1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 
8 #include <linux/firmware.h>
9 #include <linux/slab.h>
10 #include <drv_types.h>
11 #include <rtw_debug.h>
12 #include <rtl8723b_hal.h>
13 #include "hal_com_h2c.h"
14 
15 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
16 {
17 	u8 tmp, count = 0;
18 
19 	if (enable) {
20 		/*  8051 enable */
21 		tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
22 		rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
23 
24 		tmp = rtw_read8(padapter, REG_MCUFWDL);
25 		rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
26 
27 		do {
28 			tmp = rtw_read8(padapter, REG_MCUFWDL);
29 			if (tmp & 0x01)
30 				break;
31 			rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
32 			msleep(1);
33 		} while (count++ < 100);
34 
35 		/*  8051 reset */
36 		tmp = rtw_read8(padapter, REG_MCUFWDL+2);
37 		rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
38 	} else {
39 		/*  MCU firmware download disable. */
40 		tmp = rtw_read8(padapter, REG_MCUFWDL);
41 		rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
42 	}
43 }
44 
45 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
46 {
47 	int ret = _SUCCESS;
48 
49 	u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
50 	u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
51 	u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
52 	u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
53 	u32 remainSize_p1 = 0, remainSize_p2 = 0;
54 	u8 *bufferPtr = buffer;
55 	u32 i = 0, offset = 0;
56 
57 /* 	printk("====>%s %d\n", __func__, __LINE__); */
58 
59 	/* 3 Phase #1 */
60 	blockCount_p1 = buffSize / blockSize_p1;
61 	remainSize_p1 = buffSize % blockSize_p1;
62 
63 	for (i = 0; i < blockCount_p1; i++) {
64 		ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
65 		if (ret == _FAIL) {
66 			printk("====>%s %d i:%d\n", __func__, __LINE__, i);
67 			goto exit;
68 		}
69 	}
70 
71 	/* 3 Phase #2 */
72 	if (remainSize_p1) {
73 		offset = blockCount_p1 * blockSize_p1;
74 
75 		blockCount_p2 = remainSize_p1/blockSize_p2;
76 		remainSize_p2 = remainSize_p1%blockSize_p2;
77 	}
78 
79 	/* 3 Phase #3 */
80 	if (remainSize_p2) {
81 		offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
82 
83 		blockCount_p3 = remainSize_p2 / blockSize_p3;
84 
85 		for (i = 0; i < blockCount_p3; i++) {
86 			ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
87 
88 			if (ret == _FAIL) {
89 				printk("====>%s %d i:%d\n", __func__, __LINE__, i);
90 				goto exit;
91 			}
92 		}
93 	}
94 exit:
95 	return ret;
96 }
97 
98 static int _PageWrite(
99 	struct adapter *padapter,
100 	u32 page,
101 	void *buffer,
102 	u32 size
103 )
104 {
105 	u8 value8;
106 	u8 u8Page = (u8) (page & 0x07);
107 
108 	value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
109 	rtw_write8(padapter, REG_MCUFWDL+2, value8);
110 
111 	return _BlockWrite(padapter, buffer, size);
112 }
113 
114 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
115 {
116 	/*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
117 	/*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
118 	int ret = _SUCCESS;
119 	u32 pageNums, remainSize;
120 	u32 page, offset;
121 	u8 *bufferPtr = buffer;
122 
123 	pageNums = size / MAX_DLFW_PAGE_SIZE;
124 	remainSize = size % MAX_DLFW_PAGE_SIZE;
125 
126 	for (page = 0; page < pageNums; page++) {
127 		offset = page * MAX_DLFW_PAGE_SIZE;
128 		ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
129 
130 		if (ret == _FAIL) {
131 			printk("====>%s %d\n", __func__, __LINE__);
132 			goto exit;
133 		}
134 	}
135 
136 	if (remainSize) {
137 		offset = pageNums * MAX_DLFW_PAGE_SIZE;
138 		page = pageNums;
139 		ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
140 
141 		if (ret == _FAIL) {
142 			printk("====>%s %d\n", __func__, __LINE__);
143 			goto exit;
144 		}
145 	}
146 
147 exit:
148 	return ret;
149 }
150 
151 void _8051Reset8723(struct adapter *padapter)
152 {
153 	u8 cpu_rst;
154 	u8 io_rst;
155 
156 
157 	/*  Reset 8051(WLMCU) IO wrapper */
158 	/*  0x1c[8] = 0 */
159 	/*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
160 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
161 	io_rst &= ~BIT(0);
162 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
163 
164 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
165 	cpu_rst &= ~BIT(2);
166 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
167 
168 	/*  Enable 8051 IO wrapper */
169 	/*  0x1c[8] = 1 */
170 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
171 	io_rst |= BIT(0);
172 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
173 
174 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
175 	cpu_rst |= BIT(2);
176 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
177 }
178 
179 u8 g_fwdl_chksum_fail;
180 
181 static s32 polling_fwdl_chksum(
182 	struct adapter *adapter, u32 min_cnt, u32 timeout_ms
183 )
184 {
185 	s32 ret = _FAIL;
186 	u32 value32;
187 	unsigned long start = jiffies;
188 	u32 cnt = 0;
189 
190 	/* polling CheckSum report */
191 	do {
192 		cnt++;
193 		value32 = rtw_read32(adapter, REG_MCUFWDL);
194 		if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
195 			break;
196 		yield();
197 	} while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
198 
199 	if (!(value32 & FWDL_ChkSum_rpt)) {
200 		goto exit;
201 	}
202 
203 	if (g_fwdl_chksum_fail) {
204 		g_fwdl_chksum_fail--;
205 		goto exit;
206 	}
207 
208 	ret = _SUCCESS;
209 
210 exit:
211 
212 	return ret;
213 }
214 
215 u8 g_fwdl_wintint_rdy_fail;
216 
