xref: /openbmc/linux/drivers/staging/rts5208/rtsx.c (revision 7663edc1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Realtek PCI-Express card reader
4  *
5  * Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
6  *
7  * Author:
8  *   Wei WANG (wei_wang@realsil.com.cn)
9  *   Micky Ching (micky_ching@realsil.com.cn)
10  */
11 
12 #include <linux/blkdev.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/workqueue.h>
16 
17 #include "rtsx.h"
18 #include "ms.h"
19 #include "sd.h"
20 #include "xd.h"
21 
22 MODULE_DESCRIPTION("Realtek PCI-Express card reader rts5208/rts5288 driver");
23 MODULE_LICENSE("GPL");
24 
25 static unsigned int delay_use = 1;
26 module_param(delay_use, uint, 0644);
27 MODULE_PARM_DESC(delay_use, "seconds to delay before using a new device");
28 
29 static int ss_en;
30 module_param(ss_en, int, 0644);
31 MODULE_PARM_DESC(ss_en, "enable selective suspend");
32 
33 static int ss_interval = 50;
34 module_param(ss_interval, int, 0644);
35 MODULE_PARM_DESC(ss_interval, "Interval to enter ss state in seconds");
36 
37 static int auto_delink_en;
38 module_param(auto_delink_en, int, 0644);
39 MODULE_PARM_DESC(auto_delink_en, "enable auto delink");
40 
41 static unsigned char aspm_l0s_l1_en;
42 module_param(aspm_l0s_l1_en, byte, 0644);
43 MODULE_PARM_DESC(aspm_l0s_l1_en, "enable device aspm");
44 
45 static int msi_en;
46 module_param(msi_en, int, 0644);
47 MODULE_PARM_DESC(msi_en, "enable msi");
48 
49 static irqreturn_t rtsx_interrupt(int irq, void *dev_id);
50 
51 /***********************************************************************
52  * Host functions
53  ***********************************************************************/
54 
55 static const char *host_info(struct Scsi_Host *host)
56 {
57 	return "SCSI emulation for PCI-Express Mass Storage devices";
58 }
59 
60 static int slave_alloc(struct scsi_device *sdev)
61 {
62 	/*
63 	 * Set the INQUIRY transfer length to 36.  We don't use any of
64 	 * the extra data and many devices choke if asked for more or
65 	 * less than 36 bytes.
66 	 */
67 	sdev->inquiry_len = 36;
68 	return 0;
69 }
70 
71 static int slave_configure(struct scsi_device *sdev)
72 {
73 	/*
74 	 * Scatter-gather buffers (all but the last) must have a length
75 	 * divisible by the bulk maxpacket size.  Otherwise a data packet
76 	 * would end up being short, causing a premature end to the data
77 	 * transfer.  Since high-speed bulk pipes have a maxpacket size
78 	 * of 512, we'll use that as the scsi device queue's DMA alignment
79 	 * mask.  Guaranteeing proper alignment of the first buffer will
80 	 * have the desired effect because, except at the beginning and
81 	 * the end, scatter-gather buffers follow page boundaries.
82 	 */
83 	blk_queue_dma_alignment(sdev->request_queue, (512 - 1));
84 
85 	/* Set the SCSI level to at least 2.  We'll leave it at 3 if that's
86 	 * what is originally reported.  We need this to avoid confusing
87 	 * the SCSI layer with devices that report 0 or 1, but need 10-byte
88 	 * commands (ala ATAPI devices behind certain bridges, or devices
89 	 * which simply have broken INQUIRY data).
90 	 *
91 	 * NOTE: This means /dev/sg programs (ala cdrecord) will get the
92 	 * actual information.  This seems to be the preference for
93 	 * programs like that.
94 	 *
95 	 * NOTE: This also means that /proc/scsi/scsi and sysfs may report
96 	 * the actual value or the modified one, depending on where the
97 	 * data comes from.
