1 // SPDX-License-Identifier: (GPL-2.0 OR MPL-1.1)
2 /* src/prism2/driver/hfa384x_usb.c
3  *
4  * Functions that talk to the USB variant of the Intersil hfa384x MAC
5  *
6  * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
7  * --------------------------------------------------------------------
8  *
9  * linux-wlan
10  *
11  *   The contents of this file are subject to the Mozilla Public
12  *   License Version 1.1 (the "License"); you may not use this file
13  *   except in compliance with the License. You may obtain a copy of
14  *   the License at http://www.mozilla.org/MPL/
15  *
16  *   Software distributed under the License is distributed on an "AS
17  *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
18  *   implied. See the License for the specific language governing
19  *   rights and limitations under the License.
20  *
21  *   Alternatively, the contents of this file may be used under the
22  *   terms of the GNU Public License version 2 (the "GPL"), in which
23  *   case the provisions of the GPL are applicable instead of the
24  *   above.  If you wish to allow the use of your version of this file
25  *   only under the terms of the GPL and not to allow others to use
26  *   your version of this file under the MPL, indicate your decision
27  *   by deleting the provisions above and replace them with the notice
28  *   and other provisions required by the GPL.  If you do not delete
29  *   the provisions above, a recipient may use your version of this
30  *   file under either the MPL or the GPL.
31  *
32  * --------------------------------------------------------------------
33  *
34  * Inquiries regarding the linux-wlan Open Source project can be
35  * made directly to:
36  *
37  * AbsoluteValue Systems Inc.
38  * info@linux-wlan.com
39  * http://www.linux-wlan.com
40  *
41  * --------------------------------------------------------------------
42  *
43  * Portions of the development of this software were funded by
44  * Intersil Corporation as part of PRISM(R) chipset product development.
45  *
46  * --------------------------------------------------------------------
47  *
48  * This file implements functions that correspond to the prism2/hfa384x
49  * 802.11 MAC hardware and firmware host interface.
50  *
51  * The functions can be considered to represent several levels of
52  * abstraction.  The lowest level functions are simply C-callable wrappers
53  * around the register accesses.  The next higher level represents C-callable
54  * prism2 API functions that match the Intersil documentation as closely
55  * as is reasonable.  The next higher layer implements common sequences
56  * of invocations of the API layer (e.g. write to bap, followed by cmd).
57  *
58  * Common sequences:
59  * hfa384x_drvr_xxx	Highest level abstractions provided by the
60  *			hfa384x code.  They are driver defined wrappers
61  *			for common sequences.  These functions generally
62  *			use the services of the lower levels.
63  *
64  * hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
65  *			functions are wrappers for the RID get/set
66  *			sequence. They call copy_[to|from]_bap() and
67  *			cmd_access(). These functions operate on the
68  *			RIDs and buffers without validation. The caller
69  *			is responsible for that.
70  *
71  * API wrapper functions:
72  * hfa384x_cmd_xxx	functions that provide access to the f/w commands.
73  *			The function arguments correspond to each command
74  *			argument, even command arguments that get packed
75  *			into single registers.  These functions _just_
76  *			issue the command by setting the cmd/parm regs
77  *			& reading the status/resp regs.  Additional
78  *			activities required to fully use a command
79  *			(read/write from/to bap, get/set int status etc.)
80  *			are implemented separately.  Think of these as
81  *			C-callable prism2 commands.
82  *
83  * Lowest Layer Functions:
84  * hfa384x_docmd_xxx	These functions implement the sequence required
85  *			to issue any prism2 command.  Primarily used by the
86  *			hfa384x_cmd_xxx functions.
87  *
88  * hfa384x_bap_xxx	BAP read/write access functions.
89  *			Note: we usually use BAP0 for non-interrupt context
90  *			 and BAP1 for interrupt context.
91  *
92  * hfa384x_dl_xxx	download related functions.
93  *
94  * Driver State Issues:
95  * Note that there are two pairs of functions that manage the
96  * 'initialized' and 'running' states of the hw/MAC combo.  The four
97  * functions are create(), destroy(), start(), and stop().  create()
98  * sets up the data structures required to support the hfa384x_*
99  * functions and destroy() cleans them up.  The start() function gets
100  * the actual hardware running and enables the interrupts.  The stop()
101  * function shuts the hardware down.  The sequence should be:
102  * create()
103  * start()
104  *  .
105  *  .  Do interesting things w/ the hardware
106  *  .
107  * stop()
108  * destroy()
109  *
110  * Note that destroy() can be called without calling stop() first.
111  * --------------------------------------------------------------------
112  */
113 
114 #include <linux/module.h>
115 #include <linux/kernel.h>
116 #include <linux/sched.h>
117 #include <linux/types.h>
118 #include <linux/slab.h>
119 #include <linux/wireless.h>
120 #include <linux/netdevice.h>
121 #include <linux/timer.h>
122 #include <linux/io.h>
123 #include <linux/delay.h>
124 #include <asm/byteorder.h>
125 #include <linux/bitops.h>
126 #include <linux/list.h>
127 #include <linux/usb.h>
128 #include <linux/byteorder/generic.h>
129 
130 #include "p80211types.h"
131 #include "p80211hdr.h"
132 #include "p80211mgmt.h"
133 #include "p80211conv.h"
134 #include "p80211msg.h"
135 #include "p80211netdev.h"
136 #include "p80211req.h"
137 #include "p80211metadef.h"
138 #include "p80211metastruct.h"
139 #include "hfa384x.h"
140 #include "prism2mgmt.h"
141 
142 enum cmd_mode {
143 	DOWAIT = 0,
144 	DOASYNC
145 };
146 
147 #define THROTTLE_JIFFIES	(HZ / 8)
148 #define URB_ASYNC_UNLINK 0
149 #define USB_QUEUE_BULK 0
150 
151 #define ROUNDUP64(a) (((a) + 63) & ~63)
152 
153 #ifdef DEBUG_USB
154 static void dbprint_urb(struct urb *urb);
155 #endif
156 
157 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
158 				  struct hfa384x_usb_rxfrm *rxfrm);
159 
160 static void hfa384x_usb_defer(struct work_struct *data);
161 
162 static int submit_rx_urb(struct hfa384x *hw, gfp_t flags);
163 
164 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t flags);
165 
166 /*---------------------------------------------------*/
167 /* Callbacks */
168 static void hfa384x_usbout_callback(struct urb *urb);
169 static void hfa384x_ctlxout_callback(struct urb *urb);
170 static void hfa384x_usbin_callback(struct urb *urb);
171 
172 static void
173 hfa384x_usbin_txcompl(struct wlandevice *wlandev, union hfa384x_usbin *usbin);
174 
175 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb);
176 
177 static void hfa384x_usbin_info(struct wlandevice *wlandev,
178 			       union hfa384x_usbin *usbin);
179 
180 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
181 			       int urb_status);
182 
183 /*---------------------------------------------------*/
184 /* Functions to support the prism2 usb command queue */
185 
186 static void hfa384x_usbctlxq_run(struct hfa384x *hw);
187 
188 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t);
189 
190 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t);
191 
192 static void hfa384x_usb_throttlefn(struct timer_list *t);
193 
194 static void hfa384x_usbctlx_completion_task(unsigned long data);
195 
196 static void hfa384x_usbctlx_reaper_task(unsigned long data);
197 
198 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
199 				  struct hfa384x_usbctlx *ctlx);
200 
201 static void unlocked_usbctlx_complete(struct hfa384x *hw,
202 				      struct hfa384x_usbctlx *ctlx);
203 
204 struct usbctlx_completor {
205 	int (*complete)(struct usbctlx_completor *completor);
206 };
207 
208 static int
209 hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
210 			      struct hfa384x_usbctlx *ctlx,
211 			      struct usbctlx_completor *completor);
212 
213 static int
214 unlocked_usbctlx_cancel_async(struct hfa384x *hw, struct hfa384x_usbctlx *ctlx);
215 
216 static void hfa384x_cb_status(struct hfa384x *hw,
217 			      const struct hfa384x_usbctlx *ctlx);
218 
219 static int
220 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
221 		   struct hfa384x_cmdresult *result);
222 
223 static void
224 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
225 		       struct hfa384x_rridresult *result);
226 
227 /*---------------------------------------------------*/
228 /* Low level req/resp CTLX formatters and submitters */
229 static inline int
230 hfa384x_docmd(struct hfa384x *hw,
231 	      struct hfa384x_metacmd *cmd);
232 
233 static int
234 hfa384x_dorrid(struct hfa384x *hw,
235 	       enum cmd_mode mode,
236 	       u16 rid,
237 	       void *riddata,
238 	       unsigned int riddatalen,
239 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
240 
241 static int
242 hfa384x_dowrid(struct hfa384x *hw,
243 	       enum cmd_mode mode,
244 	       u16 rid,
245 	       void *riddata,
246 	       unsigned int riddatalen,
247 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
248 
249 static int
250 hfa384x_dormem(struct hfa384x *hw,
251 	       u16 page,
252 	       u16 offset,
253 	       void *data,
254 	       unsigned int len);
255 
256 static int
257 hfa384x_dowmem(struct hfa384x *hw,
258 	       u16 page,
259 	       u16 offset,
260 	       void *data,
261 	       unsigned int len);
262 
263 static int hfa384x_isgood_pdrcode(u16 pdrcode);
264 
265 static inline const char *ctlxstr(enum ctlx_state s)
266 {
267 	static const char * const ctlx_str[] = {
268 		"Initial state",
269 		"Complete",
270 		"Request failed",
271 		"Request pending",
272 		"Request packet submitted",
273 		"Request packet completed",
274 		"Response packet completed"
275 	};
276 
277 	return ctlx_str[s];
278 };
279 
280 static inline struct hfa384x_usbctlx *get_active_ctlx(struct hfa384x *hw)
281 {
282 	return list_entry(hw->ctlxq.active.next, struct hfa384x_usbctlx, list);
283 }
284 
285 #ifdef DEBUG_USB
286 void dbprint_urb(struct urb *urb)
287 {
288 	pr_debug("urb->pipe=0x%08x\n", urb->pipe);
289 	pr_debug("urb->status=0x%08x\n", urb->status);
290 	pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
291 	pr_debug("urb->transfer_buffer=0x%08x\n",
292 		 (unsigned int)urb->transfer_buffer);
293 	pr_debug("urb->transfer_buffer_length=0x%08x\n",
294 		 urb->transfer_buffer_length);
295 	pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
296 	pr_debug("urb->setup_packet(ctl)=0x%08x\n",
297 		 (unsigned int)urb->setup_packet);
298 	pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
299 	pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
300 	pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
301 	pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
302 	pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
303 }
304 #endif
305 
306 /*----------------------------------------------------------------
307  * submit_rx_urb
308  *
309  * Listen for input data on the BULK-IN pipe. If the pipe has
310  * stalled then schedule it to be reset.
311  *
312  * Arguments:
313  *	hw		device struct
314  *	memflags	memory allocation flags
315  *
316  * Returns:
317  *	error code from submission
318  *
319  * Call context:
320  *	Any
321  *----------------------------------------------------------------
322  */
323 static int submit_rx_urb(struct hfa384x *hw, gfp_t memflags)
324 {
325 	struct sk_buff *skb;
326 	int result;
327 
328 	skb = dev_alloc_skb(sizeof(union hfa384x_usbin));
329 	if (!skb) {
330 		result = -ENOMEM;
331 		goto done;
332 	}
333 
334 	/* Post the IN urb */
335 	usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
336 			  hw->endp_in,
337 			  skb->data, sizeof(union hfa384x_usbin),
338 			  hfa384x_usbin_callback, hw->wlandev);
339 
340 	hw->rx_urb_skb = skb;
341 
342 	result = -ENOLINK;
343 	if (!hw->wlandev->hwremoved &&
344 	    !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
345 		result = usb_submit_urb(&hw->rx_urb, memflags);
346 
347 		/* Check whether we need to reset the RX pipe */
348 		if (result == -EPIPE) {
349 			netdev_warn(hw->wlandev->netdev,
350 				    "%s rx pipe stalled: requesting reset\n",
351 				    hw->wlandev->netdev->name);
352 			if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
353 				schedule_work(&hw->usb_work);
354 		}
355 	}
356 
357 	/* Don't leak memory if anything should go wrong */
358 	if (result != 0) {
359 		dev_kfree_skb(skb);
360 		hw->rx_urb_skb = NULL;
361 	}
362 
363 done:
364 	return result;
365 }
366 
367 /*----------------------------------------------------------------
368  * submit_tx_urb
369  *
370  * Prepares and submits the URB of transmitted data. If the
371  * submission fails then it will schedule the output pipe to
372  * be reset.
373  *
374  * Arguments:
375  *	hw		device struct
376  *	tx_urb		URB of data for transmission
377  *	memflags	memory allocation flags
378  *
379  * Returns:
380  *	error code from submission
381  *
382  * Call context:
383  *	Any
384  *----------------------------------------------------------------
385  */
386 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t memflags)
387 {
388 	struct net_device *netdev = hw->wlandev->netdev;
389 	int result;
390 
391 	result = -ENOLINK;
392 	if (netif_running(netdev)) {
393 		if (!hw->wlandev->hwremoved &&
394 		    !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
395 			result = usb_submit_urb(tx_urb, memflags);
396 
397 			/* Test whether we need to reset the TX pipe */
398 			if (result == -EPIPE) {
399 				netdev_warn(hw->wlandev->netdev,
400 					    "%s tx pipe stalled: requesting reset\n",
401 					    netdev->name);
402 				set_bit(WORK_TX_HALT, &hw->usb_flags);
403 				schedule_work(&hw->usb_work);
404 			} else if (result == 0) {
405 				netif_stop_queue(netdev);
406 			}
407 		}
408 	}
409 
410 	return result;
411 }
412 
413 /*----------------------------------------------------------------
414  * hfa394x_usb_defer
415  *
416  * There are some things that the USB stack cannot do while
417  * in interrupt context, so we arrange this function to run
418  * in process context.
419  *
420  * Arguments:
421  *	hw	device structure
422  *
423  * Returns:
424  *	nothing
425  *
426  * Call context:
427  *	process (by design)
428  *----------------------------------------------------------------
429  */
430 static void hfa384x_usb_defer(struct work_struct *data)
431 {
432 	struct hfa384x *hw = container_of(data, struct hfa384x, usb_work);
433 	struct net_device *netdev = hw->wlandev->netdev;
434 
435 	/* Don't bother trying to reset anything if the plug
436 	 * has been pulled ...
437 	 */
438 	if (hw->wlandev->hwremoved)
439 		return;
440 
441 	/* Reception has stopped: try to reset the input pipe */
442 	if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
443 		int ret;
444 
445 		usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
446 
447 		ret = usb_clear_halt(hw->usb, hw->endp_in);
448 		if (ret != 0) {
449 			netdev_err(hw->wlandev->netdev,
450 				   "Failed to clear rx pipe for %s: err=%d\n",
451 				   netdev->name, ret);
452 		} else {
453 			netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
454 				    netdev->name);
455 			clear_bit(WORK_RX_HALT, &hw->usb_flags);
456 			set_bit(WORK_RX_RESUME, &hw->usb_flags);
457 		}
458 	}
459 
460 	/* Resume receiving data back from the device. */
461 	if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
462 		int ret;
463 
464 		ret = submit_rx_urb(hw, GFP_KERNEL);
465 		if (ret != 0) {
466 			netdev_err(hw->wlandev->netdev,
467 				   "Failed to resume %s rx pipe.\n",
468 				   netdev->name);
469 		} else {
470 			clear_bit(WORK_RX_RESUME, &hw->usb_flags);
471 		}
472 	}
473 
474 	/* Transmission has stopped: try to reset the output pipe */
475 	if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
476 		int ret;
477 
478 		usb_kill_urb(&hw->tx_urb);
479 		ret = usb_clear_halt(hw->usb, hw->endp_out);
480 		if (ret != 0) {
481 			netdev_err(hw->wlandev->netdev,
482 				   "Failed to clear tx pipe for %s: err=%d\n",
483 				   netdev->name, ret);
484 		} else {
485 			netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
486 				    netdev->name);
487 			clear_bit(WORK_TX_HALT, &hw->usb_flags);
488 			set_bit(WORK_TX_RESUME, &hw->usb_flags);
489 
490 			/* Stopping the BULK-OUT pipe also blocked
491 			 * us from sending any more CTLX URBs, so
492 			 * we need to re-run our queue ...
