1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 #include <scsi/scsi_common.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_lba_map_cache; 64 struct kmem_cache *t10_alua_lba_map_mem_cache; 65 66 static void transport_complete_task_attr(struct se_cmd *cmd); 67 static void transport_handle_queue_full(struct se_cmd *cmd, 68 struct se_device *dev); 69 static int transport_put_cmd(struct se_cmd *cmd); 70 static void target_complete_ok_work(struct work_struct *work); 71 72 int init_se_kmem_caches(void) 73 { 74 se_sess_cache = kmem_cache_create("se_sess_cache", 75 sizeof(struct se_session), __alignof__(struct se_session), 76 0, NULL); 77 if (!se_sess_cache) { 78 pr_err("kmem_cache_create() for struct se_session" 79 " failed\n"); 80 goto out; 81 } 82 se_ua_cache = kmem_cache_create("se_ua_cache", 83 sizeof(struct se_ua), __alignof__(struct se_ua), 84 0, NULL); 85 if (!se_ua_cache) { 86 pr_err("kmem_cache_create() for struct se_ua failed\n"); 87 goto out_free_sess_cache; 88 } 89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 90 sizeof(struct t10_pr_registration), 91 __alignof__(struct t10_pr_registration), 0, NULL); 92 if (!t10_pr_reg_cache) { 93 pr_err("kmem_cache_create() for struct t10_pr_registration" 94 " failed\n"); 95 goto out_free_ua_cache; 96 } 97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 99 0, NULL); 100 if (!t10_alua_lu_gp_cache) { 101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 102 " failed\n"); 103 goto out_free_pr_reg_cache; 104 } 105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 106 sizeof(struct t10_alua_lu_gp_member), 107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 108 if (!t10_alua_lu_gp_mem_cache) { 109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 110 "cache failed\n"); 111 goto out_free_lu_gp_cache; 112 } 113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 114 sizeof(struct t10_alua_tg_pt_gp), 115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 116 if (!t10_alua_tg_pt_gp_cache) { 117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 118 "cache failed\n"); 119 goto out_free_lu_gp_mem_cache; 120 } 121 t10_alua_lba_map_cache = kmem_cache_create( 122 "t10_alua_lba_map_cache", 123 sizeof(struct t10_alua_lba_map), 124 __alignof__(struct t10_alua_lba_map), 0, NULL); 125 if (!t10_alua_lba_map_cache) { 126 pr_err("kmem_cache_create() for t10_alua_lba_map_" 127 "cache failed\n"); 128 goto out_free_tg_pt_gp_cache; 129 } 130 t10_alua_lba_map_mem_cache = kmem_cache_create( 131 "t10_alua_lba_map_mem_cache", 132 sizeof(struct t10_alua_lba_map_member), 133 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 134 if (!t10_alua_lba_map_mem_cache) { 135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 136 "cache failed\n"); 137 goto out_free_lba_map_cache; 138 } 139 140 target_completion_wq = alloc_workqueue("target_completion", 141 WQ_MEM_RECLAIM, 0); 142 if (!target_completion_wq) 143 goto out_free_lba_map_mem_cache; 144 145 return 0; 146 147 out_free_lba_map_mem_cache: 148 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 149 out_free_lba_map_cache: 150 kmem_cache_destroy(t10_alua_lba_map_cache); 151 out_free_tg_pt_gp_cache: 152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 153 out_free_lu_gp_mem_cache: 154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 155 out_free_lu_gp_cache: 156 kmem_cache_destroy(t10_alua_lu_gp_cache); 157 out_free_pr_reg_cache: 158 kmem_cache_destroy(t10_pr_reg_cache); 159 out_free_ua_cache: 160 kmem_cache_destroy(se_ua_cache); 161 out_free_sess_cache: 162 kmem_cache_destroy(se_sess_cache); 163 out: 164 return -ENOMEM; 165 } 166 167 void release_se_kmem_caches(void) 168 { 169 destroy_workqueue(target_completion_wq); 170 kmem_cache_destroy(se_sess_cache); 171 kmem_cache_destroy(se_ua_cache); 172 kmem_cache_destroy(t10_pr_reg_cache); 173 kmem_cache_destroy(t10_alua_lu_gp_cache); 174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 176 kmem_cache_destroy(t10_alua_lba_map_cache); 177 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 178 } 179 180 /* This code ensures unique mib indexes are handed out. */ 181 static DEFINE_SPINLOCK(scsi_mib_index_lock); 182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 183 184 /* 185 * Allocate a new row index for the entry type specified 186 */ 187 u32 scsi_get_new_index(scsi_index_t type) 188 { 189 u32 new_index; 190 191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 192 193 spin_lock(&scsi_mib_index_lock); 194 new_index = ++scsi_mib_index[type]; 195 spin_unlock(&scsi_mib_index_lock); 196 197 return new_index; 198 } 199 200 void transport_subsystem_check_init(void) 201 { 202 int ret; 203 static int sub_api_initialized; 204 205 if (sub_api_initialized) 206 return; 207 208 ret = request_module("target_core_iblock"); 209 if (ret != 0) 210 pr_err("Unable to load target_core_iblock\n"); 211 212 ret = request_module("target_core_file"); 213 if (ret != 0) 214 pr_err("Unable to load target_core_file\n"); 215 216 ret = request_module("target_core_pscsi"); 217 if (ret != 0) 218 pr_err("Unable to load target_core_pscsi\n"); 219 220 ret = request_module("target_core_user"); 221 if (ret != 0) 222 pr_err("Unable to load target_core_user\n"); 223 224 sub_api_initialized = 1; 225 } 226 227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 228 { 229 struct se_session *se_sess; 230 231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 232 if (!se_sess) { 233 pr_err("Unable to allocate struct se_session from" 234 " se_sess_cache\n"); 235 return ERR_PTR(-ENOMEM); 236 } 237 INIT_LIST_HEAD(&se_sess->sess_list); 238 INIT_LIST_HEAD(&se_sess->sess_acl_list); 239 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 240 INIT_LIST_HEAD(&se_sess->sess_wait_list); 241 spin_lock_init(&se_sess->sess_cmd_lock); 242 kref_init(&se_sess->sess_kref); 243 se_sess->sup_prot_ops = sup_prot_ops; 244 245 return se_sess; 246 } 247 EXPORT_SYMBOL(transport_init_session); 248 249 int transport_alloc_session_tags(struct se_session *se_sess, 250 unsigned int tag_num, unsigned int tag_size) 251 { 252 int rc; 253 254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 256 if (!se_sess->sess_cmd_map) { 257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 258 if (!se_sess->sess_cmd_map) { 259 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 260 return -ENOMEM; 261 } 262 } 263 264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 265 if (rc < 0) { 266 pr_err("Unable to init se_sess->sess_tag_pool," 267 " tag_num: %u\n", tag_num); 268 kvfree(se_sess->sess_cmd_map); 269 se_sess->sess_cmd_map = NULL; 270 return -ENOMEM; 271 } 272 273 return 0; 274 } 275 EXPORT_SYMBOL(transport_alloc_session_tags); 276 277 struct se_session *transport_init_session_tags(unsigned int tag_num, 278 unsigned int tag_size, 279 enum target_prot_op sup_prot_ops) 280 { 281 struct se_session *se_sess; 282 int rc; 283 284 se_sess = transport_init_session(sup_prot_ops); 285 if (IS_ERR(se_sess)) 286 return se_sess; 287 288 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 289 if (rc < 0) { 290 transport_free_session(se_sess); 291 return ERR_PTR(-ENOMEM); 292 } 293 294 return se_sess; 295 } 296 EXPORT_SYMBOL(transport_init_session_tags); 297 298 /* 299 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 300 */ 301 void __transport_register_session( 302 struct se_portal_group *se_tpg, 303 struct se_node_acl *se_nacl, 304 struct se_session *se_sess, 305 void *fabric_sess_ptr) 306 { 307 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 308 unsigned char buf[PR_REG_ISID_LEN]; 309 310 se_sess->se_tpg = se_tpg; 311 se_sess->fabric_sess_ptr = fabric_sess_ptr; 312 /* 313 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 314 * 315 * Only set for struct se_session's that will actually be moving I/O. 316 * eg: *NOT* discovery sessions. 317 */ 318 if (se_nacl) { 319 /* 320 * 321 * Determine if fabric allows for T10-PI feature bits exposed to 322 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 323 * 324 * If so, then always save prot_type on a per se_node_acl node 325 * basis and re-instate the previous sess_prot_type to avoid 326 * disabling PI from below any previously initiator side 327 * registered LUNs. 328 */ 329 if (se_nacl->saved_prot_type) 330 se_sess->sess_prot_type = se_nacl->saved_prot_type; 331 else if (tfo->tpg_check_prot_fabric_only) 332 se_sess->sess_prot_type = se_nacl->saved_prot_type = 333 tfo->tpg_check_prot_fabric_only(se_tpg); 334 /* 335 * If the fabric module supports an ISID based TransportID, 336 * save this value in binary from the fabric I_T Nexus now. 337 */ 338 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 339 memset(&buf[0], 0, PR_REG_ISID_LEN); 340 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 341 &buf[0], PR_REG_ISID_LEN); 342 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 343 } 344 345 spin_lock_irq(&se_nacl->nacl_sess_lock); 346 /* 347 * The se_nacl->nacl_sess pointer will be set to the 348 * last active I_T Nexus for each struct se_node_acl. 349 */ 350 se_nacl->nacl_sess = se_sess; 351 352 list_add_tail(&se_sess->sess_acl_list, 353 &se_nacl->acl_sess_list); 354 spin_unlock_irq(&se_nacl->nacl_sess_lock); 355 } 356 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 357 358 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 359 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 360 } 361 EXPORT_SYMBOL(__transport_register_session); 362 363 void transport_register_session( 364 struct se_portal_group *se_tpg, 365 struct se_node_acl *se_nacl, 366 struct se_session *se_sess, 367 void *fabric_sess_ptr) 368 { 369 unsigned long flags; 370 371 spin_lock_irqsave(&se_tpg->session_lock, flags); 372 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 373 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 374 } 375 EXPORT_SYMBOL(transport_register_session); 376 377 static void target_release_session(struct kref *kref) 378 { 379 struct se_session *se_sess = container_of(kref, 380 struct se_session, sess_kref); 381 struct se_portal_group *se_tpg = se_sess->se_tpg; 382 383 se_tpg->se_tpg_tfo->close_session(se_sess); 384 } 385 386 int target_get_session(struct se_session *se_sess) 387 { 388 return kref_get_unless_zero(&se_sess->sess_kref); 389 } 390 EXPORT_SYMBOL(target_get_session); 391 392 void target_put_session(struct se_session *se_sess) 393 { 394 kref_put(&se_sess->sess_kref, target_release_session); 395 } 396 EXPORT_SYMBOL(target_put_session); 397 398 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 399 { 400 struct se_session *se_sess; 401 ssize_t len = 0; 402 403 spin_lock_bh(&se_tpg->session_lock); 404 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 405 if (!se_sess->se_node_acl) 406 continue; 407 if (!se_sess->se_node_acl->dynamic_node_acl) 408 continue; 409 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 410 break; 411 412 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 413 se_sess->se_node_acl->initiatorname); 414 len += 1; /* Include NULL terminator */ 415 } 416 spin_unlock_bh(&se_tpg->session_lock); 417 418 return len; 419 } 420 EXPORT_SYMBOL(target_show_dynamic_sessions); 421 422 static void target_complete_nacl(struct kref *kref) 423 { 424 struct se_node_acl *nacl = container_of(kref, 425 struct se_node_acl, acl_kref); 426 427 complete(&nacl->acl_free_comp); 428 } 429 430 void target_put_nacl(struct se_node_acl *nacl) 431 { 432 kref_put(&nacl->acl_kref, target_complete_nacl); 433 } 434 EXPORT_SYMBOL(target_put_nacl); 435 436 void transport_deregister_session_configfs(struct se_session *se_sess) 437 { 438 struct se_node_acl *se_nacl; 439 unsigned long flags; 440 /* 441 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 442 */ 443 se_nacl = se_sess->se_node_acl; 444 if (se_nacl) { 445 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 446 if (se_nacl->acl_stop == 0) 447 list_del(&se_sess->sess_acl_list); 448 /* 449 * If the session list is empty, then clear the pointer. 