1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2012 RisingTide Systems LLC. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/blkdev.h> 32 #include <linux/spinlock.h> 33 #include <linux/kthread.h> 34 #include <linux/in.h> 35 #include <linux/cdrom.h> 36 #include <linux/module.h> 37 #include <linux/ratelimit.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_tcq.h> 44 45 #include <target/target_core_base.h> 46 #include <target/target_core_backend.h> 47 #include <target/target_core_fabric.h> 48 #include <target/target_core_configfs.h> 49 50 #include "target_core_internal.h" 51 #include "target_core_alua.h" 52 #include "target_core_pr.h" 53 #include "target_core_ua.h" 54 55 static struct workqueue_struct *target_completion_wq; 56 static struct kmem_cache *se_sess_cache; 57 struct kmem_cache *se_ua_cache; 58 struct kmem_cache *t10_pr_reg_cache; 59 struct kmem_cache *t10_alua_lu_gp_cache; 60 struct kmem_cache *t10_alua_lu_gp_mem_cache; 61 struct kmem_cache *t10_alua_tg_pt_gp_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 63 64 static void transport_complete_task_attr(struct se_cmd *cmd); 65 static void transport_handle_queue_full(struct se_cmd *cmd, 66 struct se_device *dev); 67 static int transport_generic_get_mem(struct se_cmd *cmd); 68 static int transport_put_cmd(struct se_cmd *cmd); 69 static void target_complete_ok_work(struct work_struct *work); 70 71 int init_se_kmem_caches(void) 72 { 73 se_sess_cache = kmem_cache_create("se_sess_cache", 74 sizeof(struct se_session), __alignof__(struct se_session), 75 0, NULL); 76 if (!se_sess_cache) { 77 pr_err("kmem_cache_create() for struct se_session" 78 " failed\n"); 79 goto out; 80 } 81 se_ua_cache = kmem_cache_create("se_ua_cache", 82 sizeof(struct se_ua), __alignof__(struct se_ua), 83 0, NULL); 84 if (!se_ua_cache) { 85 pr_err("kmem_cache_create() for struct se_ua failed\n"); 86 goto out_free_sess_cache; 87 } 88 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 89 sizeof(struct t10_pr_registration), 90 __alignof__(struct t10_pr_registration), 0, NULL); 91 if (!t10_pr_reg_cache) { 92 pr_err("kmem_cache_create() for struct t10_pr_registration" 93 " failed\n"); 94 goto out_free_ua_cache; 95 } 96 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 97 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 98 0, NULL); 99 if (!t10_alua_lu_gp_cache) { 100 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 101 " failed\n"); 102 goto out_free_pr_reg_cache; 103 } 104 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 105 sizeof(struct t10_alua_lu_gp_member), 106 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 107 if (!t10_alua_lu_gp_mem_cache) { 108 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 109 "cache failed\n"); 110 goto out_free_lu_gp_cache; 111 } 112 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 113 sizeof(struct t10_alua_tg_pt_gp), 114 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 115 if (!t10_alua_tg_pt_gp_cache) { 116 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 117 "cache failed\n"); 118 goto out_free_lu_gp_mem_cache; 119 } 120 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 121 "t10_alua_tg_pt_gp_mem_cache", 122 sizeof(struct t10_alua_tg_pt_gp_member), 123 __alignof__(struct t10_alua_tg_pt_gp_member), 124 0, NULL); 125 if (!t10_alua_tg_pt_gp_mem_cache) { 126 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 127 "mem_t failed\n"); 128 goto out_free_tg_pt_gp_cache; 129 } 130 131 target_completion_wq = alloc_workqueue("target_completion", 132 WQ_MEM_RECLAIM, 0); 133 if (!target_completion_wq) 134 goto out_free_tg_pt_gp_mem_cache; 135 136 return 0; 137 138 out_free_tg_pt_gp_mem_cache: 139 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 140 out_free_tg_pt_gp_cache: 141 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 142 out_free_lu_gp_mem_cache: 143 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 144 out_free_lu_gp_cache: 145 kmem_cache_destroy(t10_alua_lu_gp_cache); 146 out_free_pr_reg_cache: 147 kmem_cache_destroy(t10_pr_reg_cache); 148 out_free_ua_cache: 149 kmem_cache_destroy(se_ua_cache); 150 out_free_sess_cache: 151 kmem_cache_destroy(se_sess_cache); 152 out: 153 return -ENOMEM; 154 } 155 156 void release_se_kmem_caches(void) 157 { 158 destroy_workqueue(target_completion_wq); 159 kmem_cache_destroy(se_sess_cache); 160 kmem_cache_destroy(se_ua_cache); 161 kmem_cache_destroy(t10_pr_reg_cache); 162 kmem_cache_destroy(t10_alua_lu_gp_cache); 163 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 164 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 165 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 166 } 167 168 /* This code ensures unique mib indexes are handed out. */ 169 static DEFINE_SPINLOCK(scsi_mib_index_lock); 170 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 171 172 /* 173 * Allocate a new row index for the entry type specified 174 */ 175 u32 scsi_get_new_index(scsi_index_t type) 176 { 177 u32 new_index; 178 179 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 180 181 spin_lock(&scsi_mib_index_lock); 182 new_index = ++scsi_mib_index[type]; 183 spin_unlock(&scsi_mib_index_lock); 184 185 return new_index; 186 } 187 188 void transport_subsystem_check_init(void) 189 { 190 int ret; 191 static int sub_api_initialized; 192 193 if (sub_api_initialized) 194 return; 195 196 ret = request_module("target_core_iblock"); 197 if (ret != 0) 198 pr_err("Unable to load target_core_iblock\n"); 199 200 ret = request_module("target_core_file"); 201 if (ret != 0) 202 pr_err("Unable to load target_core_file\n"); 203 204 ret = request_module("target_core_pscsi"); 205 if (ret != 0) 206 pr_err("Unable to load target_core_pscsi\n"); 207 208 sub_api_initialized = 1; 209 } 210 211 struct se_session *transport_init_session(void) 212 { 213 struct se_session *se_sess; 214 215 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 216 if (!se_sess) { 217 pr_err("Unable to allocate struct se_session from" 218 " se_sess_cache\n"); 219 return ERR_PTR(-ENOMEM); 220 } 221 INIT_LIST_HEAD(&se_sess->sess_list); 222 INIT_LIST_HEAD(&se_sess->sess_acl_list); 223 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 224 INIT_LIST_HEAD(&se_sess->sess_wait_list); 225 spin_lock_init(&se_sess->sess_cmd_lock); 226 kref_init(&se_sess->sess_kref); 227 228 return se_sess; 229 } 230 EXPORT_SYMBOL(transport_init_session); 231 232 /* 233 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 234 */ 235 void __transport_register_session( 236 struct se_portal_group *se_tpg, 237 struct se_node_acl *se_nacl, 238 struct se_session *se_sess, 239 void *fabric_sess_ptr) 240 { 241 unsigned char buf[PR_REG_ISID_LEN]; 242 243 se_sess->se_tpg = se_tpg; 244 se_sess->fabric_sess_ptr = fabric_sess_ptr; 245 /* 246 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 247 * 248 * Only set for struct se_session's that will actually be moving I/O. 249 * eg: *NOT* discovery sessions. 250 */ 251 if (se_nacl) { 252 /* 253 * If the fabric module supports an ISID based TransportID, 254 * save this value in binary from the fabric I_T Nexus now. 255 */ 256 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 257 memset(&buf[0], 0, PR_REG_ISID_LEN); 258 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 259 &buf[0], PR_REG_ISID_LEN); 260 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 261 } 262 kref_get(&se_nacl->acl_kref); 263 264 spin_lock_irq(&se_nacl->nacl_sess_lock); 265 /* 266 * The se_nacl->nacl_sess pointer will be set to the 267 * last active I_T Nexus for each struct se_node_acl. 268 */ 269 se_nacl->nacl_sess = se_sess; 270 271 list_add_tail(&se_sess->sess_acl_list, 272 &se_nacl->acl_sess_list); 273 spin_unlock_irq(&se_nacl->nacl_sess_lock); 274 } 275 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 276 277 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 278 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 279 } 280 EXPORT_SYMBOL(__transport_register_session); 281 282 void transport_register_session( 283 struct se_portal_group *se_tpg, 284 struct se_node_acl *se_nacl, 285 struct se_session *se_sess, 286 void *fabric_sess_ptr) 287 { 288 unsigned long flags; 289 290 spin_lock_irqsave(&se_tpg->session_lock, flags); 291 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 292 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 293 } 294 EXPORT_SYMBOL(transport_register_session); 295 296 static void target_release_session(struct kref *kref) 297 { 298 struct se_session *se_sess = container_of(kref, 299 struct se_session, sess_kref); 300 struct se_portal_group *se_tpg = se_sess->se_tpg; 301 302 se_tpg->se_tpg_tfo->close_session(se_sess); 303 } 304 305 void target_get_session(struct se_session *se_sess) 306 { 307 kref_get(&se_sess->sess_kref); 308 } 309 EXPORT_SYMBOL(target_get_session); 310 311 void target_put_session(struct se_session *se_sess) 312 { 313 struct se_portal_group *tpg = se_sess->se_tpg; 314 315 if (tpg->se_tpg_tfo->put_session != NULL) { 316 tpg->se_tpg_tfo->put_session(se_sess); 317 return; 318 } 319 kref_put(&se_sess->sess_kref, target_release_session); 320 } 321 EXPORT_SYMBOL(target_put_session); 322 323 static void target_complete_nacl(struct kref *kref) 324 { 325 struct se_node_acl *nacl = container_of(kref, 326 struct se_node_acl, acl_kref); 327 328 complete(&nacl->acl_free_comp); 329 } 330 331 void target_put_nacl(struct se_node_acl *nacl) 332 { 333 kref_put(&nacl->acl_kref, target_complete_nacl); 334 } 335 336 void transport_deregister_session_configfs(struct se_session *se_sess) 337 { 338 struct se_node_acl *se_nacl; 339 unsigned long flags; 340 /* 341 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 342 */ 343 se_nacl = se_sess->se_node_acl; 344 if (se_nacl) { 345 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 346 if (se_nacl->acl_stop == 0) 347 list_del(&se_sess->sess_acl_list); 348 /* 349 * If the session list is empty, then clear the pointer. 350 * Otherwise, set the struct se_session pointer from the tail 351 * element of the per struct se_node_acl active session list. 352 */ 353 if (list_empty(&se_nacl->acl_sess_list)) 354 se_nacl->nacl_sess = NULL; 355 else { 356 se_nacl->nacl_sess = container_of( 357 se_nacl->acl_sess_list.prev, 358 struct se_session, sess_acl_list); 359 } 360 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 361 } 362 } 363 EXPORT_SYMBOL(transport_deregister_session_configfs); 364 365 void transport_free_session(struct se_session *se_sess) 366 { 367 kmem_cache_free(se_sess_cache, se_sess); 368 } 369 EXPORT_SYMBOL(transport_free_session); 370 371 void transport_deregister_session(struct se_session *se_sess) 372 { 373 struct se_portal_group *se_tpg = se_sess->se_tpg; 374 struct target_core_fabric_ops *se_tfo; 375 struct se_node_acl *se_nacl; 376 unsigned long flags; 377 bool comp_nacl = true; 378 379 if (!se_tpg) { 380 transport_free_session(se_sess); 381 return; 382 } 383 se_tfo = se_tpg->se_tpg_tfo; 384 385 spin_lock_irqsave(&se_tpg->session_lock, flags); 386 list_del(&se_sess->sess_list); 387 se_sess->se_tpg = NULL; 388 se_sess->fabric_sess_ptr = NULL; 389 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 390 391 /* 392 * Determine if we need to do extra work for this initiator node's 393 * struct se_node_acl if it had been previously dynamically generated. 