217 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
218 {
219 	s32 ret = _FAIL;
220 	u32 value32;
221 	unsigned long start = jiffies;
222 	u32 cnt = 0;
223 
224 	value32 = rtw_read32(adapter, REG_MCUFWDL);
225 	value32 |= MCUFWDL_RDY;
226 	value32 &= ~WINTINI_RDY;
227 	rtw_write32(adapter, REG_MCUFWDL, value32);
228 
229 	_8051Reset8723(adapter);
230 
231 	/*  polling for FW ready */
232 	do {
233 		cnt++;
234 		value32 = rtw_read32(adapter, REG_MCUFWDL);
235 		if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
236 			break;
237 		yield();
238 	} while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
239 
240 	if (!(value32 & WINTINI_RDY)) {
241 		goto exit;
242 	}
243 
244 	if (g_fwdl_wintint_rdy_fail) {
245 		g_fwdl_wintint_rdy_fail--;
246 		goto exit;
247 	}
248 
249 	ret = _SUCCESS;
250 
251 exit:
252 
253 	return ret;
254 }
255 
256 #define IS_FW_81xxC(padapter)	(((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
257 
258 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
259 {
260 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
261 	u8 u1bTmp;
262 	u8 Delay = 100;
263 
264 	if (
265 		!(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
266 	) { /*  after 88C Fw v33.1 */
267 		/* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
268 		rtw_write8(padapter, REG_HMETFR+3, 0x20);
269 
270 		u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
271 		while (u1bTmp & BIT2) {
272 			Delay--;
273 			if (Delay == 0)
274 				break;
275 			udelay(50);
276 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
277 		}
278 
279 		if (Delay == 0) {
280 			/* force firmware reset */
281 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
282 			rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
283 		}
284 	}
285 }
286 
287 /*  */
288 /* 	Description: */
289 /* 		Download 8192C firmware code. */
290 /*  */
291 /*  */
292 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
293 {
294 	s32 rtStatus = _SUCCESS;
295 	u8 write_fw = 0;
296 	unsigned long fwdl_start_time;
297 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
298 	struct rt_firmware *pFirmware;
299 	struct rt_firmware *pBTFirmware;
300 	struct rt_firmware_hdr *pFwHdr = NULL;
301 	u8 *pFirmwareBuf;
302 	u32 FirmwareLen;
303 	const struct firmware *fw;
304 	struct device *device = dvobj_to_dev(padapter->dvobj);
305 	u8 *fwfilepath;
306 	struct dvobj_priv *psdpriv = padapter->dvobj;
307 	struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
308 	u8 tmp_ps;
309 
310 	pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
311 	if (!pFirmware)
312 		return _FAIL;
313 	pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
314 	if (!pBTFirmware) {
315 		kfree(pFirmware);
316 		return _FAIL;
317 	}
318 	tmp_ps = rtw_read8(padapter, 0xa3);
319 	tmp_ps &= 0xf8;
320 	tmp_ps |= 0x02;
321 	/* 1. write 0xA3[:2:0] = 3b'010 */
322 	rtw_write8(padapter, 0xa3, tmp_ps);
323 	/* 2. read power_state = 0xA0[1:0] */
324 	tmp_ps = rtw_read8(padapter, 0xa0);
325 	tmp_ps &= 0x03;
326 	if (tmp_ps != 0x01)
327 		pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
328 
329 	fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
330 
331 	pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
332 
333 	rtStatus = request_firmware(&fw, fwfilepath, device);
334 	if (rtStatus) {
335 		pr_err("Request firmware failed with error 0x%x\n", rtStatus);
336 		rtStatus = _FAIL;
337 		goto exit;
338 	}
339 
340 	if (!fw) {
341 		pr_err("Firmware %s not available\n", fwfilepath);
342 		rtStatus = _FAIL;
343 		goto exit;
344 	}
345 
346 	if (fw->size > FW_8723B_SIZE) {
347 		rtStatus = _FAIL;
348 		goto exit;
349 	}
350 
351 	pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
352 	if (!pFirmware->fw_buffer_sz) {
353 		rtStatus = _FAIL;
354 		goto exit;
355 	}
356 
357 	pFirmware->fw_length = fw->size;
358 	release_firmware(fw);
359 	if (pFirmware->fw_length > FW_8723B_SIZE) {
360 		rtStatus = _FAIL;
361 		netdev_emerg(padapter->pnetdev,
362 			     "Firmware size:%u exceed %u\n",
363 			     pFirmware->fw_length, FW_8723B_SIZE);
364 		goto release_fw1;
365 	}
366 
367 	pFirmwareBuf = pFirmware->fw_buffer_sz;
368 	FirmwareLen = pFirmware->fw_length;
369 
370 	/*  To Check Fw header. Added by tynli. 2009.12.04. */
371 	pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
372 
373 	pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->version);
374 	pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
375 	pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
376 
377 	if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
378 		/*  Shift 32 bytes for FW header */
379 		pFirmwareBuf = pFirmwareBuf + 32;
380 		FirmwareLen = FirmwareLen - 32;
381 	}
382 
383 	/*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
384 	/*  or it will cause download Fw fail. 2010.02.01. by tynli. */
385 	if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
386 		rtw_write8(padapter, REG_MCUFWDL, 0x00);
387 		rtl8723b_FirmwareSelfReset(padapter);
388 	}
389 
390 	_FWDownloadEnable(padapter, true);
391 	fwdl_start_time = jiffies;
392 	while (
393 		!padapter->bDriverStopped &&
394 		!padapter->bSurpriseRemoved &&
395 		(write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
396 	) {
397 		/* reset FWDL chksum */
398 		rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
399 
400 		rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
401 		if (rtStatus != _SUCCESS)
402 			continue;
403 
404 		rtStatus = polling_fwdl_chksum(padapter, 5, 50);
405 		if (rtStatus == _SUCCESS)
406 			break;
407 	}
408 	_FWDownloadEnable(padapter, false);
