1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <asm/unaligned.h> 38 #include <net/sock.h> 39 #include <net/tcp.h> 40 #include <scsi/scsi.h> 41 #include <scsi/scsi_cmnd.h> 42 #include <scsi/scsi_tcq.h> 43 44 #include <target/target_core_base.h> 45 #include <target/target_core_backend.h> 46 #include <target/target_core_fabric.h> 47 #include <target/target_core_configfs.h> 48 49 #include "target_core_internal.h" 50 #include "target_core_alua.h" 51 #include "target_core_pr.h" 52 #include "target_core_ua.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/target.h> 56 57 static struct workqueue_struct *target_completion_wq; 58 static struct kmem_cache *se_sess_cache; 59 struct kmem_cache *se_ua_cache; 60 struct kmem_cache *t10_pr_reg_cache; 61 struct kmem_cache *t10_alua_lu_gp_cache; 62 struct kmem_cache *t10_alua_lu_gp_mem_cache; 63 struct kmem_cache *t10_alua_tg_pt_gp_cache; 64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 65 struct kmem_cache *t10_alua_lba_map_cache; 66 struct kmem_cache *t10_alua_lba_map_mem_cache; 67 68 static void transport_complete_task_attr(struct se_cmd *cmd); 69 static void transport_handle_queue_full(struct se_cmd *cmd, 70 struct se_device *dev); 71 static int transport_put_cmd(struct se_cmd *cmd); 72 static void target_complete_ok_work(struct work_struct *work); 73 74 int init_se_kmem_caches(void) 75 { 76 se_sess_cache = kmem_cache_create("se_sess_cache", 77 sizeof(struct se_session), __alignof__(struct se_session), 78 0, NULL); 79 if (!se_sess_cache) { 80 pr_err("kmem_cache_create() for struct se_session" 81 " failed\n"); 82 goto out; 83 } 84 se_ua_cache = kmem_cache_create("se_ua_cache", 85 sizeof(struct se_ua), __alignof__(struct se_ua), 86 0, NULL); 87 if (!se_ua_cache) { 88 pr_err("kmem_cache_create() for struct se_ua failed\n"); 89 goto out_free_sess_cache; 90 } 91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 92 sizeof(struct t10_pr_registration), 93 __alignof__(struct t10_pr_registration), 0, NULL); 94 if (!t10_pr_reg_cache) { 95 pr_err("kmem_cache_create() for struct t10_pr_registration" 96 " failed\n"); 97 goto out_free_ua_cache; 98 } 99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 101 0, NULL); 102 if (!t10_alua_lu_gp_cache) { 103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 104 " failed\n"); 105 goto out_free_pr_reg_cache; 106 } 107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 108 sizeof(struct t10_alua_lu_gp_member), 109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 110 if (!t10_alua_lu_gp_mem_cache) { 111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 112 "cache failed\n"); 113 goto out_free_lu_gp_cache; 114 } 115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 116 sizeof(struct t10_alua_tg_pt_gp), 117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 118 if (!t10_alua_tg_pt_gp_cache) { 119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 120 "cache failed\n"); 121 goto out_free_lu_gp_mem_cache; 122 } 123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 124 "t10_alua_tg_pt_gp_mem_cache", 125 sizeof(struct t10_alua_tg_pt_gp_member), 126 __alignof__(struct t10_alua_tg_pt_gp_member), 127 0, NULL); 128 if (!t10_alua_tg_pt_gp_mem_cache) { 129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 130 "mem_t failed\n"); 131 goto out_free_tg_pt_gp_cache; 132 } 133 t10_alua_lba_map_cache = kmem_cache_create( 134 "t10_alua_lba_map_cache", 135 sizeof(struct t10_alua_lba_map), 136 __alignof__(struct t10_alua_lba_map), 0, NULL); 137 if (!t10_alua_lba_map_cache) { 138 pr_err("kmem_cache_create() for t10_alua_lba_map_" 139 "cache failed\n"); 140 goto out_free_tg_pt_gp_mem_cache; 141 } 142 t10_alua_lba_map_mem_cache = kmem_cache_create( 143 "t10_alua_lba_map_mem_cache", 144 sizeof(struct t10_alua_lba_map_member), 145 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 146 if (!t10_alua_lba_map_mem_cache) { 147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 148 "cache failed\n"); 149 goto out_free_lba_map_cache; 150 } 151 152 target_completion_wq = alloc_workqueue("target_completion", 153 WQ_MEM_RECLAIM, 0); 154 if (!target_completion_wq) 155 goto out_free_lba_map_mem_cache; 156 157 return 0; 158 159 out_free_lba_map_mem_cache: 160 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 161 out_free_lba_map_cache: 162 kmem_cache_destroy(t10_alua_lba_map_cache); 163 out_free_tg_pt_gp_mem_cache: 164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 165 out_free_tg_pt_gp_cache: 166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 167 out_free_lu_gp_mem_cache: 168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 169 out_free_lu_gp_cache: 170 kmem_cache_destroy(t10_alua_lu_gp_cache); 171 out_free_pr_reg_cache: 172 kmem_cache_destroy(t10_pr_reg_cache); 173 out_free_ua_cache: 174 kmem_cache_destroy(se_ua_cache); 175 out_free_sess_cache: 176 kmem_cache_destroy(se_sess_cache); 177 out: 178 return -ENOMEM; 179 } 180 181 void release_se_kmem_caches(void) 182 { 183 destroy_workqueue(target_completion_wq); 184 kmem_cache_destroy(se_sess_cache); 185 kmem_cache_destroy(se_ua_cache); 186 kmem_cache_destroy(t10_pr_reg_cache); 187 kmem_cache_destroy(t10_alua_lu_gp_cache); 188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 191 kmem_cache_destroy(t10_alua_lba_map_cache); 192 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 193 } 194 195 /* This code ensures unique mib indexes are handed out. */ 196 static DEFINE_SPINLOCK(scsi_mib_index_lock); 197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 198 199 /* 200 * Allocate a new row index for the entry type specified 201 */ 202 u32 scsi_get_new_index(scsi_index_t type) 203 { 204 u32 new_index; 205 206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 207 208 spin_lock(&scsi_mib_index_lock); 209 new_index = ++scsi_mib_index[type]; 210 spin_unlock(&scsi_mib_index_lock); 211 212 return new_index; 213 } 214 215 void transport_subsystem_check_init(void) 216 { 217 int ret; 218 static int sub_api_initialized; 219 220 if (sub_api_initialized) 221 return; 222 223 ret = request_module("target_core_iblock"); 224 if (ret != 0) 225 pr_err("Unable to load target_core_iblock\n"); 226 227 ret = request_module("target_core_file"); 228 if (ret != 0) 229 pr_err("Unable to load target_core_file\n"); 230 231 ret = request_module("target_core_pscsi"); 232 if (ret != 0) 233 pr_err("Unable to load target_core_pscsi\n"); 234 235 sub_api_initialized = 1; 236 } 237 238 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 239 { 240 struct se_session *se_sess; 241 242 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 243 if (!se_sess) { 244 pr_err("Unable to allocate struct se_session from" 245 " se_sess_cache\n"); 246 return ERR_PTR(-ENOMEM); 247 } 248 INIT_LIST_HEAD(&se_sess->sess_list); 249 INIT_LIST_HEAD(&se_sess->sess_acl_list); 250 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 251 INIT_LIST_HEAD(&se_sess->sess_wait_list); 252 spin_lock_init(&se_sess->sess_cmd_lock); 253 kref_init(&se_sess->sess_kref); 254 se_sess->sup_prot_ops = sup_prot_ops; 255 256 return se_sess; 257 } 258 EXPORT_SYMBOL(transport_init_session); 259 260 int transport_alloc_session_tags(struct se_session *se_sess, 261 unsigned int tag_num, unsigned int tag_size) 262 { 263 int rc; 264 265 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 266 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 267 if (!se_sess->sess_cmd_map) { 268 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 269 if (!se_sess->sess_cmd_map) { 270 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 271 return -ENOMEM; 272 } 273 } 274 275 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 276 if (rc < 0) { 277 pr_err("Unable to init se_sess->sess_tag_pool," 278 " tag_num: %u\n", tag_num); 279 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 280 vfree(se_sess->sess_cmd_map); 281 else 282 kfree(se_sess->sess_cmd_map); 283 se_sess->sess_cmd_map = NULL; 284 return -ENOMEM; 285 } 286 287 return 0; 288 } 289 EXPORT_SYMBOL(transport_alloc_session_tags); 290 291 struct se_session *transport_init_session_tags(unsigned int tag_num, 292 unsigned int tag_size, 293 enum target_prot_op sup_prot_ops) 294 { 295 struct se_session *se_sess; 296 int rc; 297 298 se_sess = transport_init_session(sup_prot_ops); 299 if (IS_ERR(se_sess)) 300 return se_sess; 301 302 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 303 if (rc < 0) { 304 transport_free_session(se_sess); 305 return ERR_PTR(-ENOMEM); 306 } 307 308 return se_sess; 309 } 310 EXPORT_SYMBOL(transport_init_session_tags); 311 312 /* 313 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 314 */ 315 void __transport_register_session( 316 struct se_portal_group *se_tpg, 317 struct se_node_acl *se_nacl, 318 struct se_session *se_sess, 319 void *fabric_sess_ptr) 320 { 321 unsigned char buf[PR_REG_ISID_LEN]; 322 323 se_sess->se_tpg = se_tpg; 324 se_sess->fabric_sess_ptr = fabric_sess_ptr; 325 /* 326 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 327 * 328 * Only set for struct se_session's that will actually be moving I/O. 329 * eg: *NOT* discovery sessions. 330 */ 331 if (se_nacl) { 332 /* 333 * If the fabric module supports an ISID based TransportID, 334 * save this value in binary from the fabric I_T Nexus now. 335 */ 336 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 337 memset(&buf[0], 0, PR_REG_ISID_LEN); 338 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 339 &buf[0], PR_REG_ISID_LEN); 340 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 341 } 342 kref_get(&se_nacl->acl_kref); 343 344 spin_lock_irq(&se_nacl->nacl_sess_lock); 345 /* 346 * The se_nacl->nacl_sess pointer will be set to the 347 * last active I_T Nexus for each struct se_node_acl. 348 */ 349 se_nacl->nacl_sess = se_sess; 350 351 list_add_tail(&se_sess->sess_acl_list, 352 &se_nacl->acl_sess_list); 353 spin_unlock_irq(&se_nacl->nacl_sess_lock); 354 } 355 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 356 357 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 358 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 359 } 360 EXPORT_SYMBOL(__transport_register_session); 361 362 void transport_register_session( 363 struct se_portal_group *se_tpg, 364 struct se_node_acl *se_nacl, 365 struct se_session *se_sess, 366 void *fabric_sess_ptr) 367 { 368 unsigned long flags; 369 370 spin_lock_irqsave(&se_tpg->session_lock, flags); 371 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 372 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 373 } 374 EXPORT_SYMBOL(transport_register_session); 375 376 static void target_release_session(struct kref *kref) 377 { 378 struct se_session *se_sess = container_of(kref, 379 struct se_session, sess_kref); 380 struct se_portal_group *se_tpg = se_sess->se_tpg; 381 382 se_tpg->se_tpg_tfo->close_session(se_sess); 383 } 384 385 void target_get_session(struct se_session *se_sess) 386 { 387 kref_get(&se_sess->sess_kref); 388 } 389 EXPORT_SYMBOL(target_get_session); 390 391 void target_put_session(struct se_session *se_sess) 392 { 393 struct se_portal_group *tpg = se_sess->se_tpg; 394 395 if (tpg->se_tpg_tfo->put_session != NULL) { 396 tpg->se_tpg_tfo->put_session(se_sess); 397 return; 398 } 399 kref_put(&se_sess->sess_kref, target_release_session); 400 } 401 EXPORT_SYMBOL(target_put_session); 402 403 static void target_complete_nacl(struct kref *kref) 404 { 405 struct se_node_acl *nacl = container_of(kref, 406 struct se_node_acl, acl_kref); 407 408 complete(&nacl->acl_free_comp); 409 } 410 411 void target_put_nacl(struct se_node_acl *nacl) 412 { 413 kref_put(&nacl->acl_kref, target_complete_nacl); 414 } 415 416 void transport_deregister_session_configfs(struct se_session *se_sess) 417 { 418 struct se_node_acl *se_nacl; 419 unsigned long flags; 420 /* 421 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 422 */ 423 se_nacl = se_sess->se_node_acl; 424 if (se_nacl) { 425 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 426 if (se_nacl->acl_stop == 0) 427 list_del(&se_sess->sess_acl_list); 428 /* 429 * If the session list is empty, then clear the pointer. 