394 */ 395 se_nacl = se_sess->se_node_acl; 396 397 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 398 if (se_nacl && se_nacl->dynamic_node_acl) { 399 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 400 list_del(&se_nacl->acl_list); 401 se_tpg->num_node_acls--; 402 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 403 core_tpg_wait_for_nacl_pr_ref(se_nacl); 404 core_free_device_list_for_node(se_nacl, se_tpg); 405 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 406 407 comp_nacl = false; 408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 409 } 410 } 411 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 412 413 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 414 se_tpg->se_tpg_tfo->get_fabric_name()); 415 /* 416 * If last kref is dropping now for an explict NodeACL, awake sleeping 417 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 418 * removal context. 419 */ 420 if (se_nacl && comp_nacl == true) 421 target_put_nacl(se_nacl); 422 423 transport_free_session(se_sess); 424 } 425 EXPORT_SYMBOL(transport_deregister_session); 426 427 /* 428 * Called with cmd->t_state_lock held. 429 */ 430 static void target_remove_from_state_list(struct se_cmd *cmd) 431 { 432 struct se_device *dev = cmd->se_dev; 433 unsigned long flags; 434 435 if (!dev) 436 return; 437 438 if (cmd->transport_state & CMD_T_BUSY) 439 return; 440 441 spin_lock_irqsave(&dev->execute_task_lock, flags); 442 if (cmd->state_active) { 443 list_del(&cmd->state_list); 444 cmd->state_active = false; 445 } 446 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 447 } 448 449 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists) 450 { 451 unsigned long flags; 452 453 spin_lock_irqsave(&cmd->t_state_lock, flags); 454 /* 455 * Determine if IOCTL context caller in requesting the stopping of this 456 * command for LUN shutdown purposes. 457 */ 458 if (cmd->transport_state & CMD_T_LUN_STOP) { 459 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 460 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 461 462 cmd->transport_state &= ~CMD_T_ACTIVE; 463 if (remove_from_lists) 464 target_remove_from_state_list(cmd); 465 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 466 467 complete(&cmd->transport_lun_stop_comp); 468 return 1; 469 } 470 471 if (remove_from_lists) { 472 target_remove_from_state_list(cmd); 473 474 /* 475 * Clear struct se_cmd->se_lun before the handoff to FE. 476 */ 477 cmd->se_lun = NULL; 478 } 479 480 /* 481 * Determine if frontend context caller is requesting the stopping of 482 * this command for frontend exceptions. 483 */ 484 if (cmd->transport_state & CMD_T_STOP) { 485 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 486 __func__, __LINE__, 487 cmd->se_tfo->get_task_tag(cmd)); 488 489 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 490 491 complete(&cmd->t_transport_stop_comp); 492 return 1; 493 } 494 495 cmd->transport_state &= ~CMD_T_ACTIVE; 496 if (remove_from_lists) { 497 /* 498 * Some fabric modules like tcm_loop can release 499 * their internally allocated I/O reference now and 500 * struct se_cmd now. 501 * 502 * Fabric modules are expected to return '1' here if the 503 * se_cmd being passed is released at this point, 504 * or zero if not being released. 505 */ 506 if (cmd->se_tfo->check_stop_free != NULL) { 507 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 508 return cmd->se_tfo->check_stop_free(cmd); 509 } 510 } 511 512 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 513 return 0; 514 } 515 516 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 517 { 518 return transport_cmd_check_stop(cmd, true); 519 } 520 521 static void transport_lun_remove_cmd(struct se_cmd *cmd) 522 { 523 struct se_lun *lun = cmd->se_lun; 524 unsigned long flags; 525 526 if (!lun) 527 return; 528 529 spin_lock_irqsave(&cmd->t_state_lock, flags); 530 if (cmd->transport_state & CMD_T_DEV_ACTIVE) { 531 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 532 target_remove_from_state_list(cmd); 533 } 534 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 535 536 spin_lock_irqsave(&lun->lun_cmd_lock, flags); 537 if (!list_empty(&cmd->se_lun_node)) 538 list_del_init(&cmd->se_lun_node); 539 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); 540 } 541 542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 543 { 544 if (transport_cmd_check_stop_to_fabric(cmd)) 545 return; 546 if (remove) 547 transport_put_cmd(cmd); 548 } 549 550 static void target_complete_failure_work(struct work_struct *work) 551 { 552 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 553 554 transport_generic_request_failure(cmd, 555 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 556 } 557 558 /* 559 * Used when asking transport to copy Sense Data from the underlying 560 * Linux/SCSI struct scsi_cmnd 561 */ 562 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 563 { 564 struct se_device *dev = cmd->se_dev; 565 566 WARN_ON(!cmd->se_lun); 567 568 if (!dev) 569 return NULL; 570 571 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 572 return NULL; 573 574 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 575 576 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 577 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 578 return cmd->sense_buffer; 579 } 580 581 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 582 { 583 struct se_device *dev = cmd->se_dev; 584 int success = scsi_status == GOOD; 585 unsigned long flags; 586 587 cmd->scsi_status = scsi_status; 588 589 590 spin_lock_irqsave(&cmd->t_state_lock, flags); 591 cmd->transport_state &= ~CMD_T_BUSY; 592 593 if (dev && dev->transport->transport_complete) { 594 dev->transport->transport_complete(cmd, 595 cmd->t_data_sg, 596 transport_get_sense_buffer(cmd)); 597 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 598 success = 1; 599 } 600 601 /* 602 * See if we are waiting to complete for an exception condition. 603 */ 604 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 605 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 606 complete(&cmd->task_stop_comp); 607 return; 608 } 609 610 if (!success) 611 cmd->transport_state |= CMD_T_FAILED; 612 613 /* 614 * Check for case where an explict ABORT_TASK has been received 615 * and transport_wait_for_tasks() will be waiting for completion.. 616 */ 617 if (cmd->transport_state & CMD_T_ABORTED && 618 cmd->transport_state & CMD_T_STOP) { 619 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 620 complete(&cmd->t_transport_stop_comp); 621 return; 622 } else if (cmd->transport_state & CMD_T_FAILED) { 623 INIT_WORK(&cmd->work, target_complete_failure_work); 624 } else { 625 INIT_WORK(&cmd->work, target_complete_ok_work); 626 } 627 628 cmd->t_state = TRANSPORT_COMPLETE; 629 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 630 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 631 632 queue_work(target_completion_wq, &cmd->work); 633 } 634 EXPORT_SYMBOL(target_complete_cmd); 635 636 static void target_add_to_state_list(struct se_cmd *cmd) 637 { 638 struct se_device *dev = cmd->se_dev; 639 unsigned long flags; 640 641 spin_lock_irqsave(&dev->execute_task_lock, flags); 642 if (!cmd->state_active) { 643 list_add_tail(&cmd->state_list, &dev->state_list); 644 cmd->state_active = true; 645 } 646 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 647 } 648 649 /* 650 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 651 */ 652 static void transport_write_pending_qf(struct se_cmd *cmd); 653 static void transport_complete_qf(struct se_cmd *cmd); 654 655 void target_qf_do_work(struct work_struct *work) 656 { 657 struct se_device *dev = container_of(work, struct se_device, 658 qf_work_queue); 659 LIST_HEAD(qf_cmd_list); 660 struct se_cmd *cmd, *cmd_tmp; 661 662 spin_lock_irq(&dev->qf_cmd_lock); 663 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 664 spin_unlock_irq(&dev->qf_cmd_lock); 665 666 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 667 list_del(&cmd->se_qf_node); 668 atomic_dec(&dev->dev_qf_count); 669 smp_mb__after_atomic_dec(); 670 671 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 672 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 673 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 674 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 675 : "UNKNOWN"); 676 677 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 678 transport_write_pending_qf(cmd); 679 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 680 transport_complete_qf(cmd); 681 } 682 } 683 684 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 685 { 686 switch (cmd->data_direction) { 687 case DMA_NONE: 688 return "NONE"; 689 case DMA_FROM_DEVICE: 690 return "READ"; 691 case DMA_TO_DEVICE: 692 return "WRITE"; 693 case DMA_BIDIRECTIONAL: 694 return "BIDI"; 695 default: 696 break; 697 } 698 699 return "UNKNOWN"; 700 } 701 702 void transport_dump_dev_state( 703 struct se_device *dev, 704 char *b, 705 int *bl) 706 { 707 *bl += sprintf(b + *bl, "Status: "); 708 if (dev->export_count) 709 *bl += sprintf(b + *bl, "ACTIVATED"); 710 else 711 *bl += sprintf(b + *bl, "DEACTIVATED"); 712 713 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 714 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 715 dev->dev_attrib.block_size, 716 dev->dev_attrib.hw_max_sectors); 717 *bl += sprintf(b + *bl, " "); 718 } 719 720 void transport_dump_vpd_proto_id( 721 struct t10_vpd *vpd, 722 unsigned char *p_buf, 723 int p_buf_len) 724 { 725 unsigned char buf[VPD_TMP_BUF_SIZE]; 726 int len; 727 728 memset(buf, 0, VPD_TMP_BUF_SIZE); 729 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 730 731 switch (vpd->protocol_identifier) { 732 case 0x00: 733 sprintf(buf+len, "Fibre Channel\n"); 734 break; 735 case 0x10: 736 sprintf(buf+len, "Parallel SCSI\n"); 737 break; 738 case 0x20: 739 sprintf(buf+len, "SSA\n"); 740 break; 741 case 0x30: 742 sprintf(buf+len, "IEEE 1394\n"); 743 break; 744 case 0x40: 745 sprintf(buf+len, "SCSI Remote Direct Memory Access" 746 " Protocol\n"); 747 break; 748 case 0x50: 749 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 750 break; 751 case 0x60: 752 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 753 break; 754 case 0x70: 755 sprintf(buf+len, "Automation/Drive Interface Transport" 756 " Protocol\n"); 757 break; 758 case 0x80: 759 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 760 break; 761 default: 762 sprintf(buf+len, "Unknown 0x%02x\n", 763 vpd->protocol_identifier); 764 break; 765 } 766 767 if (p_buf) 768 strncpy(p_buf, buf, p_buf_len); 769 else 770 pr_debug("%s", buf); 771 } 772 773 void 774 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 775 { 776 /* 777 * Check if the Protocol Identifier Valid (PIV) bit is set.. 778 * 779 * from spc3r23.pdf section 7.5.1 780 */ 781 if (page_83[1] & 0x80) { 782 vpd->protocol_identifier = (page_83[0] & 0xf0); 783 vpd->protocol_identifier_set = 1; 784 transport_dump_vpd_proto_id(vpd, NULL, 0); 785 } 786 } 787 EXPORT_SYMBOL(transport_set_vpd_proto_id); 788 789 int transport_dump_vpd_assoc( 790 struct t10_vpd *vpd, 791 unsigned char *p_buf, 792 int p_buf_len) 793 { 794 unsigned char buf[VPD_TMP_BUF_SIZE]; 795 int ret = 0; 796 int len; 797 798 memset(buf, 0, VPD_TMP_BUF_SIZE); 799 len = sprintf(buf, "T10 VPD Identifier Association: "); 800 801 switch (vpd->association) { 802 case 0x00: 803 sprintf(buf+len, "addressed logical unit\n"); 804 break; 805 case 0x10: 806 sprintf(buf+len, "target port\n"); 807 break; 808 case 0x20: 809 sprintf(buf+len, "SCSI target device\n"); 810 break; 811 default: 812 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 813 ret = -EINVAL; 814 break; 815 } 816 817 if (p_buf) 818 strncpy(p_buf, buf, p_buf_len); 819 else 820 pr_debug("%s", buf); 821 822 return ret; 823 } 824 825 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 826 { 827 /* 828 * The VPD identification association.. 