409 	if (_SUCCESS != rtStatus)
410 		goto fwdl_stat;
411 
412 	rtStatus = _FWFreeToGo(padapter, 10, 200);
413 	if (_SUCCESS != rtStatus)
414 		goto fwdl_stat;
415 
416 fwdl_stat:
417 
418 exit:
419 	kfree(pFirmware->fw_buffer_sz);
420 	kfree(pFirmware);
421 release_fw1:
422 	kfree(pBTFirmware);
423 	return rtStatus;
424 }
425 
426 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
427 {
428 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
429 
430 	/*  Init Fw LPS related. */
431 	adapter_to_pwrctl(padapter)->fw_current_in_ps_mode = false;
432 
433 	/* Init H2C cmd. */
434 	rtw_write8(padapter, REG_HMETFR, 0x0f);
435 
436 	/*  Init H2C counter. by tynli. 2009.12.09. */
437 	pHalData->LastHMEBoxNum = 0;
438 /* pHalData->H2CQueueHead = 0; */
439 /* pHalData->H2CQueueTail = 0; */
440 /* pHalData->H2CStopInsertQueue = false; */
441 }
442 
443 static void rtl8723b_free_hal_data(struct adapter *padapter)
444 {
445 }
446 
447 /*  */
448 /* 				Efuse related code */
449 /*  */
450 static u8 hal_EfuseSwitchToBank(
451 	struct adapter *padapter, u8 bank, bool bPseudoTest
452 )
453 {
454 	u8 bRet = false;
455 	u32 value32 = 0;
456 #ifdef HAL_EFUSE_MEMORY
457 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
458 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
459 #endif
460 
461 
462 	if (bPseudoTest) {
463 #ifdef HAL_EFUSE_MEMORY
464 		pEfuseHal->fakeEfuseBank = bank;
465 #else
466 		fakeEfuseBank = bank;
467 #endif
468 		bRet = true;
469 	} else {
470 		value32 = rtw_read32(padapter, EFUSE_TEST);
471 		bRet = true;
472 		switch (bank) {
473 		case 0:
474 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
475 			break;
476 		case 1:
477 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
478 			break;
479 		case 2:
480 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
481 			break;
482 		case 3:
483 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
484 			break;
485 		default:
486 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
487 			bRet = false;
488 			break;
489 		}
490 		rtw_write32(padapter, EFUSE_TEST, value32);
491 	}
492 
493 	return bRet;
494 }
495 
496 static void Hal_GetEfuseDefinition(
497 	struct adapter *padapter,
498 	u8 efuseType,
499 	u8 type,
500 	void *pOut,
501 	bool bPseudoTest
502 )
503 {
504 	switch (type) {
505 	case TYPE_EFUSE_MAX_SECTION:
506 		{
507 			u8 *pMax_section;
508 			pMax_section = pOut;
509 
510 			if (efuseType == EFUSE_WIFI)
511 				*pMax_section = EFUSE_MAX_SECTION_8723B;
512 			else
513 				*pMax_section = EFUSE_BT_MAX_SECTION;
514 		}
515 		break;
516 
517 	case TYPE_EFUSE_REAL_CONTENT_LEN:
518 		{
519 			u16 *pu2Tmp;
520 			pu2Tmp = pOut;
521 
522 			if (efuseType == EFUSE_WIFI)
523 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
524 			else
525 				*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
526 		}
527 		break;
528 
529 	case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
530 		{
531 			u16 *pu2Tmp;
532 			pu2Tmp = pOut;
533 
534 			if (efuseType == EFUSE_WIFI)
535 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
536 			else
537 				*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
538 		}
539 		break;
540 
541 	case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
542 		{
543 			u16 *pu2Tmp;
544 			pu2Tmp = pOut;
545 
546 			if (efuseType == EFUSE_WIFI)
547 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
548 			else
549 				*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
550 		}
551 		break;
552 
553 	case TYPE_EFUSE_MAP_LEN:
554 		{
555 			u16 *pu2Tmp;
556 			pu2Tmp = pOut;
557 
558 			if (efuseType == EFUSE_WIFI)
559 				*pu2Tmp = EFUSE_MAX_MAP_LEN;
560 			else
561 				*pu2Tmp = EFUSE_BT_MAP_LEN;
562 		}
563 		break;
564 
565 	case TYPE_EFUSE_PROTECT_BYTES_BANK:
566 		{
567 			u8 *pu1Tmp;
568 			pu1Tmp = pOut;
569 
570 			if (efuseType == EFUSE_WIFI)
571 				*pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
572 			else
573 				*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
574 		}
575 		break;
576 
577 	case TYPE_EFUSE_CONTENT_LEN_BANK:
578 		{
579 			u16 *pu2Tmp;
580 			pu2Tmp = pOut;
581 
582 			if (efuseType == EFUSE_WIFI)
583 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
584 			else
585 				*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
586 		}
587 		break;
588 
589 	default:
590 		{
591 			u8 *pu1Tmp;
592 			pu1Tmp = pOut;
593 			*pu1Tmp = 0;
594 		}
595 		break;
596 	}
597 }
598 
599 #define VOLTAGE_V25		0x03
600 
601 /*  */
602 /* 	The following is for compile ok */
603 /* 	That should be merged with the original in the future */
604 /*  */
605 #define EFUSE_ACCESS_ON_8723			0x69	/*  For RTL8723 only. */
606 #define REG_EFUSE_ACCESS_8723			0x00CF	/*  Efuse access protection for RTL8723 */
607 
608 /*  */
609 static void Hal_BT_EfusePowerSwitch(
610 	struct adapter *padapter, u8 bWrite, u8 PwrState
611 )
612 {
613 	u8 tempval;
614 	if (PwrState) {
615 		/*  enable BT power cut */
616 		/*  0x6A[14] = 1 */
617 		tempval = rtw_read8(padapter, 0x6B);
618 		tempval |= BIT(6);
619 		rtw_write8(padapter, 0x6B, tempval);
620 
621 		/*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
622 		/*  So don't write 0x6A[14]= 1 and 0x6A[15]= 0 together! */
623 		msleep(1);
624 		/*  disable BT output isolation */
625 		/*  0x6A[15] = 0 */
626 		tempval = rtw_read8(padapter, 0x6B);
627 		tempval &= ~BIT(7);
628 		rtw_write8(padapter, 0x6B, tempval);
629 	} else {
630 		/*  enable BT output isolation */
631 		/*  0x6A[15] = 1 */
632 		tempval = rtw_read8(padapter, 0x6B);