98 	 */
99 	if (sdev->scsi_level < SCSI_2) {
100 		sdev->scsi_level = SCSI_2;
101 		sdev->sdev_target->scsi_level = SCSI_2;
102 	}
103 
104 	return 0;
105 }
106 
107 /***********************************************************************
108  * /proc/scsi/ functions
109  ***********************************************************************/
110 
111 /* we use this macro to help us write into the buffer */
112 #undef SPRINTF
113 #define SPRINTF(args...) \
114 	do { \
115 		if (pos < buffer + length) \
116 			pos += sprintf(pos, ## args); \
117 	} while (0)
118 
119 /* queue a command */
120 /* This is always called with scsi_lock(host) held */
121 static int queuecommand_lck(struct scsi_cmnd *srb,
122 			    void (*done)(struct scsi_cmnd *))
123 {
124 	struct rtsx_dev *dev = host_to_rtsx(srb->device->host);
125 	struct rtsx_chip *chip = dev->chip;
126 
127 	/* check for state-transition errors */
128 	if (chip->srb) {
129 		dev_err(&dev->pci->dev, "Error: chip->srb = %p\n",
130 			chip->srb);
131 		return SCSI_MLQUEUE_HOST_BUSY;
132 	}
133 
134 	/* fail the command if we are disconnecting */
135 	if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
136 		dev_info(&dev->pci->dev, "Fail command during disconnect\n");
137 		srb->result = DID_NO_CONNECT << 16;
138 		done(srb);
139 		return 0;
140 	}
141 
142 	/* enqueue the command and wake up the control thread */
143 	srb->scsi_done = done;
144 	chip->srb = srb;
145 	complete(&dev->cmnd_ready);
146 
147 	return 0;
148 }
149 
150 static DEF_SCSI_QCMD(queuecommand)
151 
152 /***********************************************************************
153  * Error handling functions
154  ***********************************************************************/
155 
156 /* Command timeout and abort */
157 static int command_abort(struct scsi_cmnd *srb)
158 {
159 	struct Scsi_Host *host = srb->device->host;
160 	struct rtsx_dev *dev = host_to_rtsx(host);
161 	struct rtsx_chip *chip = dev->chip;
162 
163 	dev_info(&dev->pci->dev, "%s called\n", __func__);
164 
165 	scsi_lock(host);
166 
167 	/* Is this command still active? */
168 	if (chip->srb != srb) {
169 		scsi_unlock(host);
170 		dev_info(&dev->pci->dev, "-- nothing to abort\n");
171 		return FAILED;
172 	}
173 
174 	rtsx_set_stat(chip, RTSX_STAT_ABORT);
175 
176 	scsi_unlock(host);
177 
178 	/* Wait for the aborted command to finish */
179 	wait_for_completion(&dev->notify);
180 
181 	return SUCCESS;
182 }
183 
184 /*
185  * This invokes the transport reset mechanism to reset the state of the
186  * device
187  */
188 static int device_reset(struct scsi_cmnd *srb)
189 {
190 	struct rtsx_dev *dev = host_to_rtsx(srb->device->host);
191 
192 	dev_info(&dev->pci->dev, "%s called\n", __func__);
193 
194 	return SUCCESS;
195 }
196 
197 /*
198  * this defines our host template, with which we'll allocate hosts
199  */
200 
201 static struct scsi_host_template rtsx_host_template = {
202 	/* basic userland interface stuff */
203 	.name =				CR_DRIVER_NAME,
204 	.proc_name =			CR_DRIVER_NAME,
205 	.info =				host_info,
206 
207 	/* command interface -- queued only */
208 	.queuecommand =			queuecommand,
209 
210 	/* error and abort handlers */
211 	.eh_abort_handler =		command_abort,
212 	.eh_device_reset_handler =	device_reset,
213 
214 	/* queue commands only, only one command per LUN */
215 	.can_queue =			1,
216 
217 	/* unknown initiator id */
218 	.this_id =			-1,
219 
220 	.slave_alloc =			slave_alloc,
221 	.slave_configure =		slave_configure,
222 
223 	/* lots of sg segments can be handled */
224 	.sg_tablesize =			SG_ALL,
225 
226 	/* limit the total size of a transfer to 120 KB */
227 	.max_sectors =                  240,
228 
229 	/* emulated HBA */
230 	.emulated =			1,
231 
232 	/* we do our own delay after a device or bus reset */
233 	.skip_settle_delay =		1,
234 
235 	/* module management */
236 	.module =			THIS_MODULE
237 };
238 
239 static int rtsx_acquire_irq(struct rtsx_dev *dev)
240 {
241 	struct rtsx_chip *chip = dev->chip;
242 
243 	dev_info(&dev->pci->dev, "%s: chip->msi_en = %d, pci->irq = %d\n",
244 		 __func__, chip->msi_en, dev->pci->irq);
245 
246 	if (request_irq(dev->pci->irq, rtsx_interrupt,
247 			chip->msi_en ? 0 : IRQF_SHARED,
248 			CR_DRIVER_NAME, dev)) {
249 		dev_err(&dev->pci->dev,
250 			"rtsx: unable to grab IRQ %d, disabling device\n",
251 			dev->pci->irq);
252 		return -1;
253 	}
254 
255 	dev->irq = dev->pci->irq;
256 	pci_intx(dev->pci, !chip->msi_en);
257 
258 	return 0;
259 }
260 
261 /*
262  * power management
263  */
264 static int __maybe_unused rtsx_suspend(struct device *dev_d)
265 {
266 	struct pci_dev *pci = to_pci_dev(dev_d);
267 	struct rtsx_dev *dev = pci_get_drvdata(pci);
268 	struct rtsx_chip *chip;
269 
270 	if (!dev)
271 		return 0;
272 