450 * Otherwise, set the struct se_session pointer from the tail 451 * element of the per struct se_node_acl active session list. 452 */ 453 if (list_empty(&se_nacl->acl_sess_list)) 454 se_nacl->nacl_sess = NULL; 455 else { 456 se_nacl->nacl_sess = container_of( 457 se_nacl->acl_sess_list.prev, 458 struct se_session, sess_acl_list); 459 } 460 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 461 } 462 } 463 EXPORT_SYMBOL(transport_deregister_session_configfs); 464 465 void transport_free_session(struct se_session *se_sess) 466 { 467 struct se_node_acl *se_nacl = se_sess->se_node_acl; 468 /* 469 * Drop the se_node_acl->nacl_kref obtained from within 470 * core_tpg_get_initiator_node_acl(). 471 */ 472 if (se_nacl) { 473 se_sess->se_node_acl = NULL; 474 target_put_nacl(se_nacl); 475 } 476 if (se_sess->sess_cmd_map) { 477 percpu_ida_destroy(&se_sess->sess_tag_pool); 478 kvfree(se_sess->sess_cmd_map); 479 } 480 kmem_cache_free(se_sess_cache, se_sess); 481 } 482 EXPORT_SYMBOL(transport_free_session); 483 484 void transport_deregister_session(struct se_session *se_sess) 485 { 486 struct se_portal_group *se_tpg = se_sess->se_tpg; 487 const struct target_core_fabric_ops *se_tfo; 488 struct se_node_acl *se_nacl; 489 unsigned long flags; 490 bool drop_nacl = false; 491 492 if (!se_tpg) { 493 transport_free_session(se_sess); 494 return; 495 } 496 se_tfo = se_tpg->se_tpg_tfo; 497 498 spin_lock_irqsave(&se_tpg->session_lock, flags); 499 list_del(&se_sess->sess_list); 500 se_sess->se_tpg = NULL; 501 se_sess->fabric_sess_ptr = NULL; 502 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 503 504 /* 505 * Determine if we need to do extra work for this initiator node's 506 * struct se_node_acl if it had been previously dynamically generated. 507 */ 508 se_nacl = se_sess->se_node_acl; 509 510 mutex_lock(&se_tpg->acl_node_mutex); 511 if (se_nacl && se_nacl->dynamic_node_acl) { 512 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 513 list_del(&se_nacl->acl_list); 514 drop_nacl = true; 515 } 516 } 517 mutex_unlock(&se_tpg->acl_node_mutex); 518 519 if (drop_nacl) { 520 core_tpg_wait_for_nacl_pr_ref(se_nacl); 521 core_free_device_list_for_node(se_nacl, se_tpg); 522 se_sess->se_node_acl = NULL; 523 kfree(se_nacl); 524 } 525 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 526 se_tpg->se_tpg_tfo->get_fabric_name()); 527 /* 528 * If last kref is dropping now for an explicit NodeACL, awake sleeping 529 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 530 * removal context from within transport_free_session() code. 531 */ 532 533 transport_free_session(se_sess); 534 } 535 EXPORT_SYMBOL(transport_deregister_session); 536 537 static void target_remove_from_state_list(struct se_cmd *cmd) 538 { 539 struct se_device *dev = cmd->se_dev; 540 unsigned long flags; 541 542 if (!dev) 543 return; 544 545 if (cmd->transport_state & CMD_T_BUSY) 546 return; 547 548 spin_lock_irqsave(&dev->execute_task_lock, flags); 549 if (cmd->state_active) { 550 list_del(&cmd->state_list); 551 cmd->state_active = false; 552 } 553 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 554 } 555 556 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 557 bool write_pending) 558 { 559 unsigned long flags; 560 561 if (remove_from_lists) { 562 target_remove_from_state_list(cmd); 563 564 /* 565 * Clear struct se_cmd->se_lun before the handoff to FE. 566 */ 567 cmd->se_lun = NULL; 568 } 569 570 spin_lock_irqsave(&cmd->t_state_lock, flags); 571 if (write_pending) 572 cmd->t_state = TRANSPORT_WRITE_PENDING; 573 574 /* 575 * Determine if frontend context caller is requesting the stopping of 576 * this command for frontend exceptions. 577 */ 578 if (cmd->transport_state & CMD_T_STOP) { 579 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 580 __func__, __LINE__, cmd->tag); 581 582 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 583 584 complete_all(&cmd->t_transport_stop_comp); 585 return 1; 586 } 587 588 cmd->transport_state &= ~CMD_T_ACTIVE; 589 if (remove_from_lists) { 590 /* 591 * Some fabric modules like tcm_loop can release 592 * their internally allocated I/O reference now and 593 * struct se_cmd now. 594 * 595 * Fabric modules are expected to return '1' here if the 596 * se_cmd being passed is released at this point, 597 * or zero if not being released. 598 */ 599 if (cmd->se_tfo->check_stop_free != NULL) { 600 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 601 return cmd->se_tfo->check_stop_free(cmd); 602 } 603 } 604 605 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 606 return 0; 607 } 608 609 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 610 { 611 return transport_cmd_check_stop(cmd, true, false); 612 } 613 614 static void transport_lun_remove_cmd(struct se_cmd *cmd) 615 { 616 struct se_lun *lun = cmd->se_lun; 617 618 if (!lun) 619 return; 620 621 if (cmpxchg(&cmd->lun_ref_active, true, false)) 622 percpu_ref_put(&lun->lun_ref); 623 } 624 625 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 626 { 627 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF); 628 629 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 630 transport_lun_remove_cmd(cmd); 631 /* 632 * Allow the fabric driver to unmap any resources before 633 * releasing the descriptor via TFO->release_cmd() 634 */ 635 if (remove) 636 cmd->se_tfo->aborted_task(cmd); 637 638 if (transport_cmd_check_stop_to_fabric(cmd)) 639 return; 640 if (remove && ack_kref) 641 transport_put_cmd(cmd); 642 } 643 644 static void target_complete_failure_work(struct work_struct *work) 645 { 646 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 647 648 transport_generic_request_failure(cmd, 649 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 650 } 651 652 /* 653 * Used when asking transport to copy Sense Data from the underlying 654 * Linux/SCSI struct scsi_cmnd 655 */ 656 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 657 { 658 struct se_device *dev = cmd->se_dev; 659 660 WARN_ON(!cmd->se_lun); 661 662 if (!dev) 663 return NULL; 664 665 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 666 return NULL; 667 668 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 669 670 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 671 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 672 return cmd->sense_buffer; 673 } 674 675 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 676 { 677 struct se_device *dev = cmd->se_dev; 678 int success = scsi_status == GOOD; 679 unsigned long flags; 680 681 cmd->scsi_status = scsi_status; 682 683 684 spin_lock_irqsave(&cmd->t_state_lock, flags); 685 cmd->transport_state &= ~CMD_T_BUSY; 686 687 if (dev && dev->transport->transport_complete) { 688 dev->transport->transport_complete(cmd, 689 cmd->t_data_sg, 690 transport_get_sense_buffer(cmd)); 691 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 692 success = 1; 693 } 694 695 /* 696 * Check for case where an explicit ABORT_TASK has been received 697 * and transport_wait_for_tasks() will be waiting for completion.. 698 */ 699 if (cmd->transport_state & CMD_T_ABORTED || 700 cmd->transport_state & CMD_T_STOP) { 701 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 702 complete_all(&cmd->t_transport_stop_comp); 703 return; 704 } else if (!success) { 705 INIT_WORK(&cmd->work, target_complete_failure_work); 706 } else { 707 INIT_WORK(&cmd->work, target_complete_ok_work); 708 } 709 710 cmd->t_state = TRANSPORT_COMPLETE; 711 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 712 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 713 714 if (cmd->se_cmd_flags & SCF_USE_CPUID) 715 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work); 716 else 717 queue_work(target_completion_wq, &cmd->work); 718 } 719 EXPORT_SYMBOL(target_complete_cmd); 720 721 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 722 { 723 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 724 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 725 cmd->residual_count += cmd->data_length - length; 726 } else { 727 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 728 cmd->residual_count = cmd->data_length - length; 729 } 730 731 cmd->data_length = length; 732 } 733 734 target_complete_cmd(cmd, scsi_status); 735 } 736 EXPORT_SYMBOL(target_complete_cmd_with_length); 737 738 static void target_add_to_state_list(struct se_cmd *cmd) 739 { 740 struct se_device *dev = cmd->se_dev; 741 unsigned long flags; 742 743 spin_lock_irqsave(&dev->execute_task_lock, flags); 744 if (!cmd->state_active) { 745 list_add_tail(&cmd->state_list, &dev->state_list); 746 cmd->state_active = true; 747 } 748 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 749 } 750 751 /* 752 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 753 */ 754 static void transport_write_pending_qf(struct se_cmd *cmd); 755 static void transport_complete_qf(struct se_cmd *cmd); 756 757 void target_qf_do_work(struct work_struct *work) 758 { 759 struct se_device *dev = container_of(work, struct se_device, 760 qf_work_queue); 761 LIST_HEAD(qf_cmd_list); 762 struct se_cmd *cmd, *cmd_tmp; 763 764 spin_lock_irq(&dev->qf_cmd_lock); 765 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 766 spin_unlock_irq(&dev->qf_cmd_lock); 767 768 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 769 list_del(&cmd->se_qf_node); 770 atomic_dec_mb(&dev->dev_qf_count); 771 772 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 773 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 774 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 775 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 776 : "UNKNOWN"); 777 778 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 779 transport_write_pending_qf(cmd); 780 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 781 transport_complete_qf(cmd); 782 } 783 } 784 785 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 786 { 787 switch (cmd->data_direction) { 788 case DMA_NONE: 789 return "NONE"; 790 case DMA_FROM_DEVICE: 791 return "READ"; 792 case DMA_TO_DEVICE: 793 return "WRITE"; 794 case DMA_BIDIRECTIONAL: 795 return "BIDI"; 796 default: 797 break; 798 } 799 800 return "UNKNOWN"; 801 } 802 803 void transport_dump_dev_state( 804 struct se_device *dev, 805 char *b, 806 int *bl) 807 { 808 *bl += sprintf(b + *bl, "Status: "); 809 if (dev->export_count) 810 *bl += sprintf(b + *bl, "ACTIVATED"); 811 else 812 *bl += sprintf(b + *bl, "DEACTIVATED"); 813 814 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 815 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 816 dev->dev_attrib.block_size, 817 dev->dev_attrib.hw_max_sectors); 818 *bl += sprintf(b + *bl, " "); 819 } 820 821 void