829 * 830 * from spc3r23.pdf Section 7.6.3.1 Table 297 831 */ 832 vpd->association = (page_83[1] & 0x30); 833 return transport_dump_vpd_assoc(vpd, NULL, 0); 834 } 835 EXPORT_SYMBOL(transport_set_vpd_assoc); 836 837 int transport_dump_vpd_ident_type( 838 struct t10_vpd *vpd, 839 unsigned char *p_buf, 840 int p_buf_len) 841 { 842 unsigned char buf[VPD_TMP_BUF_SIZE]; 843 int ret = 0; 844 int len; 845 846 memset(buf, 0, VPD_TMP_BUF_SIZE); 847 len = sprintf(buf, "T10 VPD Identifier Type: "); 848 849 switch (vpd->device_identifier_type) { 850 case 0x00: 851 sprintf(buf+len, "Vendor specific\n"); 852 break; 853 case 0x01: 854 sprintf(buf+len, "T10 Vendor ID based\n"); 855 break; 856 case 0x02: 857 sprintf(buf+len, "EUI-64 based\n"); 858 break; 859 case 0x03: 860 sprintf(buf+len, "NAA\n"); 861 break; 862 case 0x04: 863 sprintf(buf+len, "Relative target port identifier\n"); 864 break; 865 case 0x08: 866 sprintf(buf+len, "SCSI name string\n"); 867 break; 868 default: 869 sprintf(buf+len, "Unsupported: 0x%02x\n", 870 vpd->device_identifier_type); 871 ret = -EINVAL; 872 break; 873 } 874 875 if (p_buf) { 876 if (p_buf_len < strlen(buf)+1) 877 return -EINVAL; 878 strncpy(p_buf, buf, p_buf_len); 879 } else { 880 pr_debug("%s", buf); 881 } 882 883 return ret; 884 } 885 886 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 887 { 888 /* 889 * The VPD identifier type.. 890 * 891 * from spc3r23.pdf Section 7.6.3.1 Table 298 892 */ 893 vpd->device_identifier_type = (page_83[1] & 0x0f); 894 return transport_dump_vpd_ident_type(vpd, NULL, 0); 895 } 896 EXPORT_SYMBOL(transport_set_vpd_ident_type); 897 898 int transport_dump_vpd_ident( 899 struct t10_vpd *vpd, 900 unsigned char *p_buf, 901 int p_buf_len) 902 { 903 unsigned char buf[VPD_TMP_BUF_SIZE]; 904 int ret = 0; 905 906 memset(buf, 0, VPD_TMP_BUF_SIZE); 907 908 switch (vpd->device_identifier_code_set) { 909 case 0x01: /* Binary */ 910 snprintf(buf, sizeof(buf), 911 "T10 VPD Binary Device Identifier: %s\n", 912 &vpd->device_identifier[0]); 913 break; 914 case 0x02: /* ASCII */ 915 snprintf(buf, sizeof(buf), 916 "T10 VPD ASCII Device Identifier: %s\n", 917 &vpd->device_identifier[0]); 918 break; 919 case 0x03: /* UTF-8 */ 920 snprintf(buf, sizeof(buf), 921 "T10 VPD UTF-8 Device Identifier: %s\n", 922 &vpd->device_identifier[0]); 923 break; 924 default: 925 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 926 " 0x%02x", vpd->device_identifier_code_set); 927 ret = -EINVAL; 928 break; 929 } 930 931 if (p_buf) 932 strncpy(p_buf, buf, p_buf_len); 933 else 934 pr_debug("%s", buf); 935 936 return ret; 937 } 938 939 int 940 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 941 { 942 static const char hex_str[] = "0123456789abcdef"; 943 int j = 0, i = 4; /* offset to start of the identifier */ 944 945 /* 946 * The VPD Code Set (encoding) 947 * 948 * from spc3r23.pdf Section 7.6.3.1 Table 296 949 */ 950 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 951 switch (vpd->device_identifier_code_set) { 952 case 0x01: /* Binary */ 953 vpd->device_identifier[j++] = 954 hex_str[vpd->device_identifier_type]; 955 while (i < (4 + page_83[3])) { 956 vpd->device_identifier[j++] = 957 hex_str[(page_83[i] & 0xf0) >> 4]; 958 vpd->device_identifier[j++] = 959 hex_str[page_83[i] & 0x0f]; 960 i++; 961 } 962 break; 963 case 0x02: /* ASCII */ 964 case 0x03: /* UTF-8 */ 965 while (i < (4 + page_83[3])) 966 vpd->device_identifier[j++] = page_83[i++]; 967 break; 968 default: 969 break; 970 } 971 972 return transport_dump_vpd_ident(vpd, NULL, 0); 973 } 974 EXPORT_SYMBOL(transport_set_vpd_ident); 975 976 sense_reason_t 977 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 978 { 979 struct se_device *dev = cmd->se_dev; 980 981 if (cmd->unknown_data_length) { 982 cmd->data_length = size; 983 } else if (size != cmd->data_length) { 984 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 985 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 986 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 987 cmd->data_length, size, cmd->t_task_cdb[0]); 988 989 if (cmd->data_direction == DMA_TO_DEVICE) { 990 pr_err("Rejecting underflow/overflow" 991 " WRITE data\n"); 992 return TCM_INVALID_CDB_FIELD; 993 } 994 /* 995 * Reject READ_* or WRITE_* with overflow/underflow for 996 * type SCF_SCSI_DATA_CDB. 997 */ 998 if (dev->dev_attrib.block_size != 512) { 999 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1000 " CDB on non 512-byte sector setup subsystem" 1001 " plugin: %s\n", dev->transport->name); 1002 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1003 return TCM_INVALID_CDB_FIELD; 1004 } 1005 /* 1006 * For the overflow case keep the existing fabric provided 1007 * ->data_length. Otherwise for the underflow case, reset 1008 * ->data_length to the smaller SCSI expected data transfer 1009 * length. 1010 */ 1011 if (size > cmd->data_length) { 1012 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1013 cmd->residual_count = (size - cmd->data_length); 1014 } else { 1015 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1016 cmd->residual_count = (cmd->data_length - size); 1017 cmd->data_length = size; 1018 } 1019 } 1020 1021 return 0; 1022 1023 } 1024 1025 /* 1026 * Used by fabric modules containing a local struct se_cmd within their 1027 * fabric dependent per I/O descriptor. 1028 */ 1029 void transport_init_se_cmd( 1030 struct se_cmd *cmd, 1031 struct target_core_fabric_ops *tfo, 1032 struct se_session *se_sess, 1033 u32 data_length, 1034 int data_direction, 1035 int task_attr, 1036 unsigned char *sense_buffer) 1037 { 1038 INIT_LIST_HEAD(&cmd->se_lun_node); 1039 INIT_LIST_HEAD(&cmd->se_delayed_node); 1040 INIT_LIST_HEAD(&cmd->se_qf_node); 1041 INIT_LIST_HEAD(&cmd->se_cmd_list); 1042 INIT_LIST_HEAD(&cmd->state_list); 1043 init_completion(&cmd->transport_lun_fe_stop_comp); 1044 init_completion(&cmd->transport_lun_stop_comp); 1045 init_completion(&cmd->t_transport_stop_comp); 1046 init_completion(&cmd->cmd_wait_comp); 1047 init_completion(&cmd->task_stop_comp); 1048 spin_lock_init(&cmd->t_state_lock); 1049 cmd->transport_state = CMD_T_DEV_ACTIVE; 1050 1051 cmd->se_tfo = tfo; 1052 cmd->se_sess = se_sess; 1053 cmd->data_length = data_length; 1054 cmd->data_direction = data_direction; 1055 cmd->sam_task_attr = task_attr; 1056 cmd->sense_buffer = sense_buffer; 1057 1058 cmd->state_active = false; 1059 } 1060 EXPORT_SYMBOL(transport_init_se_cmd); 1061 1062 static sense_reason_t 1063 transport_check_alloc_task_attr(struct se_cmd *cmd) 1064 { 1065 struct se_device *dev = cmd->se_dev; 1066 1067 /* 1068 * Check if SAM Task Attribute emulation is enabled for this 1069 * struct se_device storage object 1070 */ 1071 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1072 return 0; 1073 1074 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1075 pr_debug("SAM Task Attribute ACA" 1076 " emulation is not supported\n"); 1077 return TCM_INVALID_CDB_FIELD; 1078 } 1079 /* 1080 * Used to determine when ORDERED commands should go from 1081 * Dormant to Active status. 1082 */ 1083 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1084 smp_mb__after_atomic_inc(); 1085 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1086 cmd->se_ordered_id, cmd->sam_task_attr, 1087 dev->transport->name); 1088 return 0; 1089 } 1090 1091 sense_reason_t 1092 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1093 { 1094 struct se_device *dev = cmd->se_dev; 1095 unsigned long flags; 1096 sense_reason_t ret; 1097 1098 /* 1099 * Ensure that the received CDB is less than the max (252 + 8) bytes 1100 * for VARIABLE_LENGTH_CMD 1101 */ 1102 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1103 pr_err("Received SCSI CDB with command_size: %d that" 1104 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1105 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1106 return TCM_INVALID_CDB_FIELD; 1107 } 1108 /* 1109 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1110 * allocate the additional extended CDB buffer now.. Otherwise 1111 * setup the pointer from __t_task_cdb to t_task_cdb. 1112 */ 1113 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1114 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1115 GFP_KERNEL); 1116 if (!cmd->t_task_cdb) { 1117 pr_err("Unable to allocate cmd->t_task_cdb" 1118 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1119 scsi_command_size(cdb), 1120 (unsigned long)sizeof(cmd->__t_task_cdb)); 1121 return TCM_OUT_OF_RESOURCES; 1122 } 1123 } else 1124 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1125 /* 1126 * Copy the original CDB into cmd-> 1127 */ 1128 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1129 1130 /* 1131 * Check for an existing UNIT ATTENTION condition 1132 */ 1133 ret = target_scsi3_ua_check(cmd); 1134 if (ret) 1135 return ret; 1136 1137 ret = target_alua_state_check(cmd); 1138 if (ret) 1139 return ret; 1140 1141 ret = target_check_reservation(cmd); 1142 if (ret) { 1143 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1144 return ret; 1145 } 1146 1147 ret = dev->transport->parse_cdb(cmd); 1148 if (ret) 1149 return ret; 1150 1151 ret = transport_check_alloc_task_attr(cmd); 1152 if (ret) 1153 return ret; 1154 1155 spin_lock_irqsave(&cmd->t_state_lock, flags); 1156 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1157 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1158 1159 spin_lock(&cmd->se_lun->lun_sep_lock); 1160 if (cmd->se_lun->lun_sep) 1161 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1162 spin_unlock(&cmd->se_lun->lun_sep_lock); 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1166 1167 /* 1168 * Used by fabric module frontends to queue tasks directly. 