430 * Otherwise, set the struct se_session pointer from the tail 431 * element of the per struct se_node_acl active session list. 432 */ 433 if (list_empty(&se_nacl->acl_sess_list)) 434 se_nacl->nacl_sess = NULL; 435 else { 436 se_nacl->nacl_sess = container_of( 437 se_nacl->acl_sess_list.prev, 438 struct se_session, sess_acl_list); 439 } 440 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 441 } 442 } 443 EXPORT_SYMBOL(transport_deregister_session_configfs); 444 445 void transport_free_session(struct se_session *se_sess) 446 { 447 if (se_sess->sess_cmd_map) { 448 percpu_ida_destroy(&se_sess->sess_tag_pool); 449 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 450 vfree(se_sess->sess_cmd_map); 451 else 452 kfree(se_sess->sess_cmd_map); 453 } 454 kmem_cache_free(se_sess_cache, se_sess); 455 } 456 EXPORT_SYMBOL(transport_free_session); 457 458 void transport_deregister_session(struct se_session *se_sess) 459 { 460 struct se_portal_group *se_tpg = se_sess->se_tpg; 461 struct target_core_fabric_ops *se_tfo; 462 struct se_node_acl *se_nacl; 463 unsigned long flags; 464 bool comp_nacl = true; 465 466 if (!se_tpg) { 467 transport_free_session(se_sess); 468 return; 469 } 470 se_tfo = se_tpg->se_tpg_tfo; 471 472 spin_lock_irqsave(&se_tpg->session_lock, flags); 473 list_del(&se_sess->sess_list); 474 se_sess->se_tpg = NULL; 475 se_sess->fabric_sess_ptr = NULL; 476 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 477 478 /* 479 * Determine if we need to do extra work for this initiator node's 480 * struct se_node_acl if it had been previously dynamically generated. 481 */ 482 se_nacl = se_sess->se_node_acl; 483 484 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 485 if (se_nacl && se_nacl->dynamic_node_acl) { 486 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 487 list_del(&se_nacl->acl_list); 488 se_tpg->num_node_acls--; 489 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 490 core_tpg_wait_for_nacl_pr_ref(se_nacl); 491 core_free_device_list_for_node(se_nacl, se_tpg); 492 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 493 494 comp_nacl = false; 495 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 496 } 497 } 498 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 499 500 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 501 se_tpg->se_tpg_tfo->get_fabric_name()); 502 /* 503 * If last kref is dropping now for an explicit NodeACL, awake sleeping 504 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 505 * removal context. 506 */ 507 if (se_nacl && comp_nacl) 508 target_put_nacl(se_nacl); 509 510 transport_free_session(se_sess); 511 } 512 EXPORT_SYMBOL(transport_deregister_session); 513 514 /* 515 * Called with cmd->t_state_lock held. 516 */ 517 static void target_remove_from_state_list(struct se_cmd *cmd) 518 { 519 struct se_device *dev = cmd->se_dev; 520 unsigned long flags; 521 522 if (!dev) 523 return; 524 525 if (cmd->transport_state & CMD_T_BUSY) 526 return; 527 528 spin_lock_irqsave(&dev->execute_task_lock, flags); 529 if (cmd->state_active) { 530 list_del(&cmd->state_list); 531 cmd->state_active = false; 532 } 533 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 534 } 535 536 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 537 bool write_pending) 538 { 539 unsigned long flags; 540 541 spin_lock_irqsave(&cmd->t_state_lock, flags); 542 if (write_pending) 543 cmd->t_state = TRANSPORT_WRITE_PENDING; 544 545 if (remove_from_lists) { 546 target_remove_from_state_list(cmd); 547 548 /* 549 * Clear struct se_cmd->se_lun before the handoff to FE. 550 */ 551 cmd->se_lun = NULL; 552 } 553 554 /* 555 * Determine if frontend context caller is requesting the stopping of 556 * this command for frontend exceptions. 557 */ 558 if (cmd->transport_state & CMD_T_STOP) { 559 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 560 __func__, __LINE__, 561 cmd->se_tfo->get_task_tag(cmd)); 562 563 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 564 565 complete_all(&cmd->t_transport_stop_comp); 566 return 1; 567 } 568 569 cmd->transport_state &= ~CMD_T_ACTIVE; 570 if (remove_from_lists) { 571 /* 572 * Some fabric modules like tcm_loop can release 573 * their internally allocated I/O reference now and 574 * struct se_cmd now. 575 * 576 * Fabric modules are expected to return '1' here if the 577 * se_cmd being passed is released at this point, 578 * or zero if not being released. 579 */ 580 if (cmd->se_tfo->check_stop_free != NULL) { 581 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 582 return cmd->se_tfo->check_stop_free(cmd); 583 } 584 } 585 586 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 587 return 0; 588 } 589 590 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 591 { 592 return transport_cmd_check_stop(cmd, true, false); 593 } 594 595 static void transport_lun_remove_cmd(struct se_cmd *cmd) 596 { 597 struct se_lun *lun = cmd->se_lun; 598 599 if (!lun) 600 return; 601 602 if (cmpxchg(&cmd->lun_ref_active, true, false)) 603 percpu_ref_put(&lun->lun_ref); 604 } 605 606 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 607 { 608 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 609 transport_lun_remove_cmd(cmd); 610 /* 611 * Allow the fabric driver to unmap any resources before 612 * releasing the descriptor via TFO->release_cmd() 613 */ 614 if (remove) 615 cmd->se_tfo->aborted_task(cmd); 616 617 if (transport_cmd_check_stop_to_fabric(cmd)) 618 return; 619 if (remove) 620 transport_put_cmd(cmd); 621 } 622 623 static void target_complete_failure_work(struct work_struct *work) 624 { 625 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 626 627 transport_generic_request_failure(cmd, 628 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 629 } 630 631 /* 632 * Used when asking transport to copy Sense Data from the underlying 633 * Linux/SCSI struct scsi_cmnd 634 */ 635 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 636 { 637 struct se_device *dev = cmd->se_dev; 638 639 WARN_ON(!cmd->se_lun); 640 641 if (!dev) 642 return NULL; 643 644 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 645 return NULL; 646 647 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 648 649 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 650 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 651 return cmd->sense_buffer; 652 } 653 654 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 655 { 656 struct se_device *dev = cmd->se_dev; 657 int success = scsi_status == GOOD; 658 unsigned long flags; 659 660 cmd->scsi_status = scsi_status; 661 662 663 spin_lock_irqsave(&cmd->t_state_lock, flags); 664 cmd->transport_state &= ~CMD_T_BUSY; 665 666 if (dev && dev->transport->transport_complete) { 667 dev->transport->transport_complete(cmd, 668 cmd->t_data_sg, 669 transport_get_sense_buffer(cmd)); 670 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 671 success = 1; 672 } 673 674 /* 675 * See if we are waiting to complete for an exception condition. 676 */ 677 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 678 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 679 complete(&cmd->task_stop_comp); 680 return; 681 } 682 683 /* 684 * Check for case where an explicit ABORT_TASK has been received 685 * and transport_wait_for_tasks() will be waiting for completion.. 686 */ 687 if (cmd->transport_state & CMD_T_ABORTED && 688 cmd->transport_state & CMD_T_STOP) { 689 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 690 complete_all(&cmd->t_transport_stop_comp); 691 return; 692 } else if (!success) { 693 INIT_WORK(&cmd->work, target_complete_failure_work); 694 } else { 695 INIT_WORK(&cmd->work, target_complete_ok_work); 696 } 697 698 cmd->t_state = TRANSPORT_COMPLETE; 699 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 700 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 701 702 queue_work(target_completion_wq, &cmd->work); 703 } 704 EXPORT_SYMBOL(target_complete_cmd); 705 706 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 707 { 708 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 709 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 710 cmd->residual_count += cmd->data_length - length; 711 } else { 712 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 713 cmd->residual_count = cmd->data_length - length; 714 } 715 716 cmd->data_length = length; 717 } 718 719 target_complete_cmd(cmd, scsi_status); 720 } 721 EXPORT_SYMBOL(target_complete_cmd_with_length); 722 723 static void target_add_to_state_list(struct se_cmd *cmd) 724 { 725 struct se_device *dev = cmd->se_dev; 726 unsigned long flags; 727 728 spin_lock_irqsave(&dev->execute_task_lock, flags); 729 if (!cmd->state_active) { 730 list_add_tail(&cmd->state_list, &dev->state_list); 731 cmd->state_active = true; 732 } 733 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 734 } 735 736 /* 737 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 738 */ 739 static void transport_write_pending_qf(struct se_cmd *cmd); 740 static void transport_complete_qf(struct se_cmd *cmd); 741 742 void target_qf_do_work(struct work_struct *work) 743 { 744 struct se_device *dev = container_of(work, struct se_device, 745 qf_work_queue); 746 LIST_HEAD(qf_cmd_list); 747 struct se_cmd *cmd, *cmd_tmp; 748 749 spin_lock_irq(&dev->qf_cmd_lock); 750 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 751 spin_unlock_irq(&dev->qf_cmd_lock); 752 753 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 754 list_del(&cmd->se_qf_node); 755 atomic_dec(&dev->dev_qf_count); 756 smp_mb__after_atomic(); 757 758 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 759 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 760 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 761 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 762 : "UNKNOWN"); 763 764 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 765 transport_write_pending_qf(cmd); 766 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 767 transport_complete_qf(cmd); 768 } 769 } 770 771 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 772 { 773 switch (cmd->data_direction) { 774 case DMA_NONE: 775 return "NONE"; 776 case DMA_FROM_DEVICE: 777 return "READ"; 778 case DMA_TO_DEVICE: 779 return "WRITE"; 780 case DMA_BIDIRECTIONAL: 781 return "BIDI"; 782 default: 783 break; 784 } 785 786 return "UNKNOWN"; 787 } 788 789 void transport_dump_dev_state( 790 struct se_device *dev, 791 char *b, 792 int *bl) 793 { 794 *bl += sprintf(b + *bl, "Status: "); 795 if (dev->export_count) 796 *bl += sprintf(b + *bl, "ACTIVATED"); 797 else 798 *bl += sprintf(b + *bl, "DEACTIVATED"); 799 800 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 801 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 802 dev->dev_attrib.block_size, 803 dev->dev_attrib.hw_max_sectors); 804 *bl += sprintf(b + *bl, " "); 805 } 806 807 void transport_dump_vpd_proto_id( 808 struct t10_vpd *vpd, 809 unsigned char *p_buf, 810 int p_buf_len) 811 { 812 unsigned char buf[VPD_TMP_BUF_SIZE]; 813 int len; 814 815 memset(buf, 0, VPD_TMP_BUF_SIZE); 816 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 817 818 switch (vpd->protocol_identifier) { 819 case 0x00: 820 sprintf(buf+len, "Fibre Channel\n"); 821 break; 822 case 0x10: 823 sprintf(buf+len, "Parallel SCSI\n"); 824 break; 825 case 0x20: 826 sprintf(buf+len, "SSA\n"); 827 break; 828 case 0x30: 829 sprintf(buf+len, "IEEE 1394\n"); 830 break; 831 case 0x40: 832 sprintf(buf+len, "SCSI Remote Direct Memory Access" 833 " Protocol\n"); 834 break; 835 case 0x50: 836 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 837 break; 838 case 0x60: 839 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 840 break; 841 case 0x70: 842 sprintf(buf+len, "Automation/Drive Interface Transport" 843 " Protocol\n"); 844 break; 845 case 0x80: 846 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 847 break; 848 default: 849 sprintf(buf+len, "Unknown 0x%02x\n", 850 vpd->protocol_identifier); 851 break; 852 } 853 854 if (p_buf) 855 strncpy(p_buf, buf, p_buf_len); 856 else 857 pr_debug("%s", buf); 858 } 859 860 void 861 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 862 { 863 /* 864 * Check if the Protocol Identifier Valid (PIV) bit is set.. 865 * 866 * from spc3r23.pdf section 7.5.1 867 */ 868 if (page_83[1] & 0x80) { 869 vpd->protocol_identifier = (page_83[0] & 0xf0); 870 vpd->protocol_identifier_set = 1; 871 transport_dump_vpd_proto_id(vpd, NULL, 0); 872 } 873 } 874 EXPORT_SYMBOL(transport_set_vpd_proto_id); 875 876 int transport_dump_vpd_assoc( 877 struct t10_vpd *vpd, 878 unsigned char *p_buf, 879 int p_buf_len) 880 { 881 unsigned char buf[VPD_TMP_BUF_SIZE]; 882 int ret = 0; 883 int len; 884 885 memset(buf, 0, VPD_TMP_BUF_SIZE); 886 len = sprintf(buf, "T10 VPD Identifier Association: "); 887 888 switch (vpd->association) { 889 case 0x00: 890 sprintf(buf+len, "addressed logical unit\n"); 891 break; 892 case 0x10: 893 sprintf(buf+len, "target port\n"); 894 break; 895 case 0x20: 896 sprintf(buf+len, "SCSI target device\n"); 897 break; 898 default: 899 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 900 ret = -EINVAL; 901 break; 902 } 903 904 if (p_buf) 905 strncpy(p_buf, buf, p_buf_len); 906 else 907 pr_debug("%s", buf); 908 909 return ret; 910 } 911 912 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 913 { 914 /* 915 * The VPD identification association.. 916 * 917 * from spc3r23.pdf Section 7.6.3.1 Table 297 918 */ 919 vpd->association = (page_83[1] & 0x30); 920 return transport_dump_vpd_assoc(vpd, NULL, 0); 921 } 922 EXPORT_SYMBOL(transport_set_vpd_assoc); 923 924 int transport_dump_vpd_ident_type( 925 struct t10_vpd *vpd, 926 unsigned char *p_buf, 927 int p_buf_len) 928 { 929 unsigned char buf[VPD_TMP_BUF_SIZE]; 930 int ret = 0; 931 int len; 932 933 memset(buf, 0, VPD_TMP_BUF_SIZE); 934 len = sprintf(buf, "T10 VPD Identifier Type: "); 935 936 switch (vpd->device_identifier_type) { 937 case 0x00: 938 sprintf(buf+len, "Vendor specific\n"); 939 break; 940 case 0x01: 941 sprintf(buf+len, "T10 Vendor ID based\n"); 942 break; 943 case 0x02: 944 sprintf(buf+len, "EUI-64 based\n"); 945 break; 946 case 0x03: 947 sprintf(buf+len, "NAA\n"); 948 break; 949 case 0x04: 950 sprintf(buf+len, "Relative target port identifier\n"); 951 break; 952 case 0x08: 953 sprintf(buf+len, "SCSI name string\n"); 954 break; 955 default: 956 sprintf(buf+len, "Unsupported: 0x%02x\n", 957 vpd->device_identifier_type); 958 ret = -EINVAL; 959 break; 960 } 961 962 if (p_buf) { 963 if (p_buf_len < strlen(buf)+1) 964 return -EINVAL; 965 strncpy(p_buf, buf, p_buf_len); 966 } else { 967 pr_debug("%s", buf); 968 } 969 970 return ret; 971 } 972 973 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 974 { 975 /* 976 * The VPD identifier type.. 977 * 978 * from spc3r23.pdf Section 7.6.3.1 Table 298 979 */ 980 vpd->device_identifier_type = (page_83[1] & 0x0f); 981 return transport_dump_vpd_ident_type(vpd, NULL, 0); 982 } 983 EXPORT_SYMBOL(transport_set_vpd_ident_type); 984 985 int transport_dump_vpd_ident( 986 struct t10_vpd *vpd, 987 unsigned char *p_buf, 988 int p_buf_len) 989 { 990 unsigned char buf[VPD_TMP_BUF_SIZE]; 991 int ret = 0; 992 993 memset(buf, 0, VPD_TMP_BUF_SIZE); 994 995 switch (vpd->device_identifier_code_set) { 996 case 0x01: /* Binary */ 997 snprintf(buf, sizeof(buf), 998 "T10 VPD Binary Device Identifier: %s\n", 999 &vpd->device_identifier[0]); 1000 break; 1001 case 0x02: /* ASCII */ 1002 snprintf(buf, sizeof(buf), 1003 "T10 VPD ASCII Device Identifier: %s\n", 1004 &vpd->device_identifier[0]); 1005 break; 1006 case 0x03: /* UTF-8 */ 1007 snprintf(buf, sizeof(buf), 1008 "T10 VPD UTF-8 Device Identifier: %s\n", 1009 &vpd->device_identifier[0]); 1010 break; 1011 default: 1012 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1013 " 0x%02x", vpd->device_identifier_code_set); 1014 ret = -EINVAL; 1015 break; 1016 } 1017 1018 if (p_buf) 1019 strncpy(p_buf, buf, p_buf_len); 1020 else 1021 pr_debug("%s", buf); 1022 1023 return ret; 1024 } 1025 1026 int 1027 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1028 { 1029 static const char hex_str[] = "0123456789abcdef"; 1030 int j = 0, i = 4; /* offset to start of the identifier */ 1031 1032 /* 1033 * The VPD Code Set (encoding) 1034 * 1035 * from spc3r23.pdf Section 7.6.3.1 Table 296 1036 */ 1037 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1038 switch (vpd->device_identifier_code_set) { 1039 case 0x01: /* Binary */ 1040 vpd->device_identifier[j++] = 1041 hex_str[vpd->device_identifier_type]; 1042 while (i < (4 + page_83[3])) { 1043 vpd->device_identifier[j++] = 1044 hex_str[(page_83[i] & 0xf0) >> 4]; 1045 vpd->device_identifier[j++] = 1046 hex_str[page_83[i] & 0x0f]; 1047 i++; 1048 } 1049 break; 1050 case 0x02: /* ASCII */ 1051 case 0x03: /* UTF-8 */ 1052 while (i < (4 + page_83[3])) 1053 vpd->device_identifier[j++] = page_83[i++]; 1054 break; 1055 default: 1056 break; 1057 } 1058 1059 return transport_dump_vpd_ident(vpd, NULL, 0); 1060 } 1061 EXPORT_SYMBOL(transport_set_vpd_ident); 1062 1063 sense_reason_t 1064 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1065 { 1066 struct se_device *dev = cmd->se_dev; 1067 1068 if (cmd->unknown_data_length) { 1069 cmd->data_length = size; 1070 } else if (size != cmd->data_length) { 1071 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1072 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1073 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1074 cmd->data_length, size, cmd->t_task_cdb[0]); 1075 1076 if (cmd->data_direction == DMA_TO_DEVICE) { 1077 pr_err("Rejecting underflow/overflow" 1078 " WRITE data\n"); 1079 return TCM_INVALID_CDB_FIELD; 1080 } 1081 /* 1082 * Reject READ_* or WRITE_* with overflow/underflow for 1083 * type SCF_SCSI_DATA_CDB. 1084 */ 1085 if (dev->dev_attrib.block_size != 512) { 1086 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1087 " CDB on non 512-byte sector setup subsystem" 1088 " plugin: %s\n", dev->transport->name); 1089 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1090 return TCM_INVALID_CDB_FIELD; 1091 } 1092 /* 1093 * For the overflow case keep the existing fabric provided 1094 * ->data_length. Otherwise for the underflow case, reset 1095 * ->data_length to the smaller SCSI expected data transfer 1096 * length. 1097 */ 1098 if (size > cmd->data_length) { 1099 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1100 cmd->residual_count = (size - cmd->data_length); 1101 } else { 1102 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1103 cmd->residual_count = (cmd->data_length - size); 1104 cmd->data_length = size; 1105 } 1106 } 1107 1108 return 0; 1109 1110 } 1111 1112 /* 1113 * Used by fabric modules containing a local struct se_cmd within their 1114 * fabric dependent per I/O descriptor. 1115 */ 1116 void transport_init_se_cmd( 1117 struct se_cmd *cmd, 1118 struct target_core_fabric_ops *tfo, 1119 struct se_session *se_sess, 1120 u32 data_length, 1121 int data_direction, 1122 int task_attr, 1123 unsigned char *sense_buffer) 1124 { 1125 INIT_LIST_HEAD(&cmd->se_delayed_node); 1126 INIT_LIST_HEAD(&cmd->se_qf_node); 1127 INIT_LIST_HEAD(&cmd->se_cmd_list); 1128 INIT_LIST_HEAD(&cmd->state_list); 1129 init_completion(&cmd->t_transport_stop_comp); 1130 init_completion(&cmd->cmd_wait_comp); 1131 init_completion(&cmd->task_stop_comp); 1132 spin_lock_init(&cmd->t_state_lock); 1133 kref_init(&cmd->cmd_kref); 1134 cmd->transport_state = CMD_T_DEV_ACTIVE; 1135 1136 cmd->se_tfo = tfo; 1137 cmd->se_sess = se_sess; 1138 cmd->data_length = data_length; 1139 cmd->data_direction = data_direction; 1140 cmd->sam_task_attr = task_attr; 1141 cmd->sense_buffer = sense_buffer; 1142 1143 cmd->state_active = false; 1144 } 1145 EXPORT_SYMBOL(transport_init_se_cmd); 1146 1147 static sense_reason_t 1148 transport_check_alloc_task_attr(struct se_cmd *cmd) 1149 { 1150 struct se_device *dev = cmd->se_dev; 1151 1152 /* 1153 * Check if SAM Task Attribute emulation is enabled for this 1154 * struct se_device storage object 1155 */ 1156 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1157 return 0; 1158 1159 if (cmd->sam_task_attr == MSG_ACA_TAG) { 1160 pr_debug("SAM Task Attribute ACA" 1161 " emulation is not supported\n"); 1162 return TCM_INVALID_CDB_FIELD; 1163 } 1164 /* 1165 * Used to determine when ORDERED commands should go from 1166 * Dormant to Active status. 