transport_dump_vpd_proto_id( 822 struct t10_vpd *vpd, 823 unsigned char *p_buf, 824 int p_buf_len) 825 { 826 unsigned char buf[VPD_TMP_BUF_SIZE]; 827 int len; 828 829 memset(buf, 0, VPD_TMP_BUF_SIZE); 830 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 831 832 switch (vpd->protocol_identifier) { 833 case 0x00: 834 sprintf(buf+len, "Fibre Channel\n"); 835 break; 836 case 0x10: 837 sprintf(buf+len, "Parallel SCSI\n"); 838 break; 839 case 0x20: 840 sprintf(buf+len, "SSA\n"); 841 break; 842 case 0x30: 843 sprintf(buf+len, "IEEE 1394\n"); 844 break; 845 case 0x40: 846 sprintf(buf+len, "SCSI Remote Direct Memory Access" 847 " Protocol\n"); 848 break; 849 case 0x50: 850 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 851 break; 852 case 0x60: 853 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 854 break; 855 case 0x70: 856 sprintf(buf+len, "Automation/Drive Interface Transport" 857 " Protocol\n"); 858 break; 859 case 0x80: 860 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 861 break; 862 default: 863 sprintf(buf+len, "Unknown 0x%02x\n", 864 vpd->protocol_identifier); 865 break; 866 } 867 868 if (p_buf) 869 strncpy(p_buf, buf, p_buf_len); 870 else 871 pr_debug("%s", buf); 872 } 873 874 void 875 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 876 { 877 /* 878 * Check if the Protocol Identifier Valid (PIV) bit is set.. 879 * 880 * from spc3r23.pdf section 7.5.1 881 */ 882 if (page_83[1] & 0x80) { 883 vpd->protocol_identifier = (page_83[0] & 0xf0); 884 vpd->protocol_identifier_set = 1; 885 transport_dump_vpd_proto_id(vpd, NULL, 0); 886 } 887 } 888 EXPORT_SYMBOL(transport_set_vpd_proto_id); 889 890 int transport_dump_vpd_assoc( 891 struct t10_vpd *vpd, 892 unsigned char *p_buf, 893 int p_buf_len) 894 { 895 unsigned char buf[VPD_TMP_BUF_SIZE]; 896 int ret = 0; 897 int len; 898 899 memset(buf, 0, VPD_TMP_BUF_SIZE); 900 len = sprintf(buf, "T10 VPD Identifier Association: "); 901 902 switch (vpd->association) { 903 case 0x00: 904 sprintf(buf+len, "addressed logical unit\n"); 905 break; 906 case 0x10: 907 sprintf(buf+len, "target port\n"); 908 break; 909 case 0x20: 910 sprintf(buf+len, "SCSI target device\n"); 911 break; 912 default: 913 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 914 ret = -EINVAL; 915 break; 916 } 917 918 if (p_buf) 919 strncpy(p_buf, buf, p_buf_len); 920 else 921 pr_debug("%s", buf); 922 923 return ret; 924 } 925 926 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 927 { 928 /* 929 * The VPD identification association.. 930 * 931 * from spc3r23.pdf Section 7.6.3.1 Table 297 932 */ 933 vpd->association = (page_83[1] & 0x30); 934 return transport_dump_vpd_assoc(vpd, NULL, 0); 935 } 936 EXPORT_SYMBOL(transport_set_vpd_assoc); 937 938 int transport_dump_vpd_ident_type( 939 struct t10_vpd *vpd, 940 unsigned char *p_buf, 941 int p_buf_len) 942 { 943 unsigned char buf[VPD_TMP_BUF_SIZE]; 944 int ret = 0; 945 int len; 946 947 memset(buf, 0, VPD_TMP_BUF_SIZE); 948 len = sprintf(buf, "T10 VPD Identifier Type: "); 949 950 switch (vpd->device_identifier_type) { 951 case 0x00: 952 sprintf(buf+len, "Vendor specific\n"); 953 break; 954 case 0x01: 955 sprintf(buf+len, "T10 Vendor ID based\n"); 956 break; 957 case 0x02: 958 sprintf(buf+len, "EUI-64 based\n"); 959 break; 960 case 0x03: 961 sprintf(buf+len, "NAA\n"); 962 break; 963 case 0x04: 964 sprintf(buf+len, "Relative target port identifier\n"); 965 break; 966 case 0x08: 967 sprintf(buf+len, "SCSI name string\n"); 968 break; 969 default: 970 sprintf(buf+len, "Unsupported: 0x%02x\n", 971 vpd->device_identifier_type); 972 ret = -EINVAL; 973 break; 974 } 975 976 if (p_buf) { 977 if (p_buf_len < strlen(buf)+1) 978 return -EINVAL; 979 strncpy(p_buf, buf, p_buf_len); 980 } else { 981 pr_debug("%s", buf); 982 } 983 984 return ret; 985 } 986 987 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 988 { 989 /* 990 * The VPD identifier type.. 991 * 992 * from spc3r23.pdf Section 7.6.3.1 Table 298 993 */ 994 vpd->device_identifier_type = (page_83[1] & 0x0f); 995 return transport_dump_vpd_ident_type(vpd, NULL, 0); 996 } 997 EXPORT_SYMBOL(transport_set_vpd_ident_type); 998 999 int transport_dump_vpd_ident( 1000 struct t10_vpd *vpd, 1001 unsigned char *p_buf, 1002 int p_buf_len) 1003 { 1004 unsigned char buf[VPD_TMP_BUF_SIZE]; 1005 int ret = 0; 1006 1007 memset(buf, 0, VPD_TMP_BUF_SIZE); 1008 1009 switch (vpd->device_identifier_code_set) { 1010 case 0x01: /* Binary */ 1011 snprintf(buf, sizeof(buf), 1012 "T10 VPD Binary Device Identifier: %s\n", 1013 &vpd->device_identifier[0]); 1014 break; 1015 case 0x02: /* ASCII */ 1016 snprintf(buf, sizeof(buf), 1017 "T10 VPD ASCII Device Identifier: %s\n", 1018 &vpd->device_identifier[0]); 1019 break; 1020 case 0x03: /* UTF-8 */ 1021 snprintf(buf, sizeof(buf), 1022 "T10 VPD UTF-8 Device Identifier: %s\n", 1023 &vpd->device_identifier[0]); 1024 break; 1025 default: 1026 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1027 " 0x%02x", vpd->device_identifier_code_set); 1028 ret = -EINVAL; 1029 break; 1030 } 1031 1032 if (p_buf) 1033 strncpy(p_buf, buf, p_buf_len); 1034 else 1035 pr_debug("%s", buf); 1036 1037 return ret; 1038 } 1039 1040 int 1041 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1042 { 1043 static const char hex_str[] = "0123456789abcdef"; 1044 int j = 0, i = 4; /* offset to start of the identifier */ 1045 1046 /* 1047 * The VPD Code Set (encoding) 1048 * 1049 * from spc3r23.pdf Section 7.6.3.1 Table 296 1050 */ 1051 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1052 switch (vpd->device_identifier_code_set) { 1053 case 0x01: /* Binary */ 1054 vpd->device_identifier[j++] = 1055 hex_str[vpd->device_identifier_type]; 1056 while (i < (4 + page_83[3])) { 1057 vpd->device_identifier[j++] = 1058 hex_str[(page_83[i] & 0xf0) >> 4]; 1059 vpd->device_identifier[j++] = 1060 hex_str[page_83[i] & 0x0f]; 1061 i++; 1062 } 1063 break; 1064 case 0x02: /* ASCII */ 1065 case 0x03: /* UTF-8 */ 1066 while (i < (4 + page_83[3])) 1067 vpd->device_identifier[j++] = page_83[i++]; 1068 break; 1069 default: 1070 break; 1071 } 1072 1073 return transport_dump_vpd_ident(vpd, NULL, 0); 1074 } 1075 EXPORT_SYMBOL(transport_set_vpd_ident); 1076 1077 static sense_reason_t 1078 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, 1079 unsigned int size) 1080 { 1081 u32 mtl; 1082 1083 if (!cmd->se_tfo->max_data_sg_nents) 1084 return TCM_NO_SENSE; 1085 /* 1086 * Check if fabric enforced maximum SGL entries per I/O descriptor 1087 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + 1088 * residual_count and reduce original cmd->data_length to maximum 1089 * length based on single PAGE_SIZE entry scatter-lists. 1090 */ 1091 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); 1092 if (cmd->data_length > mtl) { 1093 /* 1094 * If an existing CDB overflow is present, calculate new residual 1095 * based on CDB size minus fabric maximum transfer length. 1096 * 1097 * If an existing CDB underflow is present, calculate new residual 1098 * based on original cmd->data_length minus fabric maximum transfer 1099 * length. 1100 * 1101 * Otherwise, set the underflow residual based on cmd->data_length 1102 * minus fabric maximum transfer length. 1103 */ 1104 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1105 cmd->residual_count = (size - mtl); 1106 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 1107 u32 orig_dl = size + cmd->residual_count; 1108 cmd->residual_count = (orig_dl - mtl); 1109 } else { 1110 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1111 cmd->residual_count = (cmd->data_length - mtl); 1112 } 1113 cmd->data_length = mtl; 1114 /* 1115 * Reset sbc_check_prot() calculated protection payload 1116 * length based upon the new smaller MTL. 1117 */ 1118 if (cmd->prot_length) { 1119 u32 sectors = (mtl / dev->dev_attrib.block_size); 1120 cmd->prot_length = dev->prot_length * sectors; 1121 } 1122 } 1123 return TCM_NO_SENSE; 1124 } 1125 1126 sense_reason_t 1127 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1128 { 1129 struct se_device *dev = cmd->se_dev; 1130 1131 if (cmd->unknown_data_length) { 1132 cmd->data_length = size; 1133 } else if (size != cmd->data_length) { 1134 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1135 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1136 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1137 cmd->data_length, size, cmd->t_task_cdb[0]); 1138 1139 if (cmd->data_direction == DMA_TO_DEVICE && 1140 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { 1141 pr_err("Rejecting underflow/overflow WRITE data\n"); 1142 return TCM_INVALID_CDB_FIELD; 1143 } 1144 /* 1145 * Reject READ_* or WRITE_* with overflow/underflow for 1146 * type SCF_SCSI_DATA_CDB. 1147 */ 1148 if (dev->dev_attrib.block_size != 512) { 1149 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1150 " CDB on non 512-byte sector setup subsystem" 1151 " plugin: %s\n", dev->transport->name); 1152 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1153 return TCM_INVALID_CDB_FIELD; 1154 } 1155 /* 1156 * For the overflow case keep the existing fabric provided 1157 * ->data_length. Otherwise for the underflow case, reset 1158 * ->data_length to the smaller SCSI expected data transfer 1159 * length. 1160 */ 1161 if (size > cmd->data_length) { 1162 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1163 cmd->residual_count = (size - cmd->data_length); 1164 } else { 1165 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1166 cmd->residual_count = (cmd->data_length - size); 1167 cmd->data_length = size; 1168 } 1169 } 1170 1171 return target_check_max_data_sg_nents(cmd, dev, size); 1172 1173 } 1174 1175 /* 1176 * Used by fabric modules containing a local struct se_cmd within their 1177 * fabric dependent per I/O descriptor. 