633 		tempval |= BIT(7);
634 		rtw_write8(padapter, 0x6B, tempval);
635 
636 		/*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
637 		/*  So don't write 0x6A[14]= 1 and 0x6A[15]= 0 together! */
638 
639 		/*  disable BT power cut */
640 		/*  0x6A[14] = 1 */
641 		tempval = rtw_read8(padapter, 0x6B);
642 		tempval &= ~BIT(6);
643 		rtw_write8(padapter, 0x6B, tempval);
644 	}
645 
646 }
647 static void Hal_EfusePowerSwitch(
648 	struct adapter *padapter, u8 bWrite, u8 PwrState
649 )
650 {
651 	u8 tempval;
652 	u16 tmpV16;
653 
654 
655 	if (PwrState) {
656 		/*  To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
657 		/*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
658 		tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
659 		if (tempval & BIT(0)) { /*  SDIO local register is suspend */
660 			u8 count = 0;
661 
662 
663 			tempval &= ~BIT(0);
664 			rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
665 
666 			/*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
667 			do {
668 				tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
669 				tempval &= 0x3;
670 				if (tempval == 0x02)
671 					break;
672 
673 				count++;
674 				if (count >= 100)
675 					break;
676 
677 				mdelay(10);
678 			} while (1);
679 		}
680 
681 		rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
682 
683 		/*  Reset: 0x0000h[28], default valid */
684 		tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
685 		if (!(tmpV16 & FEN_ELDR)) {
686 			tmpV16 |= FEN_ELDR;
687 			rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
688 		}
689 
690 		/*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
691 		tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
692 		if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
693 			tmpV16 |= (LOADER_CLK_EN | ANA8M);
694 			rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
695 		}
696 
697 		if (bWrite) {
698 			/*  Enable LDO 2.5V before read/write action */
699 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
700 			tempval &= 0x0F;
701 			tempval |= (VOLTAGE_V25 << 4);
702 			rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
703 
704 			/* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
705 		}
706 	} else {
707 		rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
708 
709 		if (bWrite) {
710 			/*  Disable LDO 2.5V after read/write action */
711 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
712 			rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
713 		}
714 
715 	}
716 }
717 
718 static void hal_ReadEFuse_WiFi(
719 	struct adapter *padapter,
720 	u16 _offset,
721 	u16 _size_byte,
722 	u8 *pbuf,
723 	bool bPseudoTest
724 )
725 {
726 #ifdef HAL_EFUSE_MEMORY
727 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
728 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
729 #endif
730 	u8 *efuseTbl = NULL;
731 	u16 eFuse_Addr = 0;
732 	u8 offset, wden;
733 	u8 efuseHeader, efuseExtHdr, efuseData;
734 	u16 i, total, used;
735 	u8 efuse_usage = 0;
736 
737 	/*  */
738 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
739 	/*  */
740 	if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN)
741 		return;
742 
743 	efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
744 	if (!efuseTbl)
745 		return;
746 
747 	/*  0xff will be efuse default value instead of 0x00. */
748 	memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
749 
750 	/*  switch bank back to bank 0 for later BT and wifi use. */
751 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
752 
753 	while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
754 		efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
755 		if (efuseHeader == 0xFF)
756 			break;
757 
758 		/*  Check PG header for section num. */
759 		if (EXT_HEADER(efuseHeader)) { /* extended header */
760 			offset = GET_HDR_OFFSET_2_0(efuseHeader);
761 
762 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
763 			if (ALL_WORDS_DISABLED(efuseExtHdr))
764 				continue;
765 
766 			offset |= ((efuseExtHdr & 0xF0) >> 1);
767 			wden = (efuseExtHdr & 0x0F);
768 		} else {
769 			offset = ((efuseHeader >> 4) & 0x0f);
770 			wden = (efuseHeader & 0x0f);
771 		}
772 
773 		if (offset < EFUSE_MAX_SECTION_8723B) {
774 			u16 addr;
775 			/*  Get word enable value from PG header */
776 
777 			addr = offset * PGPKT_DATA_SIZE;
778 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
779 				/*  Check word enable condition in the section */
780 				if (!(wden & (0x01<<i))) {
781 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
782 					efuseTbl[addr] = efuseData;
783 
784 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
785 					efuseTbl[addr+1] = efuseData;
786 				}
787 				addr += 2;
788 			}
789 		} else {
790 			eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
791 		}
792 	}
793 
794 	/*  Copy from Efuse map to output pointer memory!!! */
795 	for (i = 0; i < _size_byte; i++)
796 		pbuf[i] = efuseTbl[_offset+i];
797 
798 	/*  Calculate Efuse utilization */
799 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
800 	used = eFuse_Addr - 1;
801 	efuse_usage = (u8)((used*100)/total);
802 	if (bPseudoTest) {
803 #ifdef HAL_EFUSE_MEMORY
804 		pEfuseHal->fakeEfuseUsedBytes = used;
805 #else
806 		fakeEfuseUsedBytes = used;
807 #endif
808 	} else {
809 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
810 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
811 	}
812 
813 	kfree(efuseTbl);
814 }
815 
816 static void hal_ReadEFuse_BT(
817 	struct adapter *padapter,
818 	u16 _offset,
819 	u16 _size_byte,