273 	/* lock the device pointers */
274 	mutex_lock(&dev->dev_mutex);
275 
276 	chip = dev->chip;
277 
278 	rtsx_do_before_power_down(chip, PM_S3);
279 
280 	if (dev->irq >= 0) {
281 		free_irq(dev->irq, (void *)dev);
282 		dev->irq = -1;
283 	}
284 
285 	if (chip->msi_en)
286 		pci_free_irq_vectors(pci);
287 
288 	device_wakeup_enable(dev_d);
289 
290 	/* unlock the device pointers */
291 	mutex_unlock(&dev->dev_mutex);
292 
293 	return 0;
294 }
295 
296 static int __maybe_unused rtsx_resume(struct device *dev_d)
297 {
298 	struct pci_dev *pci = to_pci_dev(dev_d);
299 	struct rtsx_dev *dev = pci_get_drvdata(pci);
300 	struct rtsx_chip *chip;
301 
302 	if (!dev)
303 		return 0;
304 
305 	chip = dev->chip;
306 
307 	/* lock the device pointers */
308 	mutex_lock(&dev->dev_mutex);
309 
310 	pci_set_master(pci);
311 
312 	if (chip->msi_en) {
313 		if (pci_alloc_irq_vectors(pci, 1, 1, PCI_IRQ_MSI) < 0)
314 			chip->msi_en = 0;
315 	}
316 
317 	if (rtsx_acquire_irq(dev) < 0) {
318 		/* unlock the device pointers */
319 		mutex_unlock(&dev->dev_mutex);
320 		return -EIO;
321 	}
322 
323 	rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, 0x00);
324 	rtsx_init_chip(chip);
325 
326 	/* unlock the device pointers */
327 	mutex_unlock(&dev->dev_mutex);
328 
329 	return 0;
330 }
331 
332 static void rtsx_shutdown(struct pci_dev *pci)
333 {
334 	struct rtsx_dev *dev = pci_get_drvdata(pci);
335 	struct rtsx_chip *chip;
336 
337 	if (!dev)
338 		return;
339 
340 	chip = dev->chip;
341 
342 	rtsx_do_before_power_down(chip, PM_S1);
343 
344 	if (dev->irq >= 0) {
345 		free_irq(dev->irq, (void *)dev);
346 		dev->irq = -1;
347 	}
348 
349 	if (chip->msi_en)
350 		pci_free_irq_vectors(pci);
351 
352 	pci_disable_device(pci);
353 }
354 
355 static int rtsx_control_thread(void *__dev)
356 {
357 	struct rtsx_dev *dev = __dev;
358 	struct rtsx_chip *chip = dev->chip;
359 	struct Scsi_Host *host = rtsx_to_host(dev);
360 
361 	for (;;) {
362 		if (wait_for_completion_interruptible(&dev->cmnd_ready))
363 			break;
364 
365 		/* lock the device pointers */
366 		mutex_lock(&dev->dev_mutex);
367 
368 		/* if the device has disconnected, we are free to exit */
369 		if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
370 			dev_info(&dev->pci->dev, "-- rtsx-control exiting\n");
371 			mutex_unlock(&dev->dev_mutex);
372 			break;
373 		}
374 
375 		/* lock access to the state */
376 		scsi_lock(host);
377 
378 		/* has the command aborted ? */
379 		if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
380 			chip->srb->result = DID_ABORT << 16;
381 			goto skip_for_abort;
382 		}
383 
384 		scsi_unlock(host);
385 
386 		/* reject the command if the direction indicator
387 		 * is UNKNOWN
388 		 */
389 		if (chip->srb->sc_data_direction == DMA_BIDIRECTIONAL) {
390 			dev_err(&dev->pci->dev, "UNKNOWN data direction\n");
391 			chip->srb->result = DID_ERROR << 16;
392 		}
393 
394 		/* reject if target != 0 or if LUN is higher than
395 		 * the maximum known LUN
396 		 */
397 		else if (chip->srb->device->id) {
398 			dev_err(&dev->pci->dev, "Bad target number (%d:%d)\n",
399 				chip->srb->device->id,
400 				(u8)chip->srb->device->lun);
401 			chip->srb->result = DID_BAD_TARGET << 16;
402 		}
403 
404 		else if (chip->srb->device->lun > chip->max_lun) {
405 			dev_err(&dev->pci->dev, "Bad LUN (%d:%d)\n",
406 				chip->srb->device->id,
407 				(u8)chip->srb->device->lun);
408 			chip->srb->result = DID_BAD_TARGET << 16;
409 		}
410 
411 		/* we've got a command, let's do it! */
412 		else {
413 			scsi_show_command(chip);
414 			rtsx_invoke_transport(chip->srb, chip);
415 		}
416 
417 		/* lock access to the state */
418 		scsi_lock(host);
419 
420 		/* did the command already complete because of a disconnect? */
421 		if (!chip->srb)
422 			;		/* nothing to do */
423 
424 		/* indicate that the command is done */
425 		else if (chip->srb->result != DID_ABORT << 16) {
426 			chip->srb->scsi_done(chip->srb);
427 		} else {
428 skip_for_abort:
429 			dev_err(&dev->pci->dev, "scsi command aborted\n");
430 		}
431 
432 		if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
433 			complete(&dev->notify);
434 
435 			rtsx_set_stat(chip, RTSX_STAT_IDLE);
436 		}
437 
438 		/* finished working on this command */
439 		chip->srb = NULL;
440 		scsi_unlock(host);
441 
442 		/* unlock the device pointers */
443 		mutex_unlock(&dev->dev_mutex);
444 	} /* for (;;) */
445 
446 	/* notify the exit routine that we're actually exiting now
447 	 *
448 	 * complete()/wait_for_completion() is similar to up()/down(),
449 	 * except that complete() is safe in the case where the structure
450 	 * is getting deleted in a parallel mode of execution (i.e. just
451 	 * after the down() -- that's necessary for the thread-shutdown
452 	 * case.