1178 * 1179 * Preserves the value of @cmd->tag. 1180 */ 1181 void transport_init_se_cmd( 1182 struct se_cmd *cmd, 1183 const struct target_core_fabric_ops *tfo, 1184 struct se_session *se_sess, 1185 u32 data_length, 1186 int data_direction, 1187 int task_attr, 1188 unsigned char *sense_buffer) 1189 { 1190 INIT_LIST_HEAD(&cmd->se_delayed_node); 1191 INIT_LIST_HEAD(&cmd->se_qf_node); 1192 INIT_LIST_HEAD(&cmd->se_cmd_list); 1193 INIT_LIST_HEAD(&cmd->state_list); 1194 init_completion(&cmd->t_transport_stop_comp); 1195 init_completion(&cmd->cmd_wait_comp); 1196 spin_lock_init(&cmd->t_state_lock); 1197 kref_init(&cmd->cmd_kref); 1198 cmd->transport_state = CMD_T_DEV_ACTIVE; 1199 1200 cmd->se_tfo = tfo; 1201 cmd->se_sess = se_sess; 1202 cmd->data_length = data_length; 1203 cmd->data_direction = data_direction; 1204 cmd->sam_task_attr = task_attr; 1205 cmd->sense_buffer = sense_buffer; 1206 1207 cmd->state_active = false; 1208 } 1209 EXPORT_SYMBOL(transport_init_se_cmd); 1210 1211 static sense_reason_t 1212 transport_check_alloc_task_attr(struct se_cmd *cmd) 1213 { 1214 struct se_device *dev = cmd->se_dev; 1215 1216 /* 1217 * Check if SAM Task Attribute emulation is enabled for this 1218 * struct se_device storage object 1219 */ 1220 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1221 return 0; 1222 1223 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1224 pr_debug("SAM Task Attribute ACA" 1225 " emulation is not supported\n"); 1226 return TCM_INVALID_CDB_FIELD; 1227 } 1228 1229 return 0; 1230 } 1231 1232 sense_reason_t 1233 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1234 { 1235 struct se_device *dev = cmd->se_dev; 1236 sense_reason_t ret; 1237 1238 /* 1239 * Ensure that the received CDB is less than the max (252 + 8) bytes 1240 * for VARIABLE_LENGTH_CMD 1241 */ 1242 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1243 pr_err("Received SCSI CDB with command_size: %d that" 1244 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1245 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1246 return TCM_INVALID_CDB_FIELD; 1247 } 1248 /* 1249 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1250 * allocate the additional extended CDB buffer now.. Otherwise 1251 * setup the pointer from __t_task_cdb to t_task_cdb. 1252 */ 1253 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1254 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1255 GFP_KERNEL); 1256 if (!cmd->t_task_cdb) { 1257 pr_err("Unable to allocate cmd->t_task_cdb" 1258 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1259 scsi_command_size(cdb), 1260 (unsigned long)sizeof(cmd->__t_task_cdb)); 1261 return TCM_OUT_OF_RESOURCES; 1262 } 1263 } else 1264 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1265 /* 1266 * Copy the original CDB into cmd-> 1267 */ 1268 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1269 1270 trace_target_sequencer_start(cmd); 1271 1272 /* 1273 * Check for an existing UNIT ATTENTION condition 1274 */ 1275 ret = target_scsi3_ua_check(cmd); 1276 if (ret) 1277 return ret; 1278 1279 ret = target_alua_state_check(cmd); 1280 if (ret) 1281 return ret; 1282 1283 ret = target_check_reservation(cmd); 1284 if (ret) { 1285 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1286 return ret; 1287 } 1288 1289 ret = dev->transport->parse_cdb(cmd); 1290 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) 1291 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", 1292 cmd->se_tfo->get_fabric_name(), 1293 cmd->se_sess->se_node_acl->initiatorname, 1294 cmd->t_task_cdb[0]); 1295 if (ret) 1296 return ret; 1297 1298 ret = transport_check_alloc_task_attr(cmd); 1299 if (ret) 1300 return ret; 1301 1302 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1303 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1307 1308 /* 1309 * Used by fabric module frontends to queue tasks directly. 1310 * May only be used from process context. 1311 */ 1312 int transport_handle_cdb_direct( 1313 struct se_cmd *cmd) 1314 { 1315 sense_reason_t ret; 1316 1317 if (!cmd->se_lun) { 1318 dump_stack(); 1319 pr_err("cmd->se_lun is NULL\n"); 1320 return -EINVAL; 1321 } 1322 if (in_interrupt()) { 1323 dump_stack(); 1324 pr_err("transport_generic_handle_cdb cannot be called" 1325 " from interrupt context\n"); 1326 return -EINVAL; 1327 } 1328 /* 1329 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1330 * outstanding descriptors are handled correctly during shutdown via 1331 * transport_wait_for_tasks() 1332 * 1333 * Also, we don't take cmd->t_state_lock here as we only expect 1334 * this to be called for initial descriptor submission. 1335 */ 1336 cmd->t_state = TRANSPORT_NEW_CMD; 1337 cmd->transport_state |= CMD_T_ACTIVE; 1338 1339 /* 1340 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1341 * so follow TRANSPORT_NEW_CMD processing thread context usage 1342 * and call transport_generic_request_failure() if necessary.. 1343 */ 1344 ret = transport_generic_new_cmd(cmd); 1345 if (ret) 1346 transport_generic_request_failure(cmd, ret); 1347 return 0; 1348 } 1349 EXPORT_SYMBOL(transport_handle_cdb_direct); 1350 1351 sense_reason_t 1352 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1353 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1354 { 1355 if (!sgl || !sgl_count) 1356 return 0; 1357 1358 /* 1359 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1360 * scatterlists already have been set to follow what the fabric 1361 * passes for the original expected data transfer length. 1362 */ 1363 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1364 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1365 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1366 return TCM_INVALID_CDB_FIELD; 1367 } 1368 1369 cmd->t_data_sg = sgl; 1370 cmd->t_data_nents = sgl_count; 1371 cmd->t_bidi_data_sg = sgl_bidi; 1372 cmd->t_bidi_data_nents = sgl_bidi_count; 1373 1374 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1375 return 0; 1376 } 1377 1378 /* 1379 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1380 * se_cmd + use pre-allocated SGL memory. 1381 * 1382 * @se_cmd: command descriptor to submit 1383 * @se_sess: associated se_sess for endpoint 1384 * @cdb: pointer to SCSI CDB 1385 * @sense: pointer to SCSI sense buffer 1386 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1387 * @data_length: fabric expected data transfer length 1388 * @task_addr: SAM task attribute 1389 * @data_dir: DMA data direction 1390 * @flags: flags for command submission from target_sc_flags_tables 1391 * @sgl: struct scatterlist memory for unidirectional mapping 1392 * @sgl_count: scatterlist count for unidirectional mapping 1393 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1394 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1395 * @sgl_prot: struct scatterlist memory protection information 1396 * @sgl_prot_count: scatterlist count for protection information 1397 * 1398 * Task tags are supported if the caller has set @se_cmd->tag. 1399 * 1400 * Returns non zero to signal active I/O shutdown failure. All other 1401 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1402 * but still return zero here. 1403 * 1404 * This may only be called from process context, and also currently 1405 * assumes internal allocation of fabric payload buffer by target-core. 1406 */ 1407 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1408 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1409 u32 data_length, int task_attr, int data_dir, int flags, 1410 struct scatterlist *sgl, u32 sgl_count, 1411 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1412 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1413 { 1414 struct se_portal_group *se_tpg; 1415 sense_reason_t rc; 1416 int ret; 1417 1418 se_tpg = se_sess->se_tpg; 1419 BUG_ON(!se_tpg); 1420 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1421 BUG_ON(in_interrupt()); 1422 /* 1423 * Initialize se_cmd for target operation. From this point 1424 * exceptions are handled by sending exception status via 1425 * target_core_fabric_ops->queue_status() callback 1426 */ 1427 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1428 data_length, data_dir, task_attr, sense); 1429 1430 if (flags & TARGET_SCF_USE_CPUID) 1431 se_cmd->se_cmd_flags |= SCF_USE_CPUID; 1432 else 1433 se_cmd->cpuid = WORK_CPU_UNBOUND; 1434 1435 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1436 se_cmd->unknown_data_length = 1; 1437 /* 1438 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1439 * se_sess->sess_cmd_list. A second kref_get here is necessary 1440 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1441 * kref_put() to happen during fabric packet acknowledgement. 1442 */ 1443 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1444 if (ret) 1445 return ret; 1446 /* 1447 * Signal bidirectional data payloads to target-core 1448 */ 1449 if (flags & TARGET_SCF_BIDI_OP) 1450 se_cmd->se_cmd_flags |= SCF_BIDI; 1451 /* 1452 * Locate se_lun pointer and attach it to struct se_cmd 1453 */ 1454 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1455 if (rc) { 1456 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1457 target_put_sess_cmd(se_cmd); 1458 return 0; 1459 } 1460 1461 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1462 if (rc != 0) { 1463 transport_generic_request_failure(se_cmd, rc); 1464 return 0; 1465 } 1466 1467 /* 1468 * Save pointers for SGLs containing protection information, 1469 * if present. 1470 */ 1471 if (sgl_prot_count) { 1472 se_cmd->t_prot_sg = sgl_prot; 1473 se_cmd->t_prot_nents = sgl_prot_count; 1474 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; 1475 } 1476 1477 /* 1478 * When a non zero sgl_count has been passed perform SGL passthrough 1479 * mapping for pre-allocated fabric memory instead of having target 1480 * core perform an internal SGL allocation.. 1481 */ 1482 if (sgl_count != 0) { 1483 BUG_ON(!sgl); 1484 1485 /* 1486 * A work-around for tcm_loop as some userspace code via 1487 * scsi-generic do not memset their associated read buffers, 1488 * so go ahead and do that here for type non-data CDBs. Also 1489 * note that this is currently guaranteed to be a single SGL 1490 * for this case by target core in target_setup_cmd_from_cdb() 1491 * -> transport_generic_cmd_sequencer(). 1492 */ 1493 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1494 se_cmd->data_direction == DMA_FROM_DEVICE) { 1495 unsigned char *buf = NULL; 1496 1497 if (sgl) 1498 buf = kmap(sg_page(sgl)) + sgl->offset; 1499 1500 if (buf) { 1501 memset(buf, 0, sgl->length); 1502 kunmap(sg_page(sgl)); 1503 } 1504 } 1505 1506 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1507 sgl_bidi, sgl_bidi_count); 1508 if (rc != 0) { 1509 transport_generic_request_failure(se_cmd, rc); 1510 return 0; 1511 } 1512 } 1513 1514 /* 1515 * Check if we need to delay processing because of ALUA 1516 * Active/NonOptimized primary access state.. 1517 */ 1518 core_alua_check_nonop_delay(se_cmd); 1519 1520 transport_handle_cdb_direct(se_cmd); 1521 return 0; 1522 } 1523 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1524 1525 /* 1526 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1527 * 1528 * @se_cmd: command descriptor to submit 1529 * @se_sess: associated se_sess for endpoint 1530 * @cdb: pointer to SCSI CDB 1531 * @sense: pointer to SCSI sense buffer 1532 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1533 * @data_length: fabric expected data transfer length 1534 * @task_addr: SAM task attribute 1535 * @data_dir: DMA data direction 1536 * @flags: flags for command submission from target_sc_flags_tables 1537 * 1538 * Task tags are supported if the caller has set @se_cmd->tag. 1539 * 1540 * Returns non zero to signal active I/O shutdown failure. All other 1541 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1542 * but still return zero here. 1543 * 1544 * This may only be called from process context, and also currently 1545 * assumes internal allocation of fabric payload buffer by target-core. 1546 * 1547 * It also assumes interal target core SGL memory allocation. 1548 */ 1549 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1550 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, 1551 u32 data_length, int task_attr, int data_dir, int flags) 1552 { 1553 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1554 unpacked_lun, data_length, task_attr, data_dir, 1555 flags, NULL, 0, NULL, 0, NULL, 0); 1556 } 1557 EXPORT_SYMBOL(target_submit_cmd); 1558 1559 static void target_complete_tmr_failure(struct work_struct *work) 1560 { 1561 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1562 1563 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1564 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1565 1566 transport_cmd_check_stop_to_fabric(se_cmd); 1567 } 1568 1569 /** 1570 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1571 * for TMR CDBs 1572 * 1573 * @se_cmd: command descriptor to submit 1574 * @se_sess: associated se_sess for endpoint 1575 * @sense: pointer to SCSI sense buffer 1576 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1577 * @fabric_context: fabric context for TMR req 1578 * @tm_type: Type of TM request 1579 * @gfp: gfp type for caller 1580 * @tag: referenced task tag for TMR_ABORT_TASK 1581 * @flags: submit cmd flags 1582 * 1583 * Callable from all contexts. 