493 			 */
494 			hfa384x_usbctlxq_run(hw);
495 		}
496 	}
497 
498 	/* Resume transmitting. */
499 	if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
500 		netif_wake_queue(hw->wlandev->netdev);
501 }
502 
503 /*----------------------------------------------------------------
504  * hfa384x_create
505  *
506  * Sets up the struct hfa384x data structure for use.  Note this
507  * does _not_ initialize the actual hardware, just the data structures
508  * we use to keep track of its state.
509  *
510  * Arguments:
511  *	hw		device structure
512  *	irq		device irq number
513  *	iobase		i/o base address for register access
514  *	membase		memory base address for register access
515  *
516  * Returns:
517  *	nothing
518  *
519  * Side effects:
520  *
521  * Call context:
522  *	process
523  *----------------------------------------------------------------
524  */
525 void hfa384x_create(struct hfa384x *hw, struct usb_device *usb)
526 {
527 	memset(hw, 0, sizeof(*hw));
528 	hw->usb = usb;
529 
530 	/* set up the endpoints */
531 	hw->endp_in = usb_rcvbulkpipe(usb, 1);
532 	hw->endp_out = usb_sndbulkpipe(usb, 2);
533 
534 	/* Set up the waitq */
535 	init_waitqueue_head(&hw->cmdq);
536 
537 	/* Initialize the command queue */
538 	spin_lock_init(&hw->ctlxq.lock);
539 	INIT_LIST_HEAD(&hw->ctlxq.pending);
540 	INIT_LIST_HEAD(&hw->ctlxq.active);
541 	INIT_LIST_HEAD(&hw->ctlxq.completing);
542 	INIT_LIST_HEAD(&hw->ctlxq.reapable);
543 
544 	/* Initialize the authentication queue */
545 	skb_queue_head_init(&hw->authq);
546 
547 	tasklet_init(&hw->reaper_bh,
548 		     hfa384x_usbctlx_reaper_task, (unsigned long)hw);
549 	tasklet_init(&hw->completion_bh,
550 		     hfa384x_usbctlx_completion_task, (unsigned long)hw);
551 	INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
552 	INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
553 
554 	timer_setup(&hw->throttle, hfa384x_usb_throttlefn, 0);
555 
556 	timer_setup(&hw->resptimer, hfa384x_usbctlx_resptimerfn, 0);
557 
558 	timer_setup(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn, 0);
559 
560 	usb_init_urb(&hw->rx_urb);
561 	usb_init_urb(&hw->tx_urb);
562 	usb_init_urb(&hw->ctlx_urb);
563 
564 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
565 	hw->state = HFA384x_STATE_INIT;
566 
567 	INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
568 	timer_setup(&hw->commsqual_timer, prism2sta_commsqual_timer, 0);
569 }
570 
571 /*----------------------------------------------------------------
572  * hfa384x_destroy
573  *
574  * Partner to hfa384x_create().  This function cleans up the hw
575  * structure so that it can be freed by the caller using a simple
576  * kfree.  Currently, this function is just a placeholder.  If, at some
577  * point in the future, an hw in the 'shutdown' state requires a 'deep'
578  * kfree, this is where it should be done.  Note that if this function
579  * is called on a _running_ hw structure, the drvr_stop() function is
580  * called.
581  *
582  * Arguments:
583  *	hw		device structure
584  *
585  * Returns:
586  *	nothing, this function is not allowed to fail.
587  *
588  * Side effects:
589  *
590  * Call context:
591  *	process
592  *----------------------------------------------------------------
593  */
594 void hfa384x_destroy(struct hfa384x *hw)
595 {
596 	struct sk_buff *skb;
597 
598 	if (hw->state == HFA384x_STATE_RUNNING)
599 		hfa384x_drvr_stop(hw);
600 	hw->state = HFA384x_STATE_PREINIT;
601 
602 	kfree(hw->scanresults);
603 	hw->scanresults = NULL;
604 
605 	/* Now to clean out the auth queue */
606 	while ((skb = skb_dequeue(&hw->authq)))
607 		dev_kfree_skb(skb);
608 }
609 
610 static struct hfa384x_usbctlx *usbctlx_alloc(void)
611 {
612 	struct hfa384x_usbctlx *ctlx;
613 
614 	ctlx = kzalloc(sizeof(*ctlx),
615 		       in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
616 	if (ctlx)
617 		init_completion(&ctlx->done);
618 
619 	return ctlx;
620 }
621 
622 static int
623 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
624 		   struct hfa384x_cmdresult *result)
625 {
626 	result->status = le16_to_cpu(cmdresp->status);
627 	result->resp0 = le16_to_cpu(cmdresp->resp0);
628 	result->resp1 = le16_to_cpu(cmdresp->resp1);
629 	result->resp2 = le16_to_cpu(cmdresp->resp2);
630 
631 	pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
632 		 result->status, result->resp0, result->resp1, result->resp2);
633 
634 	return result->status & HFA384x_STATUS_RESULT;
635 }
636 
637 static void
638 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
639 		       struct hfa384x_rridresult *result)
640 {
641 	result->rid = le16_to_cpu(rridresp->rid);
642 	result->riddata = rridresp->data;
643 	result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
644 }
645 
646 /*----------------------------------------------------------------
647  * Completor object:
648  * This completor must be passed to hfa384x_usbctlx_complete_sync()
649  * when processing a CTLX that returns a struct hfa384x_cmdresult structure.
650  *----------------------------------------------------------------
651  */
652 struct usbctlx_cmd_completor {
653 	struct usbctlx_completor head;
654 
655 	const struct hfa384x_usb_statusresp *cmdresp;
656 	struct hfa384x_cmdresult *result;
657 };
658 
659 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
660 {
661 	struct usbctlx_cmd_completor *complete;
662 
663 	complete = (struct usbctlx_cmd_completor *)head;
664 	return usbctlx_get_status(complete->cmdresp, complete->result);
665 }
666 
667 static inline struct usbctlx_completor *
668 init_cmd_completor(struct usbctlx_cmd_completor *completor,
669 		   const struct hfa384x_usb_statusresp *cmdresp,
670 		   struct hfa384x_cmdresult *result)
671 {
672 	completor->head.complete = usbctlx_cmd_completor_fn;
673 	completor->cmdresp = cmdresp;
674 	completor->result = result;
675 	return &completor->head;
676 }
677 
678 /*----------------------------------------------------------------
679  * Completor object:
680  * This completor must be passed to hfa384x_usbctlx_complete_sync()
681  * when processing a CTLX that reads a RID.
682  *----------------------------------------------------------------
683  */
684 struct usbctlx_rrid_completor {
685 	struct usbctlx_completor head;
686 
687 	const struct hfa384x_usb_rridresp *rridresp;
688 	void *riddata;
689 	unsigned int riddatalen;
690 };
691 
692 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
693 {
694 	struct usbctlx_rrid_completor *complete;
695 	struct hfa384x_rridresult rridresult;
696 
697 	complete = (struct usbctlx_rrid_completor *)head;
698 	usbctlx_get_rridresult(complete->rridresp, &rridresult);
699 
700 	/* Validate the length, note body len calculation in bytes */
701 	if (rridresult.riddata_len != complete->riddatalen) {
702 		pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
703 			rridresult.rid,
704 			complete->riddatalen, rridresult.riddata_len);
705 		return -ENODATA;
706 	}
707 
708 	memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
709 	return 0;
710 }
711 
712 static inline struct usbctlx_completor *
713 init_rrid_completor(struct usbctlx_rrid_completor *completor,
714 		    const struct hfa384x_usb_rridresp *rridresp,
715 		    void *riddata,
716 		    unsigned int riddatalen)
717 {
718 	completor->head.complete = usbctlx_rrid_completor_fn;
719 	completor->rridresp = rridresp;
720 	completor->riddata = riddata;
721 	completor->riddatalen = riddatalen;
722 	return &completor->head;
723 }
724 
725 /*----------------------------------------------------------------
726  * Completor object:
727  * Interprets the results of a synchronous RID-write
728  *----------------------------------------------------------------
729  */
730 #define init_wrid_completor  init_cmd_completor
731 
732 /*----------------------------------------------------------------
733  * Completor object:
734  * Interprets the results of a synchronous memory-write
735  *----------------------------------------------------------------
736  */
737 #define init_wmem_completor  init_cmd_completor
738 
739 /*----------------------------------------------------------------
740  * Completor object:
741  * Interprets the results of a synchronous memory-read
742  *----------------------------------------------------------------
743  */
744 struct usbctlx_rmem_completor {
745 	struct usbctlx_completor head;
746 
747 	const struct hfa384x_usb_rmemresp *rmemresp;
748 	void *data;
749 	unsigned int len;
750 };
751 
752 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
753 {
754 	struct usbctlx_rmem_completor *complete =
755 		(struct usbctlx_rmem_completor *)head;
756 
757 	pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
758 	memcpy(complete->data, complete->rmemresp->data, complete->len);
759 	return 0;
760 }
761 
762 static inline struct usbctlx_completor *
763 init_rmem_completor(struct usbctlx_rmem_completor *completor,
764 		    struct hfa384x_usb_rmemresp *rmemresp,
765 		    void *data,
766 		    unsigned int len)
767 {
768 	completor->head.complete = usbctlx_rmem_completor_fn;
769 	completor->rmemresp = rmemresp;
770 	completor->data = data;
771 	completor->len = len;
772 	return &completor->head;
773 }
774 
775 /*----------------------------------------------------------------
776  * hfa384x_cb_status
777  *
778  * Ctlx_complete handler for async CMD type control exchanges.
779  * mark the hw struct as such.
780  *
781  * Note: If the handling is changed here, it should probably be
782  *       changed in docmd as well.
783  *
784  * Arguments:
785  *	hw		hw struct
786  *	ctlx		completed CTLX
787  *
788  * Returns:
789  *	nothing
790  *
791  * Side effects:
792  *
793  * Call context:
794  *	interrupt
795  *----------------------------------------------------------------
796  */
797 static void hfa384x_cb_status(struct hfa384x *hw,
798 			      const struct hfa384x_usbctlx *ctlx)
799 {
800 	if (ctlx->usercb) {
801 		struct hfa384x_cmdresult cmdresult;
802 
803 		if (ctlx->state != CTLX_COMPLETE) {
804 			memset(&cmdresult, 0, sizeof(cmdresult));
805 			cmdresult.status =
806 			    HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
807 		} else {
808 			usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
809 		}
810 
811 		ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
812 	}
813 }
814 
815 /*----------------------------------------------------------------
816  * hfa384x_cmd_initialize
817  *
818  * Issues the initialize command and sets the hw->state based
819  * on the result.
820  *
821  * Arguments:
822  *	hw		device structure
823  *
824  * Returns:
825  *	0		success
826  *	>0		f/w reported error - f/w status code
827  *	<0		driver reported error
828  *
829  * Side effects:
830  *
831  * Call context:
832  *	process
833  *----------------------------------------------------------------
834  */
835 int hfa384x_cmd_initialize(struct hfa384x *hw)
836 {
837 	int result = 0;
838 	int i;
839 	struct hfa384x_metacmd cmd;
840 
841 	cmd.cmd = HFA384x_CMDCODE_INIT;
842 	cmd.parm0 = 0;
843 	cmd.parm1 = 0;
844 	cmd.parm2 = 0;
845 
846 	result = hfa384x_docmd(hw, &cmd);
847 
848 	pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
849 		 cmd.result.status,
850 		 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
851 	if (result == 0) {
852 		for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
853 			hw->port_enabled[i] = 0;
854 	}
855 
856 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
857 
858 	return result;
859 }
860 
861 /*----------------------------------------------------------------
862  * hfa384x_cmd_disable
863  *
864  * Issues the disable command to stop communications on one of
865  * the MACs 'ports'.
866  *
867  * Arguments:
868  *	hw		device structure
869  *	macport		MAC port number (host order)
870  *
871  * Returns:
872  *	0		success
873  *	>0		f/w reported failure - f/w status code
874  *	<0		driver reported error (timeout|bad arg)
875  *
876  * Side effects:
877  *
878  * Call context:
879  *	process
880  *----------------------------------------------------------------
881  */
882 int hfa384x_cmd_disable(struct hfa384x *hw, u16 macport)
883 {
884 	struct hfa384x_metacmd cmd;
885 
886 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
887 	    HFA384x_CMD_MACPORT_SET(macport);
888 	cmd.parm0 = 0;
889 	cmd.parm1 = 0;
890 	cmd.parm2 = 0;
891 
892 	return hfa384x_docmd(hw, &cmd);
893 }
894 
895 /*----------------------------------------------------------------
896  * hfa384x_cmd_enable
897  *
898  * Issues the enable command to enable communications on one of
899  * the MACs 'ports'.
900  *
901  * Arguments:
902  *	hw		device structure
903  *	macport		MAC port number
904  *
905  * Returns:
906  *	0		success
907  *	>0		f/w reported failure - f/w status code
908  *	<0		driver reported error (timeout|bad arg)
909  *
910  * Side effects:
911  *
912  * Call context:
913  *	process
914  *----------------------------------------------------------------
915  */
916 int hfa384x_cmd_enable(struct hfa384x *hw, u16 macport)
917 {
918 	struct hfa384x_metacmd cmd;
919 
920 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
921 	    HFA384x_CMD_MACPORT_SET(macport);
922 	cmd.parm0 = 0;
923 	cmd.parm1 = 0;
924 	cmd.parm2 = 0;
925 
926 	return hfa384x_docmd(hw, &cmd);
927 }
928 
929 /*----------------------------------------------------------------
930  * hfa384x_cmd_monitor
931  *
932  * Enables the 'monitor mode' of the MAC.  Here's the description of
933  * monitor mode that I've received thus far:
934  *
935  *  "The "monitor mode" of operation is that the MAC passes all
936  *  frames for which the PLCP checks are correct. All received
937  *  MPDUs are passed to the host with MAC Port = 7, with a
938  *  receive status of good, FCS error, or undecryptable. Passing
939  *  certain MPDUs is a violation of the 802.11 standard, but useful
940  *  for a debugging tool."  Normal communication is not possible
941  *  while monitor mode is enabled.
942  *
943  * Arguments:
944  *	hw		device structure
945  *	enable		a code (0x0b|0x0f) that enables/disables
946  *			monitor mode. (host order)
947  *
948  * Returns:
949  *	0		success
950  *	>0		f/w reported failure - f/w status code
951  *	<0		driver reported error (timeout|bad arg)
952  *
953  * Side effects:
954  *
955  * Call context:
956  *	process
957  *----------------------------------------------------------------
958  */
959 int hfa384x_cmd_monitor(struct hfa384x *hw, u16 enable)
960 {
961 	struct hfa384x_metacmd cmd;
962 
963 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
964 	    HFA384x_CMD_AINFO_SET(enable);
965 	cmd.parm0 = 0;
966 	cmd.parm1 = 0;
967 	cmd.parm2 = 0;
968 
969 	return hfa384x_docmd(hw, &cmd);
970 }
971 
972 /*----------------------------------------------------------------
973  * hfa384x_cmd_download
974  *
975  * Sets the controls for the MAC controller code/data download
976  * process.  The arguments set the mode and address associated
977  * with a download.  Note that the aux registers should be enabled
978  * prior to setting one of the download enable modes.