453 	 *
454 	 * complete_and_exit() goes even further than this -- it is safe in
455 	 * the case that the thread of the caller is going away (not just
456 	 * the structure) -- this is necessary for the module-remove case.
457 	 * This is important in preemption kernels, which transfer the flow
458 	 * of execution immediately upon a complete().
459 	 */
460 	complete_and_exit(&dev->control_exit, 0);
461 }
462 
463 static int rtsx_polling_thread(void *__dev)
464 {
465 	struct rtsx_dev *dev = __dev;
466 	struct rtsx_chip *chip = dev->chip;
467 	struct sd_info *sd_card = &chip->sd_card;
468 	struct xd_info *xd_card = &chip->xd_card;
469 	struct ms_info *ms_card = &chip->ms_card;
470 
471 	sd_card->cleanup_counter = 0;
472 	xd_card->cleanup_counter = 0;
473 	ms_card->cleanup_counter = 0;
474 
475 	/* Wait until SCSI scan finished */
476 	wait_timeout((delay_use + 5) * 1000);
477 
478 	for (;;) {
479 		set_current_state(TASK_INTERRUPTIBLE);
480 		schedule_timeout(msecs_to_jiffies(POLLING_INTERVAL));
481 
482 		/* lock the device pointers */
483 		mutex_lock(&dev->dev_mutex);
484 
485 		/* if the device has disconnected, we are free to exit */
486 		if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
487 			dev_info(&dev->pci->dev, "-- rtsx-polling exiting\n");
488 			mutex_unlock(&dev->dev_mutex);
489 			break;
490 		}
491 
492 		mutex_unlock(&dev->dev_mutex);
493 
494 		mspro_polling_format_status(chip);
495 
496 		/* lock the device pointers */
497 		mutex_lock(&dev->dev_mutex);
498 
499 		rtsx_polling_func(chip);
500 
501 		/* unlock the device pointers */
502 		mutex_unlock(&dev->dev_mutex);
503 	}
504 
505 	complete_and_exit(&dev->polling_exit, 0);
506 }
507 
508 /*
509  * interrupt handler
510  */
511 static irqreturn_t rtsx_interrupt(int irq, void *dev_id)
512 {
513 	struct rtsx_dev *dev = dev_id;
514 	struct rtsx_chip *chip;
515 	int retval;
516 	u32 status;
517 
518 	if (dev)
519 		chip = dev->chip;
520 	else
521 		return IRQ_NONE;
522 
523 	if (!chip)
524 		return IRQ_NONE;
525 
526 	spin_lock(&dev->reg_lock);
527 
528 	retval = rtsx_pre_handle_interrupt(chip);
529 	if (retval == STATUS_FAIL) {
530 		spin_unlock(&dev->reg_lock);
531 		if (chip->int_reg == 0xFFFFFFFF)
532 			return IRQ_HANDLED;
533 		return IRQ_NONE;
534 	}
535 
536 	status = chip->int_reg;
537 
538 	if (dev->check_card_cd) {
539 		if (!(dev->check_card_cd & status)) {
540 			/* card not exist, return TRANS_RESULT_FAIL */
541 			dev->trans_result = TRANS_RESULT_FAIL;
542 			if (dev->done)
543 				complete(dev->done);
544 			goto exit;
545 		}
546 	}
547 
548 	if (status & (NEED_COMPLETE_INT | DELINK_INT)) {
549 		if (status & (TRANS_FAIL_INT | DELINK_INT)) {
550 			if (status & DELINK_INT)
551 				RTSX_SET_DELINK(chip);
552 			dev->trans_result = TRANS_RESULT_FAIL;
553 			if (dev->done)
554 				complete(dev->done);
555 		} else if (status & TRANS_OK_INT) {
556 			dev->trans_result = TRANS_RESULT_OK;
557 			if (dev->done)
558 				complete(dev->done);
559 		} else if (status & DATA_DONE_INT) {
560 			dev->trans_result = TRANS_NOT_READY;
561 			if (dev->done && (dev->trans_state == STATE_TRANS_SG))
562 				complete(dev->done);
563 		}
564 	}
565 
566 exit:
567 	spin_unlock(&dev->reg_lock);
568 	return IRQ_HANDLED;
569 }
570 
571 /* Release all our dynamic resources */
572 static void rtsx_release_resources(struct rtsx_dev *dev)
573 {
574 	dev_info(&dev->pci->dev, "-- %s\n", __func__);
575 
576 	/* Tell the control thread to exit.  The SCSI host must
577 	 * already have been removed so it won't try to queue
578 	 * any more commands.
