xref: /openbmc/linux/drivers/staging/vt6656/card.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
4  * All rights reserved.
5  *
6  * File: card.c
7  * Purpose: Provide functions to setup NIC operation mode
8  * Functions:
9  *      vnt_set_rspinf - Set RSPINF
10  *      vnt_update_ifs - Update slotTime,SIFS,DIFS, and EIFS
11  *      vnt_update_top_rates - Update BasicTopRate
12  *      vnt_add_basic_rate - Add to BasicRateSet
13  *      vnt_ofdm_min_rate - Check if any OFDM rate is in BasicRateSet
14  *      vnt_get_tsf_offset - Calculate TSFOffset
15  *      vnt_get_current_tsf - Read Current NIC TSF counter
16  *      vnt_get_next_tbtt - Calculate Next Beacon TSF counter
17  *      vnt_reset_next_tbtt - Set NIC Beacon time
18  *      vnt_update_next_tbtt - Sync. NIC Beacon time
19  *      vnt_radio_power_off - Turn Off NIC Radio Power
20  *      vnt_radio_power_on - Turn On NIC Radio Power
21  *
22  * Revision History:
23  *      06-10-2003 Bryan YC Fan:  Re-write codes to support VT3253 spec.
24  *      08-26-2003 Kyle Hsu:      Modify the definition type of dwIoBase.
25  *      09-01-2003 Bryan YC Fan:  Add vnt_update_ifs().
26  *
27  */
28 
29 #include <linux/bitops.h>
30 #include <linux/errno.h>
31 #include "device.h"
32 #include "card.h"
33 #include "baseband.h"
34 #include "mac.h"
35 #include "desc.h"
36 #include "rf.h"
37 #include "power.h"
38 #include "key.h"
39 #include "usbpipe.h"
40 
41 /* const u16 cw_rxbcntsf_off[MAX_RATE] =
42  *   {17, 34, 96, 192, 34, 23, 17, 11, 8, 5, 4, 3};
43  */
44 
45 static const u16 cw_rxbcntsf_off[MAX_RATE] = {
46 	192, 96, 34, 17, 34, 23, 17, 11, 8, 5, 4, 3
47 };
48 
49 int vnt_set_channel(struct vnt_private *priv, u32 connection_channel)
50 {
51 	int ret;
52 
53 	if (connection_channel > CB_MAX_CHANNEL || !connection_channel)
54 		return -EINVAL;
55 
56 	/* clear NAV */
57 	vnt_mac_reg_bits_on(priv, MAC_REG_MACCR, MACCR_CLRNAV);
58 
59 	/* Set Channel[7] = 0 to tell H/W channel is changing now. */
60 	vnt_mac_reg_bits_off(priv, MAC_REG_CHANNEL,
61 			     (BIT(7) | BIT(5) | BIT(4)));
62 
63 	ret = vnt_control_out(priv, MESSAGE_TYPE_SELECT_CHANNEL,
64 			      connection_channel, 0, 0, NULL);
65 	if (ret)
66 		return ret;
67 
68 	return vnt_control_out_u8(priv, MESSAGE_REQUEST_MACREG, MAC_REG_CHANNEL,
69 				  (u8)(connection_channel | 0x80));
70 }
71 
72 static const u8 vnt_rspinf_b_short_table[] = {
73 	0x70, 0x00, 0x00, 0x00, 0x38, 0x00, 0x09, 0x00,
74 	0x15, 0x00, 0x0a, 0x00, 0x0b, 0x00, 0x0b, 0x80
75 };
76 
77 static const u8 vnt_rspinf_b_long_table[] = {
78 	0x70, 0x00, 0x00, 0x00, 0x38, 0x00, 0x01, 0x00,
79 	0x15, 0x00, 0x02, 0x00, 0x0b, 0x00, 0x03, 0x80
80 };
81 
82 static const u8 vnt_rspinf_a_table[] = {
83 	0x9b, 0x18, 0x9f, 0x10, 0x9a, 0x0a, 0x9e, 0x08, 0x99,
84 	0x08, 0x9d, 0x04, 0x98, 0x04, 0x9c, 0x04, 0x9c, 0x04
85 };
86 
87 static const u8 vnt_rspinf_gb_table[] = {
88 	0x8b, 0x1e, 0x8f, 0x16, 0x8a, 0x12, 0x8e, 0x0e, 0x89,
89 	0x0e, 0x8d, 0x0a, 0x88, 0x0a, 0x8c, 0x0a, 0x8c, 0x0a
