1 // SPDX-License-Identifier: (GPL-2.0 OR MPL-1.1)
2 /* src/prism2/driver/hfa384x_usb.c
3  *
4  * Functions that talk to the USB variant of the Intersil hfa384x MAC
5  *
6  * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
7  * --------------------------------------------------------------------
8  *
9  * linux-wlan
10  *
11  *   The contents of this file are subject to the Mozilla Public
12  *   License Version 1.1 (the "License"); you may not use this file
13  *   except in compliance with the License. You may obtain a copy of
14  *   the License at http://www.mozilla.org/MPL/
15  *
16  *   Software distributed under the License is distributed on an "AS
17  *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
18  *   implied. See the License for the specific language governing
19  *   rights and limitations under the License.
20  *
21  *   Alternatively, the contents of this file may be used under the
22  *   terms of the GNU Public License version 2 (the "GPL"), in which
23  *   case the provisions of the GPL are applicable instead of the
24  *   above.  If you wish to allow the use of your version of this file
25  *   only under the terms of the GPL and not to allow others to use
26  *   your version of this file under the MPL, indicate your decision
27  *   by deleting the provisions above and replace them with the notice
28  *   and other provisions required by the GPL.  If you do not delete
29  *   the provisions above, a recipient may use your version of this
30  *   file under either the MPL or the GPL.
31  *
32  * --------------------------------------------------------------------
33  *
34  * Inquiries regarding the linux-wlan Open Source project can be
35  * made directly to:
36  *
37  * AbsoluteValue Systems Inc.
38  * info@linux-wlan.com
39  * http://www.linux-wlan.com
40  *
41  * --------------------------------------------------------------------
42  *
43  * Portions of the development of this software were funded by
44  * Intersil Corporation as part of PRISM(R) chipset product development.
45  *
46  * --------------------------------------------------------------------
47  *
48  * This file implements functions that correspond to the prism2/hfa384x
49  * 802.11 MAC hardware and firmware host interface.
50  *
51  * The functions can be considered to represent several levels of
52  * abstraction.  The lowest level functions are simply C-callable wrappers
53  * around the register accesses.  The next higher level represents C-callable
54  * prism2 API functions that match the Intersil documentation as closely
55  * as is reasonable.  The next higher layer implements common sequences
56  * of invocations of the API layer (e.g. write to bap, followed by cmd).
57  *
58  * Common sequences:
59  * hfa384x_drvr_xxx	Highest level abstractions provided by the
60  *			hfa384x code.  They are driver defined wrappers
61  *			for common sequences.  These functions generally
62  *			use the services of the lower levels.
63  *
64  * hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
65  *			functions are wrappers for the RID get/set
66  *			sequence. They call copy_[to|from]_bap() and
67  *			cmd_access(). These functions operate on the
68  *			RIDs and buffers without validation. The caller
69  *			is responsible for that.
70  *
71  * API wrapper functions:
72  * hfa384x_cmd_xxx	functions that provide access to the f/w commands.
73  *			The function arguments correspond to each command
74  *			argument, even command arguments that get packed
75  *			into single registers.  These functions _just_
76  *			issue the command by setting the cmd/parm regs
77  *			& reading the status/resp regs.  Additional
78  *			activities required to fully use a command
79  *			(read/write from/to bap, get/set int status etc.)
80  *			are implemented separately.  Think of these as
81  *			C-callable prism2 commands.
82  *
83  * Lowest Layer Functions:
84  * hfa384x_docmd_xxx	These functions implement the sequence required
85  *			to issue any prism2 command.  Primarily used by the
86  *			hfa384x_cmd_xxx functions.
87  *
88  * hfa384x_bap_xxx	BAP read/write access functions.
89  *			Note: we usually use BAP0 for non-interrupt context
90  *			 and BAP1 for interrupt context.
91  *
92  * hfa384x_dl_xxx	download related functions.
93  *
94  * Driver State Issues:
95  * Note that there are two pairs of functions that manage the
96  * 'initialized' and 'running' states of the hw/MAC combo.  The four
97  * functions are create(), destroy(), start(), and stop().  create()
98  * sets up the data structures required to support the hfa384x_*
99  * functions and destroy() cleans them up.  The start() function gets
100  * the actual hardware running and enables the interrupts.  The stop()
101  * function shuts the hardware down.  The sequence should be:
102  * create()
103  * start()
104  *  .
105  *  .  Do interesting things w/ the hardware
106  *  .
107  * stop()
108  * destroy()
109  *
110  * Note that destroy() can be called without calling stop() first.
111  * --------------------------------------------------------------------
112  */
113 
114 #include <linux/module.h>
115 #include <linux/kernel.h>
116 #include <linux/sched.h>
117 #include <linux/types.h>
118 #include <linux/slab.h>
119 #include <linux/wireless.h>
120 #include <linux/netdevice.h>
121 #include <linux/timer.h>
122 #include <linux/io.h>
123 #include <linux/delay.h>
124 #include <asm/byteorder.h>
125 #include <linux/bitops.h>
126 #include <linux/list.h>
127 #include <linux/usb.h>
128 #include <linux/byteorder/generic.h>
129 
130 #include "p80211types.h"
131 #include "p80211hdr.h"
132 #include "p80211mgmt.h"
133 #include "p80211conv.h"
134 #include "p80211msg.h"
135 #include "p80211netdev.h"
136 #include "p80211req.h"
137 #include "p80211metadef.h"
138 #include "p80211metastruct.h"
139 #include "hfa384x.h"
140 #include "prism2mgmt.h"
141 
142 enum cmd_mode {
143 	DOWAIT = 0,
144 	DOASYNC
145 };
146 
147 #define THROTTLE_JIFFIES	(HZ / 8)
148 #define URB_ASYNC_UNLINK 0
149 #define USB_QUEUE_BULK 0
150 
151 #define ROUNDUP64(a) (((a) + 63) & ~63)
152 
153 #ifdef DEBUG_USB
154 static void dbprint_urb(struct urb *urb);
155 #endif
156 
157 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
158 				  struct hfa384x_usb_rxfrm *rxfrm);
159 
160 static void hfa384x_usb_defer(struct work_struct *data);
161 
162 static int submit_rx_urb(struct hfa384x *hw, gfp_t flags);
163 
164 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t flags);
165 
166 /*---------------------------------------------------*/
167 /* Callbacks */
168 static void hfa384x_usbout_callback(struct urb *urb);
169 static void hfa384x_ctlxout_callback(struct urb *urb);
170 static void hfa384x_usbin_callback(struct urb *urb);
171 
172 static void
173 hfa384x_usbin_txcompl(struct wlandevice *wlandev, union hfa384x_usbin *usbin);
174 
175 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb);
176 
177 static void hfa384x_usbin_info(struct wlandevice *wlandev,
178 			       union hfa384x_usbin *usbin);
179 
180 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
181 			       int urb_status);
182 
183 /*---------------------------------------------------*/
184 /* Functions to support the prism2 usb command queue */
185 
186 static void hfa384x_usbctlxq_run(struct hfa384x *hw);
187 
188 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t);
189 
190 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t);
191 
192 static void hfa384x_usb_throttlefn(struct timer_list *t);
193 
194 static void hfa384x_usbctlx_completion_task(unsigned long data);
195 
196 static void hfa384x_usbctlx_reaper_task(unsigned long data);
197 
198 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
199 				  struct hfa384x_usbctlx *ctlx);
200 
201 static void unlocked_usbctlx_complete(struct hfa384x *hw,
202 				      struct hfa384x_usbctlx *ctlx);
203 
204 struct usbctlx_completor {
205 	int (*complete)(struct usbctlx_completor *completor);
206 };
207 
208 static int
209 hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
210 			      struct hfa384x_usbctlx *ctlx,
211 			      struct usbctlx_completor *completor);
212 
213 static int
214 unlocked_usbctlx_cancel_async(struct hfa384x *hw, struct hfa384x_usbctlx *ctlx);
215 
216 static void hfa384x_cb_status(struct hfa384x *hw,
217 			      const struct hfa384x_usbctlx *ctlx);
218 
219 static int
220 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
221 		   struct hfa384x_cmdresult *result);
222 
223 static void
224 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
225 		       struct hfa384x_rridresult *result);
226 
227 /*---------------------------------------------------*/
228 /* Low level req/resp CTLX formatters and submitters */
229 static inline int
230 hfa384x_docmd(struct hfa384x *hw,
231 	      struct hfa384x_metacmd *cmd);
232 
233 static int
234 hfa384x_dorrid(struct hfa384x *hw,
235 	       enum cmd_mode mode,
236 	       u16 rid,
237 	       void *riddata,
238 	       unsigned int riddatalen,
239 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
240 
241 static int
242 hfa384x_dowrid(struct hfa384x *hw,
243 	       enum cmd_mode mode,
244 	       u16 rid,
245 	       void *riddata,
246 	       unsigned int riddatalen,
247 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
248 
249 static int
250 hfa384x_dormem(struct hfa384x *hw,
251 	       u16 page,
252 	       u16 offset,
253 	       void *data,
254 	       unsigned int len);
255 
256 static int
257 hfa384x_dowmem(struct hfa384x *hw,
258 	       u16 page,
259 	       u16 offset,
260 	       void *data,
261 	       unsigned int len);
262 
263 static int hfa384x_isgood_pdrcode(u16 pdrcode);
264 
265 static inline const char *ctlxstr(enum ctlx_state s)
266 {
267 	static const char * const ctlx_str[] = {
268 		"Initial state",
269 		"Complete",
270 		"Request failed",
271 		"Request pending",
272 		"Request packet submitted",
273 		"Request packet completed",
274 		"Response packet completed"
275 	};
276 
277 	return ctlx_str[s];
278 };
279 
280 static inline struct hfa384x_usbctlx *get_active_ctlx(struct hfa384x *hw)
281 {
282 	return list_entry(hw->ctlxq.active.next, struct hfa384x_usbctlx, list);
283 }
284 
285 #ifdef DEBUG_USB
286 void dbprint_urb(struct urb *urb)
287 {
288 	pr_debug("urb->pipe=0x%08x\n", urb->pipe);
289 	pr_debug("urb->status=0x%08x\n", urb->status);
290 	pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
291 	pr_debug("urb->transfer_buffer=0x%08x\n",
292 		 (unsigned int)urb->transfer_buffer);
293 	pr_debug("urb->transfer_buffer_length=0x%08x\n",
294 		 urb->transfer_buffer_length);
295 	pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
296 	pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
297 	pr_debug("urb->setup_packet(ctl)=0x%08x\n",
298 		 (unsigned int)urb->setup_packet);
299 	pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
300 	pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
301 	pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
302 	pr_debug("urb->timeout=0x%08x\n", urb->timeout);
303 	pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
304 	pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
305 }
306 #endif
307 
308 /*----------------------------------------------------------------
309  * submit_rx_urb
310  *
311  * Listen for input data on the BULK-IN pipe. If the pipe has
312  * stalled then schedule it to be reset.
313  *
314  * Arguments:
315  *	hw		device struct
316  *	memflags	memory allocation flags
317  *
318  * Returns:
319  *	error code from submission
320  *
321  * Call context:
322  *	Any
323  *----------------------------------------------------------------
324  */
325 static int submit_rx_urb(struct hfa384x *hw, gfp_t memflags)
326 {
327 	struct sk_buff *skb;
328 	int result;
329 
330 	skb = dev_alloc_skb(sizeof(union hfa384x_usbin));
331 	if (!skb) {
332 		result = -ENOMEM;
333 		goto done;
334 	}
335 
336 	/* Post the IN urb */
337 	usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
338 			  hw->endp_in,
339 			  skb->data, sizeof(union hfa384x_usbin),
340 			  hfa384x_usbin_callback, hw->wlandev);
341 
342 	hw->rx_urb_skb = skb;
343 
344 	result = -ENOLINK;
345 	if (!hw->wlandev->hwremoved &&
346 	    !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
347 		result = usb_submit_urb(&hw->rx_urb, memflags);
348 
349 		/* Check whether we need to reset the RX pipe */
350 		if (result == -EPIPE) {
351 			netdev_warn(hw->wlandev->netdev,
352 				    "%s rx pipe stalled: requesting reset\n",
353 				    hw->wlandev->netdev->name);
354 			if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
355 				schedule_work(&hw->usb_work);
356 		}
357 	}
358 
359 	/* Don't leak memory if anything should go wrong */
360 	if (result != 0) {
361 		dev_kfree_skb(skb);
362 		hw->rx_urb_skb = NULL;
363 	}
364 
365 done:
366 	return result;
367 }
368 
369 /*----------------------------------------------------------------
370  * submit_tx_urb
371  *
372  * Prepares and submits the URB of transmitted data. If the
373  * submission fails then it will schedule the output pipe to
374  * be reset.
375  *
376  * Arguments:
377  *	hw		device struct
378  *	tx_urb		URB of data for transmission
379  *	memflags	memory allocation flags
380  *
381  * Returns:
382  *	error code from submission
383  *
384  * Call context:
385  *	Any
386  *----------------------------------------------------------------
387  */
388 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t memflags)
389 {
390 	struct net_device *netdev = hw->wlandev->netdev;
391 	int result;
392 
393 	result = -ENOLINK;
394 	if (netif_running(netdev)) {
395 		if (!hw->wlandev->hwremoved &&
396 		    !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
397 			result = usb_submit_urb(tx_urb, memflags);
398 
399 			/* Test whether we need to reset the TX pipe */
400 			if (result == -EPIPE) {
401 				netdev_warn(hw->wlandev->netdev,
402 					    "%s tx pipe stalled: requesting reset\n",
403 					    netdev->name);
404 				set_bit(WORK_TX_HALT, &hw->usb_flags);
405 				schedule_work(&hw->usb_work);
406 			} else if (result == 0) {
407 				netif_stop_queue(netdev);
408 			}
409 		}
410 	}
411 
412 	return result;
413 }
414 
415 /*----------------------------------------------------------------
416  * hfa394x_usb_defer
417  *
418  * There are some things that the USB stack cannot do while
419  * in interrupt context, so we arrange this function to run
420  * in process context.
421  *
422  * Arguments:
423  *	hw	device structure
424  *
425  * Returns:
426  *	nothing
427  *
428  * Call context:
429  *	process (by design)
430  *----------------------------------------------------------------
431  */
432 static void hfa384x_usb_defer(struct work_struct *data)
433 {
434 	struct hfa384x *hw = container_of(data, struct hfa384x, usb_work);
435 	struct net_device *netdev = hw->wlandev->netdev;
436 
437 	/* Don't bother trying to reset anything if the plug
438 	 * has been pulled ...
439 	 */
440 	if (hw->wlandev->hwremoved)
441 		return;
442 
443 	/* Reception has stopped: try to reset the input pipe */
444 	if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
445 		int ret;
446 
447 		usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
448 
449 		ret = usb_clear_halt(hw->usb, hw->endp_in);
450 		if (ret != 0) {
451 			netdev_err(hw->wlandev->netdev,
452 				   "Failed to clear rx pipe for %s: err=%d\n",
453 				   netdev->name, ret);
454 		} else {
455 			netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
456 				    netdev->name);
457 			clear_bit(WORK_RX_HALT, &hw->usb_flags);
458 			set_bit(WORK_RX_RESUME, &hw->usb_flags);
459 		}
460 	}
461 
462 	/* Resume receiving data back from the device. */
463 	if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
464 		int ret;
465 
466 		ret = submit_rx_urb(hw, GFP_KERNEL);
467 		if (ret != 0) {
468 			netdev_err(hw->wlandev->netdev,
469 				   "Failed to resume %s rx pipe.\n",
470 				   netdev->name);
471 		} else {
472 			clear_bit(WORK_RX_RESUME, &hw->usb_flags);
473 		}
474 	}
475 
476 	/* Transmission has stopped: try to reset the output pipe */
477 	if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
478 		int ret;
479 
480 		usb_kill_urb(&hw->tx_urb);
481 		ret = usb_clear_halt(hw->usb, hw->endp_out);
482 		if (ret != 0) {
483 			netdev_err(hw->wlandev->netdev,
484 				   "Failed to clear tx pipe for %s: err=%d\n",
485 				   netdev->name, ret);
486 		} else {
487 			netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
488 				    netdev->name);
489 			clear_bit(WORK_TX_HALT, &hw->usb_flags);
490 			set_bit(WORK_TX_RESUME, &hw->usb_flags);
491 
492 			/* Stopping the BULK-OUT pipe also blocked
493 			 * us from sending any more CTLX URBs, so
494 			 * we need to re-run our queue ...