1167 */ 1168 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1169 smp_mb__after_atomic(); 1170 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1171 cmd->se_ordered_id, cmd->sam_task_attr, 1172 dev->transport->name); 1173 return 0; 1174 } 1175 1176 sense_reason_t 1177 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1178 { 1179 struct se_device *dev = cmd->se_dev; 1180 sense_reason_t ret; 1181 1182 /* 1183 * Ensure that the received CDB is less than the max (252 + 8) bytes 1184 * for VARIABLE_LENGTH_CMD 1185 */ 1186 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1187 pr_err("Received SCSI CDB with command_size: %d that" 1188 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1189 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1190 return TCM_INVALID_CDB_FIELD; 1191 } 1192 /* 1193 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1194 * allocate the additional extended CDB buffer now.. Otherwise 1195 * setup the pointer from __t_task_cdb to t_task_cdb. 1196 */ 1197 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1198 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1199 GFP_KERNEL); 1200 if (!cmd->t_task_cdb) { 1201 pr_err("Unable to allocate cmd->t_task_cdb" 1202 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1203 scsi_command_size(cdb), 1204 (unsigned long)sizeof(cmd->__t_task_cdb)); 1205 return TCM_OUT_OF_RESOURCES; 1206 } 1207 } else 1208 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1209 /* 1210 * Copy the original CDB into cmd-> 1211 */ 1212 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1213 1214 trace_target_sequencer_start(cmd); 1215 1216 /* 1217 * Check for an existing UNIT ATTENTION condition 1218 */ 1219 ret = target_scsi3_ua_check(cmd); 1220 if (ret) 1221 return ret; 1222 1223 ret = target_alua_state_check(cmd); 1224 if (ret) 1225 return ret; 1226 1227 ret = target_check_reservation(cmd); 1228 if (ret) { 1229 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1230 return ret; 1231 } 1232 1233 ret = dev->transport->parse_cdb(cmd); 1234 if (ret) 1235 return ret; 1236 1237 ret = transport_check_alloc_task_attr(cmd); 1238 if (ret) 1239 return ret; 1240 1241 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1242 1243 spin_lock(&cmd->se_lun->lun_sep_lock); 1244 if (cmd->se_lun->lun_sep) 1245 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1246 spin_unlock(&cmd->se_lun->lun_sep_lock); 1247 return 0; 1248 } 1249 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1250 1251 /* 1252 * Used by fabric module frontends to queue tasks directly. 1253 * Many only be used from process context only 1254 */ 1255 int transport_handle_cdb_direct( 1256 struct se_cmd *cmd) 1257 { 1258 sense_reason_t ret; 1259 1260 if (!cmd->se_lun) { 1261 dump_stack(); 1262 pr_err("cmd->se_lun is NULL\n"); 1263 return -EINVAL; 1264 } 1265 if (in_interrupt()) { 1266 dump_stack(); 1267 pr_err("transport_generic_handle_cdb cannot be called" 1268 " from interrupt context\n"); 1269 return -EINVAL; 1270 } 1271 /* 1272 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1273 * outstanding descriptors are handled correctly during shutdown via 1274 * transport_wait_for_tasks() 1275 * 1276 * Also, we don't take cmd->t_state_lock here as we only expect 1277 * this to be called for initial descriptor submission. 1278 */ 1279 cmd->t_state = TRANSPORT_NEW_CMD; 1280 cmd->transport_state |= CMD_T_ACTIVE; 1281 1282 /* 1283 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1284 * so follow TRANSPORT_NEW_CMD processing thread context usage 1285 * and call transport_generic_request_failure() if necessary.. 1286 */ 1287 ret = transport_generic_new_cmd(cmd); 1288 if (ret) 1289 transport_generic_request_failure(cmd, ret); 1290 return 0; 1291 } 1292 EXPORT_SYMBOL(transport_handle_cdb_direct); 1293 1294 sense_reason_t 1295 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1296 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1297 { 1298 if (!sgl || !sgl_count) 1299 return 0; 1300 1301 /* 1302 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1303 * scatterlists already have been set to follow what the fabric 1304 * passes for the original expected data transfer length. 1305 */ 1306 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1307 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1308 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1309 return TCM_INVALID_CDB_FIELD; 1310 } 1311 1312 cmd->t_data_sg = sgl; 1313 cmd->t_data_nents = sgl_count; 1314 1315 if (sgl_bidi && sgl_bidi_count) { 1316 cmd->t_bidi_data_sg = sgl_bidi; 1317 cmd->t_bidi_data_nents = sgl_bidi_count; 1318 } 1319 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1320 return 0; 1321 } 1322 1323 /* 1324 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1325 * se_cmd + use pre-allocated SGL memory. 1326 * 1327 * @se_cmd: command descriptor to submit 1328 * @se_sess: associated se_sess for endpoint 1329 * @cdb: pointer to SCSI CDB 1330 * @sense: pointer to SCSI sense buffer 1331 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1332 * @data_length: fabric expected data transfer length 1333 * @task_addr: SAM task attribute 1334 * @data_dir: DMA data direction 1335 * @flags: flags for command submission from target_sc_flags_tables 1336 * @sgl: struct scatterlist memory for unidirectional mapping 1337 * @sgl_count: scatterlist count for unidirectional mapping 1338 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1339 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1340 * @sgl_prot: struct scatterlist memory protection information 1341 * @sgl_prot_count: scatterlist count for protection information 1342 * 1343 * Returns non zero to signal active I/O shutdown failure. All other 1344 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1345 * but still return zero here. 1346 * 1347 * This may only be called from process context, and also currently 1348 * assumes internal allocation of fabric payload buffer by target-core. 1349 */ 1350 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1351 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1352 u32 data_length, int task_attr, int data_dir, int flags, 1353 struct scatterlist *sgl, u32 sgl_count, 1354 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1355 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1356 { 1357 struct se_portal_group *se_tpg; 1358 sense_reason_t rc; 1359 int ret; 1360 1361 se_tpg = se_sess->se_tpg; 1362 BUG_ON(!se_tpg); 1363 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1364 BUG_ON(in_interrupt()); 1365 /* 1366 * Initialize se_cmd for target operation. From this point 1367 * exceptions are handled by sending exception status via 1368 * target_core_fabric_ops->queue_status() callback 1369 */ 1370 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1371 data_length, data_dir, task_attr, sense); 1372 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1373 se_cmd->unknown_data_length = 1; 1374 /* 1375 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1376 * se_sess->sess_cmd_list. A second kref_get here is necessary 1377 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1378 * kref_put() to happen during fabric packet acknowledgement. 1379 */ 1380 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1381 if (ret) 1382 return ret; 1383 /* 1384 * Signal bidirectional data payloads to target-core 1385 */ 1386 if (flags & TARGET_SCF_BIDI_OP) 1387 se_cmd->se_cmd_flags |= SCF_BIDI; 1388 /* 1389 * Locate se_lun pointer and attach it to struct se_cmd 1390 */ 1391 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1392 if (rc) { 1393 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1394 target_put_sess_cmd(se_sess, se_cmd); 1395 return 0; 1396 } 1397 1398 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1399 if (rc != 0) { 1400 transport_generic_request_failure(se_cmd, rc); 1401 return 0; 1402 } 1403 1404 /* 1405 * Save pointers for SGLs containing protection information, 1406 * if present. 1407 */ 1408 if (sgl_prot_count) { 1409 se_cmd->t_prot_sg = sgl_prot; 1410 se_cmd->t_prot_nents = sgl_prot_count; 1411 } 1412 1413 /* 1414 * When a non zero sgl_count has been passed perform SGL passthrough 1415 * mapping for pre-allocated fabric memory instead of having target 1416 * core perform an internal SGL allocation.. 1417 */ 1418 if (sgl_count != 0) { 1419 BUG_ON(!sgl); 1420 1421 /* 1422 * A work-around for tcm_loop as some userspace code via 1423 * scsi-generic do not memset their associated read buffers, 1424 * so go ahead and do that here for type non-data CDBs. Also 1425 * note that this is currently guaranteed to be a single SGL 1426 * for this case by target core in target_setup_cmd_from_cdb() 1427 * -> transport_generic_cmd_sequencer(). 1428 */ 1429 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1430 se_cmd->data_direction == DMA_FROM_DEVICE) { 1431 unsigned char *buf = NULL; 1432 1433 if (sgl) 1434 buf = kmap(sg_page(sgl)) + sgl->offset; 1435 1436 if (buf) { 1437 memset(buf, 0, sgl->length); 1438 kunmap(sg_page(sgl)); 1439 } 1440 } 1441 1442 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1443 sgl_bidi, sgl_bidi_count); 1444 if (rc != 0) { 1445 transport_generic_request_failure(se_cmd, rc); 1446 return 0; 1447 } 1448 } 1449 1450 /* 1451 * Check if we need to delay processing because of ALUA 1452 * Active/NonOptimized primary access state.. 1453 */ 1454 core_alua_check_nonop_delay(se_cmd); 1455 1456 transport_handle_cdb_direct(se_cmd); 1457 return 0; 1458 } 1459 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1460 1461 /* 1462 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1463 * 1464 * @se_cmd: command descriptor to submit 1465 * @se_sess: associated se_sess for endpoint 1466 * @cdb: pointer to SCSI CDB 1467 * @sense: pointer to SCSI sense buffer 1468 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1469 * @data_length: fabric expected data transfer length 1470 * @task_addr: SAM task attribute 1471 * @data_dir: DMA data direction 1472 * @flags: flags for command submission from target_sc_flags_tables 1473 * 1474 * Returns non zero to signal active I/O shutdown failure. All other 1475 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1476 * but still return zero here. 1477 * 1478 * This may only be called from process context, and also currently 1479 * assumes internal allocation of fabric payload buffer by target-core. 1480 * 1481 * It also assumes interal target core SGL memory allocation. 1482 */ 1483 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1484 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1485 u32 data_length, int task_attr, int data_dir, int flags) 1486 { 1487 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1488 unpacked_lun, data_length, task_attr, data_dir, 1489 flags, NULL, 0, NULL, 0, NULL, 0); 1490 } 1491 EXPORT_SYMBOL(target_submit_cmd); 1492 1493 static void target_complete_tmr_failure(struct work_struct *work) 1494 { 1495 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1496 1497 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1498 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1499 1500 transport_cmd_check_stop_to_fabric(se_cmd); 1501 } 1502 1503 /** 1504 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1505 * for TMR CDBs 1506 * 1507 * @se_cmd: command descriptor to submit 1508 * @se_sess: associated se_sess for endpoint 1509 * @sense: pointer to SCSI sense buffer 1510 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1511 * @fabric_context: fabric context for TMR req 1512 * @tm_type: Type of TM request 1513 * @gfp: gfp type for caller 1514 * @tag: referenced task tag for TMR_ABORT_TASK 1515 * @flags: submit cmd flags 1516 * 1517 * Callable from all contexts. 1518 **/ 1519 1520 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1521 unsigned char *sense, u32 unpacked_lun, 1522 void *fabric_tmr_ptr, unsigned char tm_type, 1523 gfp_t gfp, unsigned int tag, int flags) 1524 { 1525 struct se_portal_group *se_tpg; 1526 int ret; 1527 1528 se_tpg = se_sess->se_tpg; 1529 BUG_ON(!se_tpg); 1530 1531 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1532 0, DMA_NONE, MSG_SIMPLE_TAG, sense); 1533 /* 1534 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1535 * allocation failure. 