1169 * Many only be used from process context only 1170 */ 1171 int transport_handle_cdb_direct( 1172 struct se_cmd *cmd) 1173 { 1174 sense_reason_t ret; 1175 1176 if (!cmd->se_lun) { 1177 dump_stack(); 1178 pr_err("cmd->se_lun is NULL\n"); 1179 return -EINVAL; 1180 } 1181 if (in_interrupt()) { 1182 dump_stack(); 1183 pr_err("transport_generic_handle_cdb cannot be called" 1184 " from interrupt context\n"); 1185 return -EINVAL; 1186 } 1187 /* 1188 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1189 * outstanding descriptors are handled correctly during shutdown via 1190 * transport_wait_for_tasks() 1191 * 1192 * Also, we don't take cmd->t_state_lock here as we only expect 1193 * this to be called for initial descriptor submission. 1194 */ 1195 cmd->t_state = TRANSPORT_NEW_CMD; 1196 cmd->transport_state |= CMD_T_ACTIVE; 1197 1198 /* 1199 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1200 * so follow TRANSPORT_NEW_CMD processing thread context usage 1201 * and call transport_generic_request_failure() if necessary.. 1202 */ 1203 ret = transport_generic_new_cmd(cmd); 1204 if (ret) 1205 transport_generic_request_failure(cmd, ret); 1206 return 0; 1207 } 1208 EXPORT_SYMBOL(transport_handle_cdb_direct); 1209 1210 static sense_reason_t 1211 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1212 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1213 { 1214 if (!sgl || !sgl_count) 1215 return 0; 1216 1217 /* 1218 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1219 * scatterlists already have been set to follow what the fabric 1220 * passes for the original expected data transfer length. 1221 */ 1222 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1223 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1224 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1225 return TCM_INVALID_CDB_FIELD; 1226 } 1227 1228 cmd->t_data_sg = sgl; 1229 cmd->t_data_nents = sgl_count; 1230 1231 if (sgl_bidi && sgl_bidi_count) { 1232 cmd->t_bidi_data_sg = sgl_bidi; 1233 cmd->t_bidi_data_nents = sgl_bidi_count; 1234 } 1235 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1236 return 0; 1237 } 1238 1239 /* 1240 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1241 * se_cmd + use pre-allocated SGL memory. 1242 * 1243 * @se_cmd: command descriptor to submit 1244 * @se_sess: associated se_sess for endpoint 1245 * @cdb: pointer to SCSI CDB 1246 * @sense: pointer to SCSI sense buffer 1247 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1248 * @data_length: fabric expected data transfer length 1249 * @task_addr: SAM task attribute 1250 * @data_dir: DMA data direction 1251 * @flags: flags for command submission from target_sc_flags_tables 1252 * @sgl: struct scatterlist memory for unidirectional mapping 1253 * @sgl_count: scatterlist count for unidirectional mapping 1254 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1255 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1256 * 1257 * Returns non zero to signal active I/O shutdown failure. All other 1258 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1259 * but still return zero here. 1260 * 1261 * This may only be called from process context, and also currently 1262 * assumes internal allocation of fabric payload buffer by target-core. 1263 */ 1264 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1265 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1266 u32 data_length, int task_attr, int data_dir, int flags, 1267 struct scatterlist *sgl, u32 sgl_count, 1268 struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1269 { 1270 struct se_portal_group *se_tpg; 1271 sense_reason_t rc; 1272 int ret; 1273 1274 se_tpg = se_sess->se_tpg; 1275 BUG_ON(!se_tpg); 1276 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1277 BUG_ON(in_interrupt()); 1278 /* 1279 * Initialize se_cmd for target operation. From this point 1280 * exceptions are handled by sending exception status via 1281 * target_core_fabric_ops->queue_status() callback 1282 */ 1283 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1284 data_length, data_dir, task_attr, sense); 1285 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1286 se_cmd->unknown_data_length = 1; 1287 /* 1288 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1289 * se_sess->sess_cmd_list. A second kref_get here is necessary 1290 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1291 * kref_put() to happen during fabric packet acknowledgement. 1292 */ 1293 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1294 if (ret) 1295 return ret; 1296 /* 1297 * Signal bidirectional data payloads to target-core 1298 */ 1299 if (flags & TARGET_SCF_BIDI_OP) 1300 se_cmd->se_cmd_flags |= SCF_BIDI; 1301 /* 1302 * Locate se_lun pointer and attach it to struct se_cmd 1303 */ 1304 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1305 if (rc) { 1306 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1307 target_put_sess_cmd(se_sess, se_cmd); 1308 return 0; 1309 } 1310 1311 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1312 if (rc != 0) { 1313 transport_generic_request_failure(se_cmd, rc); 1314 return 0; 1315 } 1316 /* 1317 * When a non zero sgl_count has been passed perform SGL passthrough 1318 * mapping for pre-allocated fabric memory instead of having target 1319 * core perform an internal SGL allocation.. 1320 */ 1321 if (sgl_count != 0) { 1322 BUG_ON(!sgl); 1323 1324 /* 1325 * A work-around for tcm_loop as some userspace code via 1326 * scsi-generic do not memset their associated read buffers, 1327 * so go ahead and do that here for type non-data CDBs. Also 1328 * note that this is currently guaranteed to be a single SGL 1329 * for this case by target core in target_setup_cmd_from_cdb() 1330 * -> transport_generic_cmd_sequencer(). 1331 */ 1332 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1333 se_cmd->data_direction == DMA_FROM_DEVICE) { 1334 unsigned char *buf = NULL; 1335 1336 if (sgl) 1337 buf = kmap(sg_page(sgl)) + sgl->offset; 1338 1339 if (buf) { 1340 memset(buf, 0, sgl->length); 1341 kunmap(sg_page(sgl)); 1342 } 1343 } 1344 1345 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1346 sgl_bidi, sgl_bidi_count); 1347 if (rc != 0) { 1348 transport_generic_request_failure(se_cmd, rc); 1349 return 0; 1350 } 1351 } 1352 /* 1353 * Check if we need to delay processing because of ALUA 1354 * Active/NonOptimized primary access state.. 1355 */ 1356 core_alua_check_nonop_delay(se_cmd); 1357 1358 transport_handle_cdb_direct(se_cmd); 1359 return 0; 1360 } 1361 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1362 1363 /* 1364 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1365 * 1366 * @se_cmd: command descriptor to submit 1367 * @se_sess: associated se_sess for endpoint 1368 * @cdb: pointer to SCSI CDB 1369 * @sense: pointer to SCSI sense buffer 1370 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1371 * @data_length: fabric expected data transfer length 1372 * @task_addr: SAM task attribute 1373 * @data_dir: DMA data direction 1374 * @flags: flags for command submission from target_sc_flags_tables 1375 * 1376 * Returns non zero to signal active I/O shutdown failure. All other 1377 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1378 * but still return zero here. 1379 * 1380 * This may only be called from process context, and also currently 1381 * assumes internal allocation of fabric payload buffer by target-core. 1382 * 1383 * It also assumes interal target core SGL memory allocation. 1384 */ 1385 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1386 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1387 u32 data_length, int task_attr, int data_dir, int flags) 1388 { 1389 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1390 unpacked_lun, data_length, task_attr, data_dir, 1391 flags, NULL, 0, NULL, 0); 1392 } 1393 EXPORT_SYMBOL(target_submit_cmd); 1394 1395 static void target_complete_tmr_failure(struct work_struct *work) 1396 { 1397 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1398 1399 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1400 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1401 1402 transport_cmd_check_stop_to_fabric(se_cmd); 1403 } 1404 1405 /** 1406 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1407 * for TMR CDBs 1408 * 1409 * @se_cmd: command descriptor to submit 1410 * @se_sess: associated se_sess for endpoint 1411 * @sense: pointer to SCSI sense buffer 1412 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1413 * @fabric_context: fabric context for TMR req 1414 * @tm_type: Type of TM request 1415 * @gfp: gfp type for caller 1416 * @tag: referenced task tag for TMR_ABORT_TASK 1417 * @flags: submit cmd flags 1418 * 1419 * Callable from all contexts. 1420 **/ 1421 1422 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1423 unsigned char *sense, u32 unpacked_lun, 1424 void *fabric_tmr_ptr, unsigned char tm_type, 1425 gfp_t gfp, unsigned int tag, int flags) 1426 { 1427 struct se_portal_group *se_tpg; 1428 int ret; 1429 1430 se_tpg = se_sess->se_tpg; 1431 BUG_ON(!se_tpg); 1432 1433 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1434 0, DMA_NONE, MSG_SIMPLE_TAG, sense); 1435 /* 1436 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1437 * allocation failure. 1438 */ 1439 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1440 if (ret < 0) 1441 return -ENOMEM; 1442 1443 if (tm_type == TMR_ABORT_TASK) 1444 se_cmd->se_tmr_req->ref_task_tag = tag; 1445 1446 /* See target_submit_cmd for commentary */ 1447 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1448 if (ret) { 1449 core_tmr_release_req(se_cmd->se_tmr_req); 1450 return ret; 1451 } 1452 1453 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1454 if (ret) { 1455 /* 1456 * For callback during failure handling, push this work off 1457 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1458 */ 1459 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1460 schedule_work(&se_cmd->work); 1461 return 0; 1462 } 1463 transport_generic_handle_tmr(se_cmd); 1464 return 0; 1465 } 1466 EXPORT_SYMBOL(target_submit_tmr); 1467 1468 /* 1469 * If the cmd is active, request it to be stopped and sleep until it 1470 * has completed. 1471 */ 1472 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1473 { 1474 bool was_active = false; 1475 1476 if (cmd->transport_state & CMD_T_BUSY) { 1477 cmd->transport_state |= CMD_T_REQUEST_STOP; 1478 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1479 1480 pr_debug("cmd %p waiting to complete\n", cmd); 1481 wait_for_completion(&cmd->task_stop_comp); 1482 pr_debug("cmd %p stopped successfully\n", cmd); 1483 1484 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1485 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1486 cmd->transport_state &= ~CMD_T_BUSY; 1487 was_active = true; 1488 } 1489 1490 return was_active; 1491 } 1492 1493 /* 1494 * Handle SAM-esque emulation for generic transport request failures. 