495 			 */
496 			hfa384x_usbctlxq_run(hw);
497 		}
498 	}
499 
500 	/* Resume transmitting. */
501 	if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
502 		netif_wake_queue(hw->wlandev->netdev);
503 }
504 
505 /*----------------------------------------------------------------
506  * hfa384x_create
507  *
508  * Sets up the struct hfa384x data structure for use.  Note this
509  * does _not_ initialize the actual hardware, just the data structures
510  * we use to keep track of its state.
511  *
512  * Arguments:
513  *	hw		device structure
514  *	irq		device irq number
515  *	iobase		i/o base address for register access
516  *	membase		memory base address for register access
517  *
518  * Returns:
519  *	nothing
520  *
521  * Side effects:
522  *
523  * Call context:
524  *	process
525  *----------------------------------------------------------------
526  */
527 void hfa384x_create(struct hfa384x *hw, struct usb_device *usb)
528 {
529 	memset(hw, 0, sizeof(*hw));
530 	hw->usb = usb;
531 
532 	/* set up the endpoints */
533 	hw->endp_in = usb_rcvbulkpipe(usb, 1);
534 	hw->endp_out = usb_sndbulkpipe(usb, 2);
535 
536 	/* Set up the waitq */
537 	init_waitqueue_head(&hw->cmdq);
538 
539 	/* Initialize the command queue */
540 	spin_lock_init(&hw->ctlxq.lock);
541 	INIT_LIST_HEAD(&hw->ctlxq.pending);
542 	INIT_LIST_HEAD(&hw->ctlxq.active);
543 	INIT_LIST_HEAD(&hw->ctlxq.completing);
544 	INIT_LIST_HEAD(&hw->ctlxq.reapable);
545 
546 	/* Initialize the authentication queue */
547 	skb_queue_head_init(&hw->authq);
548 
549 	tasklet_init(&hw->reaper_bh,
550 		     hfa384x_usbctlx_reaper_task, (unsigned long)hw);
551 	tasklet_init(&hw->completion_bh,
552 		     hfa384x_usbctlx_completion_task, (unsigned long)hw);
553 	INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
554 	INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
555 
556 	timer_setup(&hw->throttle, hfa384x_usb_throttlefn, 0);
557 
558 	timer_setup(&hw->resptimer, hfa384x_usbctlx_resptimerfn, 0);
559 
560 	timer_setup(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn, 0);
561 
562 	usb_init_urb(&hw->rx_urb);
563 	usb_init_urb(&hw->tx_urb);
564 	usb_init_urb(&hw->ctlx_urb);
565 
566 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
567 	hw->state = HFA384x_STATE_INIT;
568 
569 	INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
570 	timer_setup(&hw->commsqual_timer, prism2sta_commsqual_timer, 0);
571 }
572 
573 /*----------------------------------------------------------------
574  * hfa384x_destroy
575  *
576  * Partner to hfa384x_create().  This function cleans up the hw
577  * structure so that it can be freed by the caller using a simple
578  * kfree.  Currently, this function is just a placeholder.  If, at some
579  * point in the future, an hw in the 'shutdown' state requires a 'deep'
580  * kfree, this is where it should be done.  Note that if this function
581  * is called on a _running_ hw structure, the drvr_stop() function is
582  * called.
583  *
584  * Arguments:
585  *	hw		device structure
586  *
587  * Returns:
588  *	nothing, this function is not allowed to fail.
589  *
590  * Side effects:
591  *
592  * Call context:
593  *	process
594  *----------------------------------------------------------------
595  */
596 void hfa384x_destroy(struct hfa384x *hw)
597 {
598 	struct sk_buff *skb;
599 
600 	if (hw->state == HFA384x_STATE_RUNNING)
601 		hfa384x_drvr_stop(hw);
602 	hw->state = HFA384x_STATE_PREINIT;
603 
604 	kfree(hw->scanresults);
605 	hw->scanresults = NULL;
606 
607 	/* Now to clean out the auth queue */
608 	while ((skb = skb_dequeue(&hw->authq)))
609 		dev_kfree_skb(skb);
610 }
611 
612 static struct hfa384x_usbctlx *usbctlx_alloc(void)
613 {
614 	struct hfa384x_usbctlx *ctlx;
615 
616 	ctlx = kzalloc(sizeof(*ctlx),
617 		       in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
618 	if (ctlx)
619 		init_completion(&ctlx->done);
620 
621 	return ctlx;
622 }
623 
624 static int
625 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
626 		   struct hfa384x_cmdresult *result)
627 {
628 	result->status = le16_to_cpu(cmdresp->status);
629 	result->resp0 = le16_to_cpu(cmdresp->resp0);
630 	result->resp1 = le16_to_cpu(cmdresp->resp1);
631 	result->resp2 = le16_to_cpu(cmdresp->resp2);
632 
633 	pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
634 		 result->status, result->resp0, result->resp1, result->resp2);
635 
636 	return result->status & HFA384x_STATUS_RESULT;
637 }
638 
639 static void
640 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
641 		       struct hfa384x_rridresult *result)
642 {
643 	result->rid = le16_to_cpu(rridresp->rid);
644 	result->riddata = rridresp->data;
645 	result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
646 }
647 
648 /*----------------------------------------------------------------
649  * Completor object:
650  * This completor must be passed to hfa384x_usbctlx_complete_sync()
651  * when processing a CTLX that returns a struct hfa384x_cmdresult structure.
652  *----------------------------------------------------------------
653  */
654 struct usbctlx_cmd_completor {
655 	struct usbctlx_completor head;
656 
657 	const struct hfa384x_usb_statusresp *cmdresp;
658 	struct hfa384x_cmdresult *result;
659 };
660 
661 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
662 {
663 	struct usbctlx_cmd_completor *complete;
664 
665 	complete = (struct usbctlx_cmd_completor *)head;
666 	return usbctlx_get_status(complete->cmdresp, complete->result);
667 }
668 
669 static inline struct usbctlx_completor *
670 init_cmd_completor(struct usbctlx_cmd_completor *completor,
671 		   const struct hfa384x_usb_statusresp *cmdresp,
672 		   struct hfa384x_cmdresult *result)
673 {
674 	completor->head.complete = usbctlx_cmd_completor_fn;
675 	completor->cmdresp = cmdresp;
676 	completor->result = result;
677 	return &completor->head;
678 }
679 
680 /*----------------------------------------------------------------
681  * Completor object:
682  * This completor must be passed to hfa384x_usbctlx_complete_sync()
683  * when processing a CTLX that reads a RID.
684  *----------------------------------------------------------------
685  */
686 struct usbctlx_rrid_completor {
687 	struct usbctlx_completor head;
688 
689 	const struct hfa384x_usb_rridresp *rridresp;
690 	void *riddata;
691 	unsigned int riddatalen;
692 };
693 
694 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
695 {
696 	struct usbctlx_rrid_completor *complete;
697 	struct hfa384x_rridresult rridresult;
698 
699 	complete = (struct usbctlx_rrid_completor *)head;
700 	usbctlx_get_rridresult(complete->rridresp, &rridresult);
701 
702 	/* Validate the length, note body len calculation in bytes */
703 	if (rridresult.riddata_len != complete->riddatalen) {
704 		pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
705 			rridresult.rid,
706 			complete->riddatalen, rridresult.riddata_len);
707 		return -ENODATA;
708 	}
709 
710 	memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
711 	return 0;
712 }
713 
714 static inline struct usbctlx_completor *
715 init_rrid_completor(struct usbctlx_rrid_completor *completor,
716 		    const struct hfa384x_usb_rridresp *rridresp,
717 		    void *riddata,
718 		    unsigned int riddatalen)
719 {
720 	completor->head.complete = usbctlx_rrid_completor_fn;
721 	completor->rridresp = rridresp;
722 	completor->riddata = riddata;
723 	completor->riddatalen = riddatalen;
724 	return &completor->head;
725 }
726 
727 /*----------------------------------------------------------------
728  * Completor object:
729  * Interprets the results of a synchronous RID-write
730  *----------------------------------------------------------------
731  */
732 #define init_wrid_completor  init_cmd_completor
733 
734 /*----------------------------------------------------------------
735  * Completor object:
736  * Interprets the results of a synchronous memory-write
737  *----------------------------------------------------------------
738  */
739 #define init_wmem_completor  init_cmd_completor
740 
741 /*----------------------------------------------------------------
742  * Completor object:
743  * Interprets the results of a synchronous memory-read
744  *----------------------------------------------------------------
745  */
746 struct usbctlx_rmem_completor {
747 	struct usbctlx_completor head;
748 
749 	const struct hfa384x_usb_rmemresp *rmemresp;
750 	void *data;
751 	unsigned int len;
752 };
753 
754 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
755 {
756 	struct usbctlx_rmem_completor *complete =
757 		(struct usbctlx_rmem_completor *)head;
758 
759 	pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
760 	memcpy(complete->data, complete->rmemresp->data, complete->len);
761 	return 0;
762 }
763 
764 static inline struct usbctlx_completor *
765 init_rmem_completor(struct usbctlx_rmem_completor *completor,
766 		    struct hfa384x_usb_rmemresp *rmemresp,
767 		    void *data,
768 		    unsigned int len)
769 {
770 	completor->head.complete = usbctlx_rmem_completor_fn;
771 	completor->rmemresp = rmemresp;
772 	completor->data = data;
773 	completor->len = len;
774 	return &completor->head;
775 }
776 
777 /*----------------------------------------------------------------
778  * hfa384x_cb_status
779  *
780  * Ctlx_complete handler for async CMD type control exchanges.
781  * mark the hw struct as such.
782  *
783  * Note: If the handling is changed here, it should probably be
784  *       changed in docmd as well.
785  *
786  * Arguments:
787  *	hw		hw struct
788  *	ctlx		completed CTLX
789  *
790  * Returns:
791  *	nothing
792  *
793  * Side effects:
794  *
795  * Call context:
796  *	interrupt
797  *----------------------------------------------------------------
798  */
799 static void hfa384x_cb_status(struct hfa384x *hw,
800 			      const struct hfa384x_usbctlx *ctlx)
801 {
802 	if (ctlx->usercb) {
803 		struct hfa384x_cmdresult cmdresult;
804 
805 		if (ctlx->state != CTLX_COMPLETE) {
806 			memset(&cmdresult, 0, sizeof(cmdresult));
807 			cmdresult.status =
808 			    HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
809 		} else {
810 			usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
811 		}
812 
813 		ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
814 	}
815 }
816 
817 /*----------------------------------------------------------------
818  * hfa384x_cmd_initialize
819  *
820  * Issues the initialize command and sets the hw->state based
821  * on the result.
822  *
823  * Arguments:
824  *	hw		device structure
825  *
826  * Returns:
827  *	0		success
828  *	>0		f/w reported error - f/w status code
829  *	<0		driver reported error
830  *
831  * Side effects:
832  *
833  * Call context:
834  *	process
835  *----------------------------------------------------------------
836  */
837 int hfa384x_cmd_initialize(struct hfa384x *hw)
838 {
839 	int result = 0;
840 	int i;
841 	struct hfa384x_metacmd cmd;
842 
843 	cmd.cmd = HFA384x_CMDCODE_INIT;
844 	cmd.parm0 = 0;
845 	cmd.parm1 = 0;
846 	cmd.parm2 = 0;
847 
848 	result = hfa384x_docmd(hw, &cmd);
849 
850 	pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
851 		 cmd.result.status,
852 		 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
853 	if (result == 0) {
854 		for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
855 			hw->port_enabled[i] = 0;
856 	}
857 
858 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
859 
860 	return result;
861 }
862 
863 /*----------------------------------------------------------------
864  * hfa384x_cmd_disable
865  *
866  * Issues the disable command to stop communications on one of
867  * the MACs 'ports'.
868  *
869  * Arguments:
870  *	hw		device structure
871  *	macport		MAC port number (host order)
872  *
873  * Returns:
874  *	0		success
875  *	>0		f/w reported failure - f/w status code
876  *	<0		driver reported error (timeout|bad arg)
877  *
878  * Side effects:
879  *
880  * Call context:
881  *	process
882  *----------------------------------------------------------------
883  */
884 int hfa384x_cmd_disable(struct hfa384x *hw, u16 macport)
885 {
886 	struct hfa384x_metacmd cmd;
887 
888 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
889 	    HFA384x_CMD_MACPORT_SET(macport);
890 	cmd.parm0 = 0;
891 	cmd.parm1 = 0;
892 	cmd.parm2 = 0;
893 
894 	return hfa384x_docmd(hw, &cmd);
895 }
896 
897 /*----------------------------------------------------------------
898  * hfa384x_cmd_enable
899  *
900  * Issues the enable command to enable communications on one of
901  * the MACs 'ports'.
902  *
903  * Arguments:
904  *	hw		device structure
905  *	macport		MAC port number
906  *
907  * Returns:
908  *	0		success
909  *	>0		f/w reported failure - f/w status code
910  *	<0		driver reported error (timeout|bad arg)
911  *
912  * Side effects:
913  *
914  * Call context:
915  *	process
916  *----------------------------------------------------------------
917  */
918 int hfa384x_cmd_enable(struct hfa384x *hw, u16 macport)
919 {
920 	struct hfa384x_metacmd cmd;
921 
922 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
923 	    HFA384x_CMD_MACPORT_SET(macport);
924 	cmd.parm0 = 0;
925 	cmd.parm1 = 0;
926 	cmd.parm2 = 0;
927 
928 	return hfa384x_docmd(hw, &cmd);
929 }
930 
931 /*----------------------------------------------------------------
932  * hfa384x_cmd_monitor
933  *
934  * Enables the 'monitor mode' of the MAC.  Here's the description of
935  * monitor mode that I've received thus far:
936  *
937  *  "The "monitor mode" of operation is that the MAC passes all
938  *  frames for which the PLCP checks are correct. All received
939  *  MPDUs are passed to the host with MAC Port = 7, with a
940  *  receive status of good, FCS error, or undecryptable. Passing
941  *  certain MPDUs is a violation of the 802.11 standard, but useful
942  *  for a debugging tool."  Normal communication is not possible
943  *  while monitor mode is enabled.
944  *
945  * Arguments:
946  *	hw		device structure
947  *	enable		a code (0x0b|0x0f) that enables/disables
948  *			monitor mode. (host order)
949  *
950  * Returns:
951  *	0		success
952  *	>0		f/w reported failure - f/w status code
953  *	<0		driver reported error (timeout|bad arg)
954  *
955  * Side effects:
956  *
957  * Call context:
958  *	process
959  *----------------------------------------------------------------
960  */
961 int hfa384x_cmd_monitor(struct hfa384x *hw, u16 enable)
962 {
963 	struct hfa384x_metacmd cmd;
964 
965 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
966 	    HFA384x_CMD_AINFO_SET(enable);
967 	cmd.parm0 = 0;
968 	cmd.parm1 = 0;
969 	cmd.parm2 = 0;
970 
971 	return hfa384x_docmd(hw, &cmd);
972 }
973 
974 /*----------------------------------------------------------------
975  * hfa384x_cmd_download
976  *
977  * Sets the controls for the MAC controller code/data download
978  * process.  The arguments set the mode and address associated
979  * with a download.  Note that the aux registers should be enabled
980  * prior to setting one of the download enable modes.