90 };
91 
92 int vnt_set_rspinf(struct vnt_private *priv, u8 bb_type)
93 {
94 	const u8 *data;
95 	u16 len;
96 	int ret;
97 
98 	if (priv->preamble_type) {
99 		data = vnt_rspinf_b_short_table;
100 		len = ARRAY_SIZE(vnt_rspinf_b_short_table);
101 	} else {
102 		data = vnt_rspinf_b_long_table;
103 		len = ARRAY_SIZE(vnt_rspinf_b_long_table);
104 	}
105 
106 	 /* RSPINF_b_1 to RSPINF_b_11 */
107 	ret = vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_RSPINF_B_1,
108 			      MESSAGE_REQUEST_MACREG, len, data);
109 	if (ret)
110 		return ret;
111 
112 	if (bb_type == BB_TYPE_11A) {
113 		data = vnt_rspinf_a_table;
114 		len = ARRAY_SIZE(vnt_rspinf_a_table);
115 	} else {
116 		data = vnt_rspinf_gb_table;
117 		len = ARRAY_SIZE(vnt_rspinf_gb_table);
118 	}
119 
120 	/* RSPINF_a_6 to RSPINF_a_72 */
121 	return vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_RSPINF_A_6,
122 			       MESSAGE_REQUEST_MACREG, len, data);
123 }
124 
125 int vnt_update_ifs(struct vnt_private *priv)
126 {
127 	u8 max_min = 0;
128 	u8 data[4];
129 	int ret;
130 
131 	if (priv->packet_type == PK_TYPE_11A) {
132 		priv->slot = C_SLOT_SHORT;
133 		priv->sifs = C_SIFS_A;
134 		priv->difs = C_SIFS_A + 2 * C_SLOT_SHORT;
135 		max_min = 4;
136 	} else {
137 		priv->sifs = C_SIFS_BG;
138 
139 		if (priv->short_slot_time) {
140 			priv->slot = C_SLOT_SHORT;
141 			max_min = 4;
142 		} else {
143 			priv->slot = C_SLOT_LONG;
144 			max_min = 5;
145 		}
146 
147 		priv->difs = C_SIFS_BG + 2 * priv->slot;
148 	}
149 
150 	priv->eifs = C_EIFS;
151 
152 	data[0] = (u8)priv->sifs;
153 	data[1] = (u8)priv->difs;
154 	data[2] = (u8)priv->eifs;
155 	data[3] = (u8)priv->slot;
156 
157 	ret = vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_SIFS,
158 			      MESSAGE_REQUEST_MACREG, 4, &data[0]);
159 	if (ret)
160 		return ret;
161 
162 	max_min |= 0xa0;
163 
164 	return vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_CWMAXMIN0,
165 			       MESSAGE_REQUEST_MACREG, 1, &max_min);
166 }
167 
168 void vnt_update_top_rates(struct vnt_private *priv)
169 {
170 	int pos;
171 
172 	pos = fls(priv->basic_rates & GENMASK(RATE_54M, RATE_6M));
173 	priv->top_ofdm_basic_rate = pos ? (pos - 1) : RATE_24M;
174 
175 	pos = fls(priv->basic_rates & GENMASK(RATE_11M, RATE_1M));
176 	priv->top_cck_basic_rate = pos ? (pos - 1) : RATE_1M;
177 }
178 
179 bool vnt_ofdm_min_rate(struct vnt_private *priv)
180 {
181 	return priv->basic_rates & GENMASK(RATE_54M, RATE_6M) ? true : false;
182 }
183 
184 u8 vnt_get_pkt_type(struct vnt_private *priv)
185 {
186 	if (priv->bb_type == BB_TYPE_11A || priv->bb_type == BB_TYPE_11B)
187 		return (u8)priv->bb_type;
188 	else if (vnt_ofdm_min_rate(priv))
189 		return PK_TYPE_11GA;
190 	return PK_TYPE_11GB;
191 }
192 
193 /*
194  * Description: Calculate TSF offset of two TSF input
195  *              Get TSF Offset from RxBCN's TSF and local TSF
196  *
197  * Parameters:
198  *  In:
199  *      rx_rate	- rx rate.