979  *
980  * Arguments:
981  *	hw		device structure
982  *	mode		0 - Disable programming and begin code exec
983  *			1 - Enable volatile mem programming
984  *			2 - Enable non-volatile mem programming
985  *			3 - Program non-volatile section from NV download
986  *			    buffer.
987  *			(host order)
988  *	lowaddr
989  *	highaddr	For mode 1, sets the high & low order bits of
990  *			the "destination address".  This address will be
991  *			the execution start address when download is
992  *			subsequently disabled.
993  *			For mode 2, sets the high & low order bits of
994  *			the destination in NV ram.
995  *			For modes 0 & 3, should be zero. (host order)
996  *			NOTE: these are CMD format.
997  *	codelen		Length of the data to write in mode 2,
998  *			zero otherwise. (host order)
999  *
1000  * Returns:
1001  *	0		success
1002  *	>0		f/w reported failure - f/w status code
1003  *	<0		driver reported error (timeout|bad arg)
1004  *
1005  * Side effects:
1006  *
1007  * Call context:
1008  *	process
1009  *----------------------------------------------------------------
1010  */
1011 int hfa384x_cmd_download(struct hfa384x *hw, u16 mode, u16 lowaddr,
1012 			 u16 highaddr, u16 codelen)
1013 {
1014 	struct hfa384x_metacmd cmd;
1015 
1016 	pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1017 		 mode, lowaddr, highaddr, codelen);
1018 
1019 	cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1020 		   HFA384x_CMD_PROGMODE_SET(mode));
1021 
1022 	cmd.parm0 = lowaddr;
1023 	cmd.parm1 = highaddr;
1024 	cmd.parm2 = codelen;
1025 
1026 	return hfa384x_docmd(hw, &cmd);
1027 }
1028 
1029 /*----------------------------------------------------------------
1030  * hfa384x_corereset
1031  *
1032  * Perform a reset of the hfa38xx MAC core.  We assume that the hw
1033  * structure is in its "created" state.  That is, it is initialized
1034  * with proper values.  Note that if a reset is done after the
1035  * device has been active for awhile, the caller might have to clean
1036  * up some leftover cruft in the hw structure.
1037  *
1038  * Arguments:
1039  *	hw		device structure
1040  *	holdtime	how long (in ms) to hold the reset
1041  *	settletime	how long (in ms) to wait after releasing
1042  *			the reset
1043  *
1044  * Returns:
1045  *	nothing
1046  *
1047  * Side effects:
1048  *
1049  * Call context:
1050  *	process
1051  *----------------------------------------------------------------
1052  */
1053 int hfa384x_corereset(struct hfa384x *hw, int holdtime,
1054 		      int settletime, int genesis)
1055 {
1056 	int result;
1057 
1058 	result = usb_reset_device(hw->usb);
1059 	if (result < 0) {
1060 		netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1061 			   result);
1062 	}
1063 
1064 	return result;
1065 }
1066 
1067 /*----------------------------------------------------------------
1068  * hfa384x_usbctlx_complete_sync
1069  *
1070  * Waits for a synchronous CTLX object to complete,
1071  * and then handles the response.
1072  *
1073  * Arguments:
1074  *	hw		device structure
1075  *	ctlx		CTLX ptr
1076  *	completor	functor object to decide what to
1077  *			do with the CTLX's result.
1078  *
1079  * Returns:
1080  *	0		Success
1081  *	-ERESTARTSYS	Interrupted by a signal
1082  *	-EIO		CTLX failed
1083  *	-ENODEV		Adapter was unplugged
1084  *	???		Result from completor
1085  *
1086  * Side effects:
1087  *
1088  * Call context:
1089  *	process
1090  *----------------------------------------------------------------
1091  */
1092 static int hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
1093 					 struct hfa384x_usbctlx *ctlx,
1094 					 struct usbctlx_completor *completor)
1095 {
1096 	unsigned long flags;
1097 	int result;
1098 
1099 	result = wait_for_completion_interruptible(&ctlx->done);
1100 
1101 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
1102 
1103 	/*
1104 	 * We can only handle the CTLX if the USB disconnect
1105 	 * function has not run yet ...
1106 	 */
1107 cleanup:
1108 	if (hw->wlandev->hwremoved) {
1109 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1110 		result = -ENODEV;
1111 	} else if (result != 0) {
1112 		int runqueue = 0;
1113 
1114 		/*
1115 		 * We were probably interrupted, so delete
1116 		 * this CTLX asynchronously, kill the timers
1117 		 * and the URB, and then start the next
1118 		 * pending CTLX.
1119 		 *
1120 		 * NOTE: We can only delete the timers and
1121 		 *       the URB if this CTLX is active.
1122 		 */
1123 		if (ctlx == get_active_ctlx(hw)) {
1124 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1125 
1126 			del_singleshot_timer_sync(&hw->reqtimer);
1127 			del_singleshot_timer_sync(&hw->resptimer);
1128 			hw->req_timer_done = 1;
1129 			hw->resp_timer_done = 1;
1130 			usb_kill_urb(&hw->ctlx_urb);
1131 
1132 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
1133 
1134 			runqueue = 1;
1135 
1136 			/*
1137 			 * This scenario is so unlikely that I'm
1138 			 * happy with a grubby "goto" solution ...
1139 			 */
1140 			if (hw->wlandev->hwremoved)
1141 				goto cleanup;
1142 		}
1143 
1144 		/*
1145 		 * The completion task will send this CTLX
1146 		 * to the reaper the next time it runs. We
1147 		 * are no longer in a hurry.
1148 		 */
1149 		ctlx->reapable = 1;
1150 		ctlx->state = CTLX_REQ_FAILED;
1151 		list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1152 
1153 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1154 
1155 		if (runqueue)
1156 			hfa384x_usbctlxq_run(hw);
1157 	} else {
1158 		if (ctlx->state == CTLX_COMPLETE) {
1159 			result = completor->complete(completor);
1160 		} else {
1161 			netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1162 				    le16_to_cpu(ctlx->outbuf.type),
1163 				    ctlxstr(ctlx->state));
1164 			result = -EIO;
1165 		}
1166 
1167 		list_del(&ctlx->list);
1168 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1169 		kfree(ctlx);
1170 	}
1171 
1172 	return result;
1173 }
1174 
1175 /*----------------------------------------------------------------
1176  * hfa384x_docmd
1177  *
1178  * Constructs a command CTLX and submits it.
1179  *
1180  * NOTE: Any changes to the 'post-submit' code in this function
1181  *       need to be carried over to hfa384x_cbcmd() since the handling
1182  *       is virtually identical.
1183  *
1184  * Arguments:
1185  *	hw		device structure
1186  *       cmd             cmd structure.  Includes all arguments and result
1187  *                       data points.  All in host order. in host order
1188  *
1189  * Returns:
1190  *	0		success
1191  *	-EIO		CTLX failure
1192  *	-ERESTARTSYS	Awakened on signal
1193  *	>0		command indicated error, Status and Resp0-2 are
1194  *			in hw structure.
1195  *
1196  * Side effects:
1197  *
1198  *
1199  * Call context:
1200  *	process
1201  *----------------------------------------------------------------
1202  */
1203 static inline int
1204 hfa384x_docmd(struct hfa384x *hw,
1205 	      struct hfa384x_metacmd *cmd)
1206 {
1207 	int result;
1208 	struct hfa384x_usbctlx *ctlx;
1209 
1210 	ctlx = usbctlx_alloc();
1211 	if (!ctlx) {
1212 		result = -ENOMEM;
1213 		goto done;
1214 	}
1215 
1216 	/* Initialize the command */
1217 	ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1218 	ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1219 	ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1220 	ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1221 	ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1222 
1223 	ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1224 
1225 	pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1226 		 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1227 
1228 	ctlx->reapable = DOWAIT;
1229 	ctlx->cmdcb = NULL;
1230 	ctlx->usercb = NULL;
1231 	ctlx->usercb_data = NULL;
1232 
1233 	result = hfa384x_usbctlx_submit(hw, ctlx);
1234 	if (result != 0) {
1235 		kfree(ctlx);
1236 	} else {
1237 		struct usbctlx_cmd_completor cmd_completor;
1238 		struct usbctlx_completor *completor;
1239 
1240 		completor = init_cmd_completor(&cmd_completor,
1241 					       &ctlx->inbuf.cmdresp,
1242 					       &cmd->result);
1243 
1244 		result = hfa384x_usbctlx_complete_sync(hw, ctlx, completor);
1245 	}
1246 
1247 done:
1248 	return result;
1249 }
1250 
1251 /*----------------------------------------------------------------
1252  * hfa384x_dorrid
1253  *
1254  * Constructs a read rid CTLX and issues it.
1255  *
1256  * NOTE: Any changes to the 'post-submit' code in this function
1257  *       need to be carried over to hfa384x_cbrrid() since the handling
1258  *       is virtually identical.
1259  *
1260  * Arguments:
1261  *	hw		device structure
1262  *	mode		DOWAIT or DOASYNC
1263  *	rid		Read RID number (host order)
1264  *	riddata		Caller supplied buffer that MAC formatted RID.data
1265  *			record will be written to for DOWAIT calls. Should
1266  *			be NULL for DOASYNC calls.
1267  *	riddatalen	Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1268  *	cmdcb		command callback for async calls, NULL for DOWAIT calls
1269  *	usercb		user callback for async calls, NULL for DOWAIT calls
1270  *	usercb_data	user supplied data pointer for async calls, NULL
1271  *			for DOWAIT calls
1272  *
1273  * Returns:
1274  *	0		success
1275  *	-EIO		CTLX failure
1276  *	-ERESTARTSYS	Awakened on signal
1277  *	-ENODATA	riddatalen != macdatalen
1278  *	>0		command indicated error, Status and Resp0-2 are
1279  *			in hw structure.
1280  *
1281  * Side effects:
1282  *
1283  * Call context:
1284  *	interrupt (DOASYNC)
1285  *	process (DOWAIT or DOASYNC)
1286  *----------------------------------------------------------------
1287  */
1288 static int
1289 hfa384x_dorrid(struct hfa384x *hw,
1290 	       enum cmd_mode mode,
1291 	       u16 rid,
1292 	       void *riddata,
1293 	       unsigned int riddatalen,
1294 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1295 {
1296 	int result;
1297 	struct hfa384x_usbctlx *ctlx;
1298 
1299 	ctlx = usbctlx_alloc();
1300 	if (!ctlx) {
1301 		result = -ENOMEM;
1302 		goto done;
1303 	}
1304 
1305 	/* Initialize the command */
1306 	ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1307 	ctlx->outbuf.rridreq.frmlen =
1308 	    cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1309 	ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1310 
1311 	ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1312 
1313 	ctlx->reapable = mode;
1314 	ctlx->cmdcb = cmdcb;
1315 	ctlx->usercb = usercb;
1316 	ctlx->usercb_data = usercb_data;
1317 
1318 	/* Submit the CTLX */
1319 	result = hfa384x_usbctlx_submit(hw, ctlx);
1320 	if (result != 0) {
1321 		kfree(ctlx);
1322 	} else if (mode == DOWAIT) {
1323 		struct usbctlx_rrid_completor completor;
1324 
1325 		result =
1326 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1327 						  init_rrid_completor
1328 						  (&completor,
1329 						   &ctlx->inbuf.rridresp,
1330 						   riddata, riddatalen));
1331 	}
1332 
1333 done:
1334 	return result;
1335 }
1336 
1337 /*----------------------------------------------------------------
1338  * hfa384x_dowrid
1339  *
1340  * Constructs a write rid CTLX and issues it.
1341  *
1342  * NOTE: Any changes to the 'post-submit' code in this function
1343  *       need to be carried over to hfa384x_cbwrid() since the handling
1344  *       is virtually identical.
1345  *
1346  * Arguments:
1347  *	hw		device structure
1348  *	enum cmd_mode	DOWAIT or DOASYNC
1349  *	rid		RID code
1350  *	riddata		Data portion of RID formatted for MAC
1351  *	riddatalen	Length of the data portion in bytes
1352  *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1353  *	usercb		user callback for async calls, NULL for DOWAIT calls
1354  *	usercb_data	user supplied data pointer for async calls
1355  *
1356  * Returns:
1357  *	0		success
1358  *	-ETIMEDOUT	timed out waiting for register ready or
1359  *			command completion
1360  *	>0		command indicated error, Status and Resp0-2 are
1361  *			in hw structure.
1362  *
1363  * Side effects:
1364  *
1365  * Call context:
1366  *	interrupt (DOASYNC)
1367  *	process (DOWAIT or DOASYNC)
1368  *----------------------------------------------------------------
1369  */
1370 static int
1371 hfa384x_dowrid(struct hfa384x *hw,
1372 	       enum cmd_mode mode,
1373 	       u16 rid,
1374 	       void *riddata,
1375 	       unsigned int riddatalen,
1376 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1377 {
1378 	int result;
1379 	struct hfa384x_usbctlx *ctlx;
1380 
1381 	ctlx = usbctlx_alloc();
1382 	if (!ctlx) {
1383 		result = -ENOMEM;
1384 		goto done;
1385 	}
1386 
1387 	/* Initialize the command */
1388 	ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1389 	ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1390 						   (ctlx->outbuf.wridreq.rid) +
1391 						   riddatalen + 1) / 2);
1392 	ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1393 	memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1394 
1395 	ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1396 	    sizeof(ctlx->outbuf.wridreq.frmlen) +
1397 	    sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1398 
1399 	ctlx->reapable = mode;
1400 	ctlx->cmdcb = cmdcb;
1401 	ctlx->usercb = usercb;
1402 	ctlx->usercb_data = usercb_data;
1403 
1404 	/* Submit the CTLX */
1405 	result = hfa384x_usbctlx_submit(hw, ctlx);
1406 	if (result != 0) {
1407 		kfree(ctlx);
1408 	} else if (mode == DOWAIT) {
1409 		struct usbctlx_cmd_completor completor;
1410 		struct hfa384x_cmdresult wridresult;
1411 
1412 		result = hfa384x_usbctlx_complete_sync(hw,
1413 						       ctlx,
1414 						       init_wrid_completor
1415 						       (&completor,
1416 							&ctlx->inbuf.wridresp,
1417 							&wridresult));
1418 	}
1419 
1420 done:
1421 	return result;
1422 }
1423 
1424 /*----------------------------------------------------------------
1425  * hfa384x_dormem
1426  *
1427  * Constructs a readmem CTLX and issues it.
1428  *
1429  * NOTE: Any changes to the 'post-submit' code in this function
1430  *       need to be carried over to hfa384x_cbrmem() since the handling
1431  *       is virtually identical.
1432  *
1433  * Arguments:
1434  *	hw		device structure
1435  *	page		MAC address space page (CMD format)
1436  *	offset		MAC address space offset
1437  *	data		Ptr to data buffer to receive read
1438  *	len		Length of the data to read (max == 2048)
1439  *
1440  * Returns:
1441  *	0		success
1442  *	-ETIMEDOUT	timed out waiting for register ready or
1443  *			command completion
1444  *	>0		command indicated error, Status and Resp0-2 are
1445  *			in hw structure.