981  *
982  * Arguments:
983  *	hw		device structure
984  *	mode		0 - Disable programming and begin code exec
985  *			1 - Enable volatile mem programming
986  *			2 - Enable non-volatile mem programming
987  *			3 - Program non-volatile section from NV download
988  *			    buffer.
989  *			(host order)
990  *	lowaddr
991  *	highaddr	For mode 1, sets the high & low order bits of
992  *			the "destination address".  This address will be
993  *			the execution start address when download is
994  *			subsequently disabled.
995  *			For mode 2, sets the high & low order bits of
996  *			the destination in NV ram.
997  *			For modes 0 & 3, should be zero. (host order)
998  *			NOTE: these are CMD format.
999  *	codelen		Length of the data to write in mode 2,
1000  *			zero otherwise. (host order)
1001  *
1002  * Returns:
1003  *	0		success
1004  *	>0		f/w reported failure - f/w status code
1005  *	<0		driver reported error (timeout|bad arg)
1006  *
1007  * Side effects:
1008  *
1009  * Call context:
1010  *	process
1011  *----------------------------------------------------------------
1012  */
1013 int hfa384x_cmd_download(struct hfa384x *hw, u16 mode, u16 lowaddr,
1014 			 u16 highaddr, u16 codelen)
1015 {
1016 	struct hfa384x_metacmd cmd;
1017 
1018 	pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1019 		 mode, lowaddr, highaddr, codelen);
1020 
1021 	cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1022 		   HFA384x_CMD_PROGMODE_SET(mode));
1023 
1024 	cmd.parm0 = lowaddr;
1025 	cmd.parm1 = highaddr;
1026 	cmd.parm2 = codelen;
1027 
1028 	return hfa384x_docmd(hw, &cmd);
1029 }
1030 
1031 /*----------------------------------------------------------------
1032  * hfa384x_corereset
1033  *
1034  * Perform a reset of the hfa38xx MAC core.  We assume that the hw
1035  * structure is in its "created" state.  That is, it is initialized
1036  * with proper values.  Note that if a reset is done after the
1037  * device has been active for awhile, the caller might have to clean
1038  * up some leftover cruft in the hw structure.
1039  *
1040  * Arguments:
1041  *	hw		device structure
1042  *	holdtime	how long (in ms) to hold the reset
1043  *	settletime	how long (in ms) to wait after releasing
1044  *			the reset
1045  *
1046  * Returns:
1047  *	nothing
1048  *
1049  * Side effects:
1050  *
1051  * Call context:
1052  *	process
1053  *----------------------------------------------------------------
1054  */
1055 int hfa384x_corereset(struct hfa384x *hw, int holdtime,
1056 		      int settletime, int genesis)
1057 {
1058 	int result;
1059 
1060 	result = usb_reset_device(hw->usb);
1061 	if (result < 0) {
1062 		netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1063 			   result);
1064 	}
1065 
1066 	return result;
1067 }
1068 
1069 /*----------------------------------------------------------------
1070  * hfa384x_usbctlx_complete_sync
1071  *
1072  * Waits for a synchronous CTLX object to complete,
1073  * and then handles the response.
1074  *
1075  * Arguments:
1076  *	hw		device structure
1077  *	ctlx		CTLX ptr
1078  *	completor	functor object to decide what to
1079  *			do with the CTLX's result.
1080  *
1081  * Returns:
1082  *	0		Success
1083  *	-ERESTARTSYS	Interrupted by a signal
1084  *	-EIO		CTLX failed
1085  *	-ENODEV		Adapter was unplugged
1086  *	???		Result from completor
1087  *
1088  * Side effects:
1089  *
1090  * Call context:
1091  *	process
1092  *----------------------------------------------------------------
1093  */
1094 static int hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
1095 					 struct hfa384x_usbctlx *ctlx,
1096 					 struct usbctlx_completor *completor)
1097 {
1098 	unsigned long flags;
1099 	int result;
1100 
1101 	result = wait_for_completion_interruptible(&ctlx->done);
1102 
1103 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
1104 
1105 	/*
1106 	 * We can only handle the CTLX if the USB disconnect
1107 	 * function has not run yet ...
1108 	 */
1109 cleanup:
1110 	if (hw->wlandev->hwremoved) {
1111 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1112 		result = -ENODEV;
1113 	} else if (result != 0) {
1114 		int runqueue = 0;
1115 
1116 		/*
1117 		 * We were probably interrupted, so delete
1118 		 * this CTLX asynchronously, kill the timers
1119 		 * and the URB, and then start the next
1120 		 * pending CTLX.
1121 		 *
1122 		 * NOTE: We can only delete the timers and
1123 		 *       the URB if this CTLX is active.
1124 		 */
1125 		if (ctlx == get_active_ctlx(hw)) {
1126 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1127 
1128 			del_singleshot_timer_sync(&hw->reqtimer);
1129 			del_singleshot_timer_sync(&hw->resptimer);
1130 			hw->req_timer_done = 1;
1131 			hw->resp_timer_done = 1;
1132 			usb_kill_urb(&hw->ctlx_urb);
1133 
1134 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
1135 
1136 			runqueue = 1;
1137 
1138 			/*
1139 			 * This scenario is so unlikely that I'm
1140 			 * happy with a grubby "goto" solution ...
1141 			 */
1142 			if (hw->wlandev->hwremoved)
1143 				goto cleanup;
1144 		}
1145 
1146 		/*
1147 		 * The completion task will send this CTLX
1148 		 * to the reaper the next time it runs. We
1149 		 * are no longer in a hurry.
1150 		 */
1151 		ctlx->reapable = 1;
1152 		ctlx->state = CTLX_REQ_FAILED;
1153 		list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1154 
1155 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1156 
1157 		if (runqueue)
1158 			hfa384x_usbctlxq_run(hw);
1159 	} else {
1160 		if (ctlx->state == CTLX_COMPLETE) {
1161 			result = completor->complete(completor);
1162 		} else {
1163 			netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1164 				    le16_to_cpu(ctlx->outbuf.type),
1165 				    ctlxstr(ctlx->state));
1166 			result = -EIO;
1167 		}
1168 
1169 		list_del(&ctlx->list);
1170 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1171 		kfree(ctlx);
1172 	}
1173 
1174 	return result;
1175 }
1176 
1177 /*----------------------------------------------------------------
1178  * hfa384x_docmd
1179  *
1180  * Constructs a command CTLX and submits it.
1181  *
1182  * NOTE: Any changes to the 'post-submit' code in this function
1183  *       need to be carried over to hfa384x_cbcmd() since the handling
1184  *       is virtually identical.
1185  *
1186  * Arguments:
1187  *	hw		device structure
1188  *       cmd             cmd structure.  Includes all arguments and result
1189  *                       data points.  All in host order. in host order
1190  *
1191  * Returns:
1192  *	0		success
1193  *	-EIO		CTLX failure
1194  *	-ERESTARTSYS	Awakened on signal
1195  *	>0		command indicated error, Status and Resp0-2 are
1196  *			in hw structure.
1197  *
1198  * Side effects:
1199  *
1200  *
1201  * Call context:
1202  *	process
1203  *----------------------------------------------------------------
1204  */
1205 static inline int
1206 hfa384x_docmd(struct hfa384x *hw,
1207 	      struct hfa384x_metacmd *cmd)
1208 {
1209 	int result;
1210 	struct hfa384x_usbctlx *ctlx;
1211 
1212 	ctlx = usbctlx_alloc();
1213 	if (!ctlx) {
1214 		result = -ENOMEM;
1215 		goto done;
1216 	}
1217 
1218 	/* Initialize the command */
1219 	ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1220 	ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1221 	ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1222 	ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1223 	ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1224 
1225 	ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1226 
1227 	pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1228 		 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1229 
1230 	ctlx->reapable = DOWAIT;
1231 	ctlx->cmdcb = NULL;
1232 	ctlx->usercb = NULL;
1233 	ctlx->usercb_data = NULL;
1234 
1235 	result = hfa384x_usbctlx_submit(hw, ctlx);
1236 	if (result != 0) {
1237 		kfree(ctlx);
1238 	} else {
1239 		struct usbctlx_cmd_completor cmd_completor;
1240 		struct usbctlx_completor *completor;
1241 
1242 		completor = init_cmd_completor(&cmd_completor,
1243 					       &ctlx->inbuf.cmdresp,
1244 					       &cmd->result);
1245 
1246 		result = hfa384x_usbctlx_complete_sync(hw, ctlx, completor);
1247 	}
1248 
1249 done:
1250 	return result;
1251 }
1252 
1253 /*----------------------------------------------------------------
1254  * hfa384x_dorrid
1255  *
1256  * Constructs a read rid CTLX and issues it.
1257  *
1258  * NOTE: Any changes to the 'post-submit' code in this function
1259  *       need to be carried over to hfa384x_cbrrid() since the handling
1260  *       is virtually identical.
1261  *
1262  * Arguments:
1263  *	hw		device structure
1264  *	mode		DOWAIT or DOASYNC
1265  *	rid		Read RID number (host order)
1266  *	riddata		Caller supplied buffer that MAC formatted RID.data
1267  *			record will be written to for DOWAIT calls. Should
1268  *			be NULL for DOASYNC calls.
1269  *	riddatalen	Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1270  *	cmdcb		command callback for async calls, NULL for DOWAIT calls
1271  *	usercb		user callback for async calls, NULL for DOWAIT calls
1272  *	usercb_data	user supplied data pointer for async calls, NULL
1273  *			for DOWAIT calls
1274  *
1275  * Returns:
1276  *	0		success
1277  *	-EIO		CTLX failure
1278  *	-ERESTARTSYS	Awakened on signal
1279  *	-ENODATA	riddatalen != macdatalen
1280  *	>0		command indicated error, Status and Resp0-2 are
1281  *			in hw structure.
1282  *
1283  * Side effects:
1284  *
1285  * Call context:
1286  *	interrupt (DOASYNC)
1287  *	process (DOWAIT or DOASYNC)
1288  *----------------------------------------------------------------
1289  */
1290 static int
1291 hfa384x_dorrid(struct hfa384x *hw,
1292 	       enum cmd_mode mode,
1293 	       u16 rid,
1294 	       void *riddata,
1295 	       unsigned int riddatalen,
1296 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1297 {
1298 	int result;
1299 	struct hfa384x_usbctlx *ctlx;
1300 
1301 	ctlx = usbctlx_alloc();
1302 	if (!ctlx) {
1303 		result = -ENOMEM;
1304 		goto done;
1305 	}
1306 
1307 	/* Initialize the command */
1308 	ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1309 	ctlx->outbuf.rridreq.frmlen =
1310 	    cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1311 	ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1312 
1313 	ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1314 
1315 	ctlx->reapable = mode;
1316 	ctlx->cmdcb = cmdcb;
1317 	ctlx->usercb = usercb;
1318 	ctlx->usercb_data = usercb_data;
1319 
1320 	/* Submit the CTLX */
1321 	result = hfa384x_usbctlx_submit(hw, ctlx);
1322 	if (result != 0) {
1323 		kfree(ctlx);
1324 	} else if (mode == DOWAIT) {
1325 		struct usbctlx_rrid_completor completor;
1326 
1327 		result =
1328 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1329 						  init_rrid_completor
1330 						  (&completor,
1331 						   &ctlx->inbuf.rridresp,
1332 						   riddata, riddatalen));
1333 	}
1334 
1335 done:
1336 	return result;
1337 }
1338 
1339 /*----------------------------------------------------------------
1340  * hfa384x_dowrid
1341  *
1342  * Constructs a write rid CTLX and issues it.
1343  *
1344  * NOTE: Any changes to the 'post-submit' code in this function
1345  *       need to be carried over to hfa384x_cbwrid() since the handling
1346  *       is virtually identical.
1347  *
1348  * Arguments:
1349  *	hw		device structure
1350  *	enum cmd_mode	DOWAIT or DOASYNC
1351  *	rid		RID code
1352  *	riddata		Data portion of RID formatted for MAC
1353  *	riddatalen	Length of the data portion in bytes
1354  *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1355  *	usercb		user callback for async calls, NULL for DOWAIT calls
1356  *	usercb_data	user supplied data pointer for async calls
1357  *
1358  * Returns:
1359  *	0		success
1360  *	-ETIMEDOUT	timed out waiting for register ready or
1361  *			command completion
1362  *	>0		command indicated error, Status and Resp0-2 are
1363  *			in hw structure.
1364  *
1365  * Side effects:
1366  *
1367  * Call context:
1368  *	interrupt (DOASYNC)
1369  *	process (DOWAIT or DOASYNC)
1370  *----------------------------------------------------------------
1371  */
1372 static int
1373 hfa384x_dowrid(struct hfa384x *hw,
1374 	       enum cmd_mode mode,
1375 	       u16 rid,
1376 	       void *riddata,
1377 	       unsigned int riddatalen,
1378 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1379 {
1380 	int result;
1381 	struct hfa384x_usbctlx *ctlx;
1382 
1383 	ctlx = usbctlx_alloc();
1384 	if (!ctlx) {
1385 		result = -ENOMEM;
1386 		goto done;
1387 	}
1388 
1389 	/* Initialize the command */
1390 	ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1391 	ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1392 						   (ctlx->outbuf.wridreq.rid) +
1393 						   riddatalen + 1) / 2);
1394 	ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1395 	memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1396 
1397 	ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1398 	    sizeof(ctlx->outbuf.wridreq.frmlen) +
1399 	    sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1400 
1401 	ctlx->reapable = mode;
1402 	ctlx->cmdcb = cmdcb;
1403 	ctlx->usercb = usercb;
1404 	ctlx->usercb_data = usercb_data;
1405 
1406 	/* Submit the CTLX */
1407 	result = hfa384x_usbctlx_submit(hw, ctlx);
1408 	if (result != 0) {
1409 		kfree(ctlx);
1410 	} else if (mode == DOWAIT) {
1411 		struct usbctlx_cmd_completor completor;
1412 		struct hfa384x_cmdresult wridresult;
1413 
1414 		result = hfa384x_usbctlx_complete_sync(hw,
1415 						       ctlx,
1416 						       init_wrid_completor
1417 						       (&completor,
1418 							&ctlx->inbuf.wridresp,
1419 							&wridresult));
1420 	}
1421 
1422 done:
1423 	return result;
1424 }
1425 
1426 /*----------------------------------------------------------------
1427  * hfa384x_dormem
1428  *
1429  * Constructs a readmem CTLX and issues it.
1430  *
1431  * NOTE: Any changes to the 'post-submit' code in this function
1432  *       need to be carried over to hfa384x_cbrmem() since the handling
1433  *       is virtually identical.
1434  *
1435  * Arguments:
1436  *	hw		device structure
1437  *	page		MAC address space page (CMD format)
1438  *	offset		MAC address space offset
1439  *	data		Ptr to data buffer to receive read
1440  *	len		Length of the data to read (max == 2048)
1441  *
1442  * Returns:
1443  *	0		success
1444  *	-ETIMEDOUT	timed out waiting for register ready or
1445  *			command completion
1446  *	>0		command indicated error, Status and Resp0-2 are
1447  *			in hw structure.