200  *      tsf1	- Rx BCN's TSF
201  *      tsf2	- Local TSF
202  *  Out:
203  *      none
204  *
205  * Return Value: TSF Offset value
206  *
207  */
208 u64 vnt_get_tsf_offset(u8 rx_rate, u64 tsf1, u64 tsf2)
209 {
210 	return tsf1 - tsf2 - (u64)cw_rxbcntsf_off[rx_rate % MAX_RATE];
211 }
212 
213 int vnt_adjust_tsf(struct vnt_private *priv, u8 rx_rate,
214 		   u64 time_stamp, u64 local_tsf)
215 {
216 	u64 tsf_offset = 0;
217 	u8 data[8];
218 
219 	tsf_offset = vnt_get_tsf_offset(rx_rate, time_stamp, local_tsf);
220 
221 	data[0] = (u8)tsf_offset;
222 	data[1] = (u8)(tsf_offset >> 8);
223 	data[2] = (u8)(tsf_offset >> 16);
224 	data[3] = (u8)(tsf_offset >> 24);
225 	data[4] = (u8)(tsf_offset >> 32);
226 	data[5] = (u8)(tsf_offset >> 40);
227 	data[6] = (u8)(tsf_offset >> 48);
228 	data[7] = (u8)(tsf_offset >> 56);
229 
230 	return vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
231 			       MESSAGE_REQUEST_TSF, 0, 8, data);
232 }
233 
234 /*
235  * Description: Read NIC TSF counter
236  *              Get local TSF counter
237  *
238  * Parameters:
239  *  In:
240  *	priv		- The adapter to be read
241  *  Out:
242  *	current_tsf	- Current TSF counter
243  *
244  * Return Value: true if success; otherwise false
245  *
246  */
247 bool vnt_get_current_tsf(struct vnt_private *priv, u64 *current_tsf)
248 {
249 	*current_tsf = priv->current_tsf;
250 
251 	return true;
252 }
253 
254 /*
255  * Description: Clear NIC TSF counter
256  *              Clear local TSF counter
257  *
258  * Parameters:
259  *  In:
260  *      priv	- The adapter to be read
261  *
262  * Return Value: true if success; otherwise false
263  *
264  */
265 bool vnt_clear_current_tsf(struct vnt_private *priv)
266 {
267 	vnt_mac_reg_bits_on(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTRST);
268 
269 	priv->current_tsf = 0;
270 
271 	return true;
272 }
273 
274 /*
275  * Description: Read NIC TSF counter
276  *              Get NEXTTBTT from adjusted TSF and Beacon Interval
277  *
278  * Parameters:
279  *  In:
280  *      tsf		- Current TSF counter
281  *      beacon_interval - Beacon Interval
282  *  Out:
283  *      tsf		- Current TSF counter
284  *
285  * Return Value: TSF value of next Beacon
286  *
287  */
288 u64 vnt_get_next_tbtt(u64 tsf, u16 beacon_interval)
289 {
290 	u32 beacon_int;
291 
292 	beacon_int = beacon_interval * 1024;
293 
294 	/* Next TBTT =
295 	 *	((local_current_TSF / beacon_interval) + 1) * beacon_interval
296 	 */
297 	if (beacon_int) {
298 		do_div(tsf, beacon_int);
299 		tsf += 1;
300 		tsf *= beacon_int;
301 	}
302 
303 	return tsf;
304 }
305 
306 int vnt_reset_next_tbtt(struct vnt_private *priv, u16 beacon_interval)
307 {
308 	u64 next_tbtt = 0;
309 	u8 data[8];
310 
311 	vnt_clear_current_tsf(priv);
312 
313 	next_tbtt = vnt_get_next_tbtt(next_tbtt, beacon_interval);
314 
315 	data[0] = (u8)next_tbtt;
316 	data[1] = (u8)(next_tbtt >> 8);
317 	data[2] = (u8)(next_tbtt >> 16);
318 	data[3] = (u8)(next_tbtt >> 24);
319 	data[4] = (u8)(next_tbtt >> 32);
320 	data[5] = (u8)(next_tbtt >> 40);
321 	data[6] = (u8)(next_tbtt >> 48);
322 	data[7] = (u8)(next_tbtt >> 56);
323 
324 	return vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
325 			       MESSAGE_REQUEST_TBTT, 0, 8, data);
326 }
327 
328 int vnt_update_next_tbtt(struct vnt_private *priv, u64 tsf,
329 			 u16 beacon_interval)
330 {
331 	u8 data[8];
332 	int ret;
333 
334 	tsf = vnt_get_next_tbtt(tsf, beacon_interval);
335 
336 	data[0] = (u8)tsf;
337 	data[1] = (u8)(tsf >> 8);
338 	data[2] = (u8)(tsf >> 16);
339 	data[3] = (u8)(tsf >> 24);
340 	data[4] = (u8)(tsf >> 32);
341 	data[5] = (u8)(tsf >> 40);