1495 */ 1496 void transport_generic_request_failure(struct se_cmd *cmd, 1497 sense_reason_t sense_reason) 1498 { 1499 int ret = 0; 1500 1501 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1502 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1503 cmd->t_task_cdb[0]); 1504 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1505 cmd->se_tfo->get_cmd_state(cmd), 1506 cmd->t_state, sense_reason); 1507 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1508 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1509 (cmd->transport_state & CMD_T_STOP) != 0, 1510 (cmd->transport_state & CMD_T_SENT) != 0); 1511 1512 /* 1513 * For SAM Task Attribute emulation for failed struct se_cmd 1514 */ 1515 transport_complete_task_attr(cmd); 1516 1517 switch (sense_reason) { 1518 case TCM_NON_EXISTENT_LUN: 1519 case TCM_UNSUPPORTED_SCSI_OPCODE: 1520 case TCM_INVALID_CDB_FIELD: 1521 case TCM_INVALID_PARAMETER_LIST: 1522 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1523 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1524 case TCM_UNKNOWN_MODE_PAGE: 1525 case TCM_WRITE_PROTECTED: 1526 case TCM_ADDRESS_OUT_OF_RANGE: 1527 case TCM_CHECK_CONDITION_ABORT_CMD: 1528 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1529 case TCM_CHECK_CONDITION_NOT_READY: 1530 break; 1531 case TCM_OUT_OF_RESOURCES: 1532 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1533 break; 1534 case TCM_RESERVATION_CONFLICT: 1535 /* 1536 * No SENSE Data payload for this case, set SCSI Status 1537 * and queue the response to $FABRIC_MOD. 1538 * 1539 * Uses linux/include/scsi/scsi.h SAM status codes defs 1540 */ 1541 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1542 /* 1543 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1544 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1545 * CONFLICT STATUS. 1546 * 1547 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1548 */ 1549 if (cmd->se_sess && 1550 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1551 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1552 cmd->orig_fe_lun, 0x2C, 1553 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1554 1555 ret = cmd->se_tfo->queue_status(cmd); 1556 if (ret == -EAGAIN || ret == -ENOMEM) 1557 goto queue_full; 1558 goto check_stop; 1559 default: 1560 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1561 cmd->t_task_cdb[0], sense_reason); 1562 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1563 break; 1564 } 1565 1566 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1567 if (ret == -EAGAIN || ret == -ENOMEM) 1568 goto queue_full; 1569 1570 check_stop: 1571 transport_lun_remove_cmd(cmd); 1572 if (!transport_cmd_check_stop_to_fabric(cmd)) 1573 ; 1574 return; 1575 1576 queue_full: 1577 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1578 transport_handle_queue_full(cmd, cmd->se_dev); 1579 } 1580 EXPORT_SYMBOL(transport_generic_request_failure); 1581 1582 static void __target_execute_cmd(struct se_cmd *cmd) 1583 { 1584 sense_reason_t ret; 1585 1586 spin_lock_irq(&cmd->t_state_lock); 1587 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT); 1588 spin_unlock_irq(&cmd->t_state_lock); 1589 1590 if (cmd->execute_cmd) { 1591 ret = cmd->execute_cmd(cmd); 1592 if (ret) { 1593 spin_lock_irq(&cmd->t_state_lock); 1594 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1595 spin_unlock_irq(&cmd->t_state_lock); 1596 1597 transport_generic_request_failure(cmd, ret); 1598 } 1599 } 1600 } 1601 1602 static bool target_handle_task_attr(struct se_cmd *cmd) 1603 { 1604 struct se_device *dev = cmd->se_dev; 1605 1606 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1607 return false; 1608 1609 /* 1610 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1611 * to allow the passed struct se_cmd list of tasks to the front of the list. 1612 */ 1613 switch (cmd->sam_task_attr) { 1614 case MSG_HEAD_TAG: 1615 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1616 "se_ordered_id: %u\n", 1617 cmd->t_task_cdb[0], cmd->se_ordered_id); 1618 return false; 1619 case MSG_ORDERED_TAG: 1620 atomic_inc(&dev->dev_ordered_sync); 1621 smp_mb__after_atomic_inc(); 1622 1623 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1624 " se_ordered_id: %u\n", 1625 cmd->t_task_cdb[0], cmd->se_ordered_id); 1626 1627 /* 1628 * Execute an ORDERED command if no other older commands 1629 * exist that need to be completed first. 1630 */ 1631 if (!atomic_read(&dev->simple_cmds)) 1632 return false; 1633 break; 1634 default: 1635 /* 1636 * For SIMPLE and UNTAGGED Task Attribute commands 1637 */ 1638 atomic_inc(&dev->simple_cmds); 1639 smp_mb__after_atomic_inc(); 1640 break; 1641 } 1642 1643 if (atomic_read(&dev->dev_ordered_sync) == 0) 1644 return false; 1645 1646 spin_lock(&dev->delayed_cmd_lock); 1647 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1648 spin_unlock(&dev->delayed_cmd_lock); 1649 1650 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1651 " delayed CMD list, se_ordered_id: %u\n", 1652 cmd->t_task_cdb[0], cmd->sam_task_attr, 1653 cmd->se_ordered_id); 1654 return true; 1655 } 1656 1657 void target_execute_cmd(struct se_cmd *cmd) 1658 { 1659 /* 1660 * If the received CDB has aleady been aborted stop processing it here. 1661 */ 1662 if (transport_check_aborted_status(cmd, 1)) { 1663 complete(&cmd->transport_lun_stop_comp); 1664 return; 1665 } 1666 1667 /* 1668 * Determine if IOCTL context caller in requesting the stopping of this 1669 * command for LUN shutdown purposes. 1670 */ 1671 spin_lock_irq(&cmd->t_state_lock); 1672 if (cmd->transport_state & CMD_T_LUN_STOP) { 1673 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n", 1674 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd)); 1675 1676 cmd->transport_state &= ~CMD_T_ACTIVE; 1677 spin_unlock_irq(&cmd->t_state_lock); 1678 complete(&cmd->transport_lun_stop_comp); 1679 return; 1680 } 1681 /* 1682 * Determine if frontend context caller is requesting the stopping of 1683 * this command for frontend exceptions. 1684 */ 1685 if (cmd->transport_state & CMD_T_STOP) { 1686 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1687 __func__, __LINE__, 1688 cmd->se_tfo->get_task_tag(cmd)); 1689 1690 spin_unlock_irq(&cmd->t_state_lock); 1691 complete(&cmd->t_transport_stop_comp); 1692 return; 1693 } 1694 1695 cmd->t_state = TRANSPORT_PROCESSING; 1696 cmd->transport_state |= CMD_T_ACTIVE; 1697 spin_unlock_irq(&cmd->t_state_lock); 1698 1699 if (!target_handle_task_attr(cmd)) 1700 __target_execute_cmd(cmd); 1701 } 1702 EXPORT_SYMBOL(target_execute_cmd); 1703 1704 /* 1705 * Process all commands up to the last received ORDERED task attribute which 1706 * requires another blocking boundary 1707 */ 1708 static void target_restart_delayed_cmds(struct se_device *dev) 1709 { 1710 for (;;) { 1711 struct se_cmd *cmd; 1712 1713 spin_lock(&dev->delayed_cmd_lock); 1714 if (list_empty(&dev->delayed_cmd_list)) { 1715 spin_unlock(&dev->delayed_cmd_lock); 1716 break; 1717 } 1718 1719 cmd = list_entry(dev->delayed_cmd_list.next, 1720 struct se_cmd, se_delayed_node); 1721 list_del(&cmd->se_delayed_node); 1722 spin_unlock(&dev->delayed_cmd_lock); 1723 1724 __target_execute_cmd(cmd); 1725 1726 if (cmd->sam_task_attr == MSG_ORDERED_TAG) 1727 break; 1728 } 1729 } 1730 1731 /* 1732 * Called from I/O completion to determine which dormant/delayed 1733 * and ordered cmds need to have their tasks added to the execution queue. 1734 */ 1735 static void transport_complete_task_attr(struct se_cmd *cmd) 1736 { 1737 struct se_device *dev = cmd->se_dev; 1738 1739 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1740 return; 1741 1742 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 1743 atomic_dec(&dev->simple_cmds); 1744 smp_mb__after_atomic_dec(); 1745 dev->dev_cur_ordered_id++; 1746 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1747 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1748 cmd->se_ordered_id); 1749 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 1750 dev->dev_cur_ordered_id++; 1751 pr_debug("Incremented dev_cur_ordered_id: %u for" 1752 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1753 cmd->se_ordered_id); 1754 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 1755 atomic_dec(&dev->dev_ordered_sync); 1756 smp_mb__after_atomic_dec(); 1757 1758 dev->dev_cur_ordered_id++; 1759 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1760 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1761 } 1762 1763 target_restart_delayed_cmds(dev); 1764 } 1765 1766 static void transport_complete_qf(struct se_cmd *cmd) 1767 { 1768 int ret = 0; 1769 1770 transport_complete_task_attr(cmd); 1771 1772 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1773 ret = cmd->se_tfo->queue_status(cmd); 1774 if (ret) 1775 goto out; 1776 } 1777 1778 switch (cmd->data_direction) { 1779 case DMA_FROM_DEVICE: 1780 ret = cmd->se_tfo->queue_data_in(cmd); 1781 break; 1782 case DMA_TO_DEVICE: 1783 if (cmd->t_bidi_data_sg) { 1784 ret = cmd->se_tfo->queue_data_in(cmd); 1785 if (ret < 0) 1786 break; 1787 } 1788 /* Fall through for DMA_TO_DEVICE */ 1789 case DMA_NONE: 1790 ret = cmd->se_tfo->queue_status(cmd); 1791 break; 1792 default: 1793 break; 1794 } 1795 1796 out: 1797 if (ret < 0) { 1798 transport_handle_queue_full(cmd, cmd->se_dev); 1799 return; 1800 } 1801 transport_lun_remove_cmd(cmd); 1802 transport_cmd_check_stop_to_fabric(cmd); 1803 } 1804 1805 static void transport_handle_queue_full( 1806 struct se_cmd *cmd, 1807 struct se_device *dev) 1808 { 1809 spin_lock_irq(&dev->qf_cmd_lock); 1810 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1811 atomic_inc(&dev->dev_qf_count); 1812 smp_mb__after_atomic_inc(); 1813 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1814 1815 schedule_work(&cmd->se_dev->qf_work_queue); 1816 } 1817 1818 static void target_complete_ok_work(struct work_struct *work) 1819 { 1820 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1821 int ret; 1822 1823 /* 1824 * Check if we need to move delayed/dormant tasks from cmds on the 1825 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1826 * Attribute. 1827 */ 1828 transport_complete_task_attr(cmd); 1829 1830 /* 1831 * Check to schedule QUEUE_FULL work, or execute an existing 1832 * cmd->transport_qf_callback() 1833 */ 1834 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 1835 schedule_work(&cmd->se_dev->qf_work_queue); 1836 1837 /* 1838 * Check if we need to send a sense buffer from 1839 * the struct se_cmd in question. 1840 */ 1841 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1842 WARN_ON(!cmd->scsi_status); 1843 ret = transport_send_check_condition_and_sense( 1844 cmd, 0, 1); 1845 if (ret == -EAGAIN || ret == -ENOMEM) 1846 goto queue_full; 1847 1848 transport_lun_remove_cmd(cmd); 1849 transport_cmd_check_stop_to_fabric(cmd); 1850 return; 1851 } 1852 /* 1853 * Check for a callback, used by amongst other things 1854 * XDWRITE_READ_10 emulation. 