820 	u8 *pbuf,
821 	bool bPseudoTest
822 )
823 {
824 #ifdef HAL_EFUSE_MEMORY
825 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
826 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
827 #endif
828 	u8 *efuseTbl;
829 	u8 bank;
830 	u16 eFuse_Addr;
831 	u8 efuseHeader, efuseExtHdr, efuseData;
832 	u8 offset, wden;
833 	u16 i, total, used;
834 	u8 efuse_usage;
835 
836 
837 	/*  */
838 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
839 	/*  */
840 	if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN)
841 		return;
842 
843 	efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
844 	if (!efuseTbl)
845 		return;
846 
847 	/*  0xff will be efuse default value instead of 0x00. */
848 	memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
849 
850 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
851 
852 	for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
853 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
854 			goto exit;
855 
856 		eFuse_Addr = 0;
857 
858 		while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
859 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
860 			if (efuseHeader == 0xFF)
861 				break;
862 
863 			/*  Check PG header for section num. */
864 			if (EXT_HEADER(efuseHeader)) { /* extended header */
865 				offset = GET_HDR_OFFSET_2_0(efuseHeader);
866 
867 				efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
868 				if (ALL_WORDS_DISABLED(efuseExtHdr))
869 					continue;
870 
871 
872 				offset |= ((efuseExtHdr & 0xF0) >> 1);
873 				wden = (efuseExtHdr & 0x0F);
874 			} else {
875 				offset = ((efuseHeader >> 4) & 0x0f);
876 				wden = (efuseHeader & 0x0f);
877 			}
878 
879 			if (offset < EFUSE_BT_MAX_SECTION) {
880 				u16 addr;
881 
882 				addr = offset * PGPKT_DATA_SIZE;
883 				for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
884 					/*  Check word enable condition in the section */
885 					if (!(wden & (0x01<<i))) {
886 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
887 						efuseTbl[addr] = efuseData;
888 
889 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
890 						efuseTbl[addr+1] = efuseData;
891 					}
892 					addr += 2;
893 				}
894 			} else {
895 				eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
896 			}
897 		}
898 
899 		if ((eFuse_Addr - 1) < total)
900 			break;
901 
902 	}
903 
904 	/*  switch bank back to bank 0 for later BT and wifi use. */
905 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
906 
907 	/*  Copy from Efuse map to output pointer memory!!! */
908 	for (i = 0; i < _size_byte; i++)
909 		pbuf[i] = efuseTbl[_offset+i];
910 
911 	/*  */
912 	/*  Calculate Efuse utilization. */
913 	/*  */
914 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
915 	used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
916 	efuse_usage = (u8)((used*100)/total);
917 	if (bPseudoTest) {
918 #ifdef HAL_EFUSE_MEMORY
919 		pEfuseHal->fakeBTEfuseUsedBytes = used;
920 #else
921 		fakeBTEfuseUsedBytes = used;
922 #endif
923 	} else {
924 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
925 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
926 	}
927 
928 exit:
929 	kfree(efuseTbl);
930 }
931 
932 static void Hal_ReadEFuse(
933 	struct adapter *padapter,
934 	u8 efuseType,
935 	u16 _offset,
936 	u16 _size_byte,
937 	u8 *pbuf,
938 	bool bPseudoTest
939 )
940 {
941 	if (efuseType == EFUSE_WIFI)
942 		hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
943 	else
944 		hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
945 }
946 
947 static u16 hal_EfuseGetCurrentSize_WiFi(
948 	struct adapter *padapter, bool bPseudoTest
949 )
950 {
951 #ifdef HAL_EFUSE_MEMORY
952 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
953 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
954 #endif
955 	u16 efuse_addr = 0;
956 	u16 start_addr = 0; /*  for debug */
957 	u8 hoffset = 0, hworden = 0;
958 	u8 efuse_data, word_cnts = 0;
959 	u32 count = 0; /*  for debug */
960 
961 
962 	if (bPseudoTest) {
963 #ifdef HAL_EFUSE_MEMORY
964 		efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
965 #else
966 		efuse_addr = (u16)fakeEfuseUsedBytes;
967 #endif
968 	} else
969 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
970 
971 	start_addr = efuse_addr;
972 
973 	/*  switch bank back to bank 0 for later BT and wifi use. */
974 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
975 
976 	count = 0;
977 	while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
978 		if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false)
979 			goto error;
980 
981 		if (efuse_data == 0xFF)
982 			break;
983 
984 		if ((start_addr != 0) && (efuse_addr == start_addr)) {
985 			count++;
986 
987 			efuse_data = 0xFF;
988 			if (count < 4) {
989 				/*  try again! */
990 
991 				if (count > 2) {
992 					/*  try again form address 0 */
993 					efuse_addr = 0;
994 					start_addr = 0;
995 				}
996 
997 				continue;
998 			}
999 
1000 			goto error;
1001 		}
1002 
1003 		if (EXT_HEADER(efuse_data)) {
1004 			hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1005 			efuse_addr++;
1006 			efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1007 			if (ALL_WORDS_DISABLED(efuse_data))
1008 				continue;
1009 
1010 			hoffset |= ((efuse_data & 0xF0) >> 1);
1011 			hworden = efuse_data & 0x0F;
1012 		} else {
1013 			hoffset = (efuse_data>>4) & 0x0F;
1014 			hworden = efuse_data & 0x0F;
1015 		}
1016 
1017 		word_cnts = Efuse_CalculateWordCnts(hworden);
1018 		efuse_addr += (word_cnts*2)+1;
1019 	}
1020 