1446  *
1447  * Side effects:
1448  *
1449  * Call context:
1450  *	process (DOWAIT)
1451  *----------------------------------------------------------------
1452  */
1453 static int
1454 hfa384x_dormem(struct hfa384x *hw,
1455 	       u16 page,
1456 	       u16 offset,
1457 	       void *data,
1458 	       unsigned int len)
1459 {
1460 	int result;
1461 	struct hfa384x_usbctlx *ctlx;
1462 
1463 	ctlx = usbctlx_alloc();
1464 	if (!ctlx) {
1465 		result = -ENOMEM;
1466 		goto done;
1467 	}
1468 
1469 	/* Initialize the command */
1470 	ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1471 	ctlx->outbuf.rmemreq.frmlen =
1472 	    cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1473 			sizeof(ctlx->outbuf.rmemreq.page) + len);
1474 	ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1475 	ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1476 
1477 	ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1478 
1479 	pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1480 		 ctlx->outbuf.rmemreq.type,
1481 		 ctlx->outbuf.rmemreq.frmlen,
1482 		 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1483 
1484 	pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1485 
1486 	ctlx->reapable = DOWAIT;
1487 	ctlx->cmdcb = NULL;
1488 	ctlx->usercb = NULL;
1489 	ctlx->usercb_data = NULL;
1490 
1491 	result = hfa384x_usbctlx_submit(hw, ctlx);
1492 	if (result != 0) {
1493 		kfree(ctlx);
1494 	} else {
1495 		struct usbctlx_rmem_completor completor;
1496 
1497 		result =
1498 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1499 						  init_rmem_completor
1500 						  (&completor,
1501 						   &ctlx->inbuf.rmemresp, data,
1502 						   len));
1503 	}
1504 
1505 done:
1506 	return result;
1507 }
1508 
1509 /*----------------------------------------------------------------
1510  * hfa384x_dowmem
1511  *
1512  * Constructs a writemem CTLX and issues it.
1513  *
1514  * NOTE: Any changes to the 'post-submit' code in this function
1515  *       need to be carried over to hfa384x_cbwmem() since the handling
1516  *       is virtually identical.
1517  *
1518  * Arguments:
1519  *	hw		device structure
1520  *	page		MAC address space page (CMD format)
1521  *	offset		MAC address space offset
1522  *	data		Ptr to data buffer containing write data
1523  *	len		Length of the data to read (max == 2048)
1524  *
1525  * Returns:
1526  *	0		success
1527  *	-ETIMEDOUT	timed out waiting for register ready or
1528  *			command completion
1529  *	>0		command indicated error, Status and Resp0-2 are
1530  *			in hw structure.
1531  *
1532  * Side effects:
1533  *
1534  * Call context:
1535  *	interrupt (DOWAIT)
1536  *	process (DOWAIT)
1537  *----------------------------------------------------------------
1538  */
1539 static int
1540 hfa384x_dowmem(struct hfa384x *hw,
1541 	       u16 page,
1542 	       u16 offset,
1543 	       void *data,
1544 	       unsigned int len)
1545 {
1546 	int result;
1547 	struct hfa384x_usbctlx *ctlx;
1548 
1549 	pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1550 
1551 	ctlx = usbctlx_alloc();
1552 	if (!ctlx) {
1553 		result = -ENOMEM;
1554 		goto done;
1555 	}
1556 
1557 	/* Initialize the command */
1558 	ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1559 	ctlx->outbuf.wmemreq.frmlen =
1560 	    cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1561 			sizeof(ctlx->outbuf.wmemreq.page) + len);
1562 	ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1563 	ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1564 	memcpy(ctlx->outbuf.wmemreq.data, data, len);
1565 
1566 	ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1567 	    sizeof(ctlx->outbuf.wmemreq.frmlen) +
1568 	    sizeof(ctlx->outbuf.wmemreq.offset) +
1569 	    sizeof(ctlx->outbuf.wmemreq.page) + len;
1570 
1571 	ctlx->reapable = DOWAIT;
1572 	ctlx->cmdcb = NULL;
1573 	ctlx->usercb = NULL;
1574 	ctlx->usercb_data = NULL;
1575 
1576 	result = hfa384x_usbctlx_submit(hw, ctlx);
1577 	if (result != 0) {
1578 		kfree(ctlx);
1579 	} else {
1580 		struct usbctlx_cmd_completor completor;
1581 		struct hfa384x_cmdresult wmemresult;
1582 
1583 		result = hfa384x_usbctlx_complete_sync(hw,
1584 						       ctlx,
1585 						       init_wmem_completor
1586 						       (&completor,
1587 							&ctlx->inbuf.wmemresp,
1588 							&wmemresult));
1589 	}
1590 
1591 done:
1592 	return result;
1593 }
1594 
1595 /*----------------------------------------------------------------
1596  * hfa384x_drvr_disable
1597  *
1598  * Issues the disable command to stop communications on one of
1599  * the MACs 'ports'.  Only macport 0 is valid  for stations.
1600  * APs may also disable macports 1-6.  Only ports that have been
1601  * previously enabled may be disabled.
1602  *
1603  * Arguments:
1604  *	hw		device structure
1605  *	macport		MAC port number (host order)
1606  *
1607  * Returns:
1608  *	0		success
1609  *	>0		f/w reported failure - f/w status code
1610  *	<0		driver reported error (timeout|bad arg)
1611  *
1612  * Side effects:
1613  *
1614  * Call context:
1615  *	process
1616  *----------------------------------------------------------------
1617  */
1618 int hfa384x_drvr_disable(struct hfa384x *hw, u16 macport)
1619 {
1620 	int result = 0;
1621 
1622 	if ((!hw->isap && macport != 0) ||
1623 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1624 	    !(hw->port_enabled[macport])) {
1625 		result = -EINVAL;
1626 	} else {
1627 		result = hfa384x_cmd_disable(hw, macport);
1628 		if (result == 0)
1629 			hw->port_enabled[macport] = 0;
1630 	}
1631 	return result;
1632 }
1633 
1634 /*----------------------------------------------------------------
1635  * hfa384x_drvr_enable
1636  *
1637  * Issues the enable command to enable communications on one of
1638  * the MACs 'ports'.  Only macport 0 is valid  for stations.
1639  * APs may also enable macports 1-6.  Only ports that are currently
1640  * disabled may be enabled.
1641  *
1642  * Arguments:
1643  *	hw		device structure
1644  *	macport		MAC port number
1645  *
1646  * Returns:
1647  *	0		success
1648  *	>0		f/w reported failure - f/w status code
1649  *	<0		driver reported error (timeout|bad arg)
1650  *
1651  * Side effects:
1652  *
1653  * Call context:
1654  *	process
1655  *----------------------------------------------------------------
1656  */
1657 int hfa384x_drvr_enable(struct hfa384x *hw, u16 macport)
1658 {
1659 	int result = 0;
1660 
1661 	if ((!hw->isap && macport != 0) ||
1662 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1663 	    (hw->port_enabled[macport])) {
1664 		result = -EINVAL;
1665 	} else {
1666 		result = hfa384x_cmd_enable(hw, macport);
1667 		if (result == 0)
1668 			hw->port_enabled[macport] = 1;
1669 	}
1670 	return result;
1671 }
1672 
1673 /*----------------------------------------------------------------
1674  * hfa384x_drvr_flashdl_enable
1675  *
1676  * Begins the flash download state.  Checks to see that we're not
1677  * already in a download state and that a port isn't enabled.
1678  * Sets the download state and retrieves the flash download
1679  * buffer location, buffer size, and timeout length.
1680  *
1681  * Arguments:
1682  *	hw		device structure
1683  *
1684  * Returns:
1685  *	0		success
1686  *	>0		f/w reported error - f/w status code
1687  *	<0		driver reported error
1688  *
1689  * Side effects:
1690  *
1691  * Call context:
1692  *	process
1693  *----------------------------------------------------------------
1694  */
1695 int hfa384x_drvr_flashdl_enable(struct hfa384x *hw)
1696 {
1697 	int result = 0;
1698 	int i;
1699 
1700 	/* Check that a port isn't active */
1701 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1702 		if (hw->port_enabled[i]) {
1703 			pr_debug("called when port enabled.\n");
1704 			return -EINVAL;
1705 		}
1706 	}
1707 
1708 	/* Check that we're not already in a download state */
1709 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1710 		return -EINVAL;
1711 
1712 	/* Retrieve the buffer loc&size and timeout */
1713 	result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1714 					&hw->bufinfo, sizeof(hw->bufinfo));
1715 	if (result)
1716 		return result;
1717 
1718 	le16_to_cpus(&hw->bufinfo.page);
1719 	le16_to_cpus(&hw->bufinfo.offset);
1720 	le16_to_cpus(&hw->bufinfo.len);
1721 	result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1722 					  &hw->dltimeout);
1723 	if (result)
1724 		return result;
1725 
1726 	le16_to_cpus(&hw->dltimeout);
1727 
1728 	pr_debug("flashdl_enable\n");
1729 
1730 	hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1731 
1732 	return result;
1733 }
1734 
1735 /*----------------------------------------------------------------
1736  * hfa384x_drvr_flashdl_disable
1737  *
1738  * Ends the flash download state.  Note that this will cause the MAC
1739  * firmware to restart.
1740  *
1741  * Arguments:
1742  *	hw		device structure
1743  *
1744  * Returns:
1745  *	0		success
1746  *	>0		f/w reported error - f/w status code
1747  *	<0		driver reported error
1748  *
1749  * Side effects:
1750  *
1751  * Call context:
1752  *	process
1753  *----------------------------------------------------------------
1754  */
1755 int hfa384x_drvr_flashdl_disable(struct hfa384x *hw)
1756 {
1757 	/* Check that we're already in the download state */
1758 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1759 		return -EINVAL;
1760 
1761 	pr_debug("flashdl_enable\n");
1762 
1763 	/* There isn't much we can do at this point, so I don't */
1764 	/*  bother  w/ the return value */
1765 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1766 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
1767 
1768 	return 0;
1769 }
1770 
1771 /*----------------------------------------------------------------
1772  * hfa384x_drvr_flashdl_write
1773  *
1774  * Performs a FLASH download of a chunk of data. First checks to see
1775  * that we're in the FLASH download state, then sets the download
1776  * mode, uses the aux functions to 1) copy the data to the flash
1777  * buffer, 2) sets the download 'write flash' mode, 3) readback and
1778  * compare.  Lather rinse, repeat as many times an necessary to get
1779  * all the given data into flash.
1780  * When all data has been written using this function (possibly
1781  * repeatedly), call drvr_flashdl_disable() to end the download state
1782  * and restart the MAC.
1783  *
1784  * Arguments:
1785  *	hw		device structure
1786  *	daddr		Card address to write to. (host order)
1787  *	buf		Ptr to data to write.
1788  *	len		Length of data (host order).
1789  *
1790  * Returns:
1791  *	0		success
1792  *	>0		f/w reported error - f/w status code
1793  *	<0		driver reported error
1794  *
1795  * Side effects:
1796  *
1797  * Call context:
1798  *	process
1799  *----------------------------------------------------------------
1800  */
1801 int hfa384x_drvr_flashdl_write(struct hfa384x *hw, u32 daddr,
1802 			       void *buf, u32 len)
1803 {
1804 	int result = 0;
1805 	u32 dlbufaddr;
1806 	int nburns;
1807 	u32 burnlen;
1808 	u32 burndaddr;
1809 	u16 burnlo;
1810 	u16 burnhi;
1811 	int nwrites;
1812 	u8 *writebuf;
1813 	u16 writepage;
1814 	u16 writeoffset;
1815 	u32 writelen;
1816 	int i;
1817 	int j;
1818 
1819 	pr_debug("daddr=0x%08x len=%d\n", daddr, len);
1820 
1821 	/* Check that we're in the flash download state */
1822 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1823 		return -EINVAL;
1824 
1825 	netdev_info(hw->wlandev->netdev,
1826 		    "Download %d bytes to flash @0x%06x\n", len, daddr);
1827 
1828 	/* Convert to flat address for arithmetic */
1829 	/* NOTE: dlbuffer RID stores the address in AUX format */
1830 	dlbufaddr =
1831 	    HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
1832 	pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
1833 		 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
1834 	/* Calculations to determine how many fills of the dlbuffer to do
1835 	 * and how many USB wmemreq's to do for each fill.  At this point
1836 	 * in time, the dlbuffer size and the wmemreq size are the same.
1837 	 * Therefore, nwrites should always be 1.  The extra complexity
1838 	 * here is a hedge against future changes.
1839 	 */
1840 
1841 	/* Figure out how many times to do the flash programming */
1842 	nburns = len / hw->bufinfo.len;
1843 	nburns += (len % hw->bufinfo.len) ? 1 : 0;
1844 
1845 	/* For each flash program cycle, how many USB wmemreq's are needed? */
1846 	nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
1847 	nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
1848 
1849 	/* For each burn */
1850 	for (i = 0; i < nburns; i++) {
1851 		/* Get the dest address and len */
1852 		burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
1853 		    hw->bufinfo.len : (len - (hw->bufinfo.len * i));
1854 		burndaddr = daddr + (hw->bufinfo.len * i);
1855 		burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
1856 		burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
1857 
1858 		netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
1859 			    burnlen, burndaddr);
1860 
1861 		/* Set the download mode */
1862 		result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
1863 					      burnlo, burnhi, burnlen);
1864 		if (result) {
1865 			netdev_err(hw->wlandev->netdev,
1866 				   "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1867 				   burnlo, burnhi, burnlen, result);
1868 			goto exit_proc;
1869 		}
1870 
1871 		/* copy the data to the flash download buffer */
1872 		for (j = 0; j < nwrites; j++) {
1873 			writebuf = buf +
1874 			    (i * hw->bufinfo.len) +
1875 			    (j * HFA384x_USB_RWMEM_MAXLEN);
1876 
1877 			writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
1878 						(j * HFA384x_USB_RWMEM_MAXLEN));
1879 			writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
1880 						(j * HFA384x_USB_RWMEM_MAXLEN));
1881 
1882 			writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
1883 			writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
1884 			    HFA384x_USB_RWMEM_MAXLEN : writelen;
1885 
1886 			result = hfa384x_dowmem(hw,
1887 						writepage,
1888 						writeoffset,
1889 						writebuf, writelen);
1890 		}
1891 
1892 		/* set the download 'write flash' mode */
1893 		result = hfa384x_cmd_download(hw,
1894 					      HFA384x_PROGMODE_NVWRITE,
1895 					      0, 0, 0);
1896 		if (result) {
1897 			netdev_err(hw->wlandev->netdev,
1898 				   "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1899 				   burnlo, burnhi, burnlen, result);
1900 			goto exit_proc;
1901 		}
1902 
1903 		/* TODO: We really should do a readback and compare. */
1904 	}
1905 
1906 exit_proc:
1907 
1908 	/* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
1909 	/*  actually disable programming mode.  Remember, that will cause the */
1910 	/*  the firmware to effectively reset itself. */
1911 
1912 	return result;
1913 }
1914 
1915 /*----------------------------------------------------------------
1916  * hfa384x_drvr_getconfig
1917  *
1918  * Performs the sequence necessary to read a config/info item.
1919  *
1920  * Arguments:
1921  *	hw		device structure
1922  *	rid		config/info record id (host order)
1923  *	buf		host side record buffer.  Upon return it will
1924  *			contain the body portion of the record (minus the
1925  *			RID and len).
1926  *	len		buffer length (in bytes, should match record length)
1927  *
1928  * Returns:
1929  *	0		success
1930  *	>0		f/w reported error - f/w status code
1931  *	<0		driver reported error
1932  *	-ENODATA	length mismatch between argument and retrieved
1933  *			record.
1934  *
1935  * Side effects:
1936  *
1937  * Call context:
1938  *	process
1939  *----------------------------------------------------------------
1940  */
1941 int hfa384x_drvr_getconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
1942 {
1943 	return hfa384x_dorrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
1944 }
1945 
1946 /*----------------------------------------------------------------
1947  * hfa384x_drvr_setconfig_async
1948  *
1949  * Performs the sequence necessary to write a config/info item.
1950  *
1951  * Arguments:
1952  *       hw              device structure
1953  *       rid             config/info record id (in host order)
1954  *       buf             host side record buffer
1955  *       len             buffer length (in bytes)
1956  *       usercb          completion callback
1957  *       usercb_data     completion callback argument
1958  *
1959  * Returns:
1960  *       0               success
1961  *       >0              f/w reported error - f/w status code
1962  *       <0              driver reported error
1963  *
1964  * Side effects:
1965  *
1966  * Call context:
1967  *       process
1968  *----------------------------------------------------------------
1969  */
1970 int
1971 hfa384x_drvr_setconfig_async(struct hfa384x *hw,
1972 			     u16 rid,
1973 			     void *buf,
1974 			     u16 len, ctlx_usercb_t usercb, void *usercb_data)
1975 {
1976 	return hfa384x_dowrid(hw, DOASYNC, rid, buf, len, hfa384x_cb_status,
1977 			      usercb, usercb_data);
1978 }
1979 
1980 /*----------------------------------------------------------------
1981  * hfa384x_drvr_ramdl_disable
1982  *
1983  * Ends the ram download state.