1536 */ 1537 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1538 if (ret < 0) 1539 return -ENOMEM; 1540 1541 if (tm_type == TMR_ABORT_TASK) 1542 se_cmd->se_tmr_req->ref_task_tag = tag; 1543 1544 /* See target_submit_cmd for commentary */ 1545 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1546 if (ret) { 1547 core_tmr_release_req(se_cmd->se_tmr_req); 1548 return ret; 1549 } 1550 1551 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1552 if (ret) { 1553 /* 1554 * For callback during failure handling, push this work off 1555 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1556 */ 1557 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1558 schedule_work(&se_cmd->work); 1559 return 0; 1560 } 1561 transport_generic_handle_tmr(se_cmd); 1562 return 0; 1563 } 1564 EXPORT_SYMBOL(target_submit_tmr); 1565 1566 /* 1567 * If the cmd is active, request it to be stopped and sleep until it 1568 * has completed. 1569 */ 1570 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1571 { 1572 bool was_active = false; 1573 1574 if (cmd->transport_state & CMD_T_BUSY) { 1575 cmd->transport_state |= CMD_T_REQUEST_STOP; 1576 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1577 1578 pr_debug("cmd %p waiting to complete\n", cmd); 1579 wait_for_completion(&cmd->task_stop_comp); 1580 pr_debug("cmd %p stopped successfully\n", cmd); 1581 1582 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1583 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1584 cmd->transport_state &= ~CMD_T_BUSY; 1585 was_active = true; 1586 } 1587 1588 return was_active; 1589 } 1590 1591 /* 1592 * Handle SAM-esque emulation for generic transport request failures. 1593 */ 1594 void transport_generic_request_failure(struct se_cmd *cmd, 1595 sense_reason_t sense_reason) 1596 { 1597 int ret = 0; 1598 1599 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1600 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1601 cmd->t_task_cdb[0]); 1602 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1603 cmd->se_tfo->get_cmd_state(cmd), 1604 cmd->t_state, sense_reason); 1605 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1606 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1607 (cmd->transport_state & CMD_T_STOP) != 0, 1608 (cmd->transport_state & CMD_T_SENT) != 0); 1609 1610 /* 1611 * For SAM Task Attribute emulation for failed struct se_cmd 1612 */ 1613 transport_complete_task_attr(cmd); 1614 /* 1615 * Handle special case for COMPARE_AND_WRITE failure, where the 1616 * callback is expected to drop the per device ->caw_mutex. 1617 */ 1618 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1619 cmd->transport_complete_callback) 1620 cmd->transport_complete_callback(cmd); 1621 1622 switch (sense_reason) { 1623 case TCM_NON_EXISTENT_LUN: 1624 case TCM_UNSUPPORTED_SCSI_OPCODE: 1625 case TCM_INVALID_CDB_FIELD: 1626 case TCM_INVALID_PARAMETER_LIST: 1627 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1628 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1629 case TCM_UNKNOWN_MODE_PAGE: 1630 case TCM_WRITE_PROTECTED: 1631 case TCM_ADDRESS_OUT_OF_RANGE: 1632 case TCM_CHECK_CONDITION_ABORT_CMD: 1633 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1634 case TCM_CHECK_CONDITION_NOT_READY: 1635 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1636 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1637 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1638 break; 1639 case TCM_OUT_OF_RESOURCES: 1640 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1641 break; 1642 case TCM_RESERVATION_CONFLICT: 1643 /* 1644 * No SENSE Data payload for this case, set SCSI Status 1645 * and queue the response to $FABRIC_MOD. 1646 * 1647 * Uses linux/include/scsi/scsi.h SAM status codes defs 1648 */ 1649 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1650 /* 1651 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1652 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1653 * CONFLICT STATUS. 1654 * 1655 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1656 */ 1657 if (cmd->se_sess && 1658 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1659 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1660 cmd->orig_fe_lun, 0x2C, 1661 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1662 1663 trace_target_cmd_complete(cmd); 1664 ret = cmd->se_tfo-> queue_status(cmd); 1665 if (ret == -EAGAIN || ret == -ENOMEM) 1666 goto queue_full; 1667 goto check_stop; 1668 default: 1669 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1670 cmd->t_task_cdb[0], sense_reason); 1671 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1672 break; 1673 } 1674 1675 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1676 if (ret == -EAGAIN || ret == -ENOMEM) 1677 goto queue_full; 1678 1679 check_stop: 1680 transport_lun_remove_cmd(cmd); 1681 if (!transport_cmd_check_stop_to_fabric(cmd)) 1682 ; 1683 return; 1684 1685 queue_full: 1686 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1687 transport_handle_queue_full(cmd, cmd->se_dev); 1688 } 1689 EXPORT_SYMBOL(transport_generic_request_failure); 1690 1691 void __target_execute_cmd(struct se_cmd *cmd) 1692 { 1693 sense_reason_t ret; 1694 1695 if (cmd->execute_cmd) { 1696 ret = cmd->execute_cmd(cmd); 1697 if (ret) { 1698 spin_lock_irq(&cmd->t_state_lock); 1699 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1700 spin_unlock_irq(&cmd->t_state_lock); 1701 1702 transport_generic_request_failure(cmd, ret); 1703 } 1704 } 1705 } 1706 1707 static bool target_handle_task_attr(struct se_cmd *cmd) 1708 { 1709 struct se_device *dev = cmd->se_dev; 1710 1711 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1712 return false; 1713 1714 /* 1715 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1716 * to allow the passed struct se_cmd list of tasks to the front of the list. 1717 */ 1718 switch (cmd->sam_task_attr) { 1719 case MSG_HEAD_TAG: 1720 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1721 "se_ordered_id: %u\n", 1722 cmd->t_task_cdb[0], cmd->se_ordered_id); 1723 return false; 1724 case MSG_ORDERED_TAG: 1725 atomic_inc(&dev->dev_ordered_sync); 1726 smp_mb__after_atomic(); 1727 1728 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1729 " se_ordered_id: %u\n", 1730 cmd->t_task_cdb[0], cmd->se_ordered_id); 1731 1732 /* 1733 * Execute an ORDERED command if no other older commands 1734 * exist that need to be completed first. 1735 */ 1736 if (!atomic_read(&dev->simple_cmds)) 1737 return false; 1738 break; 1739 default: 1740 /* 1741 * For SIMPLE and UNTAGGED Task Attribute commands 1742 */ 1743 atomic_inc(&dev->simple_cmds); 1744 smp_mb__after_atomic(); 1745 break; 1746 } 1747 1748 if (atomic_read(&dev->dev_ordered_sync) == 0) 1749 return false; 1750 1751 spin_lock(&dev->delayed_cmd_lock); 1752 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1753 spin_unlock(&dev->delayed_cmd_lock); 1754 1755 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1756 " delayed CMD list, se_ordered_id: %u\n", 1757 cmd->t_task_cdb[0], cmd->sam_task_attr, 1758 cmd->se_ordered_id); 1759 return true; 1760 } 1761 1762 void target_execute_cmd(struct se_cmd *cmd) 1763 { 1764 /* 1765 * If the received CDB has aleady been aborted stop processing it here. 1766 */ 1767 if (transport_check_aborted_status(cmd, 1)) 1768 return; 1769 1770 /* 1771 * Determine if frontend context caller is requesting the stopping of 1772 * this command for frontend exceptions. 1773 */ 1774 spin_lock_irq(&cmd->t_state_lock); 1775 if (cmd->transport_state & CMD_T_STOP) { 1776 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1777 __func__, __LINE__, 1778 cmd->se_tfo->get_task_tag(cmd)); 1779 1780 spin_unlock_irq(&cmd->t_state_lock); 1781 complete_all(&cmd->t_transport_stop_comp); 1782 return; 1783 } 1784 1785 cmd->t_state = TRANSPORT_PROCESSING; 1786 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1787 spin_unlock_irq(&cmd->t_state_lock); 1788 /* 1789 * Perform WRITE_INSERT of PI using software emulation when backend 1790 * device has PI enabled, if the transport has not already generated 1791 * PI using hardware WRITE_INSERT offload. 1792 */ 1793 if (cmd->prot_op == TARGET_PROT_DOUT_INSERT) { 1794 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1795 sbc_dif_generate(cmd); 1796 } 1797 1798 if (target_handle_task_attr(cmd)) { 1799 spin_lock_irq(&cmd->t_state_lock); 1800 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT; 1801 spin_unlock_irq(&cmd->t_state_lock); 1802 return; 1803 } 1804 1805 __target_execute_cmd(cmd); 1806 } 1807 EXPORT_SYMBOL(target_execute_cmd); 1808 1809 /* 1810 * Process all commands up to the last received ORDERED task attribute which 1811 * requires another blocking boundary 1812 */ 1813 static void target_restart_delayed_cmds(struct se_device *dev) 1814 { 1815 for (;;) { 1816 struct se_cmd *cmd; 1817 1818 spin_lock(&dev->delayed_cmd_lock); 1819 if (list_empty(&dev->delayed_cmd_list)) { 1820 spin_unlock(&dev->delayed_cmd_lock); 1821 break; 1822 } 1823 1824 cmd = list_entry(dev->delayed_cmd_list.next, 1825 struct se_cmd, se_delayed_node); 1826 list_del(&cmd->se_delayed_node); 1827 spin_unlock(&dev->delayed_cmd_lock); 1828 1829 __target_execute_cmd(cmd); 1830 1831 if (cmd->sam_task_attr == MSG_ORDERED_TAG) 1832 break; 1833 } 1834 } 1835 1836 /* 1837 * Called from I/O completion to determine which dormant/delayed 1838 * and ordered cmds need to have their tasks added to the execution queue. 1839 */ 1840 static void transport_complete_task_attr(struct se_cmd *cmd) 1841 { 1842 struct se_device *dev = cmd->se_dev; 1843 1844 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) 1845 return; 1846 1847 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) { 1848 atomic_dec(&dev->simple_cmds); 1849 smp_mb__after_atomic(); 1850 dev->dev_cur_ordered_id++; 1851 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1852 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1853 cmd->se_ordered_id); 1854 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) { 1855 dev->dev_cur_ordered_id++; 1856 pr_debug("Incremented dev_cur_ordered_id: %u for" 1857 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1858 cmd->se_ordered_id); 1859 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) { 1860 atomic_dec(&dev->dev_ordered_sync); 1861 smp_mb__after_atomic(); 1862 1863 dev->dev_cur_ordered_id++; 1864 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1865 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1866 } 1867 1868 target_restart_delayed_cmds(dev); 1869 } 1870 1871 static void transport_complete_qf(struct se_cmd *cmd) 1872 { 1873 int ret = 0; 1874 1875 transport_complete_task_attr(cmd); 1876 1877 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1878 trace_target_cmd_complete(cmd); 1879 ret = cmd->se_tfo->queue_status(cmd); 1880 if (ret) 1881 goto out; 1882 } 1883 1884 switch (cmd->data_direction) { 1885 case DMA_FROM_DEVICE: 1886 trace_target_cmd_complete(cmd); 1887 ret = cmd->se_tfo->queue_data_in(cmd); 1888 break; 1889 case DMA_TO_DEVICE: 1890 if (cmd->se_cmd_flags & SCF_BIDI) { 1891 ret = cmd->se_tfo->queue_data_in(cmd); 1892 if (ret < 0) 1893 break; 1894 } 1895 /* Fall through for DMA_TO_DEVICE */ 1896 case DMA_NONE: 1897 trace_target_cmd_complete(cmd); 1898 ret = cmd->se_tfo->queue_status(cmd); 1899 break; 1900 default: 1901 break; 1902 } 1903 1904 out: 1905 if (ret < 0) { 1906 transport_handle_queue_full(cmd, cmd->se_dev); 1907 return; 1908 } 1909 transport_lun_remove_cmd(cmd); 1910 transport_cmd_check_stop_to_fabric(cmd); 1911 } 1912 1913 static void transport_handle_queue_full( 1914 struct se_cmd *cmd, 1915 struct se_device *dev) 1916 { 1917 spin_lock_irq(&dev->qf_cmd_lock); 1918 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1919 atomic_inc(&dev->dev_qf_count); 1920 smp_mb__after_atomic(); 1921 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1922 1923 schedule_work(&cmd->se_dev->qf_work_queue); 1924 } 1925 1926 static bool target_check_read_strip(struct se_cmd *cmd) 1927 { 1928 sense_reason_t rc; 1929 1930 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 1931 rc = sbc_dif_read_strip(cmd); 1932 if (rc) { 1933 cmd->pi_err = rc; 1934 return true; 1935 } 1936 } 1937 1938 return false; 1939 } 1940 1941 static void target_complete_ok_work(struct work_struct *work) 1942 { 1943 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 1944 int ret; 1945 1946 /* 1947 * Check if we need to move delayed/dormant tasks from cmds on the 1948 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 1949 * Attribute. 