1448  *
1449  * Side effects:
1450  *
1451  * Call context:
1452  *	process (DOWAIT)
1453  *----------------------------------------------------------------
1454  */
1455 static int
1456 hfa384x_dormem(struct hfa384x *hw,
1457 	       u16 page,
1458 	       u16 offset,
1459 	       void *data,
1460 	       unsigned int len)
1461 {
1462 	int result;
1463 	struct hfa384x_usbctlx *ctlx;
1464 
1465 	ctlx = usbctlx_alloc();
1466 	if (!ctlx) {
1467 		result = -ENOMEM;
1468 		goto done;
1469 	}
1470 
1471 	/* Initialize the command */
1472 	ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1473 	ctlx->outbuf.rmemreq.frmlen =
1474 	    cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1475 			sizeof(ctlx->outbuf.rmemreq.page) + len);
1476 	ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1477 	ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1478 
1479 	ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1480 
1481 	pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1482 		 ctlx->outbuf.rmemreq.type,
1483 		 ctlx->outbuf.rmemreq.frmlen,
1484 		 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1485 
1486 	pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1487 
1488 	ctlx->reapable = DOWAIT;
1489 	ctlx->cmdcb = NULL;
1490 	ctlx->usercb = NULL;
1491 	ctlx->usercb_data = NULL;
1492 
1493 	result = hfa384x_usbctlx_submit(hw, ctlx);
1494 	if (result != 0) {
1495 		kfree(ctlx);
1496 	} else {
1497 		struct usbctlx_rmem_completor completor;
1498 
1499 		result =
1500 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1501 						  init_rmem_completor
1502 						  (&completor,
1503 						   &ctlx->inbuf.rmemresp, data,
1504 						   len));
1505 	}
1506 
1507 done:
1508 	return result;
1509 }
1510 
1511 /*----------------------------------------------------------------
1512  * hfa384x_dowmem
1513  *
1514  * Constructs a writemem CTLX and issues it.
1515  *
1516  * NOTE: Any changes to the 'post-submit' code in this function
1517  *       need to be carried over to hfa384x_cbwmem() since the handling
1518  *       is virtually identical.
1519  *
1520  * Arguments:
1521  *	hw		device structure
1522  *	page		MAC address space page (CMD format)
1523  *	offset		MAC address space offset
1524  *	data		Ptr to data buffer containing write data
1525  *	len		Length of the data to read (max == 2048)
1526  *
1527  * Returns:
1528  *	0		success
1529  *	-ETIMEDOUT	timed out waiting for register ready or
1530  *			command completion
1531  *	>0		command indicated error, Status and Resp0-2 are
1532  *			in hw structure.
1533  *
1534  * Side effects:
1535  *
1536  * Call context:
1537  *	interrupt (DOWAIT)
1538  *	process (DOWAIT)
1539  *----------------------------------------------------------------
1540  */
1541 static int
1542 hfa384x_dowmem(struct hfa384x *hw,
1543 	       u16 page,
1544 	       u16 offset,
1545 	       void *data,
1546 	       unsigned int len)
1547 {
1548 	int result;
1549 	struct hfa384x_usbctlx *ctlx;
1550 
1551 	pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1552 
1553 	ctlx = usbctlx_alloc();
1554 	if (!ctlx) {
1555 		result = -ENOMEM;
1556 		goto done;
1557 	}
1558 
1559 	/* Initialize the command */
1560 	ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1561 	ctlx->outbuf.wmemreq.frmlen =
1562 	    cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1563 			sizeof(ctlx->outbuf.wmemreq.page) + len);
1564 	ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1565 	ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1566 	memcpy(ctlx->outbuf.wmemreq.data, data, len);
1567 
1568 	ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1569 	    sizeof(ctlx->outbuf.wmemreq.frmlen) +
1570 	    sizeof(ctlx->outbuf.wmemreq.offset) +
1571 	    sizeof(ctlx->outbuf.wmemreq.page) + len;
1572 
1573 	ctlx->reapable = DOWAIT;
1574 	ctlx->cmdcb = NULL;
1575 	ctlx->usercb = NULL;
1576 	ctlx->usercb_data = NULL;
1577 
1578 	result = hfa384x_usbctlx_submit(hw, ctlx);
1579 	if (result != 0) {
1580 		kfree(ctlx);
1581 	} else {
1582 		struct usbctlx_cmd_completor completor;
1583 		struct hfa384x_cmdresult wmemresult;
1584 
1585 		result = hfa384x_usbctlx_complete_sync(hw,
1586 						       ctlx,
1587 						       init_wmem_completor
1588 						       (&completor,
1589 							&ctlx->inbuf.wmemresp,
1590 							&wmemresult));
1591 	}
1592 
1593 done:
1594 	return result;
1595 }
1596 
1597 /*----------------------------------------------------------------
1598  * hfa384x_drvr_disable
1599  *
1600  * Issues the disable command to stop communications on one of
1601  * the MACs 'ports'.  Only macport 0 is valid  for stations.
1602  * APs may also disable macports 1-6.  Only ports that have been
1603  * previously enabled may be disabled.
1604  *
1605  * Arguments:
1606  *	hw		device structure
1607  *	macport		MAC port number (host order)
1608  *
1609  * Returns:
1610  *	0		success
1611  *	>0		f/w reported failure - f/w status code
1612  *	<0		driver reported error (timeout|bad arg)
1613  *
1614  * Side effects:
1615  *
1616  * Call context:
1617  *	process
1618  *----------------------------------------------------------------
1619  */
1620 int hfa384x_drvr_disable(struct hfa384x *hw, u16 macport)
1621 {
1622 	int result = 0;
1623 
1624 	if ((!hw->isap && macport != 0) ||
1625 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1626 	    !(hw->port_enabled[macport])) {
1627 		result = -EINVAL;
1628 	} else {
1629 		result = hfa384x_cmd_disable(hw, macport);
1630 		if (result == 0)
1631 			hw->port_enabled[macport] = 0;
1632 	}
1633 	return result;
1634 }
1635 
1636 /*----------------------------------------------------------------
1637  * hfa384x_drvr_enable
1638  *
1639  * Issues the enable command to enable communications on one of
1640  * the MACs 'ports'.  Only macport 0 is valid  for stations.
1641  * APs may also enable macports 1-6.  Only ports that are currently
1642  * disabled may be enabled.
1643  *
1644  * Arguments:
1645  *	hw		device structure
1646  *	macport		MAC port number
1647  *
1648  * Returns:
1649  *	0		success
1650  *	>0		f/w reported failure - f/w status code
1651  *	<0		driver reported error (timeout|bad arg)
1652  *
1653  * Side effects:
1654  *
1655  * Call context:
1656  *	process
1657  *----------------------------------------------------------------
1658  */
1659 int hfa384x_drvr_enable(struct hfa384x *hw, u16 macport)
1660 {
1661 	int result = 0;
1662 
1663 	if ((!hw->isap && macport != 0) ||
1664 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1665 	    (hw->port_enabled[macport])) {
1666 		result = -EINVAL;
1667 	} else {
1668 		result = hfa384x_cmd_enable(hw, macport);
1669 		if (result == 0)
1670 			hw->port_enabled[macport] = 1;
1671 	}
1672 	return result;
1673 }
1674 
1675 /*----------------------------------------------------------------
1676  * hfa384x_drvr_flashdl_enable
1677  *
1678  * Begins the flash download state.  Checks to see that we're not
1679  * already in a download state and that a port isn't enabled.
1680  * Sets the download state and retrieves the flash download
1681  * buffer location, buffer size, and timeout length.
1682  *
1683  * Arguments:
1684  *	hw		device structure
1685  *
1686  * Returns:
1687  *	0		success
1688  *	>0		f/w reported error - f/w status code
1689  *	<0		driver reported error
1690  *
1691  * Side effects:
1692  *
1693  * Call context:
1694  *	process
1695  *----------------------------------------------------------------
1696  */
1697 int hfa384x_drvr_flashdl_enable(struct hfa384x *hw)
1698 {
1699 	int result = 0;
1700 	int i;
1701 
1702 	/* Check that a port isn't active */
1703 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1704 		if (hw->port_enabled[i]) {
1705 			pr_debug("called when port enabled.\n");
1706 			return -EINVAL;
1707 		}
1708 	}
1709 
1710 	/* Check that we're not already in a download state */
1711 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1712 		return -EINVAL;
1713 
1714 	/* Retrieve the buffer loc&size and timeout */
1715 	result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1716 					&hw->bufinfo, sizeof(hw->bufinfo));
1717 	if (result)
1718 		return result;
1719 
1720 	le16_to_cpus(&hw->bufinfo.page);
1721 	le16_to_cpus(&hw->bufinfo.offset);
1722 	le16_to_cpus(&hw->bufinfo.len);
1723 	result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1724 					  &hw->dltimeout);
1725 	if (result)
1726 		return result;
1727 
1728 	le16_to_cpus(&hw->dltimeout);
1729 
1730 	pr_debug("flashdl_enable\n");
1731 
1732 	hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1733 
1734 	return result;
1735 }
1736 
1737 /*----------------------------------------------------------------
1738  * hfa384x_drvr_flashdl_disable
1739  *
1740  * Ends the flash download state.  Note that this will cause the MAC
1741  * firmware to restart.
1742  *
1743  * Arguments:
1744  *	hw		device structure
1745  *
1746  * Returns:
1747  *	0		success
1748  *	>0		f/w reported error - f/w status code
1749  *	<0		driver reported error
1750  *
1751  * Side effects:
1752  *
1753  * Call context:
1754  *	process
1755  *----------------------------------------------------------------
1756  */
1757 int hfa384x_drvr_flashdl_disable(struct hfa384x *hw)
1758 {
1759 	/* Check that we're already in the download state */
1760 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1761 		return -EINVAL;
1762 
1763 	pr_debug("flashdl_enable\n");
1764 
1765 	/* There isn't much we can do at this point, so I don't */
1766 	/*  bother  w/ the return value */
1767 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1768 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
1769 
1770 	return 0;
1771 }
1772 
1773 /*----------------------------------------------------------------
1774  * hfa384x_drvr_flashdl_write
1775  *
1776  * Performs a FLASH download of a chunk of data. First checks to see
1777  * that we're in the FLASH download state, then sets the download
1778  * mode, uses the aux functions to 1) copy the data to the flash
1779  * buffer, 2) sets the download 'write flash' mode, 3) readback and
1780  * compare.  Lather rinse, repeat as many times an necessary to get
1781  * all the given data into flash.
1782  * When all data has been written using this function (possibly
1783  * repeatedly), call drvr_flashdl_disable() to end the download state
1784  * and restart the MAC.
1785  *
1786  * Arguments:
1787  *	hw		device structure
1788  *	daddr		Card address to write to. (host order)
1789  *	buf		Ptr to data to write.
1790  *	len		Length of data (host order).
1791  *
1792  * Returns:
1793  *	0		success
1794  *	>0		f/w reported error - f/w status code
1795  *	<0		driver reported error
1796  *
1797  * Side effects:
1798  *
1799  * Call context:
1800  *	process
1801  *----------------------------------------------------------------
1802  */
1803 int hfa384x_drvr_flashdl_write(struct hfa384x *hw, u32 daddr,
1804 			       void *buf, u32 len)
1805 {
1806 	int result = 0;
1807 	u32 dlbufaddr;
1808 	int nburns;
1809 	u32 burnlen;
1810 	u32 burndaddr;
1811 	u16 burnlo;
1812 	u16 burnhi;
1813 	int nwrites;
1814 	u8 *writebuf;
1815 	u16 writepage;
1816 	u16 writeoffset;
1817 	u32 writelen;
1818 	int i;
1819 	int j;
1820 
1821 	pr_debug("daddr=0x%08x len=%d\n", daddr, len);
1822 
1823 	/* Check that we're in the flash download state */
1824 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1825 		return -EINVAL;
1826 
1827 	netdev_info(hw->wlandev->netdev,
1828 		    "Download %d bytes to flash @0x%06x\n", len, daddr);
1829 
1830 	/* Convert to flat address for arithmetic */
1831 	/* NOTE: dlbuffer RID stores the address in AUX format */
1832 	dlbufaddr =
1833 	    HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
1834 	pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
1835 		 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
1836 	/* Calculations to determine how many fills of the dlbuffer to do
1837 	 * and how many USB wmemreq's to do for each fill.  At this point
1838 	 * in time, the dlbuffer size and the wmemreq size are the same.
1839 	 * Therefore, nwrites should always be 1.  The extra complexity
1840 	 * here is a hedge against future changes.
1841 	 */
1842 
1843 	/* Figure out how many times to do the flash programming */
1844 	nburns = len / hw->bufinfo.len;
1845 	nburns += (len % hw->bufinfo.len) ? 1 : 0;
1846 
1847 	/* For each flash program cycle, how many USB wmemreq's are needed? */
1848 	nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
1849 	nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
1850 
1851 	/* For each burn */
1852 	for (i = 0; i < nburns; i++) {
1853 		/* Get the dest address and len */
1854 		burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
1855 		    hw->bufinfo.len : (len - (hw->bufinfo.len * i));
1856 		burndaddr = daddr + (hw->bufinfo.len * i);
1857 		burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
1858 		burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
1859 
1860 		netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
1861 			    burnlen, burndaddr);
1862 
1863 		/* Set the download mode */
1864 		result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
1865 					      burnlo, burnhi, burnlen);
1866 		if (result) {
1867 			netdev_err(hw->wlandev->netdev,
1868 				   "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1869 				   burnlo, burnhi, burnlen, result);
1870 			goto exit_proc;
1871 		}
1872 
1873 		/* copy the data to the flash download buffer */
1874 		for (j = 0; j < nwrites; j++) {
1875 			writebuf = buf +
1876 			    (i * hw->bufinfo.len) +
1877 			    (j * HFA384x_USB_RWMEM_MAXLEN);
1878 
1879 			writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
1880 						(j * HFA384x_USB_RWMEM_MAXLEN));
1881 			writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
1882 						(j * HFA384x_USB_RWMEM_MAXLEN));
1883 
1884 			writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
1885 			writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
1886 			    HFA384x_USB_RWMEM_MAXLEN : writelen;
1887 
1888 			result = hfa384x_dowmem(hw,
1889 						writepage,
1890 						writeoffset,
1891 						writebuf, writelen);
1892 		}
1893 
1894 		/* set the download 'write flash' mode */
1895 		result = hfa384x_cmd_download(hw,
1896 					      HFA384x_PROGMODE_NVWRITE,
1897 					      0, 0, 0);
1898 		if (result) {
1899 			netdev_err(hw->wlandev->netdev,
1900 				   "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1901 				   burnlo, burnhi, burnlen, result);
1902 			goto exit_proc;
1903 		}
1904 
1905 		/* TODO: We really should do a readback and compare. */
1906 	}
1907 
1908 exit_proc:
1909 
1910 	/* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
1911 	/*  actually disable programming mode.  Remember, that will cause the */
1912 	/*  the firmware to effectively reset itself. */
1913 
1914 	return result;
1915 }
1916 
1917 /*----------------------------------------------------------------
1918  * hfa384x_drvr_getconfig
1919  *
1920  * Performs the sequence necessary to read a config/info item.
1921  *
1922  * Arguments:
1923  *	hw		device structure
1924  *	rid		config/info record id (host order)
1925  *	buf		host side record buffer.  Upon return it will
1926  *			contain the body portion of the record (minus the
1927  *			RID and len).
1928  *	len		buffer length (in bytes, should match record length)
1929  *
1930  * Returns:
1931  *	0		success
1932  *	>0		f/w reported error - f/w status code
1933  *	<0		driver reported error
1934  *	-ENODATA	length mismatch between argument and retrieved
1935  *			record.
1936  *
1937  * Side effects:
1938  *
1939  * Call context:
1940  *	process
1941  *----------------------------------------------------------------
1942  */
1943 int hfa384x_drvr_getconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
1944 {
1945 	return hfa384x_dorrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
1946 }
1947 
1948 /*----------------------------------------------------------------
1949  * hfa384x_drvr_setconfig_async
1950  *
1951  * Performs the sequence necessary to write a config/info item.
1952  *
1953  * Arguments:
1954  *       hw              device structure
1955  *       rid             config/info record id (in host order)
1956  *       buf             host side record buffer
1957  *       len             buffer length (in bytes)
1958  *       usercb          completion callback
1959  *       usercb_data     completion callback argument
1960  *
1961  * Returns:
1962  *       0               success
1963  *       >0              f/w reported error - f/w status code
1964  *       <0              driver reported error
1965  *
1966  * Side effects:
1967  *
1968  * Call context:
1969  *       process
1970  *----------------------------------------------------------------
1971  */
1972 int
1973 hfa384x_drvr_setconfig_async(struct hfa384x *hw,
1974 			     u16 rid,
1975 			     void *buf,
1976 			     u16 len, ctlx_usercb_t usercb, void *usercb_data)
1977 {
1978 	return hfa384x_dowrid(hw, DOASYNC, rid, buf, len, hfa384x_cb_status,
1979 			      usercb, usercb_data);
1980 }
1981 
1982 /*----------------------------------------------------------------
1983  * hfa384x_drvr_ramdl_disable
1984  *
1985  * Ends the ram download state.