579 	 */
580 	dev_info(&dev->pci->dev, "-- sending exit command to thread\n");
581 	complete(&dev->cmnd_ready);
582 	if (dev->ctl_thread)
583 		wait_for_completion(&dev->control_exit);
584 	if (dev->polling_thread)
585 		wait_for_completion(&dev->polling_exit);
586 
587 	wait_timeout(200);
588 
589 	if (dev->rtsx_resv_buf) {
590 		dev->chip->host_cmds_ptr = NULL;
591 		dev->chip->host_sg_tbl_ptr = NULL;
592 	}
593 
594 	if (dev->irq > 0)
595 		free_irq(dev->irq, (void *)dev);
596 	if (dev->chip->msi_en)
597 		pci_free_irq_vectors(dev->pci);
598 	if (dev->remap_addr)
599 		iounmap(dev->remap_addr);
600 
601 	rtsx_release_chip(dev->chip);
602 	kfree(dev->chip);
603 }
604 
605 /*
606  * First stage of disconnect processing: stop all commands and remove
607  * the host
608  */
609 static void quiesce_and_remove_host(struct rtsx_dev *dev)
610 {
611 	struct Scsi_Host *host = rtsx_to_host(dev);
612 	struct rtsx_chip *chip = dev->chip;
613 
614 	/*
615 	 * Prevent new transfers, stop the current command, and
616 	 * interrupt a SCSI-scan or device-reset delay
617 	 */
618 	mutex_lock(&dev->dev_mutex);
619 	scsi_lock(host);
620 	rtsx_set_stat(chip, RTSX_STAT_DISCONNECT);
621 	scsi_unlock(host);
622 	mutex_unlock(&dev->dev_mutex);
623 	wake_up(&dev->delay_wait);
624 	wait_for_completion(&dev->scanning_done);
625 
626 	/* Wait some time to let other threads exist */
627 	wait_timeout(100);
628 
629 	/*
630 	 * queuecommand won't accept any new commands and the control
631 	 * thread won't execute a previously-queued command.  If there
632 	 * is such a command pending, complete it with an error.
633 	 */
634 	mutex_lock(&dev->dev_mutex);
635 	if (chip->srb) {
636 		chip->srb->result = DID_NO_CONNECT << 16;
637 		scsi_lock(host);
638 		chip->srb->scsi_done(dev->chip->srb);
639 		chip->srb = NULL;
640 		scsi_unlock(host);
641 	}
642 	mutex_unlock(&dev->dev_mutex);
643 
644 	/* Now we own no commands so it's safe to remove the SCSI host */
645 	scsi_remove_host(host);
646 }
647 
648 /* Second stage of disconnect processing: deallocate all resources */
649 static void release_everything(struct rtsx_dev *dev)
650 {
651 	rtsx_release_resources(dev);
652 
653 	/*
654 	 * Drop our reference to the host; the SCSI core will free it
655 	 * when the refcount becomes 0.