1584 **/ 1585 1586 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1587 unsigned char *sense, u64 unpacked_lun, 1588 void *fabric_tmr_ptr, unsigned char tm_type, 1589 gfp_t gfp, u64 tag, int flags) 1590 { 1591 struct se_portal_group *se_tpg; 1592 int ret; 1593 1594 se_tpg = se_sess->se_tpg; 1595 BUG_ON(!se_tpg); 1596 1597 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1598 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1599 /* 1600 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1601 * allocation failure. 1602 */ 1603 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1604 if (ret < 0) 1605 return -ENOMEM; 1606 1607 if (tm_type == TMR_ABORT_TASK) 1608 se_cmd->se_tmr_req->ref_task_tag = tag; 1609 1610 /* See target_submit_cmd for commentary */ 1611 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); 1612 if (ret) { 1613 core_tmr_release_req(se_cmd->se_tmr_req); 1614 return ret; 1615 } 1616 1617 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1618 if (ret) { 1619 /* 1620 * For callback during failure handling, push this work off 1621 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1622 */ 1623 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1624 schedule_work(&se_cmd->work); 1625 return 0; 1626 } 1627 transport_generic_handle_tmr(se_cmd); 1628 return 0; 1629 } 1630 EXPORT_SYMBOL(target_submit_tmr); 1631 1632 /* 1633 * Handle SAM-esque emulation for generic transport request failures. 1634 */ 1635 void transport_generic_request_failure(struct se_cmd *cmd, 1636 sense_reason_t sense_reason) 1637 { 1638 int ret = 0, post_ret = 0; 1639 1640 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx" 1641 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]); 1642 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1643 cmd->se_tfo->get_cmd_state(cmd), 1644 cmd->t_state, sense_reason); 1645 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1646 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1647 (cmd->transport_state & CMD_T_STOP) != 0, 1648 (cmd->transport_state & CMD_T_SENT) != 0); 1649 1650 /* 1651 * For SAM Task Attribute emulation for failed struct se_cmd 1652 */ 1653 transport_complete_task_attr(cmd); 1654 /* 1655 * Handle special case for COMPARE_AND_WRITE failure, where the 1656 * callback is expected to drop the per device ->caw_sem. 1657 */ 1658 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1659 cmd->transport_complete_callback) 1660 cmd->transport_complete_callback(cmd, false, &post_ret); 1661 1662 switch (sense_reason) { 1663 case TCM_NON_EXISTENT_LUN: 1664 case TCM_UNSUPPORTED_SCSI_OPCODE: 1665 case TCM_INVALID_CDB_FIELD: 1666 case TCM_INVALID_PARAMETER_LIST: 1667 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1668 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1669 case TCM_UNKNOWN_MODE_PAGE: 1670 case TCM_WRITE_PROTECTED: 1671 case TCM_ADDRESS_OUT_OF_RANGE: 1672 case TCM_CHECK_CONDITION_ABORT_CMD: 1673 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1674 case TCM_CHECK_CONDITION_NOT_READY: 1675 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1676 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1677 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1678 break; 1679 case TCM_OUT_OF_RESOURCES: 1680 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1681 break; 1682 case TCM_RESERVATION_CONFLICT: 1683 /* 1684 * No SENSE Data payload for this case, set SCSI Status 1685 * and queue the response to $FABRIC_MOD. 1686 * 1687 * Uses linux/include/scsi/scsi.h SAM status codes defs 1688 */ 1689 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1690 /* 1691 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1692 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1693 * CONFLICT STATUS. 1694 * 1695 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1696 */ 1697 if (cmd->se_sess && 1698 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) { 1699 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 1700 cmd->orig_fe_lun, 0x2C, 1701 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1702 } 1703 trace_target_cmd_complete(cmd); 1704 ret = cmd->se_tfo->queue_status(cmd); 1705 if (ret == -EAGAIN || ret == -ENOMEM) 1706 goto queue_full; 1707 goto check_stop; 1708 default: 1709 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1710 cmd->t_task_cdb[0], sense_reason); 1711 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1712 break; 1713 } 1714 1715 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1716 if (ret == -EAGAIN || ret == -ENOMEM) 1717 goto queue_full; 1718 1719 check_stop: 1720 transport_lun_remove_cmd(cmd); 1721 transport_cmd_check_stop_to_fabric(cmd); 1722 return; 1723 1724 queue_full: 1725 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1726 transport_handle_queue_full(cmd, cmd->se_dev); 1727 } 1728 EXPORT_SYMBOL(transport_generic_request_failure); 1729 1730 void __target_execute_cmd(struct se_cmd *cmd) 1731 { 1732 sense_reason_t ret; 1733 1734 if (cmd->execute_cmd) { 1735 ret = cmd->execute_cmd(cmd); 1736 if (ret) { 1737 spin_lock_irq(&cmd->t_state_lock); 1738 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1739 spin_unlock_irq(&cmd->t_state_lock); 1740 1741 transport_generic_request_failure(cmd, ret); 1742 } 1743 } 1744 } 1745 1746 static int target_write_prot_action(struct se_cmd *cmd) 1747 { 1748 u32 sectors; 1749 /* 1750 * Perform WRITE_INSERT of PI using software emulation when backend 1751 * device has PI enabled, if the transport has not already generated 1752 * PI using hardware WRITE_INSERT offload. 1753 */ 1754 switch (cmd->prot_op) { 1755 case TARGET_PROT_DOUT_INSERT: 1756 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1757 sbc_dif_generate(cmd); 1758 break; 1759 case TARGET_PROT_DOUT_STRIP: 1760 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1761 break; 1762 1763 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1764 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1765 sectors, 0, cmd->t_prot_sg, 0); 1766 if (unlikely(cmd->pi_err)) { 1767 spin_lock_irq(&cmd->t_state_lock); 1768 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1769 spin_unlock_irq(&cmd->t_state_lock); 1770 transport_generic_request_failure(cmd, cmd->pi_err); 1771 return -1; 1772 } 1773 break; 1774 default: 1775 break; 1776 } 1777 1778 return 0; 1779 } 1780 1781 static bool target_handle_task_attr(struct se_cmd *cmd) 1782 { 1783 struct se_device *dev = cmd->se_dev; 1784 1785 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1786 return false; 1787 1788 /* 1789 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1790 * to allow the passed struct se_cmd list of tasks to the front of the list. 1791 */ 1792 switch (cmd->sam_task_attr) { 1793 case TCM_HEAD_TAG: 1794 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", 1795 cmd->t_task_cdb[0]); 1796 return false; 1797 case TCM_ORDERED_TAG: 1798 atomic_inc_mb(&dev->dev_ordered_sync); 1799 1800 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", 1801 cmd->t_task_cdb[0]); 1802 1803 /* 1804 * Execute an ORDERED command if no other older commands 1805 * exist that need to be completed first. 1806 */ 1807 if (!atomic_read(&dev->simple_cmds)) 1808 return false; 1809 break; 1810 default: 1811 /* 1812 * For SIMPLE and UNTAGGED Task Attribute commands 1813 */ 1814 atomic_inc_mb(&dev->simple_cmds); 1815 break; 1816 } 1817 1818 if (atomic_read(&dev->dev_ordered_sync) == 0) 1819 return false; 1820 1821 spin_lock(&dev->delayed_cmd_lock); 1822 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1823 spin_unlock(&dev->delayed_cmd_lock); 1824 1825 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", 1826 cmd->t_task_cdb[0], cmd->sam_task_attr); 1827 return true; 1828 } 1829 1830 static int __transport_check_aborted_status(struct se_cmd *, int); 1831 1832 void target_execute_cmd(struct se_cmd *cmd) 1833 { 1834 /* 1835 * Determine if frontend context caller is requesting the stopping of 1836 * this command for frontend exceptions. 1837 * 1838 * If the received CDB has aleady been aborted stop processing it here. 1839 */ 1840 spin_lock_irq(&cmd->t_state_lock); 1841 if (__transport_check_aborted_status(cmd, 1)) { 1842 spin_unlock_irq(&cmd->t_state_lock); 1843 return; 1844 } 1845 if (cmd->transport_state & CMD_T_STOP) { 1846 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", 1847 __func__, __LINE__, cmd->tag); 1848 1849 spin_unlock_irq(&cmd->t_state_lock); 1850 complete_all(&cmd->t_transport_stop_comp); 1851 return; 1852 } 1853 1854 cmd->t_state = TRANSPORT_PROCESSING; 1855 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1856 spin_unlock_irq(&cmd->t_state_lock); 1857 1858 if (target_write_prot_action(cmd)) 1859 return; 1860 1861 if (target_handle_task_attr(cmd)) { 1862 spin_lock_irq(&cmd->t_state_lock); 1863 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT); 1864 spin_unlock_irq(&cmd->t_state_lock); 1865 return; 1866 } 1867 1868 __target_execute_cmd(cmd); 1869 } 1870 EXPORT_SYMBOL(target_execute_cmd); 1871 1872 /* 1873 * Process all commands up to the last received ORDERED task attribute which 1874 * requires another blocking boundary 1875 */ 1876 static void target_restart_delayed_cmds(struct se_device *dev) 1877 { 1878 for (;;) { 1879 struct se_cmd *cmd; 1880 1881 spin_lock(&dev->delayed_cmd_lock); 1882 if (list_empty(&dev->delayed_cmd_list)) { 1883 spin_unlock(&dev->delayed_cmd_lock); 1884 break; 1885 } 1886 1887 cmd = list_entry(dev->delayed_cmd_list.next, 1888 struct se_cmd, se_delayed_node); 1889 list_del(&cmd->se_delayed_node); 1890 spin_unlock(&dev->delayed_cmd_lock); 1891 1892 __target_execute_cmd(cmd); 1893 1894 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1895 break; 1896 } 1897 } 1898 1899 /* 1900 * Called from I/O completion to determine which dormant/delayed 1901 * and ordered cmds need to have their tasks added to the execution queue. 