1855 */ 1856 if (cmd->transport_complete_callback) 1857 cmd->transport_complete_callback(cmd); 1858 1859 switch (cmd->data_direction) { 1860 case DMA_FROM_DEVICE: 1861 spin_lock(&cmd->se_lun->lun_sep_lock); 1862 if (cmd->se_lun->lun_sep) { 1863 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1864 cmd->data_length; 1865 } 1866 spin_unlock(&cmd->se_lun->lun_sep_lock); 1867 1868 ret = cmd->se_tfo->queue_data_in(cmd); 1869 if (ret == -EAGAIN || ret == -ENOMEM) 1870 goto queue_full; 1871 break; 1872 case DMA_TO_DEVICE: 1873 spin_lock(&cmd->se_lun->lun_sep_lock); 1874 if (cmd->se_lun->lun_sep) { 1875 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 1876 cmd->data_length; 1877 } 1878 spin_unlock(&cmd->se_lun->lun_sep_lock); 1879 /* 1880 * Check if we need to send READ payload for BIDI-COMMAND 1881 */ 1882 if (cmd->t_bidi_data_sg) { 1883 spin_lock(&cmd->se_lun->lun_sep_lock); 1884 if (cmd->se_lun->lun_sep) { 1885 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 1886 cmd->data_length; 1887 } 1888 spin_unlock(&cmd->se_lun->lun_sep_lock); 1889 ret = cmd->se_tfo->queue_data_in(cmd); 1890 if (ret == -EAGAIN || ret == -ENOMEM) 1891 goto queue_full; 1892 break; 1893 } 1894 /* Fall through for DMA_TO_DEVICE */ 1895 case DMA_NONE: 1896 ret = cmd->se_tfo->queue_status(cmd); 1897 if (ret == -EAGAIN || ret == -ENOMEM) 1898 goto queue_full; 1899 break; 1900 default: 1901 break; 1902 } 1903 1904 transport_lun_remove_cmd(cmd); 1905 transport_cmd_check_stop_to_fabric(cmd); 1906 return; 1907 1908 queue_full: 1909 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 1910 " data_direction: %d\n", cmd, cmd->data_direction); 1911 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1912 transport_handle_queue_full(cmd, cmd->se_dev); 1913 } 1914 1915 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 1916 { 1917 struct scatterlist *sg; 1918 int count; 1919 1920 for_each_sg(sgl, sg, nents, count) 1921 __free_page(sg_page(sg)); 1922 1923 kfree(sgl); 1924 } 1925 1926 static inline void transport_free_pages(struct se_cmd *cmd) 1927 { 1928 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) 1929 return; 1930 1931 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 1932 cmd->t_data_sg = NULL; 1933 cmd->t_data_nents = 0; 1934 1935 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 1936 cmd->t_bidi_data_sg = NULL; 1937 cmd->t_bidi_data_nents = 0; 1938 } 1939 1940 /** 1941 * transport_release_cmd - free a command 1942 * @cmd: command to free 1943 * 1944 * This routine unconditionally frees a command, and reference counting 1945 * or list removal must be done in the caller. 1946 */ 1947 static int transport_release_cmd(struct se_cmd *cmd) 1948 { 1949 BUG_ON(!cmd->se_tfo); 1950 1951 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 1952 core_tmr_release_req(cmd->se_tmr_req); 1953 if (cmd->t_task_cdb != cmd->__t_task_cdb) 1954 kfree(cmd->t_task_cdb); 1955 /* 1956 * If this cmd has been setup with target_get_sess_cmd(), drop 1957 * the kref and call ->release_cmd() in kref callback. 1958 */ 1959 if (cmd->check_release != 0) 1960 return target_put_sess_cmd(cmd->se_sess, cmd); 1961 1962 cmd->se_tfo->release_cmd(cmd); 1963 return 1; 1964 } 1965 1966 /** 1967 * transport_put_cmd - release a reference to a command 1968 * @cmd: command to release 1969 * 1970 * This routine releases our reference to the command and frees it if possible. 1971 */ 1972 static int transport_put_cmd(struct se_cmd *cmd) 1973 { 1974 unsigned long flags; 1975 1976 spin_lock_irqsave(&cmd->t_state_lock, flags); 1977 if (atomic_read(&cmd->t_fe_count) && 1978 !atomic_dec_and_test(&cmd->t_fe_count)) { 1979 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1980 return 0; 1981 } 1982 1983 if (cmd->transport_state & CMD_T_DEV_ACTIVE) { 1984 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 1985 target_remove_from_state_list(cmd); 1986 } 1987 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 1988 1989 transport_free_pages(cmd); 1990 return transport_release_cmd(cmd); 1991 } 1992 1993 void *transport_kmap_data_sg(struct se_cmd *cmd) 1994 { 1995 struct scatterlist *sg = cmd->t_data_sg; 1996 struct page **pages; 1997 int i; 1998 1999 /* 2000 * We need to take into account a possible offset here for fabrics like 2001 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2002 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2003 */ 2004 if (!cmd->t_data_nents) 2005 return NULL; 2006 2007 BUG_ON(!sg); 2008 if (cmd->t_data_nents == 1) 2009 return kmap(sg_page(sg)) + sg->offset; 2010 2011 /* >1 page. use vmap */ 2012 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2013 if (!pages) 2014 return NULL; 2015 2016 /* convert sg[] to pages[] */ 2017 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2018 pages[i] = sg_page(sg); 2019 } 2020 2021 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2022 kfree(pages); 2023 if (!cmd->t_data_vmap) 2024 return NULL; 2025 2026 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2027 } 2028 EXPORT_SYMBOL(transport_kmap_data_sg); 2029 2030 void transport_kunmap_data_sg(struct se_cmd *cmd) 2031 { 2032 if (!cmd->t_data_nents) { 2033 return; 2034 } else if (cmd->t_data_nents == 1) { 2035 kunmap(sg_page(cmd->t_data_sg)); 2036 return; 2037 } 2038 2039 vunmap(cmd->t_data_vmap); 2040 cmd->t_data_vmap = NULL; 2041 } 2042 EXPORT_SYMBOL(transport_kunmap_data_sg); 2043 2044 static int 2045 transport_generic_get_mem(struct se_cmd *cmd) 2046 { 2047 u32 length = cmd->data_length; 2048 unsigned int nents; 2049 struct page *page; 2050 gfp_t zero_flag; 2051 int i = 0; 2052 2053 nents = DIV_ROUND_UP(length, PAGE_SIZE); 2054 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL); 2055 if (!cmd->t_data_sg) 2056 return -ENOMEM; 2057 2058 cmd->t_data_nents = nents; 2059 sg_init_table(cmd->t_data_sg, nents); 2060 2061 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO; 2062 2063 while (length) { 2064 u32 page_len = min_t(u32, length, PAGE_SIZE); 2065 page = alloc_page(GFP_KERNEL | zero_flag); 2066 if (!page) 2067 goto out; 2068 2069 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0); 2070 length -= page_len; 2071 i++; 2072 } 2073 return 0; 2074 2075 out: 2076 while (i > 0) { 2077 i--; 2078 __free_page(sg_page(&cmd->t_data_sg[i])); 2079 } 2080 kfree(cmd->t_data_sg); 2081 cmd->t_data_sg = NULL; 2082 return -ENOMEM; 2083 } 2084 2085 /* 2086 * Allocate any required resources to execute the command. For writes we 2087 * might not have the payload yet, so notify the fabric via a call to 2088 * ->write_pending instead. Otherwise place it on the execution queue. 2089 */ 2090 sense_reason_t 2091 transport_generic_new_cmd(struct se_cmd *cmd) 2092 { 2093 int ret = 0; 2094 2095 /* 2096 * Determine is the TCM fabric module has already allocated physical 2097 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2098 * beforehand. 2099 */ 2100 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2101 cmd->data_length) { 2102 ret = transport_generic_get_mem(cmd); 2103 if (ret < 0) 2104 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2105 } 2106 2107 atomic_inc(&cmd->t_fe_count); 2108 2109 /* 2110 * If this command is not a write we can execute it right here, 2111 * for write buffers we need to notify the fabric driver first 2112 * and let it call back once the write buffers are ready. 2113 */ 2114 target_add_to_state_list(cmd); 2115 if (cmd->data_direction != DMA_TO_DEVICE) { 2116 target_execute_cmd(cmd); 2117 return 0; 2118 } 2119 2120 spin_lock_irq(&cmd->t_state_lock); 2121 cmd->t_state = TRANSPORT_WRITE_PENDING; 2122 spin_unlock_irq(&cmd->t_state_lock); 2123 2124 transport_cmd_check_stop(cmd, false); 2125 2126 ret = cmd->se_tfo->write_pending(cmd); 2127 if (ret == -EAGAIN || ret == -ENOMEM) 2128 goto queue_full; 2129 2130 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2131 WARN_ON(ret); 2132 2133 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2134 2135 queue_full: 2136 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2137 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2138 transport_handle_queue_full(cmd, cmd->se_dev); 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(transport_generic_new_cmd); 2142 2143 static void transport_write_pending_qf(struct se_cmd *cmd) 2144 { 2145 int ret; 2146 2147 ret = cmd->se_tfo->write_pending(cmd); 2148 if (ret == -EAGAIN || ret == -ENOMEM) { 2149 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2150 cmd); 2151 transport_handle_queue_full(cmd, cmd->se_dev); 2152 } 2153 } 2154 2155 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2156 { 2157 int ret = 0; 2158 2159 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2160 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2161 transport_wait_for_tasks(cmd); 2162 2163 ret = transport_release_cmd(cmd); 2164 } else { 2165 if (wait_for_tasks) 2166 transport_wait_for_tasks(cmd); 2167 2168 if (cmd->se_lun) 2169 transport_lun_remove_cmd(cmd); 2170 2171 ret = transport_put_cmd(cmd); 2172 } 2173 return ret; 2174 } 2175 EXPORT_SYMBOL(transport_generic_free_cmd); 2176 2177 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2178 * @se_sess: session to reference 2179 * @se_cmd: command descriptor to add 2180 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2181 */ 2182 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2183 bool ack_kref) 2184 { 2185 unsigned long flags; 2186 int ret = 0; 2187 2188 kref_init(&se_cmd->cmd_kref); 2189 /* 2190 * Add a second kref if the fabric caller is expecting to handle 2191 * fabric acknowledgement that requires two target_put_sess_cmd() 2192 * invocations before se_cmd descriptor release. 2193 */ 2194 if (ack_kref == true) { 2195 kref_get(&se_cmd->cmd_kref); 2196 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2197 } 2198 2199 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2200 if (se_sess->sess_tearing_down) { 2201 ret = -ESHUTDOWN; 2202 goto out; 2203 } 2204 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2205 se_cmd->check_release = 1; 2206 2207 out: 2208 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2209 return ret; 2210 } 2211 EXPORT_SYMBOL(target_get_sess_cmd); 2212 2213 static void target_release_cmd_kref(struct kref *kref) 2214 { 2215 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2216 struct se_session *se_sess = se_cmd->se_sess; 2217 2218 if (list_empty(&se_cmd->se_cmd_list)) { 2219 spin_unlock(&se_sess->sess_cmd_lock); 2220 se_cmd->se_tfo->release_cmd(se_cmd); 2221 return; 2222 } 2223 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2224 spin_unlock(&se_sess->sess_cmd_lock); 2225 complete(&se_cmd->cmd_wait_comp); 2226 return; 2227 } 2228 list_del(&se_cmd->se_cmd_list); 2229 spin_unlock(&se_sess->sess_cmd_lock); 2230 2231 se_cmd->se_tfo->release_cmd(se_cmd); 2232 } 2233 2234 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2235 * @se_sess: session to reference 2236 * @se_cmd: command descriptor to drop 2237 */ 2238 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2239 { 2240 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2241 &se_sess->sess_cmd_lock); 2242 } 2243 EXPORT_SYMBOL(target_put_sess_cmd); 2244 2245 /* target_sess_cmd_list_set_waiting - Flag all commands in 2246 * sess_cmd_list to complete cmd_wait_comp. Set 2247 * sess_tearing_down so no more commands are queued. 