1021 	if (bPseudoTest) {
1022 #ifdef HAL_EFUSE_MEMORY
1023 		pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1024 #else
1025 		fakeEfuseUsedBytes = efuse_addr;
1026 #endif
1027 	} else
1028 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1029 
1030 	goto exit;
1031 
1032 error:
1033 	/*  report max size to prevent write efuse */
1034 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1035 
1036 exit:
1037 
1038 	return efuse_addr;
1039 }
1040 
1041 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1042 {
1043 #ifdef HAL_EFUSE_MEMORY
1044 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1045 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
1046 #endif
1047 	u16 btusedbytes;
1048 	u16 efuse_addr;
1049 	u8 bank, startBank;
1050 	u8 hoffset = 0, hworden = 0;
1051 	u8 efuse_data, word_cnts = 0;
1052 	u16 retU2 = 0;
1053 
1054 	if (bPseudoTest) {
1055 #ifdef HAL_EFUSE_MEMORY
1056 		btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1057 #else
1058 		btusedbytes = fakeBTEfuseUsedBytes;
1059 #endif
1060 	} else
1061 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1062 
1063 	efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1064 	startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1065 
1066 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1067 
1068 	for (bank = startBank; bank < 3; bank++) {
1069 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
1070 			/* bank = EFUSE_MAX_BANK; */
1071 			break;
1072 
1073 		/*  only when bank is switched we have to reset the efuse_addr. */
1074 		if (bank != startBank)
1075 			efuse_addr = 0;
1076 #if 1
1077 
1078 		while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1079 			if (efuse_OneByteRead(padapter, efuse_addr,
1080 					      &efuse_data, bPseudoTest) == false)
1081 				/* bank = EFUSE_MAX_BANK; */
1082 				break;
1083 
1084 			if (efuse_data == 0xFF)
1085 				break;
1086 
1087 			if (EXT_HEADER(efuse_data)) {
1088 				hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1089 				efuse_addr++;
1090 				efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1091 
1092 				if (ALL_WORDS_DISABLED(efuse_data)) {
1093 					efuse_addr++;
1094 					continue;
1095 				}
1096 
1097 /* 				hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1098 				hoffset |= ((efuse_data & 0xF0) >> 1);
1099 				hworden = efuse_data & 0x0F;
1100 			} else {
1101 				hoffset = (efuse_data>>4) & 0x0F;
1102 				hworden =  efuse_data & 0x0F;
1103 			}
1104 
1105 			word_cnts = Efuse_CalculateWordCnts(hworden);
1106 			/* read next header */
1107 			efuse_addr += (word_cnts*2)+1;
1108 		}
1109 #else
1110 	while (
1111 		bContinual &&
1112 		efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1113 		AVAILABLE_EFUSE_ADDR(efuse_addr)
1114 	) {
1115 			if (efuse_data != 0xFF) {
1116 				if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1117 					hoffset = efuse_data;
1118 					efuse_addr++;
1119 					efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1120 					if ((efuse_data & 0x0F) == 0x0F) {
1121 						efuse_addr++;
1122 						continue;
1123 					} else {
1124 						hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1125 						hworden = efuse_data & 0x0F;
1126 					}
1127 				} else {
1128 					hoffset = (efuse_data>>4) & 0x0F;
1129 					hworden =  efuse_data & 0x0F;
1130 				}
1131 				word_cnts = Efuse_CalculateWordCnts(hworden);
1132 				/* read next header */
1133 				efuse_addr = efuse_addr + (word_cnts*2)+1;
1134 			} else
1135 				bContinual = false;
1136 		}
1137 #endif
1138 
1139 
1140 		/*  Check if we need to check next bank efuse */
1141 		if (efuse_addr < retU2)
1142 			break; /*  don't need to check next bank. */
1143 	}
1144 
1145 	retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1146 	if (bPseudoTest) {
1147 		pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1148 	} else {
1149 		pEfuseHal->BTEfuseUsedBytes = retU2;
1150 	}
1151 
1152 	return retU2;
1153 }
1154 
1155 static u16 Hal_EfuseGetCurrentSize(
1156 	struct adapter *padapter, u8 efuseType, bool bPseudoTest
1157 )
1158 {
1159 	u16 ret = 0;
1160 
1161 	if (efuseType == EFUSE_WIFI)
1162 		ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1163 	else
1164 		ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1165 
1166 	return ret;
1167 }
1168 
1169 static u8 Hal_EfuseWordEnableDataWrite(
1170 	struct adapter *padapter,
1171 	u16 efuse_addr,
1172 	u8 word_en,
1173 	u8 *data,
1174 	bool bPseudoTest
1175 )
1176 {
1177 	u16 tmpaddr = 0;
1178 	u16 start_addr = efuse_addr;
1179 	u8 badworden = 0x0F;
1180 	u8 tmpdata[PGPKT_DATA_SIZE];
1181 
1182 	memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1183 
1184 	if (!(word_en & BIT(0))) {
1185 		tmpaddr = start_addr;
1186 		efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1187 		efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1188 
1189 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1190 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1191 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1192 			badworden &= (~BIT(0));
1193 		}
1194 	}
1195 	if (!(word_en & BIT(1))) {
1196 		tmpaddr = start_addr;
1197 		efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1198 		efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1199 
1200 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1201 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1202 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1203 			badworden &= (~BIT(1));
1204 		}
1205 	}
1206 
1207 	if (!(word_en & BIT(2))) {
1208 		tmpaddr = start_addr;