1950 */ 1951 transport_complete_task_attr(cmd); 1952 1953 /* 1954 * Check to schedule QUEUE_FULL work, or execute an existing 1955 * cmd->transport_qf_callback() 1956 */ 1957 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 1958 schedule_work(&cmd->se_dev->qf_work_queue); 1959 1960 /* 1961 * Check if we need to send a sense buffer from 1962 * the struct se_cmd in question. 1963 */ 1964 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1965 WARN_ON(!cmd->scsi_status); 1966 ret = transport_send_check_condition_and_sense( 1967 cmd, 0, 1); 1968 if (ret == -EAGAIN || ret == -ENOMEM) 1969 goto queue_full; 1970 1971 transport_lun_remove_cmd(cmd); 1972 transport_cmd_check_stop_to_fabric(cmd); 1973 return; 1974 } 1975 /* 1976 * Check for a callback, used by amongst other things 1977 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 1978 */ 1979 if (cmd->transport_complete_callback) { 1980 sense_reason_t rc; 1981 1982 rc = cmd->transport_complete_callback(cmd); 1983 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) { 1984 return; 1985 } else if (rc) { 1986 ret = transport_send_check_condition_and_sense(cmd, 1987 rc, 0); 1988 if (ret == -EAGAIN || ret == -ENOMEM) 1989 goto queue_full; 1990 1991 transport_lun_remove_cmd(cmd); 1992 transport_cmd_check_stop_to_fabric(cmd); 1993 return; 1994 } 1995 } 1996 1997 switch (cmd->data_direction) { 1998 case DMA_FROM_DEVICE: 1999 spin_lock(&cmd->se_lun->lun_sep_lock); 2000 if (cmd->se_lun->lun_sep) { 2001 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 2002 cmd->data_length; 2003 } 2004 spin_unlock(&cmd->se_lun->lun_sep_lock); 2005 /* 2006 * Perform READ_STRIP of PI using software emulation when 2007 * backend had PI enabled, if the transport will not be 2008 * performing hardware READ_STRIP offload. 2009 */ 2010 if (cmd->prot_op == TARGET_PROT_DIN_STRIP && 2011 target_check_read_strip(cmd)) { 2012 ret = transport_send_check_condition_and_sense(cmd, 2013 cmd->pi_err, 0); 2014 if (ret == -EAGAIN || ret == -ENOMEM) 2015 goto queue_full; 2016 2017 transport_lun_remove_cmd(cmd); 2018 transport_cmd_check_stop_to_fabric(cmd); 2019 return; 2020 } 2021 2022 trace_target_cmd_complete(cmd); 2023 ret = cmd->se_tfo->queue_data_in(cmd); 2024 if (ret == -EAGAIN || ret == -ENOMEM) 2025 goto queue_full; 2026 break; 2027 case DMA_TO_DEVICE: 2028 spin_lock(&cmd->se_lun->lun_sep_lock); 2029 if (cmd->se_lun->lun_sep) { 2030 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 2031 cmd->data_length; 2032 } 2033 spin_unlock(&cmd->se_lun->lun_sep_lock); 2034 /* 2035 * Check if we need to send READ payload for BIDI-COMMAND 2036 */ 2037 if (cmd->se_cmd_flags & SCF_BIDI) { 2038 spin_lock(&cmd->se_lun->lun_sep_lock); 2039 if (cmd->se_lun->lun_sep) { 2040 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 2041 cmd->data_length; 2042 } 2043 spin_unlock(&cmd->se_lun->lun_sep_lock); 2044 ret = cmd->se_tfo->queue_data_in(cmd); 2045 if (ret == -EAGAIN || ret == -ENOMEM) 2046 goto queue_full; 2047 break; 2048 } 2049 /* Fall through for DMA_TO_DEVICE */ 2050 case DMA_NONE: 2051 trace_target_cmd_complete(cmd); 2052 ret = cmd->se_tfo->queue_status(cmd); 2053 if (ret == -EAGAIN || ret == -ENOMEM) 2054 goto queue_full; 2055 break; 2056 default: 2057 break; 2058 } 2059 2060 transport_lun_remove_cmd(cmd); 2061 transport_cmd_check_stop_to_fabric(cmd); 2062 return; 2063 2064 queue_full: 2065 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2066 " data_direction: %d\n", cmd, cmd->data_direction); 2067 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2068 transport_handle_queue_full(cmd, cmd->se_dev); 2069 } 2070 2071 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 2072 { 2073 struct scatterlist *sg; 2074 int count; 2075 2076 for_each_sg(sgl, sg, nents, count) 2077 __free_page(sg_page(sg)); 2078 2079 kfree(sgl); 2080 } 2081 2082 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2083 { 2084 /* 2085 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2086 * emulation, and free + reset pointers if necessary.. 2087 */ 2088 if (!cmd->t_data_sg_orig) 2089 return; 2090 2091 kfree(cmd->t_data_sg); 2092 cmd->t_data_sg = cmd->t_data_sg_orig; 2093 cmd->t_data_sg_orig = NULL; 2094 cmd->t_data_nents = cmd->t_data_nents_orig; 2095 cmd->t_data_nents_orig = 0; 2096 } 2097 2098 static inline void transport_free_pages(struct se_cmd *cmd) 2099 { 2100 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2101 transport_reset_sgl_orig(cmd); 2102 return; 2103 } 2104 transport_reset_sgl_orig(cmd); 2105 2106 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2107 cmd->t_data_sg = NULL; 2108 cmd->t_data_nents = 0; 2109 2110 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2111 cmd->t_bidi_data_sg = NULL; 2112 cmd->t_bidi_data_nents = 0; 2113 2114 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2115 cmd->t_prot_sg = NULL; 2116 cmd->t_prot_nents = 0; 2117 } 2118 2119 /** 2120 * transport_release_cmd - free a command 2121 * @cmd: command to free 2122 * 2123 * This routine unconditionally frees a command, and reference counting 2124 * or list removal must be done in the caller. 2125 */ 2126 static int transport_release_cmd(struct se_cmd *cmd) 2127 { 2128 BUG_ON(!cmd->se_tfo); 2129 2130 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2131 core_tmr_release_req(cmd->se_tmr_req); 2132 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2133 kfree(cmd->t_task_cdb); 2134 /* 2135 * If this cmd has been setup with target_get_sess_cmd(), drop 2136 * the kref and call ->release_cmd() in kref callback. 2137 */ 2138 return target_put_sess_cmd(cmd->se_sess, cmd); 2139 } 2140 2141 /** 2142 * transport_put_cmd - release a reference to a command 2143 * @cmd: command to release 2144 * 2145 * This routine releases our reference to the command and frees it if possible. 2146 */ 2147 static int transport_put_cmd(struct se_cmd *cmd) 2148 { 2149 transport_free_pages(cmd); 2150 return transport_release_cmd(cmd); 2151 } 2152 2153 void *transport_kmap_data_sg(struct se_cmd *cmd) 2154 { 2155 struct scatterlist *sg = cmd->t_data_sg; 2156 struct page **pages; 2157 int i; 2158 2159 /* 2160 * We need to take into account a possible offset here for fabrics like 2161 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2162 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2163 */ 2164 if (!cmd->t_data_nents) 2165 return NULL; 2166 2167 BUG_ON(!sg); 2168 if (cmd->t_data_nents == 1) 2169 return kmap(sg_page(sg)) + sg->offset; 2170 2171 /* >1 page. use vmap */ 2172 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2173 if (!pages) 2174 return NULL; 2175 2176 /* convert sg[] to pages[] */ 2177 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2178 pages[i] = sg_page(sg); 2179 } 2180 2181 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2182 kfree(pages); 2183 if (!cmd->t_data_vmap) 2184 return NULL; 2185 2186 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2187 } 2188 EXPORT_SYMBOL(transport_kmap_data_sg); 2189 2190 void transport_kunmap_data_sg(struct se_cmd *cmd) 2191 { 2192 if (!cmd->t_data_nents) { 2193 return; 2194 } else if (cmd->t_data_nents == 1) { 2195 kunmap(sg_page(cmd->t_data_sg)); 2196 return; 2197 } 2198 2199 vunmap(cmd->t_data_vmap); 2200 cmd->t_data_vmap = NULL; 2201 } 2202 EXPORT_SYMBOL(transport_kunmap_data_sg); 2203 2204 int 2205 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2206 bool zero_page) 2207 { 2208 struct scatterlist *sg; 2209 struct page *page; 2210 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2211 unsigned int nent; 2212 int i = 0; 2213 2214 nent = DIV_ROUND_UP(length, PAGE_SIZE); 2215 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL); 2216 if (!sg) 2217 return -ENOMEM; 2218 2219 sg_init_table(sg, nent); 2220 2221 while (length) { 2222 u32 page_len = min_t(u32, length, PAGE_SIZE); 2223 page = alloc_page(GFP_KERNEL | zero_flag); 2224 if (!page) 2225 goto out; 2226 2227 sg_set_page(&sg[i], page, page_len, 0); 2228 length -= page_len; 2229 i++; 2230 } 2231 *sgl = sg; 2232 *nents = nent; 2233 return 0; 2234 2235 out: 2236 while (i > 0) { 2237 i--; 2238 __free_page(sg_page(&sg[i])); 2239 } 2240 kfree(sg); 2241 return -ENOMEM; 2242 } 2243 2244 /* 2245 * Allocate any required resources to execute the command. For writes we 2246 * might not have the payload yet, so notify the fabric via a call to 2247 * ->write_pending instead. Otherwise place it on the execution queue. 2248 */ 2249 sense_reason_t 2250 transport_generic_new_cmd(struct se_cmd *cmd) 2251 { 2252 int ret = 0; 2253 2254 /* 2255 * Determine is the TCM fabric module has already allocated physical 2256 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2257 * beforehand. 2258 */ 2259 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2260 cmd->data_length) { 2261 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2262 2263 if ((cmd->se_cmd_flags & SCF_BIDI) || 2264 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2265 u32 bidi_length; 2266 2267 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2268 bidi_length = cmd->t_task_nolb * 2269 cmd->se_dev->dev_attrib.block_size; 2270 else 2271 bidi_length = cmd->data_length; 2272 2273 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2274 &cmd->t_bidi_data_nents, 2275 bidi_length, zero_flag); 2276 if (ret < 0) 2277 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2278 } 2279 2280 if (cmd->prot_op != TARGET_PROT_NORMAL) { 2281 ret = target_alloc_sgl(&cmd->t_prot_sg, 2282 &cmd->t_prot_nents, 2283 cmd->prot_length, true); 2284 if (ret < 0) 2285 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2286 } 2287 2288 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2289 cmd->data_length, zero_flag); 2290 if (ret < 0) 2291 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2292 } 2293 /* 2294 * If this command is not a write we can execute it right here, 2295 * for write buffers we need to notify the fabric driver first 2296 * and let it call back once the write buffers are ready. 