1986  *
1987  * Arguments:
1988  *	hw		device structure
1989  *
1990  * Returns:
1991  *	0		success
1992  *	>0		f/w reported error - f/w status code
1993  *	<0		driver reported error
1994  *
1995  * Side effects:
1996  *
1997  * Call context:
1998  *	process
1999  *----------------------------------------------------------------
2000  */
2001 int hfa384x_drvr_ramdl_disable(struct hfa384x *hw)
2002 {
2003 	/* Check that we're already in the download state */
2004 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2005 		return -EINVAL;
2006 
2007 	pr_debug("ramdl_disable()\n");
2008 
2009 	/* There isn't much we can do at this point, so I don't */
2010 	/*  bother  w/ the return value */
2011 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2012 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
2013 
2014 	return 0;
2015 }
2016 
2017 /*----------------------------------------------------------------
2018  * hfa384x_drvr_ramdl_enable
2019  *
2020  * Begins the ram download state.  Checks to see that we're not
2021  * already in a download state and that a port isn't enabled.
2022  * Sets the download state and calls cmd_download with the
2023  * ENABLE_VOLATILE subcommand and the exeaddr argument.
2024  *
2025  * Arguments:
2026  *	hw		device structure
2027  *	exeaddr		the card execution address that will be
2028  *                       jumped to when ramdl_disable() is called
2029  *			(host order).
2030  *
2031  * Returns:
2032  *	0		success
2033  *	>0		f/w reported error - f/w status code
2034  *	<0		driver reported error
2035  *
2036  * Side effects:
2037  *
2038  * Call context:
2039  *	process
2040  *----------------------------------------------------------------
2041  */
2042 int hfa384x_drvr_ramdl_enable(struct hfa384x *hw, u32 exeaddr)
2043 {
2044 	int result = 0;
2045 	u16 lowaddr;
2046 	u16 hiaddr;
2047 	int i;
2048 
2049 	/* Check that a port isn't active */
2050 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2051 		if (hw->port_enabled[i]) {
2052 			netdev_err(hw->wlandev->netdev,
2053 				   "Can't download with a macport enabled.\n");
2054 			return -EINVAL;
2055 		}
2056 	}
2057 
2058 	/* Check that we're not already in a download state */
2059 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2060 		netdev_err(hw->wlandev->netdev,
2061 			   "Download state not disabled.\n");
2062 		return -EINVAL;
2063 	}
2064 
2065 	pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2066 
2067 	/* Call the download(1,addr) function */
2068 	lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2069 	hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2070 
2071 	result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2072 				      lowaddr, hiaddr, 0);
2073 
2074 	if (result == 0) {
2075 		/* Set the download state */
2076 		hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2077 	} else {
2078 		pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2079 			 lowaddr, hiaddr, result);
2080 	}
2081 
2082 	return result;
2083 }
2084 
2085 /*----------------------------------------------------------------
2086  * hfa384x_drvr_ramdl_write
2087  *
2088  * Performs a RAM download of a chunk of data. First checks to see
2089  * that we're in the RAM download state, then uses the [read|write]mem USB
2090  * commands to 1) copy the data, 2) readback and compare.  The download
2091  * state is unaffected.  When all data has been written using
2092  * this function, call drvr_ramdl_disable() to end the download state
2093  * and restart the MAC.
2094  *
2095  * Arguments:
2096  *	hw		device structure
2097  *	daddr		Card address to write to. (host order)
2098  *	buf		Ptr to data to write.
2099  *	len		Length of data (host order).
2100  *
2101  * Returns:
2102  *	0		success
2103  *	>0		f/w reported error - f/w status code
2104  *	<0		driver reported error
2105  *
2106  * Side effects:
2107  *
2108  * Call context:
2109  *	process
2110  *----------------------------------------------------------------
2111  */
2112 int hfa384x_drvr_ramdl_write(struct hfa384x *hw, u32 daddr, void *buf, u32 len)
2113 {
2114 	int result = 0;
2115 	int nwrites;
2116 	u8 *data = buf;
2117 	int i;
2118 	u32 curraddr;
2119 	u16 currpage;
2120 	u16 curroffset;
2121 	u16 currlen;
2122 
2123 	/* Check that we're in the ram download state */
2124 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2125 		return -EINVAL;
2126 
2127 	netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2128 		    len, daddr);
2129 
2130 	/* How many dowmem calls?  */
2131 	nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2132 	nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2133 
2134 	/* Do blocking wmem's */
2135 	for (i = 0; i < nwrites; i++) {
2136 		/* make address args */
2137 		curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2138 		currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2139 		curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2140 		currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2141 		if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2142 			currlen = HFA384x_USB_RWMEM_MAXLEN;
2143 
2144 		/* Do blocking ctlx */
2145 		result = hfa384x_dowmem(hw,
2146 					currpage,
2147 					curroffset,
2148 					data + (i * HFA384x_USB_RWMEM_MAXLEN),
2149 					currlen);
2150 
2151 		if (result)
2152 			break;
2153 
2154 		/* TODO: We really should have a readback. */
2155 	}
2156 
2157 	return result;
2158 }
2159 
2160 /*----------------------------------------------------------------
2161  * hfa384x_drvr_readpda
2162  *
2163  * Performs the sequence to read the PDA space.  Note there is no
2164  * drvr_writepda() function.  Writing a PDA is
2165  * generally implemented by a calling component via calls to
2166  * cmd_download and writing to the flash download buffer via the
2167  * aux regs.
2168  *
2169  * Arguments:
2170  *	hw		device structure
2171  *	buf		buffer to store PDA in
2172  *	len		buffer length
2173  *
2174  * Returns:
2175  *	0		success
2176  *	>0		f/w reported error - f/w status code
2177  *	<0		driver reported error
2178  *	-ETIMEDOUT	timeout waiting for the cmd regs to become
2179  *			available, or waiting for the control reg
2180  *			to indicate the Aux port is enabled.
2181  *	-ENODATA	the buffer does NOT contain a valid PDA.
2182  *			Either the card PDA is bad, or the auxdata
2183  *			reads are giving us garbage.
2184  *
2185  *
2186  * Side effects:
2187  *
2188  * Call context:
2189  *	process or non-card interrupt.
2190  *----------------------------------------------------------------
2191  */
2192 int hfa384x_drvr_readpda(struct hfa384x *hw, void *buf, unsigned int len)
2193 {
2194 	int result = 0;
2195 	__le16 *pda = buf;
2196 	int pdaok = 0;
2197 	int morepdrs = 1;
2198 	int currpdr = 0;	/* word offset of the current pdr */
2199 	size_t i;
2200 	u16 pdrlen;		/* pdr length in bytes, host order */
2201 	u16 pdrcode;		/* pdr code, host order */
2202 	u16 currpage;
2203 	u16 curroffset;
2204 	struct pdaloc {
2205 		u32 cardaddr;
2206 		u16 auxctl;
2207 	} pdaloc[] = {
2208 		{
2209 		HFA3842_PDA_BASE, 0}, {
2210 		HFA3841_PDA_BASE, 0}, {
2211 		HFA3841_PDA_BOGUS_BASE, 0}
2212 	};
2213 
2214 	/* Read the pda from each known address.  */
2215 	for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2216 		/* Make address */
2217 		currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2218 		curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2219 
2220 		/* units of bytes */
2221 		result = hfa384x_dormem(hw, currpage, curroffset, buf,
2222 					len);
2223 
2224 		if (result) {
2225 			netdev_warn(hw->wlandev->netdev,
2226 				    "Read from index %zd failed, continuing\n",
2227 				    i);
2228 			continue;
2229 		}
2230 
2231 		/* Test for garbage */
2232 		pdaok = 1;	/* initially assume good */
2233 		morepdrs = 1;
2234 		while (pdaok && morepdrs) {
2235 			pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2236 			pdrcode = le16_to_cpu(pda[currpdr + 1]);
2237 			/* Test the record length */
2238 			if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2239 				netdev_err(hw->wlandev->netdev,
2240 					   "pdrlen invalid=%d\n", pdrlen);
2241 				pdaok = 0;
2242 				break;
2243 			}
2244 			/* Test the code */
2245 			if (!hfa384x_isgood_pdrcode(pdrcode)) {
2246 				netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2247 					   pdrcode);
2248 				pdaok = 0;
2249 				break;
2250 			}
2251 			/* Test for completion */
2252 			if (pdrcode == HFA384x_PDR_END_OF_PDA)
2253 				morepdrs = 0;
2254 
2255 			/* Move to the next pdr (if necessary) */
2256 			if (morepdrs) {
2257 				/* note the access to pda[], need words here */
2258 				currpdr += le16_to_cpu(pda[currpdr]) + 1;
2259 			}
2260 		}
2261 		if (pdaok) {
2262 			netdev_info(hw->wlandev->netdev,
2263 				    "PDA Read from 0x%08x in %s space.\n",
2264 				    pdaloc[i].cardaddr,
2265 				    pdaloc[i].auxctl == 0 ? "EXTDS" :
2266 				    pdaloc[i].auxctl == 1 ? "NV" :
2267 				    pdaloc[i].auxctl == 2 ? "PHY" :
2268 				    pdaloc[i].auxctl == 3 ? "ICSRAM" :
2269 				    "<bogus auxctl>");
2270 			break;
2271 		}
2272 	}
2273 	result = pdaok ? 0 : -ENODATA;
2274 
2275 	if (result)
2276 		pr_debug("Failure: pda is not okay\n");
2277 
2278 	return result;
2279 }
2280 
2281 /*----------------------------------------------------------------
2282  * hfa384x_drvr_setconfig
2283  *
2284  * Performs the sequence necessary to write a config/info item.
2285  *
2286  * Arguments:
2287  *	hw		device structure
2288  *	rid		config/info record id (in host order)
2289  *	buf		host side record buffer
2290  *	len		buffer length (in bytes)
2291  *
2292  * Returns:
2293  *	0		success
2294  *	>0		f/w reported error - f/w status code
2295  *	<0		driver reported error
2296  *
2297  * Side effects:
2298  *
2299  * Call context:
2300  *	process
2301  *----------------------------------------------------------------
2302  */
2303 int hfa384x_drvr_setconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
2304 {
2305 	return hfa384x_dowrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
2306 }
2307 
2308 /*----------------------------------------------------------------
2309  * hfa384x_drvr_start
2310  *
2311  * Issues the MAC initialize command, sets up some data structures,
2312  * and enables the interrupts.  After this function completes, the
2313  * low-level stuff should be ready for any/all commands.
2314  *
2315  * Arguments:
2316  *	hw		device structure
2317  * Returns:
2318  *	0		success
2319  *	>0		f/w reported error - f/w status code
2320  *	<0		driver reported error
2321  *
2322  * Side effects:
2323  *
2324  * Call context:
2325  *	process
2326  *----------------------------------------------------------------
2327  */
2328 int hfa384x_drvr_start(struct hfa384x *hw)
2329 {
2330 	int result, result1, result2;
2331 	u16 status;
2332 
2333 	might_sleep();
2334 
2335 	/* Clear endpoint stalls - but only do this if the endpoint
2336 	 * is showing a stall status. Some prism2 cards seem to behave
2337 	 * badly if a clear_halt is called when the endpoint is already
2338 	 * ok
2339 	 */
2340 	result =
2341 	    usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in,
2342 			       &status);
2343 	if (result < 0) {
2344 		netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2345 		goto done;
2346 	}
2347 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2348 		netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2349 
2350 	result =
2351 	    usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out,
2352 			       &status);
2353 	if (result < 0) {
2354 		netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2355 		goto done;
2356 	}
2357 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2358 		netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2359 
2360 	/* Synchronous unlink, in case we're trying to restart the driver */
2361 	usb_kill_urb(&hw->rx_urb);
2362 
2363 	/* Post the IN urb */
2364 	result = submit_rx_urb(hw, GFP_KERNEL);
2365 	if (result != 0) {
2366 		netdev_err(hw->wlandev->netdev,
2367 			   "Fatal, failed to submit RX URB, result=%d\n",
2368 			   result);
2369 		goto done;
2370 	}
2371 
2372 	/* Call initialize twice, with a 1 second sleep in between.
2373 	 * This is a nasty work-around since many prism2 cards seem to
2374 	 * need time to settle after an init from cold. The second
2375 	 * call to initialize in theory is not necessary - but we call
2376 	 * it anyway as a double insurance policy:
2377 	 * 1) If the first init should fail, the second may well succeed
2378 	 *    and the card can still be used
2379 	 * 2) It helps ensures all is well with the card after the first
2380 	 *    init and settle time.
2381 	 */
2382 	result1 = hfa384x_cmd_initialize(hw);
2383 	msleep(1000);
2384 	result = hfa384x_cmd_initialize(hw);
2385 	result2 = result;
2386 	if (result1 != 0) {
2387 		if (result2 != 0) {
2388 			netdev_err(hw->wlandev->netdev,
2389 				   "cmd_initialize() failed on two attempts, results %d and %d\n",
2390 				   result1, result2);
2391 			usb_kill_urb(&hw->rx_urb);
2392 			goto done;
2393 		} else {
2394 			pr_debug("First cmd_initialize() failed (result %d),\n",
2395 				 result1);
2396 			pr_debug("but second attempt succeeded. All should be ok\n");
2397 		}
2398 	} else if (result2 != 0) {
2399 		netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2400 			    result2);
2401 		netdev_warn(hw->wlandev->netdev,
2402 			    "Most likely the card will be functional\n");
2403 		goto done;
2404 	}
2405 
2406 	hw->state = HFA384x_STATE_RUNNING;
2407 
2408 done:
2409 	return result;
2410 }
2411 
2412 /*----------------------------------------------------------------
2413  * hfa384x_drvr_stop
2414  *
2415  * Shuts down the MAC to the point where it is safe to unload the
2416  * driver.  Any subsystem that may be holding a data or function
2417  * ptr into the driver must be cleared/deinitialized.
2418  *
2419  * Arguments:
2420  *	hw		device structure
2421  * Returns:
2422  *	0		success
2423  *	>0		f/w reported error - f/w status code
2424  *	<0		driver reported error
2425  *
2426  * Side effects:
2427  *
2428  * Call context:
2429  *	process
2430  *----------------------------------------------------------------
2431  */
2432 int hfa384x_drvr_stop(struct hfa384x *hw)
2433 {
2434 	int i;
2435 
2436 	might_sleep();
2437 
2438 	/* There's no need for spinlocks here. The USB "disconnect"
2439 	 * function sets this "removed" flag and then calls us.
2440 	 */
2441 	if (!hw->wlandev->hwremoved) {
2442 		/* Call initialize to leave the MAC in its 'reset' state */
2443 		hfa384x_cmd_initialize(hw);
2444 
2445 		/* Cancel the rxurb */
2446 		usb_kill_urb(&hw->rx_urb);
2447 	}
2448 
2449 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
2450 	hw->state = HFA384x_STATE_INIT;
2451 
2452 	del_timer_sync(&hw->commsqual_timer);
2453 
2454 	/* Clear all the port status */
2455 	for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2456 		hw->port_enabled[i] = 0;
2457 
2458 	return 0;
2459 }
2460 
2461 /*----------------------------------------------------------------
2462  * hfa384x_drvr_txframe
2463  *
2464  * Takes a frame from prism2sta and queues it for transmission.
2465  *
2466  * Arguments:
2467  *	hw		device structure
2468  *	skb		packet buffer struct.  Contains an 802.11
2469  *			data frame.
