd->t_data_sg));
2072 		return;
2073 	}
2074 
2075 	vunmap(cmd->t_data_vmap);
2076 	cmd->t_data_vmap = NULL;
2077 }
2078 EXPORT_SYMBOL(transport_kunmap_data_sg);
2079 
2080 int
2081 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2082 		 bool zero_page)
2083 {
2084 	struct scatterlist *sg;
2085 	struct page *page;
2086 	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2087 	unsigned int nent;
2088 	int i = 0;
2089 
2090 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
2091 	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2092 	if (!sg)
2093 		return -ENOMEM;
2094 
2095 	sg_init_table(sg, nent);
2096 
2097 	while (length) {
2098 		u32 page_len = min_t(u32, length, PAGE_SIZE);
2099 		page = alloc_page(GFP_KERNEL | zero_flag);
2100 		if (!page)
2101 			goto out;
2102 
2103 		sg_set_page(&sg[i], page, page_len, 0);
2104 		length -= page_len;
2105 		i++;
2106 	}
2107 	*sgl = sg;
2108 	*nents = nent;
2109 	return 0;
2110 
2111 out:
2112 	while (i > 0) {
2113 		i--;
2114 		__free_page(sg_page(&sg[i]));
2115 	}
2116 	kfree(sg);
2117 	return -ENOMEM;
2118 }
2119 
2120 /*
2121  * Allocate any required resources to execute the command.  For writes we
2122  * might not have the payload yet, so notify the fabric via a call to
2123  * ->write_pending instead. Otherwise place it on the execution queue.
2124  */
2125 sense_reason_t
2126 transport_generic_new_cmd(struct se_cmd *cmd)
2127 {
2128 	int ret = 0;
2129 
2130 	/*
2131 	 * Determine is the TCM fabric module has already allocated physical
2132 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2133 	 * beforehand.
2134 	 */
2135 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2136 	    cmd->data_length) {
2137 		bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2138 
2139 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2140 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2141 			u32 bidi_length;
2142 
2143 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2144 				bidi_length = cmd->t_task_nolb *
2145 					      cmd->se_dev->dev_attrib.block_size;
2146 			else
2147 				bidi_length = cmd->data_length;
2148 
2149 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2150 					       &cmd->t_bidi_data_nents,
2151 					       bidi_length, zero_flag);
2152 			if (ret < 0)
2153 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2154 		}
2155 
2156 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2157 				       cmd->data_length, zero_flag);
2158 		if (ret < 0)
2159 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2160 	}
2161 	/*
2162 	 * If this command is not a write we can execute it right here,
2163 	 * for write buffers we need to notify the fabric driver first
2164 	 * and let it call back once the write buffers are ready.
2165 	 */
2166 	target_add_to_state_list(cmd);
2167 	if (cmd->data_direction != DMA_TO_DEVICE) {
2168 		target_execute_cmd(cmd);
2169 		return 0;
2170 	}
2171 	transport_cmd_check_stop(cmd, false, true);
2172 
2173 	ret = cmd->se_tfo->write_pending(cmd);
2174 	if (ret == -EAGAIN || ret == -ENOMEM)
2175 		goto queue_full;
2176 
2177 	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2178 	WARN_ON(ret);
2179 
2180 	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2181 
2182 queue_full:
2183 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2184 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2185 	transport_handle_queue_full(cmd, cmd->se_dev);
2186 	return 0;
2187 }
2188 EXPORT_SYMBOL(transport_generic_new_cmd);
2189 
2190 static void transport_write_pending_qf(struct se_cmd *cmd)
2191 {
2192 	int ret;
2193 
2194 	ret = cmd->se_tfo->write_pending(cmd);
2195 	if (ret == -EAGAIN || ret == -ENOMEM) {
2196 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2197 			 cmd);
2198 		transport_handle_queue_full(cmd, cmd->se_dev);
2199 	}
2200 }
2201 
2202 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2203 {
2204 	unsigned long flags;
2205 	int ret = 0;
2206 
2207 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2208 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2209 			 transport_wait_for_tasks(cmd);
2210 
2211 		ret = transport_release_cmd(cmd);
2212 	} else {
2213 		if (wait_for_tasks)
2214 			transport_wait_for_tasks(cmd);
2215 		/*
2216 		 * Handle WRITE failure case where transport_generic_new_cmd()
2217 		 * has already added se_cmd to state_list, but fabric has
2218 		 * failed command before I/O submission.