2297 */ 2298 target_add_to_state_list(cmd); 2299 if (cmd->data_direction != DMA_TO_DEVICE) { 2300 target_execute_cmd(cmd); 2301 return 0; 2302 } 2303 transport_cmd_check_stop(cmd, false, true); 2304 2305 ret = cmd->se_tfo->write_pending(cmd); 2306 if (ret == -EAGAIN || ret == -ENOMEM) 2307 goto queue_full; 2308 2309 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2310 WARN_ON(ret); 2311 2312 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2313 2314 queue_full: 2315 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2316 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2317 transport_handle_queue_full(cmd, cmd->se_dev); 2318 return 0; 2319 } 2320 EXPORT_SYMBOL(transport_generic_new_cmd); 2321 2322 static void transport_write_pending_qf(struct se_cmd *cmd) 2323 { 2324 int ret; 2325 2326 ret = cmd->se_tfo->write_pending(cmd); 2327 if (ret == -EAGAIN || ret == -ENOMEM) { 2328 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2329 cmd); 2330 transport_handle_queue_full(cmd, cmd->se_dev); 2331 } 2332 } 2333 2334 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2335 { 2336 unsigned long flags; 2337 int ret = 0; 2338 2339 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2340 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2341 transport_wait_for_tasks(cmd); 2342 2343 ret = transport_release_cmd(cmd); 2344 } else { 2345 if (wait_for_tasks) 2346 transport_wait_for_tasks(cmd); 2347 /* 2348 * Handle WRITE failure case where transport_generic_new_cmd() 2349 * has already added se_cmd to state_list, but fabric has 2350 * failed command before I/O submission. 2351 */ 2352 if (cmd->state_active) { 2353 spin_lock_irqsave(&cmd->t_state_lock, flags); 2354 target_remove_from_state_list(cmd); 2355 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2356 } 2357 2358 if (cmd->se_lun) 2359 transport_lun_remove_cmd(cmd); 2360 2361 ret = transport_put_cmd(cmd); 2362 } 2363 return ret; 2364 } 2365 EXPORT_SYMBOL(transport_generic_free_cmd); 2366 2367 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2368 * @se_sess: session to reference 2369 * @se_cmd: command descriptor to add 2370 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2371 */ 2372 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2373 bool ack_kref) 2374 { 2375 unsigned long flags; 2376 int ret = 0; 2377 2378 /* 2379 * Add a second kref if the fabric caller is expecting to handle 2380 * fabric acknowledgement that requires two target_put_sess_cmd() 2381 * invocations before se_cmd descriptor release. 2382 */ 2383 if (ack_kref) { 2384 kref_get(&se_cmd->cmd_kref); 2385 se_cmd->se_cmd_flags |= SCF_ACK_KREF; 2386 } 2387 2388 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2389 if (se_sess->sess_tearing_down) { 2390 ret = -ESHUTDOWN; 2391 goto out; 2392 } 2393 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2394 out: 2395 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2396 return ret; 2397 } 2398 EXPORT_SYMBOL(target_get_sess_cmd); 2399 2400 static void target_release_cmd_kref(struct kref *kref) 2401 { 2402 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2403 struct se_session *se_sess = se_cmd->se_sess; 2404 2405 if (list_empty(&se_cmd->se_cmd_list)) { 2406 spin_unlock(&se_sess->sess_cmd_lock); 2407 se_cmd->se_tfo->release_cmd(se_cmd); 2408 return; 2409 } 2410 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2411 spin_unlock(&se_sess->sess_cmd_lock); 2412 complete(&se_cmd->cmd_wait_comp); 2413 return; 2414 } 2415 list_del(&se_cmd->se_cmd_list); 2416 spin_unlock(&se_sess->sess_cmd_lock); 2417 2418 se_cmd->se_tfo->release_cmd(se_cmd); 2419 } 2420 2421 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2422 * @se_sess: session to reference 2423 * @se_cmd: command descriptor to drop 2424 */ 2425 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2426 { 2427 if (!se_sess) { 2428 se_cmd->se_tfo->release_cmd(se_cmd); 2429 return 1; 2430 } 2431 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2432 &se_sess->sess_cmd_lock); 2433 } 2434 EXPORT_SYMBOL(target_put_sess_cmd); 2435 2436 /* target_sess_cmd_list_set_waiting - Flag all commands in 2437 * sess_cmd_list to complete cmd_wait_comp. Set 2438 * sess_tearing_down so no more commands are queued. 2439 * @se_sess: session to flag 2440 */ 2441 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2442 { 2443 struct se_cmd *se_cmd; 2444 unsigned long flags; 2445 2446 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2447 if (se_sess->sess_tearing_down) { 2448 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2449 return; 2450 } 2451 se_sess->sess_tearing_down = 1; 2452 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2453 2454 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2455 se_cmd->cmd_wait_set = 1; 2456 2457 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2458 } 2459 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2460 2461 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2462 * @se_sess: session to wait for active I/O 2463 */ 2464 void target_wait_for_sess_cmds(struct se_session *se_sess) 2465 { 2466 struct se_cmd *se_cmd, *tmp_cmd; 2467 unsigned long flags; 2468 2469 list_for_each_entry_safe(se_cmd, tmp_cmd, 2470 &se_sess->sess_wait_list, se_cmd_list) { 2471 list_del(&se_cmd->se_cmd_list); 2472 2473 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2474 " %d\n", se_cmd, se_cmd->t_state, 2475 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2476 2477 wait_for_completion(&se_cmd->cmd_wait_comp); 2478 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2479 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2480 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2481 2482 se_cmd->se_tfo->release_cmd(se_cmd); 2483 } 2484 2485 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2486 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2487 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2488 2489 } 2490 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2491 2492 static int transport_clear_lun_ref_thread(void *p) 2493 { 2494 struct se_lun *lun = p; 2495 2496 percpu_ref_kill(&lun->lun_ref); 2497 2498 wait_for_completion(&lun->lun_ref_comp); 2499 complete(&lun->lun_shutdown_comp); 2500 2501 return 0; 2502 } 2503 2504 int transport_clear_lun_ref(struct se_lun *lun) 2505 { 2506 struct task_struct *kt; 2507 2508 kt = kthread_run(transport_clear_lun_ref_thread, lun, 2509 "tcm_cl_%u", lun->unpacked_lun); 2510 if (IS_ERR(kt)) { 2511 pr_err("Unable to start clear_lun thread\n"); 2512 return PTR_ERR(kt); 2513 } 2514 wait_for_completion(&lun->lun_shutdown_comp); 2515 2516 return 0; 2517 } 2518 2519 /** 2520 * transport_wait_for_tasks - wait for completion to occur 2521 * @cmd: command to wait 2522 * 2523 * Called from frontend fabric context to wait for storage engine 2524 * to pause and/or release frontend generated struct se_cmd. 2525 */ 2526 bool transport_wait_for_tasks(struct se_cmd *cmd) 2527 { 2528 unsigned long flags; 2529 2530 spin_lock_irqsave(&cmd->t_state_lock, flags); 2531 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2532 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2533 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2534 return false; 2535 } 2536 2537 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2538 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2539 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2540 return false; 2541 } 2542 2543 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2544 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2545 return false; 2546 } 2547 2548 cmd->transport_state |= CMD_T_STOP; 2549 2550 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2551 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2552 cmd, cmd->se_tfo->get_task_tag(cmd), 2553 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2554 2555 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2556 2557 wait_for_completion(&cmd->t_transport_stop_comp); 2558 2559 spin_lock_irqsave(&cmd->t_state_lock, flags); 2560 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2561 2562 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2563 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2564 cmd->se_tfo->get_task_tag(cmd)); 2565 2566 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2567 2568 return true; 2569 } 2570 EXPORT_SYMBOL(transport_wait_for_tasks); 2571 2572 static int transport_get_sense_codes( 2573 struct se_cmd *cmd, 2574 u8 *asc, 2575 u8 *ascq) 2576 { 2577 *asc = cmd->scsi_asc; 2578 *ascq = cmd->scsi_ascq; 2579 2580 return 0; 2581 } 2582 2583 static 2584 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector) 2585 { 2586 /* Place failed LBA in sense data information descriptor 0. */ 2587 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc; 2588 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */ 2589 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa; 2590 buffer[SPC_VALIDITY_OFFSET] = 0x80; 2591 2592 /* Descriptor Information: failing sector */ 2593 put_unaligned_be64(bad_sector, &buffer[12]); 2594 } 2595 2596 int 2597 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2598 sense_reason_t reason, int from_transport) 2599 { 2600 unsigned char *buffer = cmd->sense_buffer; 2601 unsigned long flags; 2602 u8 asc = 0, ascq = 0; 2603 2604 spin_lock_irqsave(&cmd->t_state_lock, flags); 2605 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2606 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2607 return 0; 2608 } 2609 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2610 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2611 2612 if (!reason && from_transport) 2613 goto after_reason; 2614 2615 if (!from_transport) 2616 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2617 2618 /* 2619 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2620 * SENSE KEY values from include/scsi/scsi.h 2621 */ 2622 switch (reason) { 2623 case TCM_NO_SENSE: 2624 /* CURRENT ERROR */ 2625 buffer[0] = 0x70; 2626 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2627 /* Not Ready */ 2628 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2629 /* NO ADDITIONAL SENSE INFORMATION */ 2630 buffer[SPC_ASC_KEY_OFFSET] = 0; 2631 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2632 break; 2633 case TCM_NON_EXISTENT_LUN: 2634 /* CURRENT ERROR */ 2635 buffer[0] = 0x70; 2636 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2637 /* ILLEGAL REQUEST */ 2638 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2639 /* LOGICAL UNIT NOT SUPPORTED */ 2640 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2641 break; 2642 case TCM_UNSUPPORTED_SCSI_OPCODE: 2643 case TCM_SECTOR_COUNT_TOO_MANY: 2644 /* CURRENT ERROR */ 2645 buffer[0] = 0x70; 2646 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2647 /* ILLEGAL REQUEST */ 2648 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2649 /* INVALID COMMAND OPERATION CODE */ 2650 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2651 break; 2652 case TCM_UNKNOWN_MODE_PAGE: 2653 /* CURRENT ERROR */ 2654 buffer[0] = 0x70; 2655 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2656 /* ILLEGAL REQUEST */ 2657 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2658 /* INVALID FIELD IN CDB */ 2659 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2660 break; 2661 