2248 * @se_sess: session to flag 2249 */ 2250 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2251 { 2252 struct se_cmd *se_cmd; 2253 unsigned long flags; 2254 2255 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2256 if (se_sess->sess_tearing_down) { 2257 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2258 return; 2259 } 2260 se_sess->sess_tearing_down = 1; 2261 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2262 2263 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2264 se_cmd->cmd_wait_set = 1; 2265 2266 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2267 } 2268 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2269 2270 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2271 * @se_sess: session to wait for active I/O 2272 */ 2273 void target_wait_for_sess_cmds(struct se_session *se_sess) 2274 { 2275 struct se_cmd *se_cmd, *tmp_cmd; 2276 unsigned long flags; 2277 2278 list_for_each_entry_safe(se_cmd, tmp_cmd, 2279 &se_sess->sess_wait_list, se_cmd_list) { 2280 list_del(&se_cmd->se_cmd_list); 2281 2282 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2283 " %d\n", se_cmd, se_cmd->t_state, 2284 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2285 2286 wait_for_completion(&se_cmd->cmd_wait_comp); 2287 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2288 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2289 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2290 2291 se_cmd->se_tfo->release_cmd(se_cmd); 2292 } 2293 2294 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2295 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2296 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2297 2298 } 2299 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2300 2301 /* transport_lun_wait_for_tasks(): 2302 * 2303 * Called from ConfigFS context to stop the passed struct se_cmd to allow 2304 * an struct se_lun to be successfully shutdown. 2305 */ 2306 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) 2307 { 2308 unsigned long flags; 2309 int ret = 0; 2310 2311 /* 2312 * If the frontend has already requested this struct se_cmd to 2313 * be stopped, we can safely ignore this struct se_cmd. 2314 */ 2315 spin_lock_irqsave(&cmd->t_state_lock, flags); 2316 if (cmd->transport_state & CMD_T_STOP) { 2317 cmd->transport_state &= ~CMD_T_LUN_STOP; 2318 2319 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n", 2320 cmd->se_tfo->get_task_tag(cmd)); 2321 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2322 transport_cmd_check_stop(cmd, false); 2323 return -EPERM; 2324 } 2325 cmd->transport_state |= CMD_T_LUN_FE_STOP; 2326 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2327 2328 // XXX: audit task_flags checks. 2329 spin_lock_irqsave(&cmd->t_state_lock, flags); 2330 if ((cmd->transport_state & CMD_T_BUSY) && 2331 (cmd->transport_state & CMD_T_SENT)) { 2332 if (!target_stop_cmd(cmd, &flags)) 2333 ret++; 2334 } 2335 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2336 2337 pr_debug("ConfigFS: cmd: %p stop tasks ret:" 2338 " %d\n", cmd, ret); 2339 if (!ret) { 2340 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n", 2341 cmd->se_tfo->get_task_tag(cmd)); 2342 wait_for_completion(&cmd->transport_lun_stop_comp); 2343 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n", 2344 cmd->se_tfo->get_task_tag(cmd)); 2345 } 2346 2347 return 0; 2348 } 2349 2350 static void __transport_clear_lun_from_sessions(struct se_lun *lun) 2351 { 2352 struct se_cmd *cmd = NULL; 2353 unsigned long lun_flags, cmd_flags; 2354 /* 2355 * Do exception processing and return CHECK_CONDITION status to the 2356 * Initiator Port. 2357 */ 2358 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2359 while (!list_empty(&lun->lun_cmd_list)) { 2360 cmd = list_first_entry(&lun->lun_cmd_list, 2361 struct se_cmd, se_lun_node); 2362 list_del_init(&cmd->se_lun_node); 2363 2364 spin_lock(&cmd->t_state_lock); 2365 pr_debug("SE_LUN[%d] - Setting cmd->transport" 2366 "_lun_stop for ITT: 0x%08x\n", 2367 cmd->se_lun->unpacked_lun, 2368 cmd->se_tfo->get_task_tag(cmd)); 2369 cmd->transport_state |= CMD_T_LUN_STOP; 2370 spin_unlock(&cmd->t_state_lock); 2371 2372 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2373 2374 if (!cmd->se_lun) { 2375 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n", 2376 cmd->se_tfo->get_task_tag(cmd), 2377 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2378 BUG(); 2379 } 2380 /* 2381 * If the Storage engine still owns the iscsi_cmd_t, determine 2382 * and/or stop its context. 2383 */ 2384 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport" 2385 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun, 2386 cmd->se_tfo->get_task_tag(cmd)); 2387 2388 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) { 2389 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2390 continue; 2391 } 2392 2393 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun" 2394 "_wait_for_tasks(): SUCCESS\n", 2395 cmd->se_lun->unpacked_lun, 2396 cmd->se_tfo->get_task_tag(cmd)); 2397 2398 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2399 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) { 2400 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2401 goto check_cond; 2402 } 2403 cmd->transport_state &= ~CMD_T_DEV_ACTIVE; 2404 target_remove_from_state_list(cmd); 2405 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2406 2407 /* 2408 * The Storage engine stopped this struct se_cmd before it was 2409 * send to the fabric frontend for delivery back to the 2410 * Initiator Node. Return this SCSI CDB back with an 2411 * CHECK_CONDITION status. 2412 */ 2413 check_cond: 2414 transport_send_check_condition_and_sense(cmd, 2415 TCM_NON_EXISTENT_LUN, 0); 2416 /* 2417 * If the fabric frontend is waiting for this iscsi_cmd_t to 2418 * be released, notify the waiting thread now that LU has 2419 * finished accessing it. 2420 */ 2421 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags); 2422 if (cmd->transport_state & CMD_T_LUN_FE_STOP) { 2423 pr_debug("SE_LUN[%d] - Detected FE stop for" 2424 " struct se_cmd: %p ITT: 0x%08x\n", 2425 lun->unpacked_lun, 2426 cmd, cmd->se_tfo->get_task_tag(cmd)); 2427 2428 spin_unlock_irqrestore(&cmd->t_state_lock, 2429 cmd_flags); 2430 transport_cmd_check_stop(cmd, false); 2431 complete(&cmd->transport_lun_fe_stop_comp); 2432 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2433 continue; 2434 } 2435 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n", 2436 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd)); 2437 2438 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags); 2439 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); 2440 } 2441 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); 2442 } 2443 2444 static int transport_clear_lun_thread(void *p) 2445 { 2446 struct se_lun *lun = p; 2447 2448 __transport_clear_lun_from_sessions(lun); 2449 complete(&lun->lun_shutdown_comp); 2450 2451 return 0; 2452 } 2453 2454 int transport_clear_lun_from_sessions(struct se_lun *lun) 2455 { 2456 struct task_struct *kt; 2457 2458 kt = kthread_run(transport_clear_lun_thread, lun, 2459 "tcm_cl_%u", lun->unpacked_lun); 2460 if (IS_ERR(kt)) { 2461 pr_err("Unable to start clear_lun thread\n"); 2462 return PTR_ERR(kt); 2463 } 2464 wait_for_completion(&lun->lun_shutdown_comp); 2465 2466 return 0; 2467 } 2468 2469 /** 2470 * transport_wait_for_tasks - wait for completion to occur 2471 * @cmd: command to wait 2472 * 2473 * Called from frontend fabric context to wait for storage engine 2474 * to pause and/or release frontend generated struct se_cmd. 2475 */ 2476 bool transport_wait_for_tasks(struct se_cmd *cmd) 2477 { 2478 unsigned long flags; 2479 2480 spin_lock_irqsave(&cmd->t_state_lock, flags); 2481 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2482 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2483 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2484 return false; 2485 } 2486 2487 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2488 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2489 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2490 return false; 2491 } 2492 /* 2493 * If we are already stopped due to an external event (ie: LUN shutdown) 2494 * sleep until the connection can have the passed struct se_cmd back. 2495 * The cmd->transport_lun_stopped_sem will be upped by 2496 * transport_clear_lun_from_sessions() once the ConfigFS context caller 2497 * has completed its operation on the struct se_cmd. 2498 */ 2499 if (cmd->transport_state & CMD_T_LUN_STOP) { 2500 pr_debug("wait_for_tasks: Stopping" 2501 " wait_for_completion(&cmd->t_tasktransport_lun_fe" 2502 "_stop_comp); for ITT: 0x%08x\n", 2503 cmd->se_tfo->get_task_tag(cmd)); 2504 /* 2505 * There is a special case for WRITES where a FE exception + 2506 * LUN shutdown means ConfigFS context is still sleeping on 2507 * transport_lun_stop_comp in transport_lun_wait_for_tasks(). 2508 * We go ahead and up transport_lun_stop_comp just to be sure 2509 * here. 2510 */ 2511 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2512 complete(&cmd->transport_lun_stop_comp); 2513 wait_for_completion(&cmd->transport_lun_fe_stop_comp); 2514 spin_lock_irqsave(&cmd->t_state_lock, flags); 2515 2516 target_remove_from_state_list(cmd); 2517 /* 2518 * At this point, the frontend who was the originator of this 2519 * struct se_cmd, now owns the structure and can be released through 2520 * normal means below. 