1984  *
1985  * Arguments:
1986  *	hw		device structure
1987  *
1988  * Returns:
1989  *	0		success
1990  *	>0		f/w reported error - f/w status code
1991  *	<0		driver reported error
1992  *
1993  * Side effects:
1994  *
1995  * Call context:
1996  *	process
1997  *----------------------------------------------------------------
1998  */
1999 int hfa384x_drvr_ramdl_disable(struct hfa384x *hw)
2000 {
2001 	/* Check that we're already in the download state */
2002 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2003 		return -EINVAL;
2004 
2005 	pr_debug("ramdl_disable()\n");
2006 
2007 	/* There isn't much we can do at this point, so I don't */
2008 	/*  bother  w/ the return value */
2009 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2010 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
2011 
2012 	return 0;
2013 }
2014 
2015 /*----------------------------------------------------------------
2016  * hfa384x_drvr_ramdl_enable
2017  *
2018  * Begins the ram download state.  Checks to see that we're not
2019  * already in a download state and that a port isn't enabled.
2020  * Sets the download state and calls cmd_download with the
2021  * ENABLE_VOLATILE subcommand and the exeaddr argument.
2022  *
2023  * Arguments:
2024  *	hw		device structure
2025  *	exeaddr		the card execution address that will be
2026  *                       jumped to when ramdl_disable() is called
2027  *			(host order).
2028  *
2029  * Returns:
2030  *	0		success
2031  *	>0		f/w reported error - f/w status code
2032  *	<0		driver reported error
2033  *
2034  * Side effects:
2035  *
2036  * Call context:
2037  *	process
2038  *----------------------------------------------------------------
2039  */
2040 int hfa384x_drvr_ramdl_enable(struct hfa384x *hw, u32 exeaddr)
2041 {
2042 	int result = 0;
2043 	u16 lowaddr;
2044 	u16 hiaddr;
2045 	int i;
2046 
2047 	/* Check that a port isn't active */
2048 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2049 		if (hw->port_enabled[i]) {
2050 			netdev_err(hw->wlandev->netdev,
2051 				   "Can't download with a macport enabled.\n");
2052 			return -EINVAL;
2053 		}
2054 	}
2055 
2056 	/* Check that we're not already in a download state */
2057 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2058 		netdev_err(hw->wlandev->netdev,
2059 			   "Download state not disabled.\n");
2060 		return -EINVAL;
2061 	}
2062 
2063 	pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2064 
2065 	/* Call the download(1,addr) function */
2066 	lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2067 	hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2068 
2069 	result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2070 				      lowaddr, hiaddr, 0);
2071 
2072 	if (result == 0) {
2073 		/* Set the download state */
2074 		hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2075 	} else {
2076 		pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2077 			 lowaddr, hiaddr, result);
2078 	}
2079 
2080 	return result;
2081 }
2082 
2083 /*----------------------------------------------------------------
2084  * hfa384x_drvr_ramdl_write
2085  *
2086  * Performs a RAM download of a chunk of data. First checks to see
2087  * that we're in the RAM download state, then uses the [read|write]mem USB
2088  * commands to 1) copy the data, 2) readback and compare.  The download
2089  * state is unaffected.  When all data has been written using
2090  * this function, call drvr_ramdl_disable() to end the download state
2091  * and restart the MAC.
2092  *
2093  * Arguments:
2094  *	hw		device structure
2095  *	daddr		Card address to write to. (host order)
2096  *	buf		Ptr to data to write.
2097  *	len		Length of data (host order).
2098  *
2099  * Returns:
2100  *	0		success
2101  *	>0		f/w reported error - f/w status code
2102  *	<0		driver reported error
2103  *
2104  * Side effects:
2105  *
2106  * Call context:
2107  *	process
2108  *----------------------------------------------------------------
2109  */
2110 int hfa384x_drvr_ramdl_write(struct hfa384x *hw, u32 daddr, void *buf, u32 len)
2111 {
2112 	int result = 0;
2113 	int nwrites;
2114 	u8 *data = buf;
2115 	int i;
2116 	u32 curraddr;
2117 	u16 currpage;
2118 	u16 curroffset;
2119 	u16 currlen;
2120 
2121 	/* Check that we're in the ram download state */
2122 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2123 		return -EINVAL;
2124 
2125 	netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2126 		    len, daddr);
2127 
2128 	/* How many dowmem calls?  */
2129 	nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2130 	nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2131 
2132 	/* Do blocking wmem's */
2133 	for (i = 0; i < nwrites; i++) {
2134 		/* make address args */
2135 		curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2136 		currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2137 		curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2138 		currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2139 		if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2140 			currlen = HFA384x_USB_RWMEM_MAXLEN;
2141 
2142 		/* Do blocking ctlx */
2143 		result = hfa384x_dowmem(hw,
2144 					currpage,
2145 					curroffset,
2146 					data + (i * HFA384x_USB_RWMEM_MAXLEN),
2147 					currlen);
2148 
2149 		if (result)
2150 			break;
2151 
2152 		/* TODO: We really should have a readback. */
2153 	}
2154 
2155 	return result;
2156 }
2157 
2158 /*----------------------------------------------------------------
2159  * hfa384x_drvr_readpda
2160  *
2161  * Performs the sequence to read the PDA space.  Note there is no
2162  * drvr_writepda() function.  Writing a PDA is
2163  * generally implemented by a calling component via calls to
2164  * cmd_download and writing to the flash download buffer via the
2165  * aux regs.
2166  *
2167  * Arguments:
2168  *	hw		device structure
2169  *	buf		buffer to store PDA in
2170  *	len		buffer length
2171  *
2172  * Returns:
2173  *	0		success
2174  *	>0		f/w reported error - f/w status code
2175  *	<0		driver reported error
2176  *	-ETIMEDOUT	timeout waiting for the cmd regs to become
2177  *			available, or waiting for the control reg
2178  *			to indicate the Aux port is enabled.
2179  *	-ENODATA	the buffer does NOT contain a valid PDA.
2180  *			Either the card PDA is bad, or the auxdata
2181  *			reads are giving us garbage.
2182  *
2183  *
2184  * Side effects:
2185  *
2186  * Call context:
2187  *	process or non-card interrupt.
2188  *----------------------------------------------------------------
2189  */
2190 int hfa384x_drvr_readpda(struct hfa384x *hw, void *buf, unsigned int len)
2191 {
2192 	int result = 0;
2193 	__le16 *pda = buf;
2194 	int pdaok = 0;
2195 	int morepdrs = 1;
2196 	int currpdr = 0;	/* word offset of the current pdr */
2197 	size_t i;
2198 	u16 pdrlen;		/* pdr length in bytes, host order */
2199 	u16 pdrcode;		/* pdr code, host order */
2200 	u16 currpage;
2201 	u16 curroffset;
2202 	struct pdaloc {
2203 		u32 cardaddr;
2204 		u16 auxctl;
2205 	} pdaloc[] = {
2206 		{
2207 		HFA3842_PDA_BASE, 0}, {
2208 		HFA3841_PDA_BASE, 0}, {
2209 		HFA3841_PDA_BOGUS_BASE, 0}
2210 	};
2211 
2212 	/* Read the pda from each known address.  */
2213 	for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2214 		/* Make address */
2215 		currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2216 		curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2217 
2218 		/* units of bytes */
2219 		result = hfa384x_dormem(hw, currpage, curroffset, buf,
2220 					len);
2221 
2222 		if (result) {
2223 			netdev_warn(hw->wlandev->netdev,
2224 				    "Read from index %zd failed, continuing\n",
2225 				    i);
2226 			continue;
2227 		}
2228 
2229 		/* Test for garbage */
2230 		pdaok = 1;	/* initially assume good */
2231 		morepdrs = 1;
2232 		while (pdaok && morepdrs) {
2233 			pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2234 			pdrcode = le16_to_cpu(pda[currpdr + 1]);
2235 			/* Test the record length */
2236 			if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2237 				netdev_err(hw->wlandev->netdev,
2238 					   "pdrlen invalid=%d\n", pdrlen);
2239 				pdaok = 0;
2240 				break;
2241 			}
2242 			/* Test the code */
2243 			if (!hfa384x_isgood_pdrcode(pdrcode)) {
2244 				netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2245 					   pdrcode);
2246 				pdaok = 0;
2247 				break;
2248 			}
2249 			/* Test for completion */
2250 			if (pdrcode == HFA384x_PDR_END_OF_PDA)
2251 				morepdrs = 0;
2252 
2253 			/* Move to the next pdr (if necessary) */
2254 			if (morepdrs) {
2255 				/* note the access to pda[], need words here */
2256 				currpdr += le16_to_cpu(pda[currpdr]) + 1;
2257 			}
2258 		}
2259 		if (pdaok) {
2260 			netdev_info(hw->wlandev->netdev,
2261 				    "PDA Read from 0x%08x in %s space.\n",
2262 				    pdaloc[i].cardaddr,
2263 				    pdaloc[i].auxctl == 0 ? "EXTDS" :
2264 				    pdaloc[i].auxctl == 1 ? "NV" :
2265 				    pdaloc[i].auxctl == 2 ? "PHY" :
2266 				    pdaloc[i].auxctl == 3 ? "ICSRAM" :
2267 				    "<bogus auxctl>");
2268 			break;
2269 		}
2270 	}
2271 	result = pdaok ? 0 : -ENODATA;
2272 
2273 	if (result)
2274 		pr_debug("Failure: pda is not okay\n");
2275 
2276 	return result;
2277 }
2278 
2279 /*----------------------------------------------------------------
2280  * hfa384x_drvr_setconfig
2281  *
2282  * Performs the sequence necessary to write a config/info item.
2283  *
2284  * Arguments:
2285  *	hw		device structure
2286  *	rid		config/info record id (in host order)
2287  *	buf		host side record buffer
2288  *	len		buffer length (in bytes)
2289  *
2290  * Returns:
2291  *	0		success
2292  *	>0		f/w reported error - f/w status code
2293  *	<0		driver reported error
2294  *
2295  * Side effects:
2296  *
2297  * Call context:
2298  *	process
2299  *----------------------------------------------------------------
2300  */
2301 int hfa384x_drvr_setconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
2302 {
2303 	return hfa384x_dowrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
2304 }
2305 
2306 /*----------------------------------------------------------------
2307  * hfa384x_drvr_start
2308  *
2309  * Issues the MAC initialize command, sets up some data structures,
2310  * and enables the interrupts.  After this function completes, the
2311  * low-level stuff should be ready for any/all commands.
2312  *
2313  * Arguments:
2314  *	hw		device structure
2315  * Returns:
2316  *	0		success
2317  *	>0		f/w reported error - f/w status code
2318  *	<0		driver reported error
2319  *
2320  * Side effects:
2321  *
2322  * Call context:
2323  *	process
2324  *----------------------------------------------------------------
2325  */
2326 int hfa384x_drvr_start(struct hfa384x *hw)
2327 {
2328 	int result, result1, result2;
2329 	u16 status;
2330 
2331 	might_sleep();
2332 
2333 	/* Clear endpoint stalls - but only do this if the endpoint
2334 	 * is showing a stall status. Some prism2 cards seem to behave
2335 	 * badly if a clear_halt is called when the endpoint is already
2336 	 * ok
2337 	 */
2338 	result =
2339 	    usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in,
2340 			       &status);
2341 	if (result < 0) {
2342 		netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2343 		goto done;
2344 	}
2345 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2346 		netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2347 
2348 	result =
2349 	    usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out,
2350 			       &status);
2351 	if (result < 0) {
2352 		netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2353 		goto done;
2354 	}
2355 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2356 		netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2357 
2358 	/* Synchronous unlink, in case we're trying to restart the driver */
2359 	usb_kill_urb(&hw->rx_urb);
2360 
2361 	/* Post the IN urb */
2362 	result = submit_rx_urb(hw, GFP_KERNEL);
2363 	if (result != 0) {
2364 		netdev_err(hw->wlandev->netdev,
2365 			   "Fatal, failed to submit RX URB, result=%d\n",
2366 			   result);
2367 		goto done;
2368 	}
2369 
2370 	/* Call initialize twice, with a 1 second sleep in between.
2371 	 * This is a nasty work-around since many prism2 cards seem to
2372 	 * need time to settle after an init from cold. The second
2373 	 * call to initialize in theory is not necessary - but we call
2374 	 * it anyway as a double insurance policy:
2375 	 * 1) If the first init should fail, the second may well succeed
2376 	 *    and the card can still be used
2377 	 * 2) It helps ensures all is well with the card after the first
2378 	 *    init and settle time.
2379 	 */
2380 	result1 = hfa384x_cmd_initialize(hw);
2381 	msleep(1000);
2382 	result = hfa384x_cmd_initialize(hw);
2383 	result2 = result;
2384 	if (result1 != 0) {
2385 		if (result2 != 0) {
2386 			netdev_err(hw->wlandev->netdev,
2387 				   "cmd_initialize() failed on two attempts, results %d and %d\n",
2388 				   result1, result2);
2389 			usb_kill_urb(&hw->rx_urb);
2390 			goto done;
2391 		} else {
2392 			pr_debug("First cmd_initialize() failed (result %d),\n",
2393 				 result1);
2394 			pr_debug("but second attempt succeeded. All should be ok\n");
2395 		}
2396 	} else if (result2 != 0) {
2397 		netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2398 			    result2);
2399 		netdev_warn(hw->wlandev->netdev,
2400 			    "Most likely the card will be functional\n");
2401 		goto done;
2402 	}
2403 
2404 	hw->state = HFA384x_STATE_RUNNING;
2405 
2406 done:
2407 	return result;
2408 }
2409 
2410 /*----------------------------------------------------------------
2411  * hfa384x_drvr_stop
2412  *
2413  * Shuts down the MAC to the point where it is safe to unload the
2414  * driver.  Any subsystem that may be holding a data or function
2415  * ptr into the driver must be cleared/deinitialized.
2416  *
2417  * Arguments:
2418  *	hw		device structure
2419  * Returns:
2420  *	0		success
2421  *	>0		f/w reported error - f/w status code
2422  *	<0		driver reported error
2423  *
2424  * Side effects:
2425  *
2426  * Call context:
2427  *	process
2428  *----------------------------------------------------------------
2429  */
2430 int hfa384x_drvr_stop(struct hfa384x *hw)
2431 {
2432 	int i;
2433 
2434 	might_sleep();
2435 
2436 	/* There's no need for spinlocks here. The USB "disconnect"
2437 	 * function sets this "removed" flag and then calls us.
2438 	 */
2439 	if (!hw->wlandev->hwremoved) {
2440 		/* Call initialize to leave the MAC in its 'reset' state */
2441 		hfa384x_cmd_initialize(hw);
2442 
2443 		/* Cancel the rxurb */
2444 		usb_kill_urb(&hw->rx_urb);
2445 	}
2446 
2447 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
2448 	hw->state = HFA384x_STATE_INIT;
2449 
2450 	del_timer_sync(&hw->commsqual_timer);
2451 
2452 	/* Clear all the port status */
2453 	for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2454 		hw->port_enabled[i] = 0;
2455 
2456 	return 0;
2457 }
2458 
2459 /*----------------------------------------------------------------
2460  * hfa384x_drvr_txframe
2461  *
2462  * Takes a frame from prism2sta and queues it for transmission.
2463  *
2464  * Arguments:
2465  *	hw		device structure
2466  *	skb		packet buffer struct.  Contains an 802.11
2467  *			data frame.