case TCM_CHECK_CONDITION_ABORT_CMD: 2662 /* CURRENT ERROR */ 2663 buffer[0] = 0x70; 2664 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2665 /* ABORTED COMMAND */ 2666 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2667 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2668 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2669 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2670 break; 2671 case TCM_INCORRECT_AMOUNT_OF_DATA: 2672 /* CURRENT ERROR */ 2673 buffer[0] = 0x70; 2674 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2675 /* ABORTED COMMAND */ 2676 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2677 /* WRITE ERROR */ 2678 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2679 /* NOT ENOUGH UNSOLICITED DATA */ 2680 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2681 break; 2682 case TCM_INVALID_CDB_FIELD: 2683 /* CURRENT ERROR */ 2684 buffer[0] = 0x70; 2685 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2686 /* ILLEGAL REQUEST */ 2687 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2688 /* INVALID FIELD IN CDB */ 2689 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2690 break; 2691 case TCM_INVALID_PARAMETER_LIST: 2692 /* CURRENT ERROR */ 2693 buffer[0] = 0x70; 2694 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2695 /* ILLEGAL REQUEST */ 2696 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2697 /* INVALID FIELD IN PARAMETER LIST */ 2698 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2699 break; 2700 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2701 /* CURRENT ERROR */ 2702 buffer[0] = 0x70; 2703 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2704 /* ILLEGAL REQUEST */ 2705 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2706 /* PARAMETER LIST LENGTH ERROR */ 2707 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2708 break; 2709 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2710 /* CURRENT ERROR */ 2711 buffer[0] = 0x70; 2712 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2713 /* ABORTED COMMAND */ 2714 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2715 /* WRITE ERROR */ 2716 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2717 /* UNEXPECTED_UNSOLICITED_DATA */ 2718 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2719 break; 2720 case TCM_SERVICE_CRC_ERROR: 2721 /* CURRENT ERROR */ 2722 buffer[0] = 0x70; 2723 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2724 /* ABORTED COMMAND */ 2725 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2726 /* PROTOCOL SERVICE CRC ERROR */ 2727 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2728 /* N/A */ 2729 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2730 break; 2731 case TCM_SNACK_REJECTED: 2732 /* CURRENT ERROR */ 2733 buffer[0] = 0x70; 2734 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2735 /* ABORTED COMMAND */ 2736 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2737 /* READ ERROR */ 2738 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2739 /* FAILED RETRANSMISSION REQUEST */ 2740 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2741 break; 2742 case TCM_WRITE_PROTECTED: 2743 /* CURRENT ERROR */ 2744 buffer[0] = 0x70; 2745 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2746 /* DATA PROTECT */ 2747 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2748 /* WRITE PROTECTED */ 2749 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2750 break; 2751 case TCM_ADDRESS_OUT_OF_RANGE: 2752 /* CURRENT ERROR */ 2753 buffer[0] = 0x70; 2754 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2755 /* ILLEGAL REQUEST */ 2756 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2757 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2758 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2759 break; 2760 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2761 /* CURRENT ERROR */ 2762 buffer[0] = 0x70; 2763 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2764 /* UNIT ATTENTION */ 2765 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2766 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2767 buffer[SPC_ASC_KEY_OFFSET] = asc; 2768 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2769 break; 2770 case TCM_CHECK_CONDITION_NOT_READY: 2771 /* CURRENT ERROR */ 2772 buffer[0] = 0x70; 2773 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2774 /* Not Ready */ 2775 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2776 transport_get_sense_codes(cmd, &asc, &ascq); 2777 buffer[SPC_ASC_KEY_OFFSET] = asc; 2778 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2779 break; 2780 case TCM_MISCOMPARE_VERIFY: 2781 /* CURRENT ERROR */ 2782 buffer[0] = 0x70; 2783 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2784 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE; 2785 /* MISCOMPARE DURING VERIFY OPERATION */ 2786 buffer[SPC_ASC_KEY_OFFSET] = 0x1d; 2787 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00; 2788 break; 2789 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 2790 /* CURRENT ERROR */ 2791 buffer[0] = 0x70; 2792 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2793 /* ILLEGAL REQUEST */ 2794 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2795 /* LOGICAL BLOCK GUARD CHECK FAILED */ 2796 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2797 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01; 2798 transport_err_sector_info(buffer, cmd->bad_sector); 2799 break; 2800 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 2801 /* CURRENT ERROR */ 2802 buffer[0] = 0x70; 2803 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2804 /* ILLEGAL REQUEST */ 2805 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2806 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2807 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2808 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02; 2809 transport_err_sector_info(buffer, cmd->bad_sector); 2810 break; 2811 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 2812 /* CURRENT ERROR */ 2813 buffer[0] = 0x70; 2814 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2815 /* ILLEGAL REQUEST */ 2816 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2817 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2818 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2819 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2820 transport_err_sector_info(buffer, cmd->bad_sector); 2821 break; 2822 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2823 default: 2824 /* CURRENT ERROR */ 2825 buffer[0] = 0x70; 2826 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2827 /* 2828 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2829 * Solaris initiators. Returning NOT READY instead means the 2830 * operations will be retried a finite number of times and we 2831 * can survive intermittent errors. 2832 */ 2833 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2834 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2835 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2836 break; 2837 } 2838 /* 2839 * This code uses linux/include/scsi/scsi.h SAM status codes! 2840 */ 2841 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2842 /* 2843 * Automatically padded, this value is encoded in the fabric's 2844 * data_length response PDU containing the SCSI defined sense data. 2845 */ 2846 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2847 2848 after_reason: 2849 trace_target_cmd_complete(cmd); 2850 return cmd->se_tfo->queue_status(cmd); 2851 } 2852 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2853 2854 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2855 { 2856 if (!(cmd->transport_state & CMD_T_ABORTED)) 2857 return 0; 2858 2859 /* 2860 * If cmd has been aborted but either no status is to be sent or it has 2861 * already been sent, just return 2862 */ 2863 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) 2864 return 1; 2865 2866 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2867 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2868 2869 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 2870 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2871 trace_target_cmd_complete(cmd); 2872 cmd->se_tfo->queue_status(cmd); 2873 2874 return 1; 2875 } 2876 EXPORT_SYMBOL(transport_check_aborted_status); 2877 2878 void transport_send_task_abort(struct se_cmd *cmd) 2879 { 2880 unsigned long flags; 2881 2882 spin_lock_irqsave(&cmd->t_state_lock, flags); 2883 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 2884 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2885 return; 2886 } 2887 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2888 2889 /* 2890 * If there are still expected incoming fabric WRITEs, we wait 2891 * until until they have completed before sending a TASK_ABORTED 2892 * response. This response with TASK_ABORTED status will be 2893 * queued back to fabric module by transport_check_aborted_status(). 2894 */ 2895 if (cmd->data_direction == DMA_TO_DEVICE) { 2896 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 2897 cmd->transport_state |= CMD_T_ABORTED; 2898 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 2899 smp_mb__after_atomic(); 2900 return; 2901 } 2902 } 2903 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2904 2905 transport_lun_remove_cmd(cmd); 2906 2907 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 2908 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 2909 cmd->se_tfo->get_task_tag(cmd)); 2910 2911 trace_target_cmd_complete(cmd); 2912 cmd->se_tfo->queue_status(cmd); 2913 } 2914 2915 static void target_tmr_work(struct work_struct *work) 2916 { 2917 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2918 struct se_device *dev = cmd->se_dev; 2919 struct se_tmr_req *tmr = cmd->se_tmr_req; 2920 int ret; 2921 2922 switch (tmr->function) { 2923 case TMR_ABORT_TASK: 2924 core_tmr_abort_task(dev, tmr, cmd->se_sess); 2925 break; 2926 case TMR_ABORT_TASK_SET: 2927 case TMR_CLEAR_ACA: 2928 case TMR_CLEAR_TASK_SET: 2929 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 2930 break; 2931 case TMR_LUN_RESET: 2932 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 2933 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 2934 TMR_FUNCTION_REJECTED; 2935 break; 2936 case TMR_TARGET_WARM_RESET: 2937 tmr->response = TMR_FUNCTION_REJECTED; 2938 break; 2939 case TMR_TARGET_COLD_RESET: 2940 tmr->response = TMR_FUNCTION_REJECTED; 2941 break; 2942 default: 2943 pr_err("Uknown TMR function: 0x%02x.\n", 2944 tmr->function); 2945 tmr->response = TMR_FUNCTION_REJECTED; 2946 break; 2947 } 2948 2949 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 2950 cmd->se_tfo->queue_tm_rsp(cmd); 2951 2952 transport_cmd_check_stop_to_fabric(cmd); 2953 } 2954 2955 int transport_generic_handle_tmr( 2956 struct se_cmd *cmd) 2957 { 2958 unsigned long flags; 2959 2960 spin_lock_irqsave(&cmd->t_state_lock, flags); 2961 cmd->transport_state |= CMD_T_ACTIVE; 2962 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2963 2964 INIT_WORK(&cmd->work, target_tmr_work); 2965 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 2966 return 0; 2967 } 2968 EXPORT_SYMBOL(transport_generic_handle_tmr); 2969