656 	 */
657 	scsi_host_put(rtsx_to_host(dev));
658 }
659 
660 /* Thread to carry out delayed SCSI-device scanning */
661 static int rtsx_scan_thread(void *__dev)
662 {
663 	struct rtsx_dev *dev = __dev;
664 	struct rtsx_chip *chip = dev->chip;
665 
666 	/* Wait for the timeout to expire or for a disconnect */
667 	if (delay_use > 0) {
668 		dev_info(&dev->pci->dev,
669 			 "%s: waiting for device to settle before scanning\n",
670 			 CR_DRIVER_NAME);
671 		wait_event_interruptible_timeout
672 			(dev->delay_wait,
673 			 rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT),
674 			 delay_use * HZ);
675 	}
676 
677 	/* If the device is still connected, perform the scanning */
678 	if (!rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
679 		scsi_scan_host(rtsx_to_host(dev));
680 		dev_info(&dev->pci->dev, "%s: device scan complete\n",
681 			 CR_DRIVER_NAME);
682 
683 		/* Should we unbind if no devices were detected? */
684 	}
685 
686 	complete_and_exit(&dev->scanning_done, 0);
687 }
688 
689 static void rtsx_init_options(struct rtsx_chip *chip)
690 {
691 	chip->vendor_id = chip->rtsx->pci->vendor;
692 	chip->product_id = chip->rtsx->pci->device;
693 	chip->adma_mode = 1;
694 	chip->lun_mc = 0;
695 	chip->driver_first_load = 1;
696 #ifdef HW_AUTO_SWITCH_SD_BUS
697 	chip->sdio_in_charge = 0;
698 #endif
699 
700 	chip->mspro_formatter_enable = 1;
701 	chip->ignore_sd = 0;
702 	chip->use_hw_setting = 0;
703 	chip->lun_mode = DEFAULT_SINGLE;
704 	chip->auto_delink_en = auto_delink_en;
705 	chip->ss_en = ss_en;
706 	chip->ss_idle_period = ss_interval * 1000;
707 	chip->remote_wakeup_en = 0;
708 	chip->aspm_l0s_l1_en = aspm_l0s_l1_en;
709 	chip->dynamic_aspm = 1;
710 	chip->fpga_sd_sdr104_clk = CLK_200;
711 	chip->fpga_sd_ddr50_clk = CLK_100;
712 	chip->fpga_sd_sdr50_clk = CLK_100;
713 	chip->fpga_sd_hs_clk = CLK_100;
714 	chip->fpga_mmc_52m_clk = CLK_80;
715 	chip->fpga_ms_hg_clk = CLK_80;
716 	chip->fpga_ms_4bit_clk = CLK_80;
717 	chip->fpga_ms_1bit_clk = CLK_40;
718 	chip->asic_sd_sdr104_clk = 203;
719 	chip->asic_sd_sdr50_clk = 98;
720 	chip->asic_sd_ddr50_clk = 98;
721 	chip->asic_sd_hs_clk = 98;
722 	chip->asic_mmc_52m_clk = 98;
723 	chip->asic_ms_hg_clk = 117;
724 	chip->asic_ms_4bit_clk = 78;
725 	chip->asic_ms_1bit_clk = 39;
726 	chip->ssc_depth_sd_sdr104 = SSC_DEPTH_2M;
727 	chip->ssc_depth_sd_sdr50 = SSC_DEPTH_2M;
728 	chip->ssc_depth_sd_ddr50 = SSC_DEPTH_1M;
729 	chip->ssc_depth_sd_hs = SSC_DEPTH_1M;
730 	chip->ssc_depth_mmc_52m = SSC_DEPTH_1M;
731 	chip->ssc_depth_ms_hg = SSC_DEPTH_1M;
732 	chip->ssc_depth_ms_4bit = SSC_DEPTH_512K;
733 	chip->ssc_depth_low_speed = SSC_DEPTH_512K;
734 	chip->ssc_en = 1;
735 	chip->sd_speed_prior = 0x01040203;
736 	chip->sd_current_prior = 0x00010203;
737 	chip->sd_ctl = SD_PUSH_POINT_AUTO |
738 		       SD_SAMPLE_POINT_AUTO |
739 		       SUPPORT_MMC_DDR_MODE;
740 	chip->sd_ddr_tx_phase = 0;
741 	chip->mmc_ddr_tx_phase = 1;
742 	chip->sd_default_tx_phase = 15;
743 	chip->sd_default_rx_phase = 15;
744 	chip->pmos_pwr_on_interval = 200;
745 	chip->sd_voltage_switch_delay = 1000;
746 	chip->ms_power_class_en = 3;
747 
748 	chip->sd_400mA_ocp_thd = 1;
749 	chip->sd_800mA_ocp_thd = 5;
750 	chip->ms_ocp_thd = 2;
751 
752 	chip->card_drive_sel = 0x55;
753 	chip->sd30_drive_sel_1v8 = 0x03;
754 	chip->sd30_drive_sel_3v3 = 0x01;
755 
756 	chip->do_delink_before_power_down = 1;
757 	chip->auto_power_down = 1;
758 	chip->polling_config = 0;
759 
760 	chip->force_clkreq_0 = 1;