2468  *       p80211_hdr      points to the 802.11 header for the packet.
2469  * Returns:
2470  *	0		Success and more buffs available
2471  *	1		Success but no more buffs
2472  *	2		Allocation failure
2473  *	4		Buffer full or queue busy
2474  *
2475  * Side effects:
2476  *
2477  * Call context:
2478  *	interrupt
2479  *----------------------------------------------------------------
2480  */
2481 int hfa384x_drvr_txframe(struct hfa384x *hw, struct sk_buff *skb,
2482 			 union p80211_hdr *p80211_hdr,
2483 			 struct p80211_metawep *p80211_wep)
2484 {
2485 	int usbpktlen = sizeof(struct hfa384x_tx_frame);
2486 	int result;
2487 	int ret;
2488 	char *ptr;
2489 
2490 	if (hw->tx_urb.status == -EINPROGRESS) {
2491 		netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2492 		result = 3;
2493 		goto exit;
2494 	}
2495 
2496 	/* Build Tx frame structure */
2497 	/* Set up the control field */
2498 	memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2499 
2500 	/* Setup the usb type field */
2501 	hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2502 
2503 	/* Set up the sw_support field to identify this frame */
2504 	hw->txbuff.txfrm.desc.sw_support = 0x0123;
2505 
2506 /* Tx complete and Tx exception disable per dleach.  Might be causing
2507  * buf depletion
2508  */
2509 /* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2510 #if defined(DOBOTH)
2511 	hw->txbuff.txfrm.desc.tx_control =
2512 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2513 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2514 #elif defined(DOEXC)
2515 	hw->txbuff.txfrm.desc.tx_control =
2516 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2517 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2518 #else
2519 	hw->txbuff.txfrm.desc.tx_control =
2520 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2521 	    HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2522 #endif
2523 	cpu_to_le16s(&hw->txbuff.txfrm.desc.tx_control);
2524 
2525 	/* copy the header over to the txdesc */
2526 	memcpy(&hw->txbuff.txfrm.desc.frame_control, p80211_hdr,
2527 	       sizeof(union p80211_hdr));
2528 
2529 	/* if we're using host WEP, increase size by IV+ICV */
2530 	if (p80211_wep->data) {
2531 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2532 		usbpktlen += 8;
2533 	} else {
2534 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2535 	}
2536 
2537 	usbpktlen += skb->len;
2538 
2539 	/* copy over the WEP IV if we are using host WEP */
2540 	ptr = hw->txbuff.txfrm.data;
2541 	if (p80211_wep->data) {
2542 		memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2543 		ptr += sizeof(p80211_wep->iv);
2544 		memcpy(ptr, p80211_wep->data, skb->len);
2545 	} else {
2546 		memcpy(ptr, skb->data, skb->len);
2547 	}
2548 	/* copy over the packet data */
2549 	ptr += skb->len;
2550 
2551 	/* copy over the WEP ICV if we are using host WEP */
2552 	if (p80211_wep->data)
2553 		memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2554 
2555 	/* Send the USB packet */
2556 	usb_fill_bulk_urb(&hw->tx_urb, hw->usb,
2557 			  hw->endp_out,
2558 			  &hw->txbuff, ROUNDUP64(usbpktlen),
2559 			  hfa384x_usbout_callback, hw->wlandev);
2560 	hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2561 
2562 	result = 1;
2563 	ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2564 	if (ret != 0) {
2565 		netdev_err(hw->wlandev->netdev,
2566 			   "submit_tx_urb() failed, error=%d\n", ret);
2567 		result = 3;
2568 	}
2569 
2570 exit:
2571 	return result;
2572 }
2573 
2574 void hfa384x_tx_timeout(struct wlandevice *wlandev)
2575 {
2576 	struct hfa384x *hw = wlandev->priv;
2577 	unsigned long flags;
2578 
2579 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2580 
2581 	if (!hw->wlandev->hwremoved) {
2582 		int sched;
2583 
2584 		sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2585 		sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2586 		if (sched)
2587 			schedule_work(&hw->usb_work);
2588 	}
2589 
2590 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2591 }
2592 
2593 /*----------------------------------------------------------------
2594  * hfa384x_usbctlx_reaper_task
2595  *
2596  * Tasklet to delete dead CTLX objects
2597  *
2598  * Arguments:
2599  *	data	ptr to a struct hfa384x
2600  *
2601  * Returns:
2602  *
2603  * Call context:
2604  *	Interrupt
2605  *----------------------------------------------------------------
2606  */
2607 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2608 {
2609 	struct hfa384x *hw = (struct hfa384x *)data;
2610 	struct hfa384x_usbctlx *ctlx, *temp;
2611 	unsigned long flags;
2612 
2613 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2614 
2615 	/* This list is guaranteed to be empty if someone
2616 	 * has unplugged the adapter.
2617 	 */
2618 	list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.reapable, list) {
2619 		list_del(&ctlx->list);
2620 		kfree(ctlx);
2621 	}
2622 
2623 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2624 }
2625 
2626 /*----------------------------------------------------------------
2627  * hfa384x_usbctlx_completion_task
2628  *
2629  * Tasklet to call completion handlers for returned CTLXs
2630  *
2631  * Arguments:
2632  *	data	ptr to struct hfa384x
2633  *
2634  * Returns:
2635  *	Nothing
2636  *
2637  * Call context:
2638  *	Interrupt
2639  *----------------------------------------------------------------
2640  */
2641 static void hfa384x_usbctlx_completion_task(unsigned long data)
2642 {
2643 	struct hfa384x *hw = (struct hfa384x *)data;
2644 	struct hfa384x_usbctlx *ctlx, *temp;
2645 	unsigned long flags;
2646 
2647 	int reap = 0;
2648 
2649 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2650 
2651 	/* This list is guaranteed to be empty if someone
2652 	 * has unplugged the adapter ...
2653 	 */
2654 	list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.completing, list) {
2655 		/* Call the completion function that this
2656 		 * command was assigned, assuming it has one.
2657 		 */
2658 		if (ctlx->cmdcb) {
2659 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2660 			ctlx->cmdcb(hw, ctlx);
2661 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
2662 
2663 			/* Make sure we don't try and complete
2664 			 * this CTLX more than once!
2665 			 */
2666 			ctlx->cmdcb = NULL;
2667 
2668 			/* Did someone yank the adapter out
2669 			 * while our list was (briefly) unlocked?
2670 			 */
2671 			if (hw->wlandev->hwremoved) {
2672 				reap = 0;
2673 				break;
2674 			}
2675 		}
2676 
2677 		/*
2678 		 * "Reapable" CTLXs are ones which don't have any
2679 		 * threads waiting for them to die. Hence they must
2680 		 * be delivered to The Reaper!
2681 		 */
2682 		if (ctlx->reapable) {
2683 			/* Move the CTLX off the "completing" list (hopefully)
2684 			 * on to the "reapable" list where the reaper task
2685 			 * can find it. And "reapable" means that this CTLX
2686 			 * isn't sitting on a wait-queue somewhere.
2687 			 */
2688 			list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2689 			reap = 1;
2690 		}
2691 
2692 		complete(&ctlx->done);
2693 	}
2694 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2695 
2696 	if (reap)
2697 		tasklet_schedule(&hw->reaper_bh);
2698 }
2699 
2700 /*----------------------------------------------------------------
2701  * unlocked_usbctlx_cancel_async
2702  *
2703  * Mark the CTLX dead asynchronously, and ensure that the
2704  * next command on the queue is run afterwards.
2705  *
2706  * Arguments:
2707  *	hw	ptr to the struct hfa384x structure
2708  *	ctlx	ptr to a CTLX structure
2709  *
2710  * Returns:
2711  *	0	the CTLX's URB is inactive
2712  * -EINPROGRESS	the URB is currently being unlinked
2713  *
2714  * Call context:
2715  *	Either process or interrupt, but presumably interrupt
2716  *----------------------------------------------------------------
2717  */
2718 static int unlocked_usbctlx_cancel_async(struct hfa384x *hw,
2719 					 struct hfa384x_usbctlx *ctlx)
2720 {
2721 	int ret;
2722 
2723 	/*
2724 	 * Try to delete the URB containing our request packet.
2725 	 * If we succeed, then its completion handler will be
2726 	 * called with a status of -ECONNRESET.
2727 	 */
2728 	hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2729 	ret = usb_unlink_urb(&hw->ctlx_urb);
2730 
2731 	if (ret != -EINPROGRESS) {
2732 		/*
2733 		 * The OUT URB had either already completed
2734 		 * or was still in the pending queue, so the
2735 		 * URB's completion function will not be called.
2736 		 * We will have to complete the CTLX ourselves.
2737 		 */
2738 		ctlx->state = CTLX_REQ_FAILED;
2739 		unlocked_usbctlx_complete(hw, ctlx);
2740 		ret = 0;
2741 	}
2742 
2743 	return ret;
2744 }
2745 
2746 /*----------------------------------------------------------------
2747  * unlocked_usbctlx_complete
2748  *
2749  * A CTLX has completed.  It may have been successful, it may not
2750  * have been. At this point, the CTLX should be quiescent.  The URBs
2751  * aren't active and the timers should have been stopped.
2752  *
2753  * The CTLX is migrated to the "completing" queue, and the completing
2754  * tasklet is scheduled.
2755  *
2756  * Arguments:
2757  *	hw		ptr to a struct hfa384x structure
2758  *	ctlx		ptr to a ctlx structure
2759  *
2760  * Returns:
2761  *	nothing
2762  *
2763  * Side effects:
2764  *
2765  * Call context:
2766  *	Either, assume interrupt
2767  *----------------------------------------------------------------
2768  */
2769 static void unlocked_usbctlx_complete(struct hfa384x *hw,
2770 				      struct hfa384x_usbctlx *ctlx)
2771 {
2772 	/* Timers have been stopped, and ctlx should be in
2773 	 * a terminal state. Retire it from the "active"
2774 	 * queue.
2775 	 */
2776 	list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2777 	tasklet_schedule(&hw->completion_bh);
2778 
2779 	switch (ctlx->state) {
2780 	case CTLX_COMPLETE:
2781 	case CTLX_REQ_FAILED:
2782 		/* This are the correct terminating states. */
2783 		break;
2784 
2785 	default:
2786 		netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2787 			   le16_to_cpu(ctlx->outbuf.type),
2788 			   ctlxstr(ctlx->state));
2789 		break;
2790 	}			/* switch */
2791 }
2792 
2793 /*----------------------------------------------------------------
2794  * hfa384x_usbctlxq_run
2795  *
2796  * Checks to see if the head item is running.  If not, starts it.
2797  *
2798  * Arguments:
2799  *	hw	ptr to struct hfa384x
2800  *
2801  * Returns:
2802  *	nothing
2803  *
2804  * Side effects:
2805  *
2806  * Call context:
2807  *	any
2808  *----------------------------------------------------------------
2809  */
2810 static void hfa384x_usbctlxq_run(struct hfa384x *hw)
2811 {
2812 	unsigned long flags;
2813 
2814 	/* acquire lock */
2815 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2816 
2817 	/* Only one active CTLX at any one time, because there's no
2818 	 * other (reliable) way to match the response URB to the
2819 	 * correct CTLX.
2820 	 *
2821 	 * Don't touch any of these CTLXs if the hardware
2822 	 * has been removed or the USB subsystem is stalled.
2823 	 */
2824 	if (!list_empty(&hw->ctlxq.active) ||
2825 	    test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
2826 		goto unlock;
2827 
2828 	while (!list_empty(&hw->ctlxq.pending)) {
2829 		struct hfa384x_usbctlx *head;
2830 		int result;
2831 
2832 		/* This is the first pending command */
2833 		head = list_entry(hw->ctlxq.pending.next,
2834 				  struct hfa384x_usbctlx, list);
2835 
2836 		/* We need to split this off to avoid a race condition */
2837 		list_move_tail(&head->list, &hw->ctlxq.active);
2838 
2839 		/* Fill the out packet */
2840 		usb_fill_bulk_urb(&hw->ctlx_urb, hw->usb,
2841 				  hw->endp_out,
2842 				  &head->outbuf, ROUNDUP64(head->outbufsize),
2843 				  hfa384x_ctlxout_callback, hw);
2844 		hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
2845 
2846 		/* Now submit the URB and update the CTLX's state */
2847 		result = usb_submit_urb(&hw->ctlx_urb, GFP_ATOMIC);
2848 		if (result == 0) {
2849 			/* This CTLX is now running on the active queue */
2850 			head->state = CTLX_REQ_SUBMITTED;
2851 
2852 			/* Start the OUT wait timer */
2853 			hw->req_timer_done = 0;
2854 			hw->reqtimer.expires = jiffies + HZ;
2855 			add_timer(&hw->reqtimer);
2856 
2857 			/* Start the IN wait timer */
2858 			hw->resp_timer_done = 0;
2859 			hw->resptimer.expires = jiffies + 2 * HZ;
2860 			add_timer(&hw->resptimer);
2861 
2862 			break;
2863 		}
2864 
2865 		if (result == -EPIPE) {
2866 			/* The OUT pipe needs resetting, so put
2867 			 * this CTLX back in the "pending" queue
2868 			 * and schedule a reset ...
2869 			 */
2870 			netdev_warn(hw->wlandev->netdev,
2871 				    "%s tx pipe stalled: requesting reset\n",
2872 				    hw->wlandev->netdev->name);
2873 			list_move(&head->list, &hw->ctlxq.pending);
2874 			set_bit(WORK_TX_HALT, &hw->usb_flags);
2875 			schedule_work(&hw->usb_work);
2876 			break;
2877 		}
2878 
2879 		if (result == -ESHUTDOWN) {
2880 			netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
2881 				    hw->wlandev->netdev->name);
2882 			break;
2883 		}
2884 
2885 		netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
2886 			   le16_to_cpu(head->outbuf.type), result);
2887 		unlocked_usbctlx_complete(hw, head);
2888 	}			/* while */
2889 
2890 unlock:
2891 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2892 }
2893 
2894 /*----------------------------------------------------------------
2895  * hfa384x_usbin_callback
2896  *
2897  * Callback for URBs on the BULKIN endpoint.