2219 		 */
2220 		if (cmd->state_active) {
2221 			spin_lock_irqsave(&cmd->t_state_lock, flags);
2222 			target_remove_from_state_list(cmd);
2223 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2224 		}
2225 
2226 		if (cmd->se_lun)
2227 			transport_lun_remove_cmd(cmd);
2228 
2229 		ret = transport_put_cmd(cmd);
2230 	}
2231 	return ret;
2232 }
2233 EXPORT_SYMBOL(transport_generic_free_cmd);
2234 
2235 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2236  * @se_sess:	session to reference
2237  * @se_cmd:	command descriptor to add
2238  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2239  */
2240 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2241 			       bool ack_kref)
2242 {
2243 	unsigned long flags;
2244 	int ret = 0;
2245 
2246 	kref_init(&se_cmd->cmd_kref);
2247 	/*
2248 	 * Add a second kref if the fabric caller is expecting to handle
2249 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2250 	 * invocations before se_cmd descriptor release.
2251 	 */
2252 	if (ack_kref == true) {
2253 		kref_get(&se_cmd->cmd_kref);
2254 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2255 	}
2256 
2257 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2258 	if (se_sess->sess_tearing_down) {
2259 		ret = -ESHUTDOWN;
2260 		goto out;
2261 	}
2262 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2263 out:
2264 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2265 	return ret;
2266 }
2267 EXPORT_SYMBOL(target_get_sess_cmd);
2268 
2269 static void target_release_cmd_kref(struct kref *kref)
2270 {
2271 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2272 	struct se_session *se_sess = se_cmd->se_sess;
2273 
2274 	if (list_empty(&se_cmd->se_cmd_list)) {
2275 		spin_unlock(&se_sess->sess_cmd_lock);
2276 		se_cmd->se_tfo->release_cmd(se_cmd);
2277 		return;
2278 	}
2279 	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2280 		spin_unlock(&se_sess->sess_cmd_lock);
2281 		complete(&se_cmd->cmd_wait_comp);
2282 		return;
2283 	}
2284 	list_del(&se_cmd->se_cmd_list);
2285 	spin_unlock(&se_sess->sess_cmd_lock);
2286 
2287 	se_cmd->se_tfo->release_cmd(se_cmd);
2288 }
2289 
2290 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2291  * @se_sess:	session to reference
2292  * @se_cmd:	command descriptor to drop
2293  */
2294 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2295 {
2296 	return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2297 			&se_sess->sess_cmd_lock);
2298 }
2299 EXPORT_SYMBOL(target_put_sess_cmd);
2300 
2301 /* target_sess_cmd_list_set_waiting - Flag all commands in
2302  *         sess_cmd_list to complete cmd_wait_comp.  Set
2303  *         sess_tearing_down so no more commands are queued.
2304  * @se_sess:	session to flag
2305  */
2306 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2307 {
2308 	struct se_cmd *se_cmd;
2309 	unsigned long flags;
2310 
2311 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2312 	if (se_sess->sess_tearing_down) {
2313 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2314 		return;
2315 	}
2316 	se_sess->sess_tearing_down = 1;
2317 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2318 
2319 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2320 		se_cmd->cmd_wait_set = 1;
2321 
2322 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2323 }
2324 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2325 
2326 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2327  * @se_sess:    session to wait for active I/O
2328  */
2329 void target_wait_for_sess_cmds(struct se_session *se_sess)
2330 {
2331 	struct se_cmd *se_cmd, *tmp_cmd;
2332 	unsigned long flags;
2333 
2334 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2335 				&se_sess->sess_wait_list, se_cmd_list) {
2336 		list_del(&se_cmd->se_cmd_list);
2337 
2338 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2339 			" %d\n", se_cmd, se_cmd->t_state,
2340 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2341 
2342 		wait_for_completion(&se_cmd->cmd_wait_comp);
2343 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2344 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2345 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2346 
2347 		se_cmd->se_tfo->release_cmd(se_cmd);
2348 	}
2349 
2350 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2351 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2352 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2353 
2354 }
2355 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2356 
2357 static int transport_clear_lun_ref_thread(void *p)
2358 {
2359 	struct se_lun *lun = p;
2360 
2361 	percpu_ref_kill(&lun->lun_ref);
2362 
2363 	wait_for_completion(&lun->lun_ref_comp);
2364 	complete(&lun->lun_shutdown_comp);
2365 
2366 	return 0;
2367 }
2368 
2369 int transport_clear_lun_ref(struct se_lun *lun)
2370 {
2371 	struct task_struct *kt;
2372 
2373 	kt = kthread_run(transport_clear_lun_ref_thread, lun,
2374 			"tcm_cl_%u", lun->unpacked_lun);
2375 	if (IS_ERR(kt)) {
2376 		pr_err("Unable to start clear_lun thread\n");
2377 		return PTR_ERR(kt);
2378 	}
2379 	wait_for_completion(&lun->lun_shutdown_comp);
2380 
2381 	return 0;
2382 }
2383 
2384 /**
2385  * transport_wait_for_tasks - wait for completion to occur
2386  * @cmd:	command to wait
2387  *
2388  * Called from frontend fabric context to wait for storage engine
2389  * to pause and/or release frontend generated struct se_cmd.