761 	chip->ft2_fast_mode = 0;
762 
763 	chip->sdio_retry_cnt = 1;
764 
765 	chip->xd_timeout = 2000;
766 	chip->sd_timeout = 10000;
767 	chip->ms_timeout = 2000;
768 	chip->mspro_timeout = 15000;
769 
770 	chip->power_down_in_ss = 1;
771 
772 	chip->sdr104_en = 1;
773 	chip->sdr50_en = 1;
774 	chip->ddr50_en = 1;
775 
776 	chip->delink_stage1_step = 100;
777 	chip->delink_stage2_step = 40;
778 	chip->delink_stage3_step = 20;
779 
780 	chip->auto_delink_in_L1 = 1;
781 	chip->blink_led = 1;
782 	chip->msi_en = msi_en;
783 	chip->hp_watch_bios_hotplug = 0;
784 	chip->max_payload = 0;
785 	chip->phy_voltage = 0;
786 
787 	chip->support_ms_8bit = 1;
788 	chip->s3_pwr_off_delay = 1000;
789 }
790 
791 static int rtsx_probe(struct pci_dev *pci,
792 		      const struct pci_device_id *pci_id)
793 {
794 	struct Scsi_Host *host;
795 	struct rtsx_dev *dev;
796 	int err = 0;
797 	struct task_struct *th;
798 
799 	dev_dbg(&pci->dev, "Realtek PCI-E card reader detected\n");
800 
801 	err = pcim_enable_device(pci);
802 	if (err < 0) {
803 		dev_err(&pci->dev, "PCI enable device failed!\n");
804 		return err;
805 	}
806 
807 	err = pci_request_regions(pci, CR_DRIVER_NAME);
808 	if (err < 0) {
809 		dev_err(&pci->dev, "PCI request regions for %s failed!\n",
810 			CR_DRIVER_NAME);
811 		return err;
812 	}
813 
814 	/*
815 	 * Ask the SCSI layer to allocate a host structure, with extra
816 	 * space at the end for our private rtsx_dev structure.
817 	 */
818 	host = scsi_host_alloc(&rtsx_host_template, sizeof(*dev));
819 	if (!host) {
820 		dev_err(&pci->dev, "Unable to allocate the scsi host\n");
821 		err = -ENOMEM;
822 		goto scsi_host_alloc_fail;
823 	}
824 
825 	dev = host_to_rtsx(host);
826 	memset(dev, 0, sizeof(struct rtsx_dev));
827 
828 	dev->chip = kzalloc(sizeof(*dev->chip), GFP_KERNEL);
829 	if (!dev->chip) {
830 		err = -ENOMEM;
831 		goto chip_alloc_fail;
832 	}
833 
834 	spin_lock_init(&dev->reg_lock);
835 	mutex_init(&dev->dev_mutex);
836 	init_completion(&dev->cmnd_ready);
837 	init_completion(&dev->control_exit);
838 	init_completion(&dev->polling_exit);
839 	init_completion(&dev->notify);
840 	init_completion(&dev->scanning_done);
841 	init_waitqueue_head(&dev->delay_wait);
842 
843 	dev->pci = pci;
844 	dev->irq = -1;
845 
846 	dev_info(&pci->dev, "Resource length: 0x%x\n",
847 		 (unsigned int)pci_resource_len(pci, 0));
848 	dev->addr = pci_resource_start(pci, 0);
849 	dev->remap_addr = ioremap(dev->addr, pci_resource_len(pci, 0));
850 	if (!dev->remap_addr) {
851 		dev_err(&pci->dev, "ioremap error\n");
852 		err = -ENXIO;
853 		goto ioremap_fail;
854 	}
855 
856 	/*
857 	 * Using "unsigned long" cast here to eliminate gcc warning in
858 	 * 64-bit system
859 	 */
860 	dev_info(&pci->dev, "Original address: 0x%lx, remapped address: 0x%lx\n",
861 		 (unsigned long)(dev->addr), (unsigned long)(dev->remap_addr));
862 
863 	dev->rtsx_resv_buf = dmam_alloc_coherent(&pci->dev, RTSX_RESV_BUF_LEN,
864 						 &dev->rtsx_resv_buf_addr,
865 						 GFP_KERNEL);
866 	if (!dev->rtsx_resv_buf) {
867 		dev_err(&pci->dev, "alloc dma buffer fail\n");
868 		err = -ENXIO;
869 		goto dma_alloc_fail;
870 	}
871 	dev->chip->host_cmds_ptr = dev->rtsx_resv_buf;
872 	dev->chip->host_cmds_addr = dev->rtsx_resv_buf_addr;
873 	dev->chip->host_sg_tbl_ptr = dev->rtsx_resv_buf + HOST_CMDS_BUF_LEN;
874 	dev->chip->host_sg_tbl_addr = dev->rtsx_resv_buf_addr +
875 				      HOST_CMDS_BUF_LEN;
876 
877 	dev->chip->rtsx = dev;
878 
879 	rtsx_init_options(dev->chip);