2470  *       p80211_hdr      points to the 802.11 header for the packet.
2471  * Returns:
2472  *	0		Success and more buffs available
2473  *	1		Success but no more buffs
2474  *	2		Allocation failure
2475  *	4		Buffer full or queue busy
2476  *
2477  * Side effects:
2478  *
2479  * Call context:
2480  *	interrupt
2481  *----------------------------------------------------------------
2482  */
2483 int hfa384x_drvr_txframe(struct hfa384x *hw, struct sk_buff *skb,
2484 			 union p80211_hdr *p80211_hdr,
2485 			 struct p80211_metawep *p80211_wep)
2486 {
2487 	int usbpktlen = sizeof(struct hfa384x_tx_frame);
2488 	int result;
2489 	int ret;
2490 	char *ptr;
2491 
2492 	if (hw->tx_urb.status == -EINPROGRESS) {
2493 		netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2494 		result = 3;
2495 		goto exit;
2496 	}
2497 
2498 	/* Build Tx frame structure */
2499 	/* Set up the control field */
2500 	memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2501 
2502 	/* Setup the usb type field */
2503 	hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2504 
2505 	/* Set up the sw_support field to identify this frame */
2506 	hw->txbuff.txfrm.desc.sw_support = 0x0123;
2507 
2508 /* Tx complete and Tx exception disable per dleach.  Might be causing
2509  * buf depletion
2510  */
2511 /* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2512 #if defined(DOBOTH)
2513 	hw->txbuff.txfrm.desc.tx_control =
2514 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2515 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2516 #elif defined(DOEXC)
2517 	hw->txbuff.txfrm.desc.tx_control =
2518 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2519 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2520 #else
2521 	hw->txbuff.txfrm.desc.tx_control =
2522 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2523 	    HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2524 #endif
2525 	cpu_to_le16s(&hw->txbuff.txfrm.desc.tx_control);
2526 
2527 	/* copy the header over to the txdesc */
2528 	memcpy(&hw->txbuff.txfrm.desc.frame_control, p80211_hdr,
2529 	       sizeof(union p80211_hdr));
2530 
2531 	/* if we're using host WEP, increase size by IV+ICV */
2532 	if (p80211_wep->data) {
2533 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2534 		usbpktlen += 8;
2535 	} else {
2536 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2537 	}
2538 
2539 	usbpktlen += skb->len;
2540 
2541 	/* copy over the WEP IV if we are using host WEP */
2542 	ptr = hw->txbuff.txfrm.data;
2543 	if (p80211_wep->data) {
2544 		memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2545 		ptr += sizeof(p80211_wep->iv);
2546 		memcpy(ptr, p80211_wep->data, skb->len);
2547 	} else {
2548 		memcpy(ptr, skb->data, skb->len);
2549 	}
2550 	/* copy over the packet data */
2551 	ptr += skb->len;
2552 
2553 	/* copy over the WEP ICV if we are using host WEP */
2554 	if (p80211_wep->data)
2555 		memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2556 
2557 	/* Send the USB packet */
2558 	usb_fill_bulk_urb(&hw->tx_urb, hw->usb,
2559 			  hw->endp_out,
2560 			  &hw->txbuff, ROUNDUP64(usbpktlen),
2561 			  hfa384x_usbout_callback, hw->wlandev);
2562 	hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2563 
2564 	result = 1;
2565 	ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2566 	if (ret != 0) {
2567 		netdev_err(hw->wlandev->netdev,
2568 			   "submit_tx_urb() failed, error=%d\n", ret);
2569 		result = 3;
2570 	}
2571 
2572 exit:
2573 	return result;
2574 }
2575 
2576 void hfa384x_tx_timeout(struct wlandevice *wlandev)
2577 {
2578 	struct hfa384x *hw = wlandev->priv;
2579 	unsigned long flags;
2580 
2581 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2582 
2583 	if (!hw->wlandev->hwremoved) {
2584 		int sched;
2585 
2586 		sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2587 		sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2588 		if (sched)
2589 			schedule_work(&hw->usb_work);
2590 	}
2591 
2592 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2593 }
2594 
2595 /*----------------------------------------------------------------
2596  * hfa384x_usbctlx_reaper_task
2597  *
2598  * Tasklet to delete dead CTLX objects
2599  *
2600  * Arguments:
2601  *	data	ptr to a struct hfa384x
2602  *
2603  * Returns:
2604  *
2605  * Call context:
2606  *	Interrupt
2607  *----------------------------------------------------------------
2608  */
2609 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2610 {
2611 	struct hfa384x *hw = (struct hfa384x *)data;
2612 	struct hfa384x_usbctlx *ctlx, *temp;
2613 	unsigned long flags;
2614 
2615 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2616 
2617 	/* This list is guaranteed to be empty if someone
2618 	 * has unplugged the adapter.
2619 	 */
2620 	list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.reapable, list) {
2621 		list_del(&ctlx->list);
2622 		kfree(ctlx);
2623 	}
2624 
2625 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2626 }
2627 
2628 /*----------------------------------------------------------------
2629  * hfa384x_usbctlx_completion_task
2630  *
2631  * Tasklet to call completion handlers for returned CTLXs
2632  *
2633  * Arguments:
2634  *	data	ptr to struct hfa384x
2635  *
2636  * Returns:
2637  *	Nothing
2638  *
2639  * Call context:
2640  *	Interrupt
2641  *----------------------------------------------------------------
2642  */
2643 static void hfa384x_usbctlx_completion_task(unsigned long data)
2644 {
2645 	struct hfa384x *hw = (struct hfa384x *)data;
2646 	struct hfa384x_usbctlx *ctlx, *temp;
2647 	unsigned long flags;
2648 
2649 	int reap = 0;
2650 
2651 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2652 
2653 	/* This list is guaranteed to be empty if someone
2654 	 * has unplugged the adapter ...
2655 	 */
2656 	list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.completing, list) {
2657 		/* Call the completion function that this
2658 		 * command was assigned, assuming it has one.
2659 		 */
2660 		if (ctlx->cmdcb) {
2661 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2662 			ctlx->cmdcb(hw, ctlx);
2663 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
2664 
2665 			/* Make sure we don't try and complete
2666 			 * this CTLX more than once!
2667 			 */
2668 			ctlx->cmdcb = NULL;
2669 
2670 			/* Did someone yank the adapter out
2671 			 * while our list was (briefly) unlocked?
2672 			 */
2673 			if (hw->wlandev->hwremoved) {
2674 				reap = 0;
2675 				break;
2676 			}
2677 		}
2678 
2679 		/*
2680 		 * "Reapable" CTLXs are ones which don't have any
2681 		 * threads waiting for them to die. Hence they must
2682 		 * be delivered to The Reaper!
2683 		 */
2684 		if (ctlx->reapable) {
2685 			/* Move the CTLX off the "completing" list (hopefully)
2686 			 * on to the "reapable" list where the reaper task
2687 			 * can find it. And "reapable" means that this CTLX
2688 			 * isn't sitting on a wait-queue somewhere.
2689 			 */
2690 			list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2691 			reap = 1;
2692 		}
2693 
2694 		complete(&ctlx->done);
2695 	}
2696 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2697 
2698 	if (reap)
2699 		tasklet_schedule(&hw->reaper_bh);
2700 }
2701 
2702 /*----------------------------------------------------------------
2703  * unlocked_usbctlx_cancel_async
2704  *
2705  * Mark the CTLX dead asynchronously, and ensure that the
2706  * next command on the queue is run afterwards.
2707  *
2708  * Arguments:
2709  *	hw	ptr to the struct hfa384x structure
2710  *	ctlx	ptr to a CTLX structure
2711  *
2712  * Returns:
2713  *	0	the CTLX's URB is inactive
2714  * -EINPROGRESS	the URB is currently being unlinked
2715  *
2716  * Call context:
2717  *	Either process or interrupt, but presumably interrupt
2718  *----------------------------------------------------------------
2719  */
2720 static int unlocked_usbctlx_cancel_async(struct hfa384x *hw,
2721 					 struct hfa384x_usbctlx *ctlx)
2722 {
2723 	int ret;
2724 
2725 	/*
2726 	 * Try to delete the URB containing our request packet.
2727 	 * If we succeed, then its completion handler will be
2728 	 * called with a status of -ECONNRESET.
2729 	 */
2730 	hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2731 	ret = usb_unlink_urb(&hw->ctlx_urb);
2732 
2733 	if (ret != -EINPROGRESS) {
2734 		/*
2735 		 * The OUT URB had either already completed
2736 		 * or was still in the pending queue, so the
2737 		 * URB's completion function will not be called.
2738 		 * We will have to complete the CTLX ourselves.
2739 		 */
2740 		ctlx->state = CTLX_REQ_FAILED;
2741 		unlocked_usbctlx_complete(hw, ctlx);
2742 		ret = 0;
2743 	}
2744 
2745 	return ret;
2746 }
2747 
2748 /*----------------------------------------------------------------
2749  * unlocked_usbctlx_complete
2750  *
2751  * A CTLX has completed.  It may have been successful, it may not
2752  * have been. At this point, the CTLX should be quiescent.  The URBs
2753  * aren't active and the timers should have been stopped.
2754  *
2755  * The CTLX is migrated to the "completing" queue, and the completing
2756  * tasklet is scheduled.
2757  *
2758  * Arguments:
2759  *	hw		ptr to a struct hfa384x structure
2760  *	ctlx		ptr to a ctlx structure
2761  *
2762  * Returns:
2763  *	nothing
2764  *
2765  * Side effects:
2766  *
2767  * Call context:
2768  *	Either, assume interrupt
2769  *----------------------------------------------------------------
2770  */
2771 static void unlocked_usbctlx_complete(struct hfa384x *hw,
2772 				      struct hfa384x_usbctlx *ctlx)
2773 {
2774 	/* Timers have been stopped, and ctlx should be in
2775 	 * a terminal state. Retire it from the "active"
2776 	 * queue.
2777 	 */
2778 	list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2779 	tasklet_schedule(&hw->completion_bh);
2780 
2781 	switch (ctlx->state) {
2782 	case CTLX_COMPLETE:
2783 	case CTLX_REQ_FAILED:
2784 		/* This are the correct terminating states. */
2785 		break;
2786 
2787 	default:
2788 		netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2789 			   le16_to_cpu(ctlx->outbuf.type),
2790 			   ctlxstr(ctlx->state));
2791 		break;
2792 	}			/* switch */
2793 }
2794 
2795 /*----------------------------------------------------------------
2796  * hfa384x_usbctlxq_run
2797  *
2798  * Checks to see if the head item is running.  If not, starts it.
2799  *
2800  * Arguments:
2801  *	hw	ptr to struct hfa384x
2802  *
2803  * Returns:
2804  *	nothing
2805  *
2806  * Side effects:
2807  *
2808  * Call context:
2809  *	any
2810  *----------------------------------------------------------------
2811  */
2812 static void hfa384x_usbctlxq_run(struct hfa384x *hw)
2813 {
2814 	unsigned long flags;
2815 
2816 	/* acquire lock */
2817 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2818 
2819 	/* Only one active CTLX at any one time, because there's no
2820 	 * other (reliable) way to match the response URB to the
2821 	 * correct CTLX.
2822 	 *
2823 	 * Don't touch any of these CTLXs if the hardware
2824 	 * has been removed or the USB subsystem is stalled.
2825 	 */
2826 	if (!list_empty(&hw->ctlxq.active) ||
2827 	    test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
2828 		goto unlock;
2829 
2830 	while (!list_empty(&hw->ctlxq.pending)) {
2831 		struct hfa384x_usbctlx *head;
2832 		int result;
2833 
2834 		/* This is the first pending command */
2835 		head = list_entry(hw->ctlxq.pending.next,
2836 				  struct hfa384x_usbctlx, list);
2837 
2838 		/* We need to split this off to avoid a race condition */
2839 		list_move_tail(&head->list, &hw->ctlxq.active);
2840 
2841 		/* Fill the out packet */
2842 		usb_fill_bulk_urb(&hw->ctlx_urb, hw->usb,
2843 				  hw->endp_out,
2844 				  &head->outbuf, ROUNDUP64(head->outbufsize),
2845 				  hfa384x_ctlxout_callback, hw);
2846 		hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
2847 
2848 		/* Now submit the URB and update the CTLX's state */
2849 		result = usb_submit_urb(&hw->ctlx_urb, GFP_ATOMIC);
2850 		if (result == 0) {
2851 			/* This CTLX is now running on the active queue */
2852 			head->state = CTLX_REQ_SUBMITTED;
2853 
2854 			/* Start the OUT wait timer */
2855 			hw->req_timer_done = 0;
2856 			hw->reqtimer.expires = jiffies + HZ;
2857 			add_timer(&hw->reqtimer);
2858 
2859 			/* Start the IN wait timer */
2860 			hw->resp_timer_done = 0;
2861 			hw->resptimer.expires = jiffies + 2 * HZ;
2862 			add_timer(&hw->resptimer);
2863 
2864 			break;
2865 		}
2866 
2867 		if (result == -EPIPE) {
2868 			/* The OUT pipe needs resetting, so put
2869 			 * this CTLX back in the "pending" queue
2870 			 * and schedule a reset ...
2871 			 */
2872 			netdev_warn(hw->wlandev->netdev,
2873 				    "%s tx pipe stalled: requesting reset\n",
2874 				    hw->wlandev->netdev->name);
2875 			list_move(&head->list, &hw->ctlxq.pending);
2876 			set_bit(WORK_TX_HALT, &hw->usb_flags);
2877 			schedule_work(&hw->usb_work);
2878 			break;
2879 		}
2880 
2881 		if (result == -ESHUTDOWN) {
2882 			netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
2883 				    hw->wlandev->netdev->name);
2884 			break;
2885 		}
2886 
2887 		netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
2888 			   le16_to_cpu(head->outbuf.type), result);
2889 		unlocked_usbctlx_complete(hw, head);
2890 	}			/* while */
2891 
2892 unlock:
2893 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2894 }
2895 
2896 /*----------------------------------------------------------------
2897  * hfa384x_usbin_callback
2898  *
2899  * Callback for URBs on the BULKIN endpoint.