342 	data[6] = (u8)(tsf >> 48);
343 	data[7] = (u8)(tsf >> 56);
344 
345 	ret = vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
346 			      MESSAGE_REQUEST_TBTT, 0, 8, data);
347 	if (ret)
348 		return ret;
349 
350 	dev_dbg(&priv->usb->dev, "%s TBTT: %8llx\n", __func__, tsf);
351 	return 0;
352 }
353 
354 /*
355  * Description: Turn off Radio power
356  *
357  * Parameters:
358  *  In:
359  *      priv         - The adapter to be turned off
360  *  Out:
361  *      none
362  *
363  * Return Value: true if success; otherwise false
364  *
365  */
366 int vnt_radio_power_off(struct vnt_private *priv)
367 {
368 	int ret = 0;
369 
370 	switch (priv->rf_type) {
371 	case RF_AL2230:
372 	case RF_AL2230S:
373 	case RF_AIROHA7230:
374 	case RF_VT3226:
375 	case RF_VT3226D0:
376 	case RF_VT3342A0:
377 		ret = vnt_mac_reg_bits_off(priv, MAC_REG_SOFTPWRCTL,
378 					   (SOFTPWRCTL_SWPE2 |
379 					    SOFTPWRCTL_SWPE3));
380 		break;
381 	}
382 
383 	if (ret)
384 		goto end;
385 
386 	ret = vnt_mac_reg_bits_off(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
387 	if (ret)
388 		goto end;
389 
390 	ret = vnt_set_deep_sleep(priv);
391 	if (ret)
392 		goto end;
393 
394 	ret = vnt_mac_reg_bits_on(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
395 
396 end:
397 	return ret;
398 }
399 
400 /*
401  * Description: Turn on Radio power
402  *
403  * Parameters:
404  *  In:
405  *      priv         - The adapter to be turned on
406  *  Out:
407  *      none
408  *
409  * Return Value: true if success; otherwise false
410  *
411  */
412 int vnt_radio_power_on(struct vnt_private *priv)
413 {
414 	int ret = 0;
415 
416 	ret = vnt_exit_deep_sleep(priv);
417 	if (ret)
418 		return ret;
419 
420 	ret = vnt_mac_reg_bits_on(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
421 	if (ret)
422 		return ret;
423 
424 	switch (priv->rf_type) {
425 	case RF_AL2230:
426 	case RF_AL2230S:
427 	case RF_AIROHA7230:
428 	case RF_VT3226:
429 	case RF_VT3226D0:
430 	case RF_VT3342A0:
431 		ret = vnt_mac_reg_bits_on(priv, MAC_REG_SOFTPWRCTL,
432 					  (SOFTPWRCTL_SWPE2 |
433 					   SOFTPWRCTL_SWPE3));
434 		if (ret)
435 			return ret;
436 	}
437 
438 	return vnt_mac_reg_bits_off(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
439 }
440 
441 int vnt_set_bss_mode(struct vnt_private *priv)
442 {
443 	int ret;
444 	unsigned char type = priv->bb_type;
445 	unsigned char data = 0;
446 	unsigned char bb_vga_0 = 0x1c;
447 	unsigned char bb_vga_2_3 = 0x00;
448 
449 	if (priv->rf_type == RF_AIROHA7230 && priv->bb_type == BB_TYPE_11A)
450 		type = BB_TYPE_11G;
451 
452 	ret = vnt_mac_set_bb_type(priv, type);
453 	if (ret)
454 		return ret;
455 
456 	priv->packet_type = vnt_get_pkt_type(priv);
457 
458 	if (priv->bb_type == BB_TYPE_11A) {
459 		data = 0x03;
460 		bb_vga_0 = 0x20;
461 		bb_vga_2_3 = 0x10;
462 	} else if (priv->bb_type == BB_TYPE_11B) {
463 		data = 0x02;
464 	} else if (priv->bb_type == BB_TYPE_11G) {
465 		data = 0x08;
466 	}
467 
468 	if (data) {
469 		ret = vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
470 					 0x88, data);
471 		if (ret)
472 			return ret;
473 	}
474 
475 	ret = vnt_update_ifs(priv);
476 	if (ret)
477 		return ret;
478 
479 	ret = vnt_set_rspinf(priv, priv->bb_type);
480 	if (ret)
481 		return ret;
482 
483 	if (priv->rf_type == RF_AIROHA7230) {
484 		priv->bb_vga[0] = bb_vga_0;
485 
486 		ret = vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
487 					 0xe7, priv->bb_vga[0]);
488 		if (ret)
489 			return ret;
490 	}
491 
492 	priv->bb_vga[2] = bb_vga_2_3;
493 	priv->bb_vga[3] = bb_vga_2_3;
494 
495 	return vnt_set_vga_gain_offset(priv, priv->bb_vga[0]);
496 }
497