880 
881 	dev_info(&pci->dev, "pci->irq = %d\n", pci->irq);
882 
883 	if (dev->chip->msi_en) {
884 		if (pci_alloc_irq_vectors(pci, 1, 1, PCI_IRQ_MSI) < 0)
885 			dev->chip->msi_en = 0;
886 	}
887 
888 	if (rtsx_acquire_irq(dev) < 0) {
889 		err = -EBUSY;
890 		goto irq_acquire_fail;
891 	}
892 
893 	pci_set_master(pci);
894 	synchronize_irq(dev->irq);
895 
896 	rtsx_init_chip(dev->chip);
897 
898 	/*
899 	 * set the supported max_lun and max_id for the scsi host
900 	 * NOTE: the minimal value of max_id is 1
901 	 */
902 	host->max_id = 1;
903 	host->max_lun = dev->chip->max_lun;
904 
905 	/* Start up our control thread */
906 	th = kthread_run(rtsx_control_thread, dev, CR_DRIVER_NAME);
907 	if (IS_ERR(th)) {
908 		dev_err(&pci->dev, "Unable to start control thread\n");
909 		err = PTR_ERR(th);
910 		goto control_thread_fail;
911 	}
912 	dev->ctl_thread = th;
913 
914 	err = scsi_add_host(host, &pci->dev);
915 	if (err) {
916 		dev_err(&pci->dev, "Unable to add the scsi host\n");
917 		goto scsi_add_host_fail;
918 	}
919 
920 	/* Start up the thread for delayed SCSI-device scanning */
921 	th = kthread_run(rtsx_scan_thread, dev, "rtsx-scan");
922 	if (IS_ERR(th)) {
923 		dev_err(&pci->dev, "Unable to start the device-scanning thread\n");
924 		complete(&dev->scanning_done);
925 		err = PTR_ERR(th);
926 		goto scan_thread_fail;
927 	}
928 
929 	/* Start up the thread for polling thread */
930 	th = kthread_run(rtsx_polling_thread, dev, "rtsx-polling");
931 	if (IS_ERR(th)) {
932 		dev_err(&pci->dev, "Unable to start the device-polling thread\n");
933 		err = PTR_ERR(th);
934 		goto scan_thread_fail;
935 	}
936 	dev->polling_thread = th;
937 
938 	pci_set_drvdata(pci, dev);
939 
940 	return 0;
941 
942 	/* We come here if there are any problems */
943 scan_thread_fail:
944 	quiesce_and_remove_host(dev);
945 scsi_add_host_fail:
946 	complete(&dev->cmnd_ready);
947 	wait_for_completion(&dev->control_exit);
948 control_thread_fail:
949 	free_irq(dev->irq, (void *)dev);
950 	rtsx_release_chip(dev->chip);
951 irq_acquire_fail:
952 	dev->chip->host_cmds_ptr = NULL;
953 	dev->chip->host_sg_tbl_ptr = NULL;
954 	if (dev->chip->msi_en)
955 		pci_free_irq_vectors(dev->pci);
956 dma_alloc_fail:
957 	iounmap(dev->remap_addr);
958 ioremap_fail:
959 	kfree(dev->chip);
960 chip_alloc_fail:
961 	dev_err(&pci->dev, "%s failed\n", __func__);
962 	scsi_host_put(host);
963 scsi_host_alloc_fail:
964 	pci_release_regions(pci);
965 	return err;
966 }
967 
968 static void rtsx_remove(struct pci_dev *pci)
969 {
970 	struct rtsx_dev *dev = pci_get_drvdata(pci);
971 
972 	dev_info(&pci->dev, "%s called\n", __func__);
973 
974 	quiesce_and_remove_host(dev);
975 	release_everything(dev);
976 	pci_release_regions(pci);
977 }
978 
979 /* PCI IDs */
980 static const struct pci_device_id rtsx_ids[] = {
981 	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5208),
982 		PCI_CLASS_OTHERS << 16, 0xFF0000 },
983 	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5288),
984 		PCI_CLASS_OTHERS << 16, 0xFF0000 },
985 	{ 0, },
986 };
987 
988 MODULE_DEVICE_TABLE(pci, rtsx_ids);
989 
990 static SIMPLE_DEV_PM_OPS(rtsx_pm_ops, rtsx_suspend, rtsx_resume);
991 
992 /* pci_driver definition */
993 static struct pci_driver rtsx_driver = {
994 	.name = CR_DRIVER_NAME,
995 	.id_table = rtsx_ids,
996 	.probe = rtsx_probe,
997 	.remove = rtsx_remove,
998 	.driver.pm = &rtsx_pm_ops,
999 	.shutdown = rtsx_shutdown,
1000 };
1001 
1002 module_pci_driver(rtsx_driver);
1003