1902 */ 1903 static void transport_complete_task_attr(struct se_cmd *cmd) 1904 { 1905 struct se_device *dev = cmd->se_dev; 1906 1907 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1908 return; 1909 1910 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1911 atomic_dec_mb(&dev->simple_cmds); 1912 dev->dev_cur_ordered_id++; 1913 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n", 1914 dev->dev_cur_ordered_id); 1915 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1916 dev->dev_cur_ordered_id++; 1917 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", 1918 dev->dev_cur_ordered_id); 1919 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1920 atomic_dec_mb(&dev->dev_ordered_sync); 1921 1922 dev->dev_cur_ordered_id++; 1923 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", 1924 dev->dev_cur_ordered_id); 1925 } 1926 1927 target_restart_delayed_cmds(dev); 1928 } 1929 1930 static void transport_complete_qf(struct se_cmd *cmd) 1931 { 1932 int ret = 0; 1933 1934 transport_complete_task_attr(cmd); 1935 1936 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1937 trace_target_cmd_complete(cmd); 1938 ret = cmd->se_tfo->queue_status(cmd); 1939 goto out; 1940 } 1941 1942 switch (cmd->data_direction) { 1943 case DMA_FROM_DEVICE: 1944 trace_target_cmd_complete(cmd); 1945 ret = cmd->se_tfo->queue_data_in(cmd); 1946 break; 1947 case DMA_TO_DEVICE: 1948 if (cmd->se_cmd_flags & SCF_BIDI) { 1949 ret = cmd->se_tfo->queue_data_in(cmd); 1950 break; 1951 } 1952 /* Fall through for DMA_TO_DEVICE */ 1953 case DMA_NONE: 1954 trace_target_cmd_complete(cmd); 1955 ret = cmd->se_tfo->queue_status(cmd); 1956 break; 1957 default: 1958 break; 1959 } 1960 1961 out: 1962 if (ret < 0) { 1963 transport_handle_queue_full(cmd, cmd->se_dev); 1964 return; 1965 } 1966 transport_lun_remove_cmd(cmd); 1967 transport_cmd_check_stop_to_fabric(cmd); 1968 } 1969 1970 static void transport_handle_queue_full( 1971 struct se_cmd *cmd, 1972 struct se_device *dev) 1973 { 1974 spin_lock_irq(&dev->qf_cmd_lock); 1975 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1976 atomic_inc_mb(&dev->dev_qf_count); 1977 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1978 1979 schedule_work(&cmd->se_dev->qf_work_queue); 1980 } 1981 1982 static bool target_read_prot_action(struct se_cmd *cmd) 1983 { 1984 switch (cmd->prot_op) { 1985 case TARGET_PROT_DIN_STRIP: 1986 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 1987 u32 sectors = cmd->data_length >> 1988 ilog2(cmd->se_dev->dev_attrib.block_size); 1989 1990 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, 1991 sectors, 0, cmd->t_prot_sg, 1992 0); 1993 if (cmd->pi_err) 1994 return true; 1995 } 1996 break; 1997 case TARGET_PROT_DIN_INSERT: 1998 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 1999 break; 2000 2001 sbc_dif_generate(cmd); 2002 break; 2003 default: 2004 break; 2005 } 2006 2007 return false; 2008 } 2009 2010 static void target_complete_ok_work(struct work_struct *work) 2011 { 2012 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2013 int ret; 2014 2015 /* 2016 * Check if we need to move delayed/dormant tasks from cmds on the 2017 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2018 * Attribute. 2019 */ 2020 transport_complete_task_attr(cmd); 2021 2022 /* 2023 * Check to schedule QUEUE_FULL work, or execute an existing 2024 * cmd->transport_qf_callback() 2025 */ 2026 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2027 schedule_work(&cmd->se_dev->qf_work_queue); 2028 2029 /* 2030 * Check if we need to send a sense buffer from 2031 * the struct se_cmd in question. 2032 */ 2033 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2034 WARN_ON(!cmd->scsi_status); 2035 ret = transport_send_check_condition_and_sense( 2036 cmd, 0, 1); 2037 if (ret == -EAGAIN || ret == -ENOMEM) 2038 goto queue_full; 2039 2040 transport_lun_remove_cmd(cmd); 2041 transport_cmd_check_stop_to_fabric(cmd); 2042 return; 2043 } 2044 /* 2045 * Check for a callback, used by amongst other things 2046 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2047 */ 2048 if (cmd->transport_complete_callback) { 2049 sense_reason_t rc; 2050 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); 2051 bool zero_dl = !(cmd->data_length); 2052 int post_ret = 0; 2053 2054 rc = cmd->transport_complete_callback(cmd, true, &post_ret); 2055 if (!rc && !post_ret) { 2056 if (caw && zero_dl) 2057 goto queue_rsp; 2058 2059 return; 2060 } else if (rc) { 2061 ret = transport_send_check_condition_and_sense(cmd, 2062 rc, 0); 2063 if (ret == -EAGAIN || ret == -ENOMEM) 2064 goto queue_full; 2065 2066 transport_lun_remove_cmd(cmd); 2067 transport_cmd_check_stop_to_fabric(cmd); 2068 return; 2069 } 2070 } 2071 2072 queue_rsp: 2073 switch (cmd->data_direction) { 2074 case DMA_FROM_DEVICE: 2075 atomic_long_add(cmd->data_length, 2076 &cmd->se_lun->lun_stats.tx_data_octets); 2077 /* 2078 * Perform READ_STRIP of PI using software emulation when 2079 * backend had PI enabled, if the transport will not be 2080 * performing hardware READ_STRIP offload. 2081 */ 2082 if (target_read_prot_action(cmd)) { 2083 ret = transport_send_check_condition_and_sense(cmd, 2084 cmd->pi_err, 0); 2085 if (ret == -EAGAIN || ret == -ENOMEM) 2086 goto queue_full; 2087 2088 transport_lun_remove_cmd(cmd); 2089 transport_cmd_check_stop_to_fabric(cmd); 2090 return; 2091 } 2092 2093 trace_target_cmd_complete(cmd); 2094 ret = cmd->se_tfo->queue_data_in(cmd); 2095 if (ret == -EAGAIN || ret == -ENOMEM) 2096 goto queue_full; 2097 break; 2098 case DMA_TO_DEVICE: 2099 atomic_long_add(cmd->data_length, 2100 &cmd->se_lun->lun_stats.rx_data_octets); 2101 /* 2102 * Check if we need to send READ payload for BIDI-COMMAND 2103 */ 2104 if (cmd->se_cmd_flags & SCF_BIDI) { 2105 atomic_long_add(cmd->data_length, 2106 &cmd->se_lun->lun_stats.tx_data_octets); 2107 ret = cmd->se_tfo->queue_data_in(cmd); 2108 if (ret == -EAGAIN || ret == -ENOMEM) 2109 goto queue_full; 2110 break; 2111 } 2112 /* Fall through for DMA_TO_DEVICE */ 2113 case DMA_NONE: 2114 trace_target_cmd_complete(cmd); 2115 ret = cmd->se_tfo->queue_status(cmd); 2116 if (ret == -EAGAIN || ret == -ENOMEM) 2117 goto queue_full; 2118 break; 2119 default: 2120 break; 2121 } 2122 2123 transport_lun_remove_cmd(cmd); 2124 transport_cmd_check_stop_to_fabric(cmd); 2125 return; 2126 2127 queue_full: 2128 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2129 " data_direction: %d\n", cmd, cmd->data_direction); 2130 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2131 transport_handle_queue_full(cmd, cmd->se_dev); 2132 } 2133 2134 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 2135 { 2136 struct scatterlist *sg; 2137 int count; 2138 2139 for_each_sg(sgl, sg, nents, count) 2140 __free_page(sg_page(sg)); 2141 2142 kfree(sgl); 2143 } 2144 2145 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2146 { 2147 /* 2148 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2149 * emulation, and free + reset pointers if necessary.. 2150 */ 2151 if (!cmd->t_data_sg_orig) 2152 return; 2153 2154 kfree(cmd->t_data_sg); 2155 cmd->t_data_sg = cmd->t_data_sg_orig; 2156 cmd->t_data_sg_orig = NULL; 2157 cmd->t_data_nents = cmd->t_data_nents_orig; 2158 cmd->t_data_nents_orig = 0; 2159 } 2160 2161 static inline void transport_free_pages(struct se_cmd *cmd) 2162 { 2163 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2164 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2165 cmd->t_prot_sg = NULL; 2166 cmd->t_prot_nents = 0; 2167 } 2168 2169 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2170 /* 2171 * Release special case READ buffer payload required for 2172 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2173 */ 2174 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2175 transport_free_sgl(cmd->t_bidi_data_sg, 2176 cmd->t_bidi_data_nents); 2177 cmd->t_bidi_data_sg = NULL; 2178 cmd->t_bidi_data_nents = 0; 2179 } 2180 transport_reset_sgl_orig(cmd); 2181 return; 2182 } 2183 transport_reset_sgl_orig(cmd); 2184 2185 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2186 cmd->t_data_sg = NULL; 2187 cmd->t_data_nents = 0; 2188 2189 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2190 cmd->t_bidi_data_sg = NULL; 2191 cmd->t_bidi_data_nents = 0; 2192 } 2193 2194 /** 2195 * transport_put_cmd - release a reference to a command 2196 * @cmd: command to release 2197 * 2198 * This routine releases our reference to the command and frees it if possible. 2199 */ 2200 static int transport_put_cmd(struct se_cmd *cmd) 2201 { 2202 BUG_ON(!cmd->se_tfo); 2203 /* 2204 * If this cmd has been setup with target_get_sess_cmd(), drop 2205 * the kref and call ->release_cmd() in kref callback. 2206 */ 2207 return target_put_sess_cmd(cmd); 2208 } 2209 2210 void *transport_kmap_data_sg(struct se_cmd *cmd) 2211 { 2212 struct scatterlist *sg = cmd->t_data_sg; 2213 struct page **pages; 2214 int i; 2215 2216 /* 2217 * We need to take into account a possible offset here for fabrics like 2218 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2219 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2220 */ 2221 if (!cmd->t_data_nents) 2222 return NULL; 2223 2224 BUG_ON(!sg); 2225 if (cmd->t_data_nents == 1) 2226 return kmap(sg_page(sg)) + sg->offset; 2227 2228 /* >1 page. use vmap */ 2229 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2230 if (!pages) 2231 return NULL; 2232 2233 /* convert sg[] to pages[] */ 2234 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2235 pages[i] = sg_page(sg); 2236 } 2237 2238 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2239 kfree(pages); 2240 if (!cmd->t_data_vmap) 2241 return NULL; 2242 2243 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2244 } 2245 EXPORT_SYMBOL(transport_kmap_data_sg); 2246 2247 void transport_kunmap_data_sg(struct se_cmd *cmd) 2248 { 2249 if (!cmd->t_data_nents) { 2250 return; 2251 } else if (cmd->t_data_nents == 1) { 2252 kunmap(sg_page(cmd->t_data_sg)); 2253 return; 2254 } 2255 2256 vunmap(cmd->t_data_vmap); 2257 cmd->t_data_vmap = NULL; 2258 } 2259 EXPORT_SYMBOL(transport_kunmap_data_sg); 2260 2261 int 2262 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2263 bool zero_page) 2264 { 2265 struct scatterlist *sg; 2266 struct page *page; 2267 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2268 unsigned int nent; 2269 int i = 0; 2270 2271 nent = DIV_ROUND_UP(length, PAGE_SIZE); 2272 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL); 2273 if (!sg) 2274 return -ENOMEM; 2275 2276 sg_init_table(sg, nent); 2277 2278 while (length) { 2279 u32 page_len = min_t(u32, length, PAGE_SIZE); 2280 page = alloc_page(GFP_KERNEL | zero_flag); 2281 if (!page) 2282 goto out; 2283 2284 sg_set_page(&sg[i], page, page_len, 0); 2285 length -= page_len; 2286 i++; 2287 } 2288 *sgl = sg; 2289 *nents = nent; 2290 return 0; 2291 2292 out: 2293 while (i > 0) { 2294 i--; 2295 __free_page(sg_page(&sg[i])); 2296 } 2297 kfree(sg); 2298 return -ENOMEM; 2299 } 2300 2301 /* 2302 * Allocate any required resources to execute the command. For writes we 2303 * might not have the payload yet, so notify the fabric via a call to 2304 * ->write_pending instead. Otherwise place it on the execution queue. 2305 */ 2306 sense_reason_t 2307 transport_generic_new_cmd(struct se_cmd *cmd) 2308 { 2309 int ret = 0; 2310 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2311 2312 if (cmd->prot_op != TARGET_PROT_NORMAL && 2313 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { 2314 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, 2315 cmd->prot_length, true); 2316 if (ret < 0) 2317 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2318 } 2319 2320 /* 2321 * Determine is the TCM fabric module has already allocated physical 2322 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2323 * beforehand. 