2898  *
2899  * Arguments:
2900  *	urb		ptr to the completed urb
2901  *
2902  * Returns:
2903  *	nothing
2904  *
2905  * Side effects:
2906  *
2907  * Call context:
2908  *	interrupt
2909  *----------------------------------------------------------------
2910  */
2911 static void hfa384x_usbin_callback(struct urb *urb)
2912 {
2913 	struct wlandevice *wlandev = urb->context;
2914 	struct hfa384x *hw;
2915 	union hfa384x_usbin *usbin;
2916 	struct sk_buff *skb = NULL;
2917 	int result;
2918 	int urb_status;
2919 	u16 type;
2920 
2921 	enum USBIN_ACTION {
2922 		HANDLE,
2923 		RESUBMIT,
2924 		ABORT
2925 	} action;
2926 
2927 	if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
2928 		goto exit;
2929 
2930 	hw = wlandev->priv;
2931 	if (!hw)
2932 		goto exit;
2933 
2934 	skb = hw->rx_urb_skb;
2935 	if (!skb || (skb->data != urb->transfer_buffer)) {
2936 		WARN_ON(1);
2937 		return;
2938 	}
2939 
2940 	hw->rx_urb_skb = NULL;
2941 
2942 	/* Check for error conditions within the URB */
2943 	switch (urb->status) {
2944 	case 0:
2945 		action = HANDLE;
2946 
2947 		/* Check for short packet */
2948 		if (urb->actual_length == 0) {
2949 			wlandev->netdev->stats.rx_errors++;
2950 			wlandev->netdev->stats.rx_length_errors++;
2951 			action = RESUBMIT;
2952 		}
2953 		break;
2954 
2955 	case -EPIPE:
2956 		netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
2957 			    wlandev->netdev->name);
2958 		if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
2959 			schedule_work(&hw->usb_work);
2960 		wlandev->netdev->stats.rx_errors++;
2961 		action = ABORT;
2962 		break;
2963 
2964 	case -EILSEQ:
2965 	case -ETIMEDOUT:
2966 	case -EPROTO:
2967 		if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
2968 		    !timer_pending(&hw->throttle)) {
2969 			mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
2970 		}
2971 		wlandev->netdev->stats.rx_errors++;
2972 		action = ABORT;
2973 		break;
2974 
2975 	case -EOVERFLOW:
2976 		wlandev->netdev->stats.rx_over_errors++;
2977 		action = RESUBMIT;
2978 		break;
2979 
2980 	case -ENODEV:
2981 	case -ESHUTDOWN:
2982 		pr_debug("status=%d, device removed.\n", urb->status);
2983 		action = ABORT;
2984 		break;
2985 
2986 	case -ENOENT:
2987 	case -ECONNRESET:
2988 		pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
2989 		action = ABORT;
2990 		break;
2991 
2992 	default:
2993 		pr_debug("urb status=%d, transfer flags=0x%x\n",
2994 			 urb->status, urb->transfer_flags);
2995 		wlandev->netdev->stats.rx_errors++;
2996 		action = RESUBMIT;
2997 		break;
2998 	}
2999 
3000 	/* Save values from the RX URB before reposting overwrites it. */
3001 	urb_status = urb->status;
3002 	usbin = (union hfa384x_usbin *)urb->transfer_buffer;
3003 
3004 	if (action != ABORT) {
3005 		/* Repost the RX URB */
3006 		result = submit_rx_urb(hw, GFP_ATOMIC);
3007 
3008 		if (result != 0) {
3009 			netdev_err(hw->wlandev->netdev,
3010 				   "Fatal, failed to resubmit rx_urb. error=%d\n",
3011 				   result);
3012 		}
3013 	}
3014 
3015 	/* Handle any USB-IN packet */
3016 	/* Note: the check of the sw_support field, the type field doesn't
3017 	 *       have bit 12 set like the docs suggest.
3018 	 */
3019 	type = le16_to_cpu(usbin->type);
3020 	if (HFA384x_USB_ISRXFRM(type)) {
3021 		if (action == HANDLE) {
3022 			if (usbin->txfrm.desc.sw_support == 0x0123) {
3023 				hfa384x_usbin_txcompl(wlandev, usbin);
3024 			} else {
3025 				skb_put(skb, sizeof(*usbin));
3026 				hfa384x_usbin_rx(wlandev, skb);
3027 				skb = NULL;
3028 			}
3029 		}
3030 		goto exit;
3031 	}
3032 	if (HFA384x_USB_ISTXFRM(type)) {
3033 		if (action == HANDLE)
3034 			hfa384x_usbin_txcompl(wlandev, usbin);
3035 		goto exit;
3036 	}
3037 	switch (type) {
3038 	case HFA384x_USB_INFOFRM:
3039 		if (action == ABORT)
3040 			goto exit;
3041 		if (action == HANDLE)
3042 			hfa384x_usbin_info(wlandev, usbin);
3043 		break;
3044 
3045 	case HFA384x_USB_CMDRESP:
3046 	case HFA384x_USB_WRIDRESP:
3047 	case HFA384x_USB_RRIDRESP:
3048 	case HFA384x_USB_WMEMRESP:
3049 	case HFA384x_USB_RMEMRESP:
3050 		/* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3051 		hfa384x_usbin_ctlx(hw, usbin, urb_status);
3052 		break;
3053 
3054 	case HFA384x_USB_BUFAVAIL:
3055 		pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3056 			 usbin->bufavail.frmlen);
3057 		break;
3058 
3059 	case HFA384x_USB_ERROR:
3060 		pr_debug("Received USB_ERROR packet, errortype=%d\n",
3061 			 usbin->usberror.errortype);
3062 		break;
3063 
3064 	default:
3065 		pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3066 			 usbin->type, urb_status);
3067 		break;
3068 	}			/* switch */
3069 
3070 exit:
3071 
3072 	if (skb)
3073 		dev_kfree_skb(skb);
3074 }
3075 
3076 /*----------------------------------------------------------------
3077  * hfa384x_usbin_ctlx
3078  *
3079  * We've received a URB containing a Prism2 "response" message.
3080  * This message needs to be matched up with a CTLX on the active
3081  * queue and our state updated accordingly.
3082  *
3083  * Arguments:
3084  *	hw		ptr to struct hfa384x
3085  *	usbin		ptr to USB IN packet
3086  *	urb_status	status of this Bulk-In URB
3087  *
3088  * Returns:
3089  *	nothing
3090  *
3091  * Side effects:
3092  *
3093  * Call context:
3094  *	interrupt
3095  *----------------------------------------------------------------
3096  */
3097 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
3098 			       int urb_status)
3099 {
3100 	struct hfa384x_usbctlx *ctlx;
3101 	int run_queue = 0;
3102 	unsigned long flags;
3103 
3104 retry:
3105 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3106 
3107 	/* There can be only one CTLX on the active queue
3108 	 * at any one time, and this is the CTLX that the
3109 	 * timers are waiting for.
3110 	 */
3111 	if (list_empty(&hw->ctlxq.active))
3112 		goto unlock;
3113 
3114 	/* Remove the "response timeout". It's possible that
3115 	 * we are already too late, and that the timeout is
3116 	 * already running. And that's just too bad for us,
3117 	 * because we could lose our CTLX from the active
3118 	 * queue here ...
3119 	 */
3120 	if (del_timer(&hw->resptimer) == 0) {
3121 		if (hw->resp_timer_done == 0) {
3122 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3123 			goto retry;
3124 		}
3125 	} else {
3126 		hw->resp_timer_done = 1;
3127 	}
3128 
3129 	ctlx = get_active_ctlx(hw);
3130 
3131 	if (urb_status != 0) {
3132 		/*
3133 		 * Bad CTLX, so get rid of it. But we only
3134 		 * remove it from the active queue if we're no
3135 		 * longer expecting the OUT URB to complete.
3136 		 */
3137 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3138 			run_queue = 1;
3139 	} else {
3140 		const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3141 
3142 		/*
3143 		 * Check that our message is what we're expecting ...
3144 		 */
3145 		if (ctlx->outbuf.type != intype) {
3146 			netdev_warn(hw->wlandev->netdev,
3147 				    "Expected IN[%d], received IN[%d] - ignored.\n",
3148 				    le16_to_cpu(ctlx->outbuf.type),
3149 				    le16_to_cpu(intype));
3150 			goto unlock;
3151 		}
3152 
3153 		/* This URB has succeeded, so grab the data ... */
3154 		memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3155 
3156 		switch (ctlx->state) {
3157 		case CTLX_REQ_SUBMITTED:
3158 			/*
3159 			 * We have received our response URB before
3160 			 * our request has been acknowledged. Odd,
3161 			 * but our OUT URB is still alive...
3162 			 */
3163 			pr_debug("Causality violation: please reboot Universe\n");
3164 			ctlx->state = CTLX_RESP_COMPLETE;
3165 			break;
3166 
3167 		case CTLX_REQ_COMPLETE:
3168 			/*
3169 			 * This is the usual path: our request
3170 			 * has already been acknowledged, and
3171 			 * now we have received the reply too.
3172 			 */
3173 			ctlx->state = CTLX_COMPLETE;
3174 			unlocked_usbctlx_complete(hw, ctlx);
3175 			run_queue = 1;
3176 			break;
3177 
3178 		default:
3179 			/*
3180 			 * Throw this CTLX away ...
3181 			 */
3182 			netdev_err(hw->wlandev->netdev,
3183 				   "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3184 				   le16_to_cpu(ctlx->outbuf.type),
3185 				   ctlxstr(ctlx->state));
3186 			if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3187 				run_queue = 1;
3188 			break;
3189 		}		/* switch */
3190 	}
3191 
3192 unlock:
3193 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3194 
3195 	if (run_queue)
3196 		hfa384x_usbctlxq_run(hw);
3197 }
3198 
3199 /*----------------------------------------------------------------
3200  * hfa384x_usbin_txcompl
3201  *
3202  * At this point we have the results of a previous transmit.
3203  *
3204  * Arguments:
3205  *	wlandev		wlan device
3206  *	usbin		ptr to the usb transfer buffer
3207  *
3208  * Returns:
3209  *	nothing
3210  *
3211  * Side effects:
3212  *
3213  * Call context:
3214  *	interrupt
3215  *----------------------------------------------------------------
3216  */
3217 static void hfa384x_usbin_txcompl(struct wlandevice *wlandev,
3218 				  union hfa384x_usbin *usbin)
3219 {
3220 	u16 status;
3221 
3222 	status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3223 
3224 	/* Was there an error? */
3225 	if (HFA384x_TXSTATUS_ISERROR(status))
3226 		prism2sta_ev_txexc(wlandev, status);
3227 	else
3228 		prism2sta_ev_tx(wlandev, status);
3229 }
3230 
3231 /*----------------------------------------------------------------
3232  * hfa384x_usbin_rx
3233  *
3234  * At this point we have a successful received a rx frame packet.
3235  *
3236  * Arguments:
3237  *	wlandev		wlan device
3238  *	usbin		ptr to the usb transfer buffer
3239  *
3240  * Returns:
3241  *	nothing
3242  *
3243  * Side effects:
3244  *
3245  * Call context:
3246  *	interrupt
3247  *----------------------------------------------------------------
3248  */
3249 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb)
3250 {
3251 	union hfa384x_usbin *usbin = (union hfa384x_usbin *)skb->data;
3252 	struct hfa384x *hw = wlandev->priv;
3253 	int hdrlen;
3254 	struct p80211_rxmeta *rxmeta;
3255 	u16 data_len;
3256 	u16 fc;
3257 
3258 	/* Byte order convert once up front. */
3259 	le16_to_cpus(&usbin->rxfrm.desc.status);
3260 	le32_to_cpus(&usbin->rxfrm.desc.time);
3261 
3262 	/* Now handle frame based on port# */
3263 	switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3264 	case 0:
3265 		fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3266 
3267 		/* If exclude and we receive an unencrypted, drop it */
3268 		if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3269 		    !WLAN_GET_FC_ISWEP(fc)) {
3270 			break;
3271 		}
3272 
3273 		data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3274 
3275 		/* How much header data do we have? */
3276 		hdrlen = p80211_headerlen(fc);
3277 
3278 		/* Pull off the descriptor */
3279 		skb_pull(skb, sizeof(struct hfa384x_rx_frame));
3280 
3281 		/* Now shunt the header block up against the data block
3282 		 * with an "overlapping" copy
3283 		 */
3284 		memmove(skb_push(skb, hdrlen),
3285 			&usbin->rxfrm.desc.frame_control, hdrlen);
3286 
3287 		skb->dev = wlandev->netdev;
3288 
3289 		/* And set the frame length properly */
3290 		skb_trim(skb, data_len + hdrlen);
3291 
3292 		/* The prism2 series does not return the CRC */
3293 		memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3294 
3295 		skb_reset_mac_header(skb);
3296 
3297 		/* Attach the rxmeta, set some stuff */
3298 		p80211skb_rxmeta_attach(wlandev, skb);
3299 		rxmeta = p80211skb_rxmeta(skb);
3300 		rxmeta->mactime = usbin->rxfrm.desc.time;
3301 		rxmeta->rxrate = usbin->rxfrm.desc.rate;
3302 		rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3303 		rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3304 
3305 		p80211netdev_rx(wlandev, skb);
3306 
3307 		break;
3308 
3309 	case 7:
3310 		if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3311 			/* Copy to wlansnif skb */
3312 			hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3313 			dev_kfree_skb(skb);
3314 		} else {
3315 			pr_debug("Received monitor frame: FCSerr set\n");
3316 		}
3317 		break;
3318 
3319 	default:
3320 		netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3321 			    HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3322 		break;
3323 	}
3324 }
3325 
3326 /*----------------------------------------------------------------
3327  * hfa384x_int_rxmonitor
3328  *
3329  * Helper function for int_rx.  Handles monitor frames.
3330  * Note that this function allocates space for the FCS and sets it
3331  * to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3332  * higher layers expect it.  0xffffffff is used as a flag to indicate
3333  * the FCS is bogus.
3334  *
3335  * Arguments:
3336  *	wlandev		wlan device structure
3337  *	rxfrm		rx descriptor read from card in int_rx
3338  *
3339  * Returns:
3340  *	nothing
3341  *
3342  * Side effects:
3343  *	Allocates an skb and passes it up via the PF_PACKET interface.
3344  * Call context:
3345  *	interrupt
3346  *----------------------------------------------------------------
3347  */
3348 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
3349 				  struct hfa384x_usb_rxfrm *rxfrm)
3350 {
3351 	struct hfa384x_rx_frame *rxdesc = &rxfrm->desc;
3352 	unsigned int hdrlen = 0;
3353 	unsigned int datalen = 0;
3354 	unsigned int skblen = 0;
3355 	u8 *datap;
3356 	u16 fc;
3357 	struct sk_buff *skb;
3358 	struct hfa384x *hw = wlandev->priv;
3359 
3360 	/* Remember the status, time, and data_len fields are in host order */
3361 	/* Figure out how big the frame is */
3362 	fc = le16_to_cpu(rxdesc->frame_control);
3363 	hdrlen = p80211_headerlen(fc);
3364 	datalen = le16_to_cpu(rxdesc->data_len);
3365 
3366 	/* Allocate an ind message+framesize skb */
3367 	skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3368 
3369 	/* sanity check the length */
3370 	if (skblen >
3371 	    (sizeof(struct p80211_caphdr) +
3372 	     WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3373 		pr_debug("overlen frm: len=%zd\n",
3374 			 skblen - sizeof(struct p80211_caphdr));
3375 	}
3376 
3377 	skb = dev_alloc_skb(skblen);
3378 	if (!skb)
3379 		return;
3380 
3381 	/* only prepend the prism header if in the right mode */
3382 	if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3383 	    (hw->sniffhdr != 0)) {
3384 		struct p80211_caphdr *caphdr;
3385 		/* The NEW header format! */
3386 		datap = skb_put(skb, sizeof(struct p80211_caphdr));
3387 		caphdr = (struct p80211_caphdr *)datap;
3388 
3389 		caphdr->version = htonl(P80211CAPTURE_VERSION);
3390 		caphdr->length = htonl(sizeof(struct p80211_caphdr));
3391 		caphdr->mactime = __cpu_to_be64(rxdesc->time * 1000);
3392 		caphdr->hosttime = __cpu_to_be64(jiffies);
3393 		caphdr->phytype = htonl(4);	/* dss_dot11_b */
3394 		caphdr->channel = htonl(hw->sniff_channel);
3395 		caphdr->datarate = htonl(rxdesc->rate);
3396 		caphdr->antenna = htonl(0);	/* unknown */
3397 		caphdr->priority = htonl(0);	/* unknown */
3398 		caphdr->ssi_type = htonl(3);	/* rssi_raw */
3399 		caphdr->ssi_signal = htonl(rxdesc->signal);
3400 		caphdr->ssi_noise = htonl(rxdesc->silence);
3401 		caphdr->preamble = htonl(0);	/* unknown */
3402 		caphdr->encoding = htonl(1);	/* cck */
3403 	}
3404 
3405 	/* Copy the 802.11 header to the skb
3406 	 * (ctl frames may be less than a full header)
3407 	 */
3408 	skb_put_data(skb, &rxdesc->frame_control, hdrlen);
3409 
3410 	/* If any, copy the data from the card to the skb */
3411 	if (datalen > 0) {
3412 		datap = skb_put_data(skb, rxfrm->data, datalen);
3413 
3414 		/* check for unencrypted stuff if WEP bit set. */
3415 		if (*(datap - hdrlen + 1) & 0x40)	/* wep set */
3416 			if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3417 				/* clear wep; it's the 802.2 header! */
3418 				*(datap - hdrlen + 1) &= 0xbf;
3419 	}
3420 
3421 	if (hw->sniff_fcs) {
3422 		/* Set the FCS */
3423 		datap = skb_put(skb, WLAN_CRC_LEN);
3424 		memset(datap, 0xff, WLAN_CRC_LEN);
3425 	}
3426 
3427 	/* pass it back up */
3428 	p80211netdev_rx(wlandev, skb);
3429 }
3430 
3431 /*----------------------------------------------------------------
3432  * hfa384x_usbin_info
3433  *
3434  * At this point we have a successful received a Prism2 info frame.