2900  *
2901  * Arguments:
2902  *	urb		ptr to the completed urb
2903  *
2904  * Returns:
2905  *	nothing
2906  *
2907  * Side effects:
2908  *
2909  * Call context:
2910  *	interrupt
2911  *----------------------------------------------------------------
2912  */
2913 static void hfa384x_usbin_callback(struct urb *urb)
2914 {
2915 	struct wlandevice *wlandev = urb->context;
2916 	struct hfa384x *hw;
2917 	union hfa384x_usbin *usbin;
2918 	struct sk_buff *skb = NULL;
2919 	int result;
2920 	int urb_status;
2921 	u16 type;
2922 
2923 	enum USBIN_ACTION {
2924 		HANDLE,
2925 		RESUBMIT,
2926 		ABORT
2927 	} action;
2928 
2929 	if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
2930 		goto exit;
2931 
2932 	hw = wlandev->priv;
2933 	if (!hw)
2934 		goto exit;
2935 
2936 	skb = hw->rx_urb_skb;
2937 	if (!skb || (skb->data != urb->transfer_buffer)) {
2938 		WARN_ON(1);
2939 		return;
2940 	}
2941 
2942 	hw->rx_urb_skb = NULL;
2943 
2944 	/* Check for error conditions within the URB */
2945 	switch (urb->status) {
2946 	case 0:
2947 		action = HANDLE;
2948 
2949 		/* Check for short packet */
2950 		if (urb->actual_length == 0) {
2951 			wlandev->netdev->stats.rx_errors++;
2952 			wlandev->netdev->stats.rx_length_errors++;
2953 			action = RESUBMIT;
2954 		}
2955 		break;
2956 
2957 	case -EPIPE:
2958 		netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
2959 			    wlandev->netdev->name);
2960 		if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
2961 			schedule_work(&hw->usb_work);
2962 		wlandev->netdev->stats.rx_errors++;
2963 		action = ABORT;
2964 		break;
2965 
2966 	case -EILSEQ:
2967 	case -ETIMEDOUT:
2968 	case -EPROTO:
2969 		if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
2970 		    !timer_pending(&hw->throttle)) {
2971 			mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
2972 		}
2973 		wlandev->netdev->stats.rx_errors++;
2974 		action = ABORT;
2975 		break;
2976 
2977 	case -EOVERFLOW:
2978 		wlandev->netdev->stats.rx_over_errors++;
2979 		action = RESUBMIT;
2980 		break;
2981 
2982 	case -ENODEV:
2983 	case -ESHUTDOWN:
2984 		pr_debug("status=%d, device removed.\n", urb->status);
2985 		action = ABORT;
2986 		break;
2987 
2988 	case -ENOENT:
2989 	case -ECONNRESET:
2990 		pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
2991 		action = ABORT;
2992 		break;
2993 
2994 	default:
2995 		pr_debug("urb status=%d, transfer flags=0x%x\n",
2996 			 urb->status, urb->transfer_flags);
2997 		wlandev->netdev->stats.rx_errors++;
2998 		action = RESUBMIT;
2999 		break;
3000 	}
3001 
3002 	/* Save values from the RX URB before reposting overwrites it. */
3003 	urb_status = urb->status;
3004 	usbin = (union hfa384x_usbin *)urb->transfer_buffer;
3005 
3006 	if (action != ABORT) {
3007 		/* Repost the RX URB */
3008 		result = submit_rx_urb(hw, GFP_ATOMIC);
3009 
3010 		if (result != 0) {
3011 			netdev_err(hw->wlandev->netdev,
3012 				   "Fatal, failed to resubmit rx_urb. error=%d\n",
3013 				   result);
3014 		}
3015 	}
3016 
3017 	/* Handle any USB-IN packet */
3018 	/* Note: the check of the sw_support field, the type field doesn't
3019 	 *       have bit 12 set like the docs suggest.
3020 	 */
3021 	type = le16_to_cpu(usbin->type);
3022 	if (HFA384x_USB_ISRXFRM(type)) {
3023 		if (action == HANDLE) {
3024 			if (usbin->txfrm.desc.sw_support == 0x0123) {
3025 				hfa384x_usbin_txcompl(wlandev, usbin);
3026 			} else {
3027 				skb_put(skb, sizeof(*usbin));
3028 				hfa384x_usbin_rx(wlandev, skb);
3029 				skb = NULL;
3030 			}
3031 		}
3032 		goto exit;
3033 	}
3034 	if (HFA384x_USB_ISTXFRM(type)) {
3035 		if (action == HANDLE)
3036 			hfa384x_usbin_txcompl(wlandev, usbin);
3037 		goto exit;
3038 	}
3039 	switch (type) {
3040 	case HFA384x_USB_INFOFRM:
3041 		if (action == ABORT)
3042 			goto exit;
3043 		if (action == HANDLE)
3044 			hfa384x_usbin_info(wlandev, usbin);
3045 		break;
3046 
3047 	case HFA384x_USB_CMDRESP:
3048 	case HFA384x_USB_WRIDRESP:
3049 	case HFA384x_USB_RRIDRESP:
3050 	case HFA384x_USB_WMEMRESP:
3051 	case HFA384x_USB_RMEMRESP:
3052 		/* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3053 		hfa384x_usbin_ctlx(hw, usbin, urb_status);
3054 		break;
3055 
3056 	case HFA384x_USB_BUFAVAIL:
3057 		pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3058 			 usbin->bufavail.frmlen);
3059 		break;
3060 
3061 	case HFA384x_USB_ERROR:
3062 		pr_debug("Received USB_ERROR packet, errortype=%d\n",
3063 			 usbin->usberror.errortype);
3064 		break;
3065 
3066 	default:
3067 		pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3068 			 usbin->type, urb_status);
3069 		break;
3070 	}			/* switch */
3071 
3072 exit:
3073 
3074 	if (skb)
3075 		dev_kfree_skb(skb);
3076 }
3077 
3078 /*----------------------------------------------------------------
3079  * hfa384x_usbin_ctlx
3080  *
3081  * We've received a URB containing a Prism2 "response" message.
3082  * This message needs to be matched up with a CTLX on the active
3083  * queue and our state updated accordingly.
3084  *
3085  * Arguments:
3086  *	hw		ptr to struct hfa384x
3087  *	usbin		ptr to USB IN packet
3088  *	urb_status	status of this Bulk-In URB
3089  *
3090  * Returns:
3091  *	nothing
3092  *
3093  * Side effects:
3094  *
3095  * Call context:
3096  *	interrupt
3097  *----------------------------------------------------------------
3098  */
3099 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
3100 			       int urb_status)
3101 {
3102 	struct hfa384x_usbctlx *ctlx;
3103 	int run_queue = 0;
3104 	unsigned long flags;
3105 
3106 retry:
3107 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3108 
3109 	/* There can be only one CTLX on the active queue
3110 	 * at any one time, and this is the CTLX that the
3111 	 * timers are waiting for.
3112 	 */
3113 	if (list_empty(&hw->ctlxq.active))
3114 		goto unlock;
3115 
3116 	/* Remove the "response timeout". It's possible that
3117 	 * we are already too late, and that the timeout is
3118 	 * already running. And that's just too bad for us,
3119 	 * because we could lose our CTLX from the active
3120 	 * queue here ...
3121 	 */
3122 	if (del_timer(&hw->resptimer) == 0) {
3123 		if (hw->resp_timer_done == 0) {
3124 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3125 			goto retry;
3126 		}
3127 	} else {
3128 		hw->resp_timer_done = 1;
3129 	}
3130 
3131 	ctlx = get_active_ctlx(hw);
3132 
3133 	if (urb_status != 0) {
3134 		/*
3135 		 * Bad CTLX, so get rid of it. But we only
3136 		 * remove it from the active queue if we're no
3137 		 * longer expecting the OUT URB to complete.
3138 		 */
3139 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3140 			run_queue = 1;
3141 	} else {
3142 		const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3143 
3144 		/*
3145 		 * Check that our message is what we're expecting ...
3146 		 */
3147 		if (ctlx->outbuf.type != intype) {
3148 			netdev_warn(hw->wlandev->netdev,
3149 				    "Expected IN[%d], received IN[%d] - ignored.\n",
3150 				    le16_to_cpu(ctlx->outbuf.type),
3151 				    le16_to_cpu(intype));
3152 			goto unlock;
3153 		}
3154 
3155 		/* This URB has succeeded, so grab the data ... */
3156 		memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3157 
3158 		switch (ctlx->state) {
3159 		case CTLX_REQ_SUBMITTED:
3160 			/*
3161 			 * We have received our response URB before
3162 			 * our request has been acknowledged. Odd,
3163 			 * but our OUT URB is still alive...
3164 			 */
3165 			pr_debug("Causality violation: please reboot Universe\n");
3166 			ctlx->state = CTLX_RESP_COMPLETE;
3167 			break;
3168 
3169 		case CTLX_REQ_COMPLETE:
3170 			/*
3171 			 * This is the usual path: our request
3172 			 * has already been acknowledged, and
3173 			 * now we have received the reply too.
3174 			 */
3175 			ctlx->state = CTLX_COMPLETE;
3176 			unlocked_usbctlx_complete(hw, ctlx);
3177 			run_queue = 1;
3178 			break;
3179 
3180 		default:
3181 			/*
3182 			 * Throw this CTLX away ...
3183 			 */
3184 			netdev_err(hw->wlandev->netdev,
3185 				   "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3186 				   le16_to_cpu(ctlx->outbuf.type),
3187 				   ctlxstr(ctlx->state));
3188 			if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3189 				run_queue = 1;
3190 			break;
3191 		}		/* switch */
3192 	}
3193 
3194 unlock:
3195 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3196 
3197 	if (run_queue)
3198 		hfa384x_usbctlxq_run(hw);
3199 }
3200 
3201 /*----------------------------------------------------------------
3202  * hfa384x_usbin_txcompl
3203  *
3204  * At this point we have the results of a previous transmit.
3205  *
3206  * Arguments:
3207  *	wlandev		wlan device
3208  *	usbin		ptr to the usb transfer buffer
3209  *
3210  * Returns:
3211  *	nothing
3212  *
3213  * Side effects:
3214  *
3215  * Call context:
3216  *	interrupt
3217  *----------------------------------------------------------------
3218  */
3219 static void hfa384x_usbin_txcompl(struct wlandevice *wlandev,
3220 				  union hfa384x_usbin *usbin)
3221 {
3222 	u16 status;
3223 
3224 	status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3225 
3226 	/* Was there an error? */
3227 	if (HFA384x_TXSTATUS_ISERROR(status))
3228 		prism2sta_ev_txexc(wlandev, status);
3229 	else
3230 		prism2sta_ev_tx(wlandev, status);
3231 }
3232 
3233 /*----------------------------------------------------------------
3234  * hfa384x_usbin_rx
3235  *
3236  * At this point we have a successful received a rx frame packet.
3237  *
3238  * Arguments:
3239  *	wlandev		wlan device
3240  *	usbin		ptr to the usb transfer buffer
3241  *
3242  * Returns:
3243  *	nothing
3244  *
3245  * Side effects:
3246  *
3247  * Call context:
3248  *	interrupt
3249  *----------------------------------------------------------------
3250  */
3251 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb)
3252 {
3253 	union hfa384x_usbin *usbin = (union hfa384x_usbin *)skb->data;
3254 	struct hfa384x *hw = wlandev->priv;
3255 	int hdrlen;
3256 	struct p80211_rxmeta *rxmeta;
3257 	u16 data_len;
3258 	u16 fc;
3259 
3260 	/* Byte order convert once up front. */
3261 	le16_to_cpus(&usbin->rxfrm.desc.status);
3262 	le32_to_cpus(&usbin->rxfrm.desc.time);
3263 
3264 	/* Now handle frame based on port# */
3265 	switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3266 	case 0:
3267 		fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3268 
3269 		/* If exclude and we receive an unencrypted, drop it */
3270 		if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3271 		    !WLAN_GET_FC_ISWEP(fc)) {
3272 			break;
3273 		}
3274 
3275 		data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3276 
3277 		/* How much header data do we have? */
3278 		hdrlen = p80211_headerlen(fc);
3279 
3280 		/* Pull off the descriptor */
3281 		skb_pull(skb, sizeof(struct hfa384x_rx_frame));
3282 
3283 		/* Now shunt the header block up against the data block
3284 		 * with an "overlapping" copy
3285 		 */
3286 		memmove(skb_push(skb, hdrlen),
3287 			&usbin->rxfrm.desc.frame_control, hdrlen);
3288 
3289 		skb->dev = wlandev->netdev;
3290 
3291 		/* And set the frame length properly */
3292 		skb_trim(skb, data_len + hdrlen);
3293 
3294 		/* The prism2 series does not return the CRC */
3295 		memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3296 
3297 		skb_reset_mac_header(skb);
3298 
3299 		/* Attach the rxmeta, set some stuff */
3300 		p80211skb_rxmeta_attach(wlandev, skb);
3301 		rxmeta = p80211skb_rxmeta(skb);
3302 		rxmeta->mactime = usbin->rxfrm.desc.time;
3303 		rxmeta->rxrate = usbin->rxfrm.desc.rate;
3304 		rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3305 		rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3306 
3307 		p80211netdev_rx(wlandev, skb);
3308 
3309 		break;
3310 
3311 	case 7:
3312 		if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3313 			/* Copy to wlansnif skb */
3314 			hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3315 			dev_kfree_skb(skb);
3316 		} else {
3317 			pr_debug("Received monitor frame: FCSerr set\n");
3318 		}
3319 		break;
3320 
3321 	default:
3322 		netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3323 			    HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3324 		break;
3325 	}
3326 }
3327 
3328 /*----------------------------------------------------------------
3329  * hfa384x_int_rxmonitor
3330  *
3331  * Helper function for int_rx.  Handles monitor frames.
3332  * Note that this function allocates space for the FCS and sets it
3333  * to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3334  * higher layers expect it.  0xffffffff is used as a flag to indicate
3335  * the FCS is bogus.
3336  *
3337  * Arguments:
3338  *	wlandev		wlan device structure
3339  *	rxfrm		rx descriptor read from card in int_rx
3340  *
3341  * Returns:
3342  *	nothing
3343  *
3344  * Side effects:
3345  *	Allocates an skb and passes it up via the PF_PACKET interface.
3346  * Call context:
3347  *	interrupt
3348  *----------------------------------------------------------------
3349  */
3350 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
3351 				  struct hfa384x_usb_rxfrm *rxfrm)
3352 {
3353 	struct hfa384x_rx_frame *rxdesc = &rxfrm->desc;
3354 	unsigned int hdrlen = 0;
3355 	unsigned int datalen = 0;
3356 	unsigned int skblen = 0;
3357 	u8 *datap;
3358 	u16 fc;
3359 	struct sk_buff *skb;
3360 	struct hfa384x *hw = wlandev->priv;
3361 
3362 	/* Remember the status, time, and data_len fields are in host order */
3363 	/* Figure out how big the frame is */
3364 	fc = le16_to_cpu(rxdesc->frame_control);
3365 	hdrlen = p80211_headerlen(fc);
3366 	datalen = le16_to_cpu(rxdesc->data_len);
3367 
3368 	/* Allocate an ind message+framesize skb */
3369 	skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3370 
3371 	/* sanity check the length */
3372 	if (skblen >
3373 	    (sizeof(struct p80211_caphdr) +
3374 	     WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3375 		pr_debug("overlen frm: len=%zd\n",
3376 			 skblen - sizeof(struct p80211_caphdr));
3377 	}
3378 
3379 	skb = dev_alloc_skb(skblen);
3380 	if (!skb)
3381 		return;
3382 
3383 	/* only prepend the prism header if in the right mode */
3384 	if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3385 	    (hw->sniffhdr != 0)) {
3386 		struct p80211_caphdr *caphdr;
3387 		/* The NEW header format! */
3388 		datap = skb_put(skb, sizeof(struct p80211_caphdr));
3389 		caphdr = (struct p80211_caphdr *)datap;
3390 
3391 		caphdr->version = htonl(P80211CAPTURE_VERSION);
3392 		caphdr->length = htonl(sizeof(struct p80211_caphdr));
3393 		caphdr->mactime = __cpu_to_be64(rxdesc->time * 1000);
3394 		caphdr->hosttime = __cpu_to_be64(jiffies);
3395 		caphdr->phytype = htonl(4);	/* dss_dot11_b */
3396 		caphdr->channel = htonl(hw->sniff_channel);
3397 		caphdr->datarate = htonl(rxdesc->rate);
3398 		caphdr->antenna = htonl(0);	/* unknown */
3399 		caphdr->priority = htonl(0);	/* unknown */
3400 		caphdr->ssi_type = htonl(3);	/* rssi_raw */
3401 		caphdr->ssi_signal = htonl(rxdesc->signal);
3402 		caphdr->ssi_noise = htonl(rxdesc->silence);
3403 		caphdr->preamble = htonl(0);	/* unknown */
3404 		caphdr->encoding = htonl(1);	/* cck */
3405 	}
3406 
3407 	/* Copy the 802.11 header to the skb
3408 	 * (ctl frames may be less than a full header)
3409 	 */
3410 	skb_put_data(skb, &rxdesc->frame_control, hdrlen);
3411 
3412 	/* If any, copy the data from the card to the skb */
3413 	if (datalen > 0) {
3414 		datap = skb_put_data(skb, rxfrm->data, datalen);
3415 
3416 		/* check for unencrypted stuff if WEP bit set. */
3417 		if (*(datap - hdrlen + 1) & 0x40)	/* wep set */
3418 			if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3419 				/* clear wep; it's the 802.2 header! */
3420 				*(datap - hdrlen + 1) &= 0xbf;
3421 	}
3422 
3423 	if (hw->sniff_fcs) {
3424 		/* Set the FCS */
3425 		datap = skb_put(skb, WLAN_CRC_LEN);
3426 		memset(datap, 0xff, WLAN_CRC_LEN);
3427 	}
3428 
3429 	/* pass it back up */
3430 	p80211netdev_rx(wlandev, skb);
3431 }
3432 
3433 /*----------------------------------------------------------------
3434  * hfa384x_usbin_info
3435  *
3436  * At this point we have a successful received a Prism2 info frame.