1209 		efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1210 		efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1211 
1212 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1213 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1214 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1215 			badworden &= (~BIT(2));
1216 		}
1217 	}
1218 
1219 	if (!(word_en & BIT(3))) {
1220 		tmpaddr = start_addr;
1221 		efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1222 		efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1223 
1224 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1225 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1226 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1227 			badworden &= (~BIT(3));
1228 		}
1229 	}
1230 
1231 	return badworden;
1232 }
1233 
1234 static s32 Hal_EfusePgPacketRead(
1235 	struct adapter *padapter,
1236 	u8 offset,
1237 	u8 *data,
1238 	bool bPseudoTest
1239 )
1240 {
1241 	u8 efuse_data, word_cnts = 0;
1242 	u16 efuse_addr = 0;
1243 	u8 hoffset = 0, hworden = 0;
1244 	u8 i;
1245 	u8 max_section = 0;
1246 	s32	ret;
1247 
1248 
1249 	if (!data)
1250 		return false;
1251 
1252 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1253 	if (offset > max_section)
1254 		return false;
1255 
1256 	memset(data, 0xFF, PGPKT_DATA_SIZE);
1257 	ret = true;
1258 
1259 	/*  */
1260 	/*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1261 	/*  Skip dummy parts to prevent unexpected data read from Efuse. */
1262 	/*  By pass right now. 2009.02.19. */
1263 	/*  */
1264 	while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1265 		if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1266 			ret = false;
1267 			break;
1268 		}
1269 
1270 		if (efuse_data == 0xFF)
1271 			break;
1272 
1273 		if (EXT_HEADER(efuse_data)) {
1274 			hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1275 			efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1276 			if (ALL_WORDS_DISABLED(efuse_data))
1277 				continue;
1278 
1279 			hoffset |= ((efuse_data & 0xF0) >> 1);
1280 			hworden = efuse_data & 0x0F;
1281 		} else {
1282 			hoffset = (efuse_data>>4) & 0x0F;
1283 			hworden =  efuse_data & 0x0F;
1284 		}
1285 
1286 		if (hoffset == offset) {
1287 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1288 				/*  Check word enable condition in the section */
1289 				if (!(hworden & (0x01<<i))) {
1290 					efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1291 					data[i*2] = efuse_data;
1292 
1293 					efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1294 					data[(i*2)+1] = efuse_data;
1295 				}
1296 			}
1297 		} else {
1298 			word_cnts = Efuse_CalculateWordCnts(hworden);
1299 			efuse_addr += word_cnts*2;
1300 		}
1301 	}
1302 
1303 	return ret;
1304 }
1305 
1306 static u8 hal_EfusePgCheckAvailableAddr(
1307 	struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1308 )
1309 {
1310 	u16 max_available = 0;
1311 	u16 current_size;
1312 
1313 
1314 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1315 
1316 	current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1317 	if (current_size >= max_available)
1318 		return false;
1319 
1320 	return true;
1321 }
1322 
1323 static void hal_EfuseConstructPGPkt(
1324 	u8 offset,
1325 	u8 word_en,
1326 	u8 *pData,
1327 	struct pgpkt_struct *pTargetPkt
1328 )
1329 {
1330 	memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1331 	pTargetPkt->offset = offset;
1332 	pTargetPkt->word_en = word_en;
1333 	efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1334 	pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1335 }
1336 
1337 static u8 hal_EfusePartialWriteCheck(
1338 	struct adapter *padapter,
1339 	u8 efuseType,
1340 	u16 *pAddr,
1341 	struct pgpkt_struct *pTargetPkt,
1342 	u8 bPseudoTest
1343 )
1344 {
1345 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1346 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
1347 	u8 bRet = false;
1348 	u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1349 	u8 efuse_data = 0;
1350 
1351 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1352 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1353 
1354 	if (efuseType == EFUSE_WIFI) {
1355 		if (bPseudoTest) {
1356 #ifdef HAL_EFUSE_MEMORY
1357 			startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1358 #else
1359 			startAddr = (u16)fakeEfuseUsedBytes;
1360 #endif
1361 		} else
1362 			rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1363 	} else {
1364 		if (bPseudoTest) {
1365 #ifdef HAL_EFUSE_MEMORY
1366 			startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1367 #else
1368 			startAddr = (u16)fakeBTEfuseUsedBytes;
1369 #endif
1370 		} else
1371 			rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1372 	}
1373 	startAddr %= efuse_max;
1374 
1375 	while (1) {
1376 		if (startAddr >= efuse_max_available_len) {
1377 			bRet = false;
1378 			break;
1379 		}
1380 
1381 		if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1382 #if 1
1383 			bRet = false;
1384 			break;
1385 #else
1386 			if (EXT_HEADER(efuse_data)) {
1387 				cur_header = efuse_data;
1388 				startAddr++;
1389 				efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1390 				if (ALL_WORDS_DISABLED(efuse_data)) {
1391 					bRet = false;
1392 					break;
1393 				} else {
1394 					curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1395 					curPkt.word_en = efuse_data & 0x0F;
1396 				}
1397 			} else {
1398 				cur_header  =  efuse_data;
1399 				curPkt.offset = (cur_header>>4) & 0x0F;
1400 				curPkt.word_en = cur_header & 0x0F;