3435  *
3436  * Arguments:
3437  *	wlandev		wlan device
3438  *	usbin		ptr to the usb transfer buffer
3439  *
3440  * Returns:
3441  *	nothing
3442  *
3443  * Side effects:
3444  *
3445  * Call context:
3446  *	interrupt
3447  *----------------------------------------------------------------
3448  */
3449 static void hfa384x_usbin_info(struct wlandevice *wlandev,
3450 			       union hfa384x_usbin *usbin)
3451 {
3452 	le16_to_cpus(&usbin->infofrm.info.framelen);
3453 	prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3454 }
3455 
3456 /*----------------------------------------------------------------
3457  * hfa384x_usbout_callback
3458  *
3459  * Callback for URBs on the BULKOUT endpoint.
3460  *
3461  * Arguments:
3462  *	urb		ptr to the completed urb
3463  *
3464  * Returns:
3465  *	nothing
3466  *
3467  * Side effects:
3468  *
3469  * Call context:
3470  *	interrupt
3471  *----------------------------------------------------------------
3472  */
3473 static void hfa384x_usbout_callback(struct urb *urb)
3474 {
3475 	struct wlandevice *wlandev = urb->context;
3476 
3477 #ifdef DEBUG_USB
3478 	dbprint_urb(urb);
3479 #endif
3480 
3481 	if (wlandev && wlandev->netdev) {
3482 		switch (urb->status) {
3483 		case 0:
3484 			prism2sta_ev_alloc(wlandev);
3485 			break;
3486 
3487 		case -EPIPE: {
3488 			struct hfa384x *hw = wlandev->priv;
3489 
3490 			netdev_warn(hw->wlandev->netdev,
3491 				    "%s tx pipe stalled: requesting reset\n",
3492 				    wlandev->netdev->name);
3493 			if (!test_and_set_bit(WORK_TX_HALT, &hw->usb_flags))
3494 				schedule_work(&hw->usb_work);
3495 			wlandev->netdev->stats.tx_errors++;
3496 			break;
3497 		}
3498 
3499 		case -EPROTO:
3500 		case -ETIMEDOUT:
3501 		case -EILSEQ: {
3502 			struct hfa384x *hw = wlandev->priv;
3503 
3504 			if (!test_and_set_bit(THROTTLE_TX, &hw->usb_flags) &&
3505 			    !timer_pending(&hw->throttle)) {
3506 				mod_timer(&hw->throttle,
3507 					  jiffies + THROTTLE_JIFFIES);
3508 			}
3509 			wlandev->netdev->stats.tx_errors++;
3510 			netif_stop_queue(wlandev->netdev);
3511 			break;
3512 		}
3513 
3514 		case -ENOENT:
3515 		case -ESHUTDOWN:
3516 			/* Ignorable errors */
3517 			break;
3518 
3519 		default:
3520 			netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3521 				    urb->status);
3522 			wlandev->netdev->stats.tx_errors++;
3523 			break;
3524 		}		/* switch */
3525 	}
3526 }
3527 
3528 /*----------------------------------------------------------------
3529  * hfa384x_ctlxout_callback
3530  *
3531  * Callback for control data on the BULKOUT endpoint.
3532  *
3533  * Arguments:
3534  *	urb		ptr to the completed urb
3535  *
3536  * Returns:
3537  * nothing
3538  *
3539  * Side effects:
3540  *
3541  * Call context:
3542  * interrupt
3543  *----------------------------------------------------------------
3544  */
3545 static void hfa384x_ctlxout_callback(struct urb *urb)
3546 {
3547 	struct hfa384x *hw = urb->context;
3548 	int delete_resptimer = 0;
3549 	int timer_ok = 1;
3550 	int run_queue = 0;
3551 	struct hfa384x_usbctlx *ctlx;
3552 	unsigned long flags;
3553 
3554 	pr_debug("urb->status=%d\n", urb->status);
3555 #ifdef DEBUG_USB
3556 	dbprint_urb(urb);
3557 #endif
3558 	if ((urb->status == -ESHUTDOWN) ||
3559 	    (urb->status == -ENODEV) || !hw)
3560 		return;
3561 
3562 retry:
3563 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3564 
3565 	/*
3566 	 * Only one CTLX at a time on the "active" list, and
3567 	 * none at all if we are unplugged. However, we can
3568 	 * rely on the disconnect function to clean everything
3569 	 * up if someone unplugged the adapter.
3570 	 */
3571 	if (list_empty(&hw->ctlxq.active)) {
3572 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3573 		return;
3574 	}
3575 
3576 	/*
3577 	 * Having something on the "active" queue means
3578 	 * that we have timers to worry about ...
3579 	 */
3580 	if (del_timer(&hw->reqtimer) == 0) {
3581 		if (hw->req_timer_done == 0) {
3582 			/*
3583 			 * This timer was actually running while we
3584 			 * were trying to delete it. Let it terminate
3585 			 * gracefully instead.
3586 			 */
3587 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3588 			goto retry;
3589 		}
3590 	} else {
3591 		hw->req_timer_done = 1;
3592 	}
3593 
3594 	ctlx = get_active_ctlx(hw);
3595 
3596 	if (urb->status == 0) {
3597 		/* Request portion of a CTLX is successful */
3598 		switch (ctlx->state) {
3599 		case CTLX_REQ_SUBMITTED:
3600 			/* This OUT-ACK received before IN */
3601 			ctlx->state = CTLX_REQ_COMPLETE;
3602 			break;
3603 
3604 		case CTLX_RESP_COMPLETE:
3605 			/* IN already received before this OUT-ACK,
3606 			 * so this command must now be complete.
3607 			 */
3608 			ctlx->state = CTLX_COMPLETE;
3609 			unlocked_usbctlx_complete(hw, ctlx);
3610 			run_queue = 1;
3611 			break;
3612 
3613 		default:
3614 			/* This is NOT a valid CTLX "success" state! */
3615 			netdev_err(hw->wlandev->netdev,
3616 				   "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3617 				   le16_to_cpu(ctlx->outbuf.type),
3618 				   ctlxstr(ctlx->state), urb->status);
3619 			break;
3620 		}		/* switch */
3621 	} else {
3622 		/* If the pipe has stalled then we need to reset it */
3623 		if ((urb->status == -EPIPE) &&
3624 		    !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3625 			netdev_warn(hw->wlandev->netdev,
3626 				    "%s tx pipe stalled: requesting reset\n",
3627 				    hw->wlandev->netdev->name);
3628 			schedule_work(&hw->usb_work);
3629 		}
3630 
3631 		/* If someone cancels the OUT URB then its status
3632 		 * should be either -ECONNRESET or -ENOENT.
3633 		 */
3634 		ctlx->state = CTLX_REQ_FAILED;
3635 		unlocked_usbctlx_complete(hw, ctlx);
3636 		delete_resptimer = 1;
3637 		run_queue = 1;
3638 	}
3639 
3640 delresp:
3641 	if (delete_resptimer) {
3642 		timer_ok = del_timer(&hw->resptimer);
3643 		if (timer_ok != 0)
3644 			hw->resp_timer_done = 1;
3645 	}
3646 
3647 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3648 
3649 	if (!timer_ok && (hw->resp_timer_done == 0)) {
3650 		spin_lock_irqsave(&hw->ctlxq.lock, flags);
3651 		goto delresp;
3652 	}
3653 
3654 	if (run_queue)
3655 		hfa384x_usbctlxq_run(hw);
3656 }
3657 
3658 /*----------------------------------------------------------------
3659  * hfa384x_usbctlx_reqtimerfn
3660  *
3661  * Timer response function for CTLX request timeouts.  If this
3662  * function is called, it means that the callback for the OUT
3663  * URB containing a Prism2.x XXX_Request was never called.
3664  *
3665  * Arguments:
3666  *	data		a ptr to the struct hfa384x
3667  *
3668  * Returns:
3669  *	nothing
3670  *
3671  * Side effects:
3672  *
3673  * Call context:
3674  *	interrupt
3675  *----------------------------------------------------------------
3676  */
3677 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t)
3678 {
3679 	struct hfa384x *hw = from_timer(hw, t, reqtimer);
3680 	unsigned long flags;
3681 
3682 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3683 
3684 	hw->req_timer_done = 1;
3685 
3686 	/* Removing the hardware automatically empties
3687 	 * the active list ...
3688 	 */
3689 	if (!list_empty(&hw->ctlxq.active)) {
3690 		/*
3691 		 * We must ensure that our URB is removed from
3692 		 * the system, if it hasn't already expired.
3693 		 */
3694 		hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3695 		if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3696 			struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3697 
3698 			ctlx->state = CTLX_REQ_FAILED;
3699 
3700 			/* This URB was active, but has now been
3701 			 * cancelled. It will now have a status of
3702 			 * -ECONNRESET in the callback function.
3703 			 *
3704 			 * We are cancelling this CTLX, so we're
3705 			 * not going to need to wait for a response.
3706 			 * The URB's callback function will check
3707 			 * that this timer is truly dead.
3708 			 */
3709 			if (del_timer(&hw->resptimer) != 0)
3710 				hw->resp_timer_done = 1;
3711 		}
3712 	}
3713 
3714 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3715 }
3716 
3717 /*----------------------------------------------------------------
3718  * hfa384x_usbctlx_resptimerfn
3719  *
3720  * Timer response function for CTLX response timeouts.  If this
3721  * function is called, it means that the callback for the IN
3722  * URB containing a Prism2.x XXX_Response was never called.
3723  *
3724  * Arguments:
3725  *	data		a ptr to the struct hfa384x
3726  *
3727  * Returns:
3728  *	nothing
3729  *
3730  * Side effects:
3731  *
3732  * Call context:
3733  *	interrupt
3734  *----------------------------------------------------------------
3735  */
3736 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t)
3737 {
3738 	struct hfa384x *hw = from_timer(hw, t, resptimer);
3739 	unsigned long flags;
3740 
3741 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3742 
3743 	hw->resp_timer_done = 1;
3744 
3745 	/* The active list will be empty if the
3746 	 * adapter has been unplugged ...
3747 	 */
3748 	if (!list_empty(&hw->ctlxq.active)) {
3749 		struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3750 
3751 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3752 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3753 			hfa384x_usbctlxq_run(hw);
3754 			return;
3755 		}
3756 	}
3757 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3758 }
3759 
3760 /*----------------------------------------------------------------
3761  * hfa384x_usb_throttlefn
3762  *
3763  *
3764  * Arguments:
3765  *	data	ptr to hw
3766  *
3767  * Returns:
3768  *	Nothing
3769  *
3770  * Side effects:
3771  *
3772  * Call context:
3773  *	Interrupt
3774  *----------------------------------------------------------------
3775  */
3776 static void hfa384x_usb_throttlefn(struct timer_list *t)
3777 {
3778 	struct hfa384x *hw = from_timer(hw, t, throttle);
3779 	unsigned long flags;
3780 
3781 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3782 
3783 	/*
3784 	 * We need to check BOTH the RX and the TX throttle controls,
3785 	 * so we use the bitwise OR instead of the logical OR.
3786 	 */
3787 	pr_debug("flags=0x%lx\n", hw->usb_flags);
3788 	if (!hw->wlandev->hwremoved &&
3789 	    ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3790 	      !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags)) |
3791 	     (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3792 	      !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
3793 	    )) {
3794 		schedule_work(&hw->usb_work);
3795 	}
3796 
3797 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3798 }
3799 
3800 /*----------------------------------------------------------------
3801  * hfa384x_usbctlx_submit
3802  *
3803  * Called from the doxxx functions to submit a CTLX to the queue
3804  *
3805  * Arguments:
3806  *	hw		ptr to the hw struct
3807  *	ctlx		ctlx structure to enqueue
3808  *
3809  * Returns:
3810  *	-ENODEV if the adapter is unplugged
3811  *	0
3812  *
3813  * Side effects:
3814  *
3815  * Call context:
3816  *	process or interrupt
3817  *----------------------------------------------------------------
3818  */
3819 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
3820 				  struct hfa384x_usbctlx *ctlx)
3821 {
3822 	unsigned long flags;
3823 
3824 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3825 
3826 	if (hw->wlandev->hwremoved) {
3827 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3828 		return -ENODEV;
3829 	}
3830 
3831 	ctlx->state = CTLX_PENDING;
3832 	list_add_tail(&ctlx->list, &hw->ctlxq.pending);
3833 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3834 	hfa384x_usbctlxq_run(hw);
3835 
3836 	return 0;
3837 }
3838 
3839 /*----------------------------------------------------------------
3840  * hfa384x_isgood_pdrcore
3841  *
3842  * Quick check of PDR codes.
3843  *
3844  * Arguments:
3845  *	pdrcode		PDR code number (host order)
3846  *
3847  * Returns:
3848  *	zero		not good.
3849  *	one		is good.
3850  *
3851  * Side effects:
3852  *
3853  * Call context:
3854  *----------------------------------------------------------------
3855  */
3856 static int hfa384x_isgood_pdrcode(u16 pdrcode)
3857 {
3858 	switch (pdrcode) {
3859 	case HFA384x_PDR_END_OF_PDA:
3860 	case HFA384x_PDR_PCB_PARTNUM:
3861 	case HFA384x_PDR_PDAVER:
3862 	case HFA384x_PDR_NIC_SERIAL:
3863 	case HFA384x_PDR_MKK_MEASUREMENTS:
3864 	case HFA384x_PDR_NIC_RAMSIZE:
3865 	case HFA384x_PDR_MFISUPRANGE:
3866 	case HFA384x_PDR_CFISUPRANGE:
3867 	case HFA384x_PDR_NICID:
3868 	case HFA384x_PDR_MAC_ADDRESS:
3869 	case HFA384x_PDR_REGDOMAIN:
3870 	case HFA384x_PDR_ALLOWED_CHANNEL:
3871 	case HFA384x_PDR_DEFAULT_CHANNEL:
3872 	case HFA384x_PDR_TEMPTYPE:
3873 	case HFA384x_PDR_IFR_SETTING:
3874 	case HFA384x_PDR_RFR_SETTING:
3875 	case HFA384x_PDR_HFA3861_BASELINE:
3876 	case HFA384x_PDR_HFA3861_SHADOW:
3877 	case HFA384x_PDR_HFA3861_IFRF:
3878 	case HFA384x_PDR_HFA3861_CHCALSP:
3879 	case HFA384x_PDR_HFA3861_CHCALI:
3880 	case HFA384x_PDR_3842_NIC_CONFIG:
3881 	case HFA384x_PDR_USB_ID:
3882 	case HFA384x_PDR_PCI_ID:
3883 	case HFA384x_PDR_PCI_IFCONF:
3884 	case HFA384x_PDR_PCI_PMCONF:
3885 	case HFA384x_PDR_RFENRGY:
3886 	case HFA384x_PDR_HFA3861_MANF_TESTSP:
3887 	case HFA384x_PDR_HFA3861_MANF_TESTI:
3888 		/* code is OK */
3889 		return 1;
3890 	default:
3891 		if (pdrcode < 0x1000) {
3892 			/* code is OK, but we don't know exactly what it is */
3893 			pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
3894 				 pdrcode);
3895 			return 1;
3896 		}
3897 		break;
3898 	}
3899 	/* bad code */
3900 	pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
3901 		 pdrcode);
3902 	return 0;
3903 }
3904