2390  */
2391 bool transport_wait_for_tasks(struct se_cmd *cmd)
2392 {
2393 	unsigned long flags;
2394 
2395 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2396 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2397 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2398 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2399 		return false;
2400 	}
2401 
2402 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2403 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2404 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2405 		return false;
2406 	}
2407 
2408 	if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2409 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2410 		return false;
2411 	}
2412 
2413 	cmd->transport_state |= CMD_T_STOP;
2414 
2415 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2416 		" i_state: %d, t_state: %d, CMD_T_STOP\n",
2417 		cmd, cmd->se_tfo->get_task_tag(cmd),
2418 		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2419 
2420 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2421 
2422 	wait_for_completion(&cmd->t_transport_stop_comp);
2423 
2424 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2425 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2426 
2427 	pr_debug("wait_for_tasks: Stopped wait_for_completion("
2428 		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2429 		cmd->se_tfo->get_task_tag(cmd));
2430 
2431 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2432 
2433 	return true;
2434 }
2435 EXPORT_SYMBOL(transport_wait_for_tasks);
2436 
2437 static int transport_get_sense_codes(
2438 	struct se_cmd *cmd,
2439 	u8 *asc,
2440 	u8 *ascq)
2441 {
2442 	*asc = cmd->scsi_asc;
2443 	*ascq = cmd->scsi_ascq;
2444 
2445 	return 0;
2446 }
2447 
2448 int
2449 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2450 		sense_reason_t reason, int from_transport)
2451 {
2452 	unsigned char *buffer = cmd->sense_buffer;
2453 	unsigned long flags;
2454 	u8 asc = 0, ascq = 0;
2455 
2456 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2457 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2458 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2459 		return 0;
2460 	}
2461 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2462 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2463 
2464 	if (!reason && from_transport)
2465 		goto after_reason;
2466 
2467 	if (!from_transport)
2468 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2469 
2470 	/*
2471 	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2472 	 * SENSE KEY values from include/scsi/scsi.h
2473 	 */
2474 	switch (reason) {
2475 	case TCM_NO_SENSE:
2476 		/* CURRENT ERROR */
2477 		buffer[0] = 0x70;
2478 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2479 		/* Not Ready */
2480 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2481 		/* NO ADDITIONAL SENSE INFORMATION */
2482 		buffer[SPC_ASC_KEY_OFFSET] = 0;
2483 		buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2484 		break;
2485 	case TCM_NON_EXISTENT_LUN:
2486 		/* CURRENT ERROR */
2487 		buffer[0] = 0x70;
2488 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2489 		/* ILLEGAL REQUEST */
2490 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2491 		/* LOGICAL UNIT NOT SUPPORTED */
2492 		buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2493 		break;
2494 	case TCM_UNSUPPORTED_SCSI_OPCODE:
2495 	case TCM_SECTOR_COUNT_TOO_MANY:
2496 		/* CURRENT ERROR */
2497 		buffer[0] = 0x70;
2498 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2499 		/* ILLEGAL REQUEST */
2500 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2501 		/* INVALID COMMAND OPERATION CODE */
2502 		buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2503 		break;
2504 	case TCM_UNKNOWN_MODE_PAGE:
2505 		/* CURRENT ERROR */
2506 		buffer[0] = 0x70;
2507 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2508 		/* ILLEGAL REQUEST */
2509 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2510 		/* INVALID FIELD IN CDB */
2511 		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2512 		break;
2513 	case TCM_CHECK_CONDITION_ABORT_CMD:
2514 		/* CURRENT ERROR */
2515 		buffer[0] = 0x70;
2516 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2517 		/* ABORTED COMMAND */
2518 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2519 		/* BUS DEVICE RESET FUNCTION OCCURRED */
2520 		buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2521 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2522 		break;
2523 	case TCM_INCORRECT_AMOUNT_OF_DATA:
2524 		/* CURRENT ERROR */
2525 		buffer[0] = 0x70;
2526 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2527 		/* ABORTED COMMAND */
2528 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2529 		/* WRITE ERROR */
2530 		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2531 		/* NOT ENOUGH UNSOLICITED DATA */