3437  *
3438  * Arguments:
3439  *	wlandev		wlan device
3440  *	usbin		ptr to the usb transfer buffer
3441  *
3442  * Returns:
3443  *	nothing
3444  *
3445  * Side effects:
3446  *
3447  * Call context:
3448  *	interrupt
3449  *----------------------------------------------------------------
3450  */
3451 static void hfa384x_usbin_info(struct wlandevice *wlandev,
3452 			       union hfa384x_usbin *usbin)
3453 {
3454 	le16_to_cpus(&usbin->infofrm.info.framelen);
3455 	prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3456 }
3457 
3458 /*----------------------------------------------------------------
3459  * hfa384x_usbout_callback
3460  *
3461  * Callback for URBs on the BULKOUT endpoint.
3462  *
3463  * Arguments:
3464  *	urb		ptr to the completed urb
3465  *
3466  * Returns:
3467  *	nothing
3468  *
3469  * Side effects:
3470  *
3471  * Call context:
3472  *	interrupt
3473  *----------------------------------------------------------------
3474  */
3475 static void hfa384x_usbout_callback(struct urb *urb)
3476 {
3477 	struct wlandevice *wlandev = urb->context;
3478 
3479 #ifdef DEBUG_USB
3480 	dbprint_urb(urb);
3481 #endif
3482 
3483 	if (wlandev && wlandev->netdev) {
3484 		switch (urb->status) {
3485 		case 0:
3486 			prism2sta_ev_alloc(wlandev);
3487 			break;
3488 
3489 		case -EPIPE: {
3490 			struct hfa384x *hw = wlandev->priv;
3491 
3492 			netdev_warn(hw->wlandev->netdev,
3493 				    "%s tx pipe stalled: requesting reset\n",
3494 				    wlandev->netdev->name);
3495 			if (!test_and_set_bit(WORK_TX_HALT, &hw->usb_flags))
3496 				schedule_work(&hw->usb_work);
3497 			wlandev->netdev->stats.tx_errors++;
3498 			break;
3499 		}
3500 
3501 		case -EPROTO:
3502 		case -ETIMEDOUT:
3503 		case -EILSEQ: {
3504 			struct hfa384x *hw = wlandev->priv;
3505 
3506 			if (!test_and_set_bit(THROTTLE_TX, &hw->usb_flags) &&
3507 			    !timer_pending(&hw->throttle)) {
3508 				mod_timer(&hw->throttle,
3509 					  jiffies + THROTTLE_JIFFIES);
3510 			}
3511 			wlandev->netdev->stats.tx_errors++;
3512 			netif_stop_queue(wlandev->netdev);
3513 			break;
3514 		}
3515 
3516 		case -ENOENT:
3517 		case -ESHUTDOWN:
3518 			/* Ignorable errors */
3519 			break;
3520 
3521 		default:
3522 			netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3523 				    urb->status);
3524 			wlandev->netdev->stats.tx_errors++;
3525 			break;
3526 		}		/* switch */
3527 	}
3528 }
3529 
3530 /*----------------------------------------------------------------
3531  * hfa384x_ctlxout_callback
3532  *
3533  * Callback for control data on the BULKOUT endpoint.
3534  *
3535  * Arguments:
3536  *	urb		ptr to the completed urb
3537  *
3538  * Returns:
3539  * nothing
3540  *
3541  * Side effects:
3542  *
3543  * Call context:
3544  * interrupt
3545  *----------------------------------------------------------------
3546  */
3547 static void hfa384x_ctlxout_callback(struct urb *urb)
3548 {
3549 	struct hfa384x *hw = urb->context;
3550 	int delete_resptimer = 0;
3551 	int timer_ok = 1;
3552 	int run_queue = 0;
3553 	struct hfa384x_usbctlx *ctlx;
3554 	unsigned long flags;
3555 
3556 	pr_debug("urb->status=%d\n", urb->status);
3557 #ifdef DEBUG_USB
3558 	dbprint_urb(urb);
3559 #endif
3560 	if ((urb->status == -ESHUTDOWN) ||
3561 	    (urb->status == -ENODEV) || !hw)
3562 		return;
3563 
3564 retry:
3565 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3566 
3567 	/*
3568 	 * Only one CTLX at a time on the "active" list, and
3569 	 * none at all if we are unplugged. However, we can
3570 	 * rely on the disconnect function to clean everything
3571 	 * up if someone unplugged the adapter.
3572 	 */
3573 	if (list_empty(&hw->ctlxq.active)) {
3574 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3575 		return;
3576 	}
3577 
3578 	/*
3579 	 * Having something on the "active" queue means
3580 	 * that we have timers to worry about ...
3581 	 */
3582 	if (del_timer(&hw->reqtimer) == 0) {
3583 		if (hw->req_timer_done == 0) {
3584 			/*
3585 			 * This timer was actually running while we
3586 			 * were trying to delete it. Let it terminate
3587 			 * gracefully instead.
3588 			 */
3589 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3590 			goto retry;
3591 		}
3592 	} else {
3593 		hw->req_timer_done = 1;
3594 	}
3595 
3596 	ctlx = get_active_ctlx(hw);
3597 
3598 	if (urb->status == 0) {
3599 		/* Request portion of a CTLX is successful */
3600 		switch (ctlx->state) {
3601 		case CTLX_REQ_SUBMITTED:
3602 			/* This OUT-ACK received before IN */
3603 			ctlx->state = CTLX_REQ_COMPLETE;
3604 			break;
3605 
3606 		case CTLX_RESP_COMPLETE:
3607 			/* IN already received before this OUT-ACK,
3608 			 * so this command must now be complete.
3609 			 */
3610 			ctlx->state = CTLX_COMPLETE;
3611 			unlocked_usbctlx_complete(hw, ctlx);
3612 			run_queue = 1;
3613 			break;
3614 
3615 		default:
3616 			/* This is NOT a valid CTLX "success" state! */
3617 			netdev_err(hw->wlandev->netdev,
3618 				   "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3619 				   le16_to_cpu(ctlx->outbuf.type),
3620 				   ctlxstr(ctlx->state), urb->status);
3621 			break;
3622 		}		/* switch */
3623 	} else {
3624 		/* If the pipe has stalled then we need to reset it */
3625 		if ((urb->status == -EPIPE) &&
3626 		    !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3627 			netdev_warn(hw->wlandev->netdev,
3628 				    "%s tx pipe stalled: requesting reset\n",
3629 				    hw->wlandev->netdev->name);
3630 			schedule_work(&hw->usb_work);
3631 		}
3632 
3633 		/* If someone cancels the OUT URB then its status
3634 		 * should be either -ECONNRESET or -ENOENT.
3635 		 */
3636 		ctlx->state = CTLX_REQ_FAILED;
3637 		unlocked_usbctlx_complete(hw, ctlx);
3638 		delete_resptimer = 1;
3639 		run_queue = 1;
3640 	}
3641 
3642 delresp:
3643 	if (delete_resptimer) {
3644 		timer_ok = del_timer(&hw->resptimer);
3645 		if (timer_ok != 0)
3646 			hw->resp_timer_done = 1;
3647 	}
3648 
3649 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3650 
3651 	if (!timer_ok && (hw->resp_timer_done == 0)) {
3652 		spin_lock_irqsave(&hw->ctlxq.lock, flags);
3653 		goto delresp;
3654 	}
3655 
3656 	if (run_queue)
3657 		hfa384x_usbctlxq_run(hw);
3658 }
3659 
3660 /*----------------------------------------------------------------
3661  * hfa384x_usbctlx_reqtimerfn
3662  *
3663  * Timer response function for CTLX request timeouts.  If this
3664  * function is called, it means that the callback for the OUT
3665  * URB containing a Prism2.x XXX_Request was never called.
3666  *
3667  * Arguments:
3668  *	data		a ptr to the struct hfa384x
3669  *
3670  * Returns:
3671  *	nothing
3672  *
3673  * Side effects:
3674  *
3675  * Call context:
3676  *	interrupt
3677  *----------------------------------------------------------------
3678  */
3679 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t)
3680 {
3681 	struct hfa384x *hw = from_timer(hw, t, reqtimer);
3682 	unsigned long flags;
3683 
3684 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3685 
3686 	hw->req_timer_done = 1;
3687 
3688 	/* Removing the hardware automatically empties
3689 	 * the active list ...
3690 	 */
3691 	if (!list_empty(&hw->ctlxq.active)) {
3692 		/*
3693 		 * We must ensure that our URB is removed from
3694 		 * the system, if it hasn't already expired.
3695 		 */
3696 		hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3697 		if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3698 			struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3699 
3700 			ctlx->state = CTLX_REQ_FAILED;
3701 
3702 			/* This URB was active, but has now been
3703 			 * cancelled. It will now have a status of
3704 			 * -ECONNRESET in the callback function.
3705 			 *
3706 			 * We are cancelling this CTLX, so we're
3707 			 * not going to need to wait for a response.
3708 			 * The URB's callback function will check
3709 			 * that this timer is truly dead.
3710 			 */
3711 			if (del_timer(&hw->resptimer) != 0)
3712 				hw->resp_timer_done = 1;
3713 		}
3714 	}
3715 
3716 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3717 }
3718 
3719 /*----------------------------------------------------------------
3720  * hfa384x_usbctlx_resptimerfn
3721  *
3722  * Timer response function for CTLX response timeouts.  If this
3723  * function is called, it means that the callback for the IN
3724  * URB containing a Prism2.x XXX_Response was never called.
3725  *
3726  * Arguments:
3727  *	data		a ptr to the struct hfa384x
3728  *
3729  * Returns:
3730  *	nothing
3731  *
3732  * Side effects:
3733  *
3734  * Call context:
3735  *	interrupt
3736  *----------------------------------------------------------------
3737  */
3738 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t)
3739 {
3740 	struct hfa384x *hw = from_timer(hw, t, resptimer);
3741 	unsigned long flags;
3742 
3743 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3744 
3745 	hw->resp_timer_done = 1;
3746 
3747 	/* The active list will be empty if the
3748 	 * adapter has been unplugged ...
3749 	 */
3750 	if (!list_empty(&hw->ctlxq.active)) {
3751 		struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3752 
3753 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3754 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3755 			hfa384x_usbctlxq_run(hw);
3756 			return;
3757 		}
3758 	}
3759 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3760 }
3761 
3762 /*----------------------------------------------------------------
3763  * hfa384x_usb_throttlefn
3764  *
3765  *
3766  * Arguments:
3767  *	data	ptr to hw
3768  *
3769  * Returns:
3770  *	Nothing
3771  *
3772  * Side effects:
3773  *
3774  * Call context:
3775  *	Interrupt
3776  *----------------------------------------------------------------
3777  */
3778 static void hfa384x_usb_throttlefn(struct timer_list *t)
3779 {
3780 	struct hfa384x *hw = from_timer(hw, t, throttle);
3781 	unsigned long flags;
3782 
3783 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3784 
3785 	/*
3786 	 * We need to check BOTH the RX and the TX throttle controls,
3787 	 * so we use the bitwise OR instead of the logical OR.
3788 	 */
3789 	pr_debug("flags=0x%lx\n", hw->usb_flags);
3790 	if (!hw->wlandev->hwremoved &&
3791 	    ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3792 	      !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags)) |
3793 	     (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3794 	      !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
3795 	    )) {
3796 		schedule_work(&hw->usb_work);
3797 	}
3798 
3799 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3800 }
3801 
3802 /*----------------------------------------------------------------
3803  * hfa384x_usbctlx_submit
3804  *
3805  * Called from the doxxx functions to submit a CTLX to the queue
3806  *
3807  * Arguments:
3808  *	hw		ptr to the hw struct
3809  *	ctlx		ctlx structure to enqueue
3810  *
3811  * Returns:
3812  *	-ENODEV if the adapter is unplugged
3813  *	0
3814  *
3815  * Side effects:
3816  *
3817  * Call context:
3818  *	process or interrupt
3819  *----------------------------------------------------------------
3820  */
3821 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
3822 				  struct hfa384x_usbctlx *ctlx)
3823 {
3824 	unsigned long flags;
3825 
3826 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3827 
3828 	if (hw->wlandev->hwremoved) {
3829 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3830 		return -ENODEV;
3831 	}
3832 
3833 	ctlx->state = CTLX_PENDING;
3834 	list_add_tail(&ctlx->list, &hw->ctlxq.pending);
3835 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3836 	hfa384x_usbctlxq_run(hw);
3837 
3838 	return 0;
3839 }
3840 
3841 /*----------------------------------------------------------------
3842  * hfa384x_isgood_pdrcore
3843  *
3844  * Quick check of PDR codes.
3845  *
3846  * Arguments:
3847  *	pdrcode		PDR code number (host order)
3848  *
3849  * Returns:
3850  *	zero		not good.
3851  *	one		is good.
3852  *
3853  * Side effects:
3854  *
3855  * Call context:
3856  *----------------------------------------------------------------
3857  */
3858 static int hfa384x_isgood_pdrcode(u16 pdrcode)
3859 {
3860 	switch (pdrcode) {
3861 	case HFA384x_PDR_END_OF_PDA:
3862 	case HFA384x_PDR_PCB_PARTNUM:
3863 	case HFA384x_PDR_PDAVER:
3864 	case HFA384x_PDR_NIC_SERIAL:
3865 	case HFA384x_PDR_MKK_MEASUREMENTS:
3866 	case HFA384x_PDR_NIC_RAMSIZE:
3867 	case HFA384x_PDR_MFISUPRANGE:
3868 	case HFA384x_PDR_CFISUPRANGE:
3869 	case HFA384x_PDR_NICID:
3870 	case HFA384x_PDR_MAC_ADDRESS:
3871 	case HFA384x_PDR_REGDOMAIN:
3872 	case HFA384x_PDR_ALLOWED_CHANNEL:
3873 	case HFA384x_PDR_DEFAULT_CHANNEL:
3874 	case HFA384x_PDR_TEMPTYPE:
3875 	case HFA384x_PDR_IFR_SETTING:
3876 	case HFA384x_PDR_RFR_SETTING:
3877 	case HFA384x_PDR_HFA3861_BASELINE:
3878 	case HFA384x_PDR_HFA3861_SHADOW:
3879 	case HFA384x_PDR_HFA3861_IFRF:
3880 	case HFA384x_PDR_HFA3861_CHCALSP:
3881 	case HFA384x_PDR_HFA3861_CHCALI:
3882 	case HFA384x_PDR_3842_NIC_CONFIG:
3883 	case HFA384x_PDR_USB_ID:
3884 	case HFA384x_PDR_PCI_ID:
3885 	case HFA384x_PDR_PCI_IFCONF:
3886 	case HFA384x_PDR_PCI_PMCONF:
3887 	case HFA384x_PDR_RFENRGY:
3888 	case HFA384x_PDR_HFA3861_MANF_TESTSP:
3889 	case HFA384x_PDR_HFA3861_MANF_TESTI:
3890 		/* code is OK */
3891 		return 1;
3892 	default:
3893 		if (pdrcode < 0x1000) {
3894 			/* code is OK, but we don't know exactly what it is */
3895 			pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
3896 				 pdrcode);
3897 			return 1;
3898 		}
3899 		break;
3900 	}
3901 	/* bad code */
3902 	pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
3903 		 pdrcode);
3904 	return 0;
3905 }
3906