2521 */ 2522 pr_debug("wait_for_tasks: Stopped" 2523 " wait_for_completion(&cmd->t_tasktransport_lun_fe_" 2524 "stop_comp); for ITT: 0x%08x\n", 2525 cmd->se_tfo->get_task_tag(cmd)); 2526 2527 cmd->transport_state &= ~CMD_T_LUN_STOP; 2528 } 2529 2530 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2531 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2532 return false; 2533 } 2534 2535 cmd->transport_state |= CMD_T_STOP; 2536 2537 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2538 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2539 cmd, cmd->se_tfo->get_task_tag(cmd), 2540 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2541 2542 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2543 2544 wait_for_completion(&cmd->t_transport_stop_comp); 2545 2546 spin_lock_irqsave(&cmd->t_state_lock, flags); 2547 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2548 2549 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2550 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2551 cmd->se_tfo->get_task_tag(cmd)); 2552 2553 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2554 2555 return true; 2556 } 2557 EXPORT_SYMBOL(transport_wait_for_tasks); 2558 2559 static int transport_get_sense_codes( 2560 struct se_cmd *cmd, 2561 u8 *asc, 2562 u8 *ascq) 2563 { 2564 *asc = cmd->scsi_asc; 2565 *ascq = cmd->scsi_ascq; 2566 2567 return 0; 2568 } 2569 2570 int 2571 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2572 sense_reason_t reason, int from_transport) 2573 { 2574 unsigned char *buffer = cmd->sense_buffer; 2575 unsigned long flags; 2576 u8 asc = 0, ascq = 0; 2577 2578 spin_lock_irqsave(&cmd->t_state_lock, flags); 2579 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2580 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2581 return 0; 2582 } 2583 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2584 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2585 2586 if (!reason && from_transport) 2587 goto after_reason; 2588 2589 if (!from_transport) 2590 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2591 2592 /* 2593 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2594 * SENSE KEY values from include/scsi/scsi.h 2595 */ 2596 switch (reason) { 2597 case TCM_NO_SENSE: 2598 /* CURRENT ERROR */ 2599 buffer[0] = 0x70; 2600 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2601 /* Not Ready */ 2602 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2603 /* NO ADDITIONAL SENSE INFORMATION */ 2604 buffer[SPC_ASC_KEY_OFFSET] = 0; 2605 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2606 break; 2607 case TCM_NON_EXISTENT_LUN: 2608 /* CURRENT ERROR */ 2609 buffer[0] = 0x70; 2610 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2611 /* ILLEGAL REQUEST */ 2612 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2613 /* LOGICAL UNIT NOT SUPPORTED */ 2614 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2615 break; 2616 case TCM_UNSUPPORTED_SCSI_OPCODE: 2617 case TCM_SECTOR_COUNT_TOO_MANY: 2618 /* CURRENT ERROR */ 2619 buffer[0] = 0x70; 2620 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2621 /* ILLEGAL REQUEST */ 2622 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2623 /* INVALID COMMAND OPERATION CODE */ 2624 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2625 break; 2626 case TCM_UNKNOWN_MODE_PAGE: 2627 /* CURRENT ERROR */ 2628 buffer[0] = 0x70; 2629 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2630 /* ILLEGAL REQUEST */ 2631 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2632 /* INVALID FIELD IN CDB */ 2633 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2634 break; 2635 case TCM_CHECK_CONDITION_ABORT_CMD: 2636 /* CURRENT ERROR */ 2637 buffer[0] = 0x70; 2638 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2639 /* ABORTED COMMAND */ 2640 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2641 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2642 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2643 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2644 break; 2645 case TCM_INCORRECT_AMOUNT_OF_DATA: 2646 /* CURRENT ERROR */ 2647 buffer[0] = 0x70; 2648 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2649 /* ABORTED COMMAND */ 2650 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2651 /* WRITE ERROR */ 2652 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2653 /* NOT ENOUGH UNSOLICITED DATA */ 2654 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2655 break; 2656 case TCM_INVALID_CDB_FIELD: 2657 /* CURRENT ERROR */ 2658 buffer[0] = 0x70; 2659 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2660 /* ILLEGAL REQUEST */ 2661 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2662 /* INVALID FIELD IN CDB */ 2663 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2664 break; 2665 case TCM_INVALID_PARAMETER_LIST: 2666 /* CURRENT ERROR */ 2667 buffer[0] = 0x70; 2668 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2669 /* ILLEGAL REQUEST */ 2670 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2671 /* INVALID FIELD IN PARAMETER LIST */ 2672 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2673 break; 2674 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2675 /* CURRENT ERROR */ 2676 buffer[0] = 0x70; 2677 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2678 /* ILLEGAL REQUEST */ 2679 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2680 /* PARAMETER LIST LENGTH ERROR */ 2681 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2682 break; 2683 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2684 /* CURRENT ERROR */ 2685 buffer[0] = 0x70; 2686 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2687 /* ABORTED COMMAND */ 2688 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2689 /* WRITE ERROR */ 2690 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2691 /* UNEXPECTED_UNSOLICITED_DATA */ 2692 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2693 break; 2694 case TCM_SERVICE_CRC_ERROR: 2695 /* CURRENT ERROR */ 2696 buffer[0] = 0x70; 2697 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2698 /* ABORTED COMMAND */ 2699 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2700 /* PROTOCOL SERVICE CRC ERROR */ 2701 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2702 /* N/A */ 2703 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2704 break; 2705 case TCM_SNACK_REJECTED: 2706 /* CURRENT ERROR */ 2707 buffer[0] = 0x70; 2708 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2709 /* ABORTED COMMAND */ 2710 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2711 /* READ ERROR */ 2712 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2713 /* FAILED RETRANSMISSION REQUEST */ 2714 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2715 break; 2716 case TCM_WRITE_PROTECTED: 2717 /* CURRENT ERROR */ 2718 buffer[0] = 0x70; 2719 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2720 /* DATA PROTECT */ 2721 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2722 /* WRITE PROTECTED */ 2723 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2724 break; 2725 case TCM_ADDRESS_OUT_OF_RANGE: 2726 /* CURRENT ERROR */ 2727 buffer[0] = 0x70; 2728 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2729 /* ILLEGAL REQUEST */ 2730 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2731 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2732 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2733 break; 2734 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2735 /* CURRENT ERROR */ 2736 buffer[0] = 0x70; 2737 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2738 /* UNIT ATTENTION */ 2739 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2740 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2741 buffer[SPC_ASC_KEY_OFFSET] = asc; 2742 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2743 break; 2744 case TCM_CHECK_CONDITION_NOT_READY: 2745 /* CURRENT ERROR */ 2746 buffer[0] = 0x70; 2747 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2748 /* Not Ready */ 2749 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2750 transport_get_sense_codes(cmd, &asc, &ascq); 2751 buffer[SPC_ASC_KEY_OFFSET] = asc; 2752 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2753 break; 2754 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2755 default: 2756 /* CURRENT ERROR */ 2757 buffer[0] = 0x70; 2758 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2759 /* 2760 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2761 * Solaris initiators. Returning NOT READY instead means the 2762 * operations will be retried a finite number of times and we 2763 * can survive intermittent errors. 2764 */ 2765 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2766 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2767 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2768 break; 2769 } 2770 /* 2771 * This code uses linux/include/scsi/scsi.h SAM status codes! 2772 */ 2773 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2774 /* 2775 * Automatically padded, this value is encoded in the fabric's 2776 * data_length response PDU containing the SCSI defined sense data. 2777 */ 2778 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2779 2780 after_reason: 2781 return cmd->se_tfo->queue_status(cmd); 2782 } 2783 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2784 2785 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2786 { 2787 if (!(cmd->transport_state & CMD_T_ABORTED)) 2788 return 0; 2789 2790 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) 2791 return 1; 2792 2793 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2794 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2795 2796 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; 2797 cmd->se_tfo->queue_status(cmd); 2798 2799 return 1; 2800 } 2801 EXPORT_SYMBOL(transport_check_aborted_status); 2802 2803 void transport_send_task_abort(struct se_cmd *cmd) 2804 { 2805 unsigned long flags; 2806 2807 spin_lock_irqsave(&cmd->t_state_lock, flags); 2808 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) { 2809 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2810 return; 2811 } 2812 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2813 2814 /* 2815 * If there are still expected incoming fabric WRITEs, we wait 2816 * until until they have completed before sending a TASK_ABORTED 2817 * response. This response with TASK_ABORTED status will be 2818 * queued back to fabric module by transport_check_aborted_status(). 2819 */ 2820 if (cmd->data_direction == DMA_TO_DEVICE) { 2821 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2822 cmd->transport_state |= CMD_T_ABORTED; 2823 smp_mb__after_atomic_inc(); 2824 } 2825 } 2826 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2827 2828 transport_lun_remove_cmd(cmd); 2829 2830 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 2831 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 2832 cmd->se_tfo->get_task_tag(cmd)); 2833 2834 cmd->se_tfo->queue_status(cmd); 2835 } 2836 2837 static void target_tmr_work(struct work_struct *work) 2838 { 2839 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2840 struct se_device *dev = cmd->se_dev; 2841 struct se_tmr_req *tmr = cmd->se_tmr_req; 2842 int ret; 2843 2844 switch (tmr->function) { 2845 case TMR_ABORT_TASK: 2846 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2847 break; 2848 case TMR_ABORT_TASK_SET: 2849 case TMR_CLEAR_ACA: 2850 case TMR_CLEAR_TASK_SET: 2851 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2852 break; 2853 case TMR_LUN_RESET: 2854 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2855 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2856 TMR_FUNCTION_REJECTED; 2857 break; 2858 case TMR_TARGET_WARM_RESET: 2859 tmr->response = TMR_FUNCTION_REJECTED; 2860 break; 2861 case TMR_TARGET_COLD_RESET: 2862 tmr->response = TMR_FUNCTION_REJECTED; 2863 break; 2864 default: 2865 pr_err("Uknown TMR function: 0x%02x.\n", 2866 tmr->function); 2867 tmr->response = TMR_FUNCTION_REJECTED; 2868 break; 2869 } 2870 2871 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2872 cmd->se_tfo->queue_tm_rsp(cmd); 2873 2874 transport_cmd_check_stop_to_fabric(cmd); 2875 } 2876 2877 int transport_generic_handle_tmr( 2878 struct se_cmd *cmd) 2879 { 2880 INIT_WORK(&cmd->work, target_tmr_work); 2881 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 2882 return 0; 2883 } 2884 EXPORT_SYMBOL(transport_generic_handle_tmr); 2885