2532 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2533 		break;
2534 	case TCM_INVALID_CDB_FIELD:
2535 		/* CURRENT ERROR */
2536 		buffer[0] = 0x70;
2537 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2538 		/* ILLEGAL REQUEST */
2539 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2540 		/* INVALID FIELD IN CDB */
2541 		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2542 		break;
2543 	case TCM_INVALID_PARAMETER_LIST:
2544 		/* CURRENT ERROR */
2545 		buffer[0] = 0x70;
2546 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2547 		/* ILLEGAL REQUEST */
2548 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2549 		/* INVALID FIELD IN PARAMETER LIST */
2550 		buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2551 		break;
2552 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
2553 		/* CURRENT ERROR */
2554 		buffer[0] = 0x70;
2555 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2556 		/* ILLEGAL REQUEST */
2557 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2558 		/* PARAMETER LIST LENGTH ERROR */
2559 		buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2560 		break;
2561 	case TCM_UNEXPECTED_UNSOLICITED_DATA:
2562 		/* CURRENT ERROR */
2563 		buffer[0] = 0x70;
2564 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2565 		/* ABORTED COMMAND */
2566 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2567 		/* WRITE ERROR */
2568 		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2569 		/* UNEXPECTED_UNSOLICITED_DATA */
2570 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2571 		break;
2572 	case TCM_SERVICE_CRC_ERROR:
2573 		/* CURRENT ERROR */
2574 		buffer[0] = 0x70;
2575 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2576 		/* ABORTED COMMAND */
2577 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2578 		/* PROTOCOL SERVICE CRC ERROR */
2579 		buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2580 		/* N/A */
2581 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2582 		break;
2583 	case TCM_SNACK_REJECTED:
2584 		/* CURRENT ERROR */
2585 		buffer[0] = 0x70;
2586 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2587 		/* ABORTED COMMAND */
2588 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2589 		/* READ ERROR */
2590 		buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2591 		/* FAILED RETRANSMISSION REQUEST */
2592 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2593 		break;
2594 	case TCM_WRITE_PROTECTED:
2595 		/* CURRENT ERROR */
2596 		buffer[0] = 0x70;
2597 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2598 		/* DATA PROTECT */
2599 		buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2600 		/* WRITE PROTECTED */
2601 		buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2602 		break;
2603 	case TCM_ADDRESS_OUT_OF_RANGE:
2604 		/* CURRENT ERROR */
2605 		buffer[0] = 0x70;
2606 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2607 		/* ILLEGAL REQUEST */
2608 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2609 		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2610 		buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2611 		break;
2612 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2613 		/* CURRENT ERROR */
2614 		buffer[0] = 0x70;
2615 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2616 		/* UNIT ATTENTION */
2617 		buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2618 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2619 		buffer[SPC_ASC_KEY_OFFSET] = asc;
2620 		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2621 		break;
2622 	case TCM_CHECK_CONDITION_NOT_READY:
2623 		/* CURRENT ERROR */
2624 		buffer[0] = 0x70;
2625 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2626 		/* Not Ready */
2627 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2628 		transport_get_sense_codes(cmd, &asc, &ascq);
2629 		buffer[SPC_ASC_KEY_OFFSET] = asc;
2630 		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2631 		break;
2632 	case TCM_MISCOMPARE_VERIFY:
2633 		/* CURRENT ERROR */
2634 		buffer[0] = 0x70;
2635 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2636 		buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2637 		/* MISCOMPARE DURING VERIFY OPERATION */
2638 		buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2639 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2640 		break;
2641 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2642 	default:
2643 		/* CURRENT ERROR */
2644 		buffer[0] = 0x70;
2645 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2646 		/*
2647 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2648 		 * Solaris initiators.  Returning NOT READY instead means the
2649 		 * operations will be retried a finite number of times and we
2650 		 * can survive intermittent errors.