2324 */ 2325 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2326 cmd->data_length) { 2327 2328 if ((cmd->se_cmd_flags & SCF_BIDI) || 2329 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2330 u32 bidi_length; 2331 2332 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2333 bidi_length = cmd->t_task_nolb * 2334 cmd->se_dev->dev_attrib.block_size; 2335 else 2336 bidi_length = cmd->data_length; 2337 2338 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2339 &cmd->t_bidi_data_nents, 2340 bidi_length, zero_flag); 2341 if (ret < 0) 2342 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2343 } 2344 2345 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2346 cmd->data_length, zero_flag); 2347 if (ret < 0) 2348 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2349 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2350 cmd->data_length) { 2351 /* 2352 * Special case for COMPARE_AND_WRITE with fabrics 2353 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2354 */ 2355 u32 caw_length = cmd->t_task_nolb * 2356 cmd->se_dev->dev_attrib.block_size; 2357 2358 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2359 &cmd->t_bidi_data_nents, 2360 caw_length, zero_flag); 2361 if (ret < 0) 2362 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2363 } 2364 /* 2365 * If this command is not a write we can execute it right here, 2366 * for write buffers we need to notify the fabric driver first 2367 * and let it call back once the write buffers are ready. 2368 */ 2369 target_add_to_state_list(cmd); 2370 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2371 target_execute_cmd(cmd); 2372 return 0; 2373 } 2374 transport_cmd_check_stop(cmd, false, true); 2375 2376 ret = cmd->se_tfo->write_pending(cmd); 2377 if (ret == -EAGAIN || ret == -ENOMEM) 2378 goto queue_full; 2379 2380 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2381 WARN_ON(ret); 2382 2383 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2384 2385 queue_full: 2386 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2387 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2388 transport_handle_queue_full(cmd, cmd->se_dev); 2389 return 0; 2390 } 2391 EXPORT_SYMBOL(transport_generic_new_cmd); 2392 2393 static void transport_write_pending_qf(struct se_cmd *cmd) 2394 { 2395 int ret; 2396 2397 ret = cmd->se_tfo->write_pending(cmd); 2398 if (ret == -EAGAIN || ret == -ENOMEM) { 2399 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2400 cmd); 2401 transport_handle_queue_full(cmd, cmd->se_dev); 2402 } 2403 } 2404 2405 static bool 2406 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, 2407 unsigned long *flags); 2408 2409 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) 2410 { 2411 unsigned long flags; 2412 2413 spin_lock_irqsave(&cmd->t_state_lock, flags); 2414 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); 2415 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2416 } 2417 2418 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2419 { 2420 int ret = 0; 2421 bool aborted = false, tas = false; 2422 2423 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2424 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2425 target_wait_free_cmd(cmd, &aborted, &tas); 2426 2427 if (!aborted || tas) 2428 ret = transport_put_cmd(cmd); 2429 } else { 2430 if (wait_for_tasks) 2431 target_wait_free_cmd(cmd, &aborted, &tas); 2432 /* 2433 * Handle WRITE failure case where transport_generic_new_cmd() 2434 * has already added se_cmd to state_list, but fabric has 2435 * failed command before I/O submission. 2436 */ 2437 if (cmd->state_active) 2438 target_remove_from_state_list(cmd); 2439 2440 if (cmd->se_lun) 2441 transport_lun_remove_cmd(cmd); 2442 2443 if (!aborted || tas) 2444 ret = transport_put_cmd(cmd); 2445 } 2446 /* 2447 * If the task has been internally aborted due to TMR ABORT_TASK 2448 * or LUN_RESET, target_core_tmr.c is responsible for performing 2449 * the remaining calls to target_put_sess_cmd(), and not the 2450 * callers of this function. 2451 */ 2452 if (aborted) { 2453 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); 2454 wait_for_completion(&cmd->cmd_wait_comp); 2455 cmd->se_tfo->release_cmd(cmd); 2456 ret = 1; 2457 } 2458 return ret; 2459 } 2460 EXPORT_SYMBOL(transport_generic_free_cmd); 2461 2462 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2463 * @se_cmd: command descriptor to add 2464 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2465 */ 2466 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) 2467 { 2468 struct se_session *se_sess = se_cmd->se_sess; 2469 unsigned long flags; 2470 int ret = 0; 2471 2472 /* 2473 * Add a second kref if the fabric caller is expecting to handle 2474 * fabric acknowledgement that requires two target_put_sess_cmd() 2475 * invocations before se_cmd descriptor release. 2476 */ 2477 if (ack_kref) 2478 kref_get(&se_cmd->cmd_kref); 2479 2480 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2481 if (se_sess->sess_tearing_down) { 2482 ret = -ESHUTDOWN; 2483 goto out; 2484 } 2485 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2486 out: 2487 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2488 2489 if (ret && ack_kref) 2490 target_put_sess_cmd(se_cmd); 2491 2492 return ret; 2493 } 2494 EXPORT_SYMBOL(target_get_sess_cmd); 2495 2496 static void target_free_cmd_mem(struct se_cmd *cmd) 2497 { 2498 transport_free_pages(cmd); 2499 2500 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2501 core_tmr_release_req(cmd->se_tmr_req); 2502 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2503 kfree(cmd->t_task_cdb); 2504 } 2505 2506 static void target_release_cmd_kref(struct kref *kref) 2507 { 2508 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2509 struct se_session *se_sess = se_cmd->se_sess; 2510 unsigned long flags; 2511 bool fabric_stop; 2512 2513 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2514 if (list_empty(&se_cmd->se_cmd_list)) { 2515 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2516 target_free_cmd_mem(se_cmd); 2517 se_cmd->se_tfo->release_cmd(se_cmd); 2518 return; 2519 } 2520 2521 spin_lock(&se_cmd->t_state_lock); 2522 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP); 2523 spin_unlock(&se_cmd->t_state_lock); 2524 2525 if (se_cmd->cmd_wait_set || fabric_stop) { 2526 list_del_init(&se_cmd->se_cmd_list); 2527 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2528 target_free_cmd_mem(se_cmd); 2529 complete(&se_cmd->cmd_wait_comp); 2530 return; 2531 } 2532 list_del_init(&se_cmd->se_cmd_list); 2533 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2534 2535 target_free_cmd_mem(se_cmd); 2536 se_cmd->se_tfo->release_cmd(se_cmd); 2537 } 2538 2539 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2540 * @se_cmd: command descriptor to drop 2541 */ 2542 int target_put_sess_cmd(struct se_cmd *se_cmd) 2543 { 2544 struct se_session *se_sess = se_cmd->se_sess; 2545 2546 if (!se_sess) { 2547 target_free_cmd_mem(se_cmd); 2548 se_cmd->se_tfo->release_cmd(se_cmd); 2549 return 1; 2550 } 2551 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); 2552 } 2553 EXPORT_SYMBOL(target_put_sess_cmd); 2554 2555 /* target_sess_cmd_list_set_waiting - Flag all commands in 2556 * sess_cmd_list to complete cmd_wait_comp. Set 2557 * sess_tearing_down so no more commands are queued. 2558 * @se_sess: session to flag 2559 */ 2560 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2561 { 2562 struct se_cmd *se_cmd; 2563 unsigned long flags; 2564 int rc; 2565 2566 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2567 if (se_sess->sess_tearing_down) { 2568 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2569 return; 2570 } 2571 se_sess->sess_tearing_down = 1; 2572 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2573 2574 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) { 2575 rc = kref_get_unless_zero(&se_cmd->cmd_kref); 2576 if (rc) { 2577 se_cmd->cmd_wait_set = 1; 2578 spin_lock(&se_cmd->t_state_lock); 2579 se_cmd->transport_state |= CMD_T_FABRIC_STOP; 2580 spin_unlock(&se_cmd->t_state_lock); 2581 } 2582 } 2583 2584 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2585 } 2586 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2587 2588 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2589 * @se_sess: session to wait for active I/O 2590 */ 2591 void target_wait_for_sess_cmds(struct se_session *se_sess) 2592 { 2593 struct se_cmd *se_cmd, *tmp_cmd; 2594 unsigned long flags; 2595 bool tas; 2596 2597 list_for_each_entry_safe(se_cmd, tmp_cmd, 2598 &se_sess->sess_wait_list, se_cmd_list) { 2599 list_del_init(&se_cmd->se_cmd_list); 2600 2601 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2602 " %d\n", se_cmd, se_cmd->t_state, 2603 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2604 2605 spin_lock_irqsave(&se_cmd->t_state_lock, flags); 2606 tas = (se_cmd->transport_state & CMD_T_TAS); 2607 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags); 2608 2609 if (!target_put_sess_cmd(se_cmd)) { 2610 if (tas) 2611 target_put_sess_cmd(se_cmd); 2612 } 2613 2614 wait_for_completion(&se_cmd->cmd_wait_comp); 2615 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2616 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2617 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2618 2619 se_cmd->se_tfo->release_cmd(se_cmd); 2620 } 2621 2622 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2623 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2624 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2625 2626 } 2627 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2628 2629 void transport_clear_lun_ref(struct se_lun *lun) 2630 { 2631 percpu_ref_kill(&lun->lun_ref); 2632 wait_for_completion(&lun->lun_ref_comp); 2633 } 2634 2635 static bool 2636 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, 2637 bool *aborted, bool *tas, unsigned long *flags) 2638 __releases(&cmd->t_state_lock) 2639 __acquires(&cmd->t_state_lock) 2640 { 2641 2642 assert_spin_locked(&cmd->t_state_lock); 2643 WARN_ON_ONCE(!irqs_disabled()); 2644 2645 if (fabric_stop) 2646 cmd->transport_state |= CMD_T_FABRIC_STOP; 2647 2648 if (cmd->transport_state & CMD_T_ABORTED) 2649 *aborted = true; 2650 2651 if (cmd->transport_state & CMD_T_TAS) 2652 *tas = true; 2653 2654 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2655 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2656 return false; 2657 2658 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2659 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2660 return false; 2661 2662 if (!