2651 		 */
2652 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2653 		/* LOGICAL UNIT COMMUNICATION FAILURE */
2654 		buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2655 		break;
2656 	}
2657 	/*
2658 	 * This code uses linux/include/scsi/scsi.h SAM status codes!
2659 	 */
2660 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2661 	/*
2662 	 * Automatically padded, this value is encoded in the fabric's
2663 	 * data_length response PDU containing the SCSI defined sense data.
2664 	 */
2665 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2666 
2667 after_reason:
2668 	trace_target_cmd_complete(cmd);
2669 	return cmd->se_tfo->queue_status(cmd);
2670 }
2671 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2672 
2673 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2674 {
2675 	if (!(cmd->transport_state & CMD_T_ABORTED))
2676 		return 0;
2677 
2678 	if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2679 		return 1;
2680 
2681 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2682 		 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2683 
2684 	cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2685 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2686 	trace_target_cmd_complete(cmd);
2687 	cmd->se_tfo->queue_status(cmd);
2688 
2689 	return 1;
2690 }
2691 EXPORT_SYMBOL(transport_check_aborted_status);
2692 
2693 void transport_send_task_abort(struct se_cmd *cmd)
2694 {
2695 	unsigned long flags;
2696 
2697 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2698 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2699 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2700 		return;
2701 	}
2702 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2703 
2704 	/*
2705 	 * If there are still expected incoming fabric WRITEs, we wait
2706 	 * until until they have completed before sending a TASK_ABORTED
2707 	 * response.  This response with TASK_ABORTED status will be
2708 	 * queued back to fabric module by transport_check_aborted_status().
2709 	 */
2710 	if (cmd->data_direction == DMA_TO_DEVICE) {
2711 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2712 			cmd->transport_state |= CMD_T_ABORTED;
2713 			smp_mb__after_atomic_inc();
2714 			return;
2715 		}
2716 	}
2717 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2718 
2719 	transport_lun_remove_cmd(cmd);
2720 
2721 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2722 		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
2723 		cmd->se_tfo->get_task_tag(cmd));
2724 
2725 	trace_target_cmd_complete(cmd);
2726 	cmd->se_tfo->queue_status(cmd);
2727 }
2728 
2729 static void target_tmr_work(struct work_struct *work)
2730 {
2731 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2732 	struct se_device *dev = cmd->se_dev;
2733 	struct se_tmr_req *tmr = cmd->se_tmr_req;
2734 	int ret;
2735 
2736 	switch (tmr->function) {
2737 	case TMR_ABORT_TASK:
2738 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
2739 		break;
2740 	case TMR_ABORT_TASK_SET:
2741 	case TMR_CLEAR_ACA:
2742 	case TMR_CLEAR_TASK_SET:
2743 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2744 		break;
2745 	case TMR_LUN_RESET:
2746 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2747 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2748 					 TMR_FUNCTION_REJECTED;
2749 		break;
2750 	case TMR_TARGET_WARM_RESET:
2751 		tmr->response = TMR_FUNCTION_REJECTED;
2752 		break;
2753 	case TMR_TARGET_COLD_RESET:
2754 		tmr->response = TMR_FUNCTION_REJECTED;
2755 		break;
2756 	default:
2757 		pr_err("Uknown TMR function: 0x%02x.\n",
2758 				tmr->function);
2759 		tmr->response = TMR_FUNCTION_REJECTED;
2760 		break;
2761 	}
2762 
2763 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2764 	cmd->se_tfo->queue_tm_rsp(cmd);
2765 
2766 	transport_cmd_check_stop_to_fabric(cmd);
2767 }
2768 
2769 int transport_generic_handle_tmr(
2770 	struct se_cmd *cmd)
2771 {
2772 	INIT_WORK(&cmd->work, target_tmr_work);
2773 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2774 	return 0;
2775 }
2776 EXPORT_SYMBOL(transport_generic_handle_tmr);
2777