(cmd->transport_state & CMD_T_ACTIVE)) 2663 return false; 2664 2665 if (fabric_stop && *aborted) 2666 return false; 2667 2668 cmd->transport_state |= CMD_T_STOP; 2669 2670 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d," 2671 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag, 2672 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2673 2674 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 2675 2676 wait_for_completion(&cmd->t_transport_stop_comp); 2677 2678 spin_lock_irqsave(&cmd->t_state_lock, *flags); 2679 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2680 2681 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->" 2682 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag); 2683 2684 return true; 2685 } 2686 2687 /** 2688 * transport_wait_for_tasks - wait for completion to occur 2689 * @cmd: command to wait 2690 * 2691 * Called from frontend fabric context to wait for storage engine 2692 * to pause and/or release frontend generated struct se_cmd. 2693 */ 2694 bool transport_wait_for_tasks(struct se_cmd *cmd) 2695 { 2696 unsigned long flags; 2697 bool ret, aborted = false, tas = false; 2698 2699 spin_lock_irqsave(&cmd->t_state_lock, flags); 2700 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags); 2701 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2702 2703 return ret; 2704 } 2705 EXPORT_SYMBOL(transport_wait_for_tasks); 2706 2707 struct sense_info { 2708 u8 key; 2709 u8 asc; 2710 u8 ascq; 2711 bool add_sector_info; 2712 }; 2713 2714 static const struct sense_info sense_info_table[] = { 2715 [TCM_NO_SENSE] = { 2716 .key = NOT_READY 2717 }, 2718 [TCM_NON_EXISTENT_LUN] = { 2719 .key = ILLEGAL_REQUEST, 2720 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */ 2721 }, 2722 [TCM_UNSUPPORTED_SCSI_OPCODE] = { 2723 .key = ILLEGAL_REQUEST, 2724 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2725 }, 2726 [TCM_SECTOR_COUNT_TOO_MANY] = { 2727 .key = ILLEGAL_REQUEST, 2728 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */ 2729 }, 2730 [TCM_UNKNOWN_MODE_PAGE] = { 2731 .key = ILLEGAL_REQUEST, 2732 .asc = 0x24, /* INVALID FIELD IN CDB */ 2733 }, 2734 [TCM_CHECK_CONDITION_ABORT_CMD] = { 2735 .key = ABORTED_COMMAND, 2736 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */ 2737 .ascq = 0x03, 2738 }, 2739 [TCM_INCORRECT_AMOUNT_OF_DATA] = { 2740 .key = ABORTED_COMMAND, 2741 .asc = 0x0c, /* WRITE ERROR */ 2742 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */ 2743 }, 2744 [TCM_INVALID_CDB_FIELD] = { 2745 .key = ILLEGAL_REQUEST, 2746 .asc = 0x24, /* INVALID FIELD IN CDB */ 2747 }, 2748 [TCM_INVALID_PARAMETER_LIST] = { 2749 .key = ILLEGAL_REQUEST, 2750 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */ 2751 }, 2752 [TCM_PARAMETER_LIST_LENGTH_ERROR] = { 2753 .key = ILLEGAL_REQUEST, 2754 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */ 2755 }, 2756 [TCM_UNEXPECTED_UNSOLICITED_DATA] = { 2757 .key = ILLEGAL_REQUEST, 2758 .asc = 0x0c, /* WRITE ERROR */ 2759 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */ 2760 }, 2761 [TCM_SERVICE_CRC_ERROR] = { 2762 .key = ABORTED_COMMAND, 2763 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */ 2764 .ascq = 0x05, /* N/A */ 2765 }, 2766 [TCM_SNACK_REJECTED] = { 2767 .key = ABORTED_COMMAND, 2768 .asc = 0x11, /* READ ERROR */ 2769 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */ 2770 }, 2771 [TCM_WRITE_PROTECTED] = { 2772 .key = DATA_PROTECT, 2773 .asc = 0x27, /* WRITE PROTECTED */ 2774 }, 2775 [TCM_ADDRESS_OUT_OF_RANGE] = { 2776 .key = ILLEGAL_REQUEST, 2777 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2778 }, 2779 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = { 2780 .key = UNIT_ATTENTION, 2781 }, 2782 [TCM_CHECK_CONDITION_NOT_READY] = { 2783 .key = NOT_READY, 2784 }, 2785 [TCM_MISCOMPARE_VERIFY] = { 2786 .key = MISCOMPARE, 2787 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */ 2788 .ascq = 0x00, 2789 }, 2790 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = { 2791 .key = ABORTED_COMMAND, 2792 .asc = 0x10, 2793 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */ 2794 .add_sector_info = true, 2795 }, 2796 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = { 2797 .key = ABORTED_COMMAND, 2798 .asc = 0x10, 2799 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2800 .add_sector_info = true, 2801 }, 2802 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = { 2803 .key = ABORTED_COMMAND, 2804 .asc = 0x10, 2805 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2806 .add_sector_info = true, 2807 }, 2808 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = { 2809 /* 2810 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2811 * Solaris initiators. Returning NOT READY instead means the 2812 * operations will be retried a finite number of times and we 2813 * can survive intermittent errors. 2814 */ 2815 .key = NOT_READY, 2816 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */ 2817 }, 2818 }; 2819 2820 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason) 2821 { 2822 const struct sense_info *si; 2823 u8 *buffer = cmd->sense_buffer; 2824 int r = (__force int)reason; 2825 u8 asc, ascq; 2826 bool desc_format = target_sense_desc_format(cmd->se_dev); 2827 2828 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key) 2829 si = &sense_info_table[r]; 2830 else 2831 si = &sense_info_table[(__force int) 2832 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE]; 2833 2834 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) { 2835 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2836 WARN_ON_ONCE(asc == 0); 2837 } else if (si->asc == 0) { 2838 WARN_ON_ONCE(cmd->scsi_asc == 0); 2839 asc = cmd->scsi_asc; 2840 ascq = cmd->scsi_ascq; 2841 } else { 2842 asc = si->asc; 2843 ascq = si->ascq; 2844 } 2845 2846 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq); 2847 if (si->add_sector_info) 2848 return scsi_set_sense_information(buffer, 2849 cmd->scsi_sense_length, 2850 cmd->bad_sector); 2851 2852 return 0; 2853 } 2854 2855 int 2856 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2857 sense_reason_t reason, int from_transport) 2858 { 2859 unsigned long flags; 2860 2861 spin_lock_irqsave(&cmd->t_state_lock, flags); 2862 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2863 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2864 return 0; 2865 } 2866 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2867 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2868 2869 if (!from_transport) { 2870 int rc; 2871 2872 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2873 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2874 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2875 rc = translate_sense_reason(cmd, reason); 2876 if (rc) 2877 return rc; 2878 } 2879 2880 trace_target_cmd_complete(cmd); 2881 return cmd->se_tfo->queue_status(cmd); 2882 } 2883 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2884 2885 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2886 __releases(&cmd->t_state_lock) 2887 __acquires(&cmd->t_state_lock) 2888 { 2889 assert_spin_locked(&cmd->t_state_lock); 2890 WARN_ON_ONCE(!irqs_disabled()); 2891 2892 if (!(cmd->transport_state & CMD_T_ABORTED)) 2893 return 0; 2894 /* 2895 * If cmd has been aborted but either no status is to be sent or it has 2896 * already been sent, just return 2897 */ 2898 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) { 2899 if (send_status) 2900 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 2901 return 1; 2902 } 2903 2904 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:" 2905 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag); 2906 2907 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 2908 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2909 trace_target_cmd_complete(cmd); 2910 2911 spin_unlock_irq(&cmd->t_state_lock); 2912 cmd->se_tfo->queue_status(cmd); 2913 spin_lock_irq(&cmd->t_state_lock); 2914 2915 return 1; 2916 } 2917 2918 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2919 { 2920 int ret; 2921 2922 spin_lock_irq(&cmd->t_state_lock); 2923 ret = __transport_check_aborted_status(cmd, send_status); 2924 spin_unlock_irq(&cmd->t_state_lock); 2925 2926 return ret; 2927 } 2928 EXPORT_SYMBOL(transport_check_aborted_status); 2929 2930 void transport_send_task_abort(struct se_cmd *cmd) 2931 { 2932 unsigned long flags; 2933 2934 spin_lock_irqsave(&cmd->t_state_lock, flags); 2935 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 2936 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2937 return; 2938 } 2939 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2940 2941 /* 2942 * If there are still expected incoming fabric WRITEs, we wait 2943 * until until they have completed before sending a TASK_ABORTED 2944 * response. This response with TASK_ABORTED status will be 2945 * queued back to fabric module by transport_check_aborted_status(). 2946 */ 2947 if (cmd->data_direction == DMA_TO_DEVICE) { 2948 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2949 spin_lock_irqsave(&cmd->t_state_lock, flags); 2950 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) { 2951 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2952 goto send_abort; 2953 } 2954 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 2955 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2956 return; 2957 } 2958 } 2959 send_abort: 2960 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2961 2962 transport_lun_remove_cmd(cmd); 2963 2964 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", 2965 cmd->t_task_cdb[0], cmd->tag); 2966 2967 trace_target_cmd_complete(cmd); 2968 cmd->se_tfo->queue_status(cmd); 2969 } 2970 2971 static void target_tmr_work(struct work_struct *work) 2972 { 2973 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2974 struct se_device *dev = cmd->se_dev; 2975 struct se_tmr_req *tmr = cmd->se_tmr_req; 2976 unsigned long flags; 2977 int ret; 2978 2979 spin_lock_irqsave(&cmd->t_state_lock, flags); 2980 if (cmd->transport_state & CMD_T_ABORTED) { 2981 tmr->response = TMR_FUNCTION_REJECTED; 2982 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2983 goto check_stop; 2984 } 2985 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2986 2987 switch (tmr->function) { 2988 case TMR_ABORT_TASK: 2989 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2990 break; 2991 case TMR_ABORT_TASK_SET: 2992 case TMR_CLEAR_ACA: 2993 case TMR_CLEAR_TASK_SET: 2994 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2995 break; 2996 case TMR_LUN_RESET: 2997 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2998 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2999 TMR_FUNCTION_REJECTED; 3000 if (tmr->response == TMR_FUNCTION_COMPLETE) { 3001 target_ua_allocate_lun(cmd->se_sess->se_node_acl, 3002 cmd->orig_fe_lun, 0x29, 3003 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED); 3004 } 3005 break; 3006 case TMR_TARGET_WARM_RESET: 3007 tmr->response = TMR_FUNCTION_REJECTED; 3008 break; 3009 case TMR_TARGET_COLD_RESET: 3010 tmr->response = TMR_FUNCTION_REJECTED; 3011 break; 3012 default: 3013 pr_err("Uknown TMR function: 0x%02x.\n", 3014 tmr->function); 3015 tmr->response = TMR_FUNCTION_REJECTED; 3016 break; 3017 } 3018 3019 spin_lock_irqsave(&cmd->t_state_lock, flags); 3020 if (cmd->transport_state & CMD_T_ABORTED) { 3021 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3022 goto check_stop; 3023 } 3024 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3025 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3026 3027 cmd->se_tfo->queue_tm_rsp(cmd); 3028 3029 check_stop: 3030 transport_cmd_check_stop_to_fabric(cmd); 3031 } 3032 3033 int transport_generic_handle_tmr( 3034 struct se_cmd *cmd) 3035 { 3036 unsigned long flags; 3037 3038 spin_lock_irqsave(&cmd->t_state_lock, flags); 3039 cmd->transport_state |= CMD_T_ACTIVE; 3040 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3041 3042 INIT_WORK(&cmd->work, target_tmr_work); 3043 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3044 return 0; 3045 } 3046 EXPORT_SYMBOL(transport_generic_handle_tmr); 3047 3048 bool 3049 target_check_wce(struct se_device *dev) 3050 { 3051 bool wce = false; 3052 3053 if (dev->transport->get_write_cache) 3054 wce = dev->transport->get_write_cache(dev); 3055 else if (dev->dev_attrib.emulate_write_cache > 0) 3056 wce = true; 3057 3058 return wce; 3059 } 3060 3061 bool 3062 target_check_fua(struct se_device *dev) 3063 { 3064 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0; 3065 } 3066