1401 			}
1402 
1403 			curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1404 			/*  if same header is found but no data followed */
1405 			/*  write some part of data followed by the header. */
1406 			if (
1407 				(curPkt.offset == pTargetPkt->offset) &&
1408 				(hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1409 				wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1410 			) {
1411 				/*  Here to write partial data */
1412 				badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1413 				if (badworden != 0x0F) {
1414 					u32 PgWriteSuccess = 0;
1415 					/*  if write fail on some words, write these bad words again */
1416 					if (efuseType == EFUSE_WIFI)
1417 						PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1418 					else
1419 						PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1420 
1421 					if (!PgWriteSuccess) {
1422 						bRet = false;	/*  write fail, return */
1423 						break;
1424 					}
1425 				}
1426 				/*  partial write ok, update the target packet for later use */
1427 				for (i = 0; i < 4; i++) {
1428 					if ((matched_wden & (0x1<<i)) == 0) { /*  this word has been written */
1429 						pTargetPkt->word_en |= (0x1<<i);	/*  disable the word */
1430 					}
1431 				}
1432 				pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1433 			}
1434 			/*  read from next header */
1435 			startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1436 #endif
1437 		} else {
1438 			/*  not used header, 0xff */
1439 			*pAddr = startAddr;
1440 			bRet = true;
1441 			break;
1442 		}
1443 	}
1444 
1445 	return bRet;
1446 }
1447 
1448 static u8 hal_EfusePgPacketWrite1ByteHeader(
1449 	struct adapter *padapter,
1450 	u8 efuseType,
1451 	u16 *pAddr,
1452 	struct pgpkt_struct *pTargetPkt,
1453 	u8 bPseudoTest
1454 )
1455 {
1456 	u8 pg_header = 0, tmp_header = 0;
1457 	u16 efuse_addr = *pAddr;
1458 	u8 repeatcnt = 0;
1459 
1460 	pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1461 
1462 	do {
1463 		efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1464 		efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1465 		if (tmp_header != 0xFF)
1466 			break;
1467 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1468 			return false;
1469 
1470 	} while (1);
1471 
1472 	if (tmp_header != pg_header)
1473 		return false;
1474 
1475 	*pAddr = efuse_addr;
1476 
1477 	return true;
1478 }
1479 
1480 static u8 hal_EfusePgPacketWrite2ByteHeader(
1481 	struct adapter *padapter,
1482 	u8 efuseType,
1483 	u16 *pAddr,
1484 	struct pgpkt_struct *pTargetPkt,
1485 	u8 bPseudoTest
1486 )
1487 {
1488 	u16 efuse_addr, efuse_max_available_len = 0;
1489 	u8 pg_header = 0, tmp_header = 0;
1490 	u8 repeatcnt = 0;
1491 
1492 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1493 
1494 	efuse_addr = *pAddr;
1495 	if (efuse_addr >= efuse_max_available_len)
1496 		return false;
1497 
1498 	pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1499 
1500 	do {
1501 		efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1502 		efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1503 		if (tmp_header != 0xFF)
1504 			break;
1505 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1506 			return false;
1507 
1508 	} while (1);
1509 
1510 	if (tmp_header != pg_header)
1511 		return false;
1512 
1513 	/*  to write ext_header */
1514 	efuse_addr++;
1515 	pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1516 
1517 	do {
1518 		efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1519 		efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1520 		if (tmp_header != 0xFF)
1521 			break;
1522 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
1523 			return false;
1524 
1525 	} while (1);
1526 
1527 	if (tmp_header != pg_header) /* offset PG fail */
1528 		return false;
1529 
1530 	*pAddr = efuse_addr;
1531 
1532 	return true;
1533 }
1534 
1535 static u8 hal_EfusePgPacketWriteHeader(
1536 	struct adapter *padapter,
1537 	u8 efuseType,
1538 	u16 *pAddr,
1539 	struct pgpkt_struct *pTargetPkt,
1540 	u8 bPseudoTest
1541 )
1542 {
1543 	u8 bRet = false;
1544 
1545 	if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1546 		bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1547 	else
1548 		bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1549 
1550 	return bRet;
1551 }
1552 
1553 static u8 hal_EfusePgPacketWriteData(
1554 	struct adapter *padapter,
1555 	u8 efuseType,
1556 	u16 *pAddr,
1557 	struct pgpkt_struct *pTargetPkt,
1558 	u8 bPseudoTest
1559 )
1560 {
1561 	u16 efuse_addr;
1562 	u8 badworden;
1563 
1564 
1565 	efuse_addr = *pAddr;
1566 	badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1567 	if (badworden != 0x0F)
1568 		return false;
1569 
1570 	return true;
1571 }
1572 
1573 static s32 Hal_EfusePgPacketWrite(
1574 	struct adapter *padapter,
1575 	u8 offset,
1576 	u8 word_en,
1577 	u8 *pData,
1578 	bool bPseudoTest
1579 )
1580 {
1581 	struct pgpkt_struct targetPkt;
1582 	u16 startAddr = 0;
1583 	u8 efuseType = EFUSE_WIFI;
1584 
1585 	if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1586 		return false;
1587 
1588 	hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1589 
1590 	if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1591 		return false;
1592 
1593 	if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1594 		return false;
1595 
1596 	if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1597 		return false;
1598 
1599 	return true;
1600 }
1601 
1602 static bool Hal_EfusePgPacketWrite_BT(
1603 	struct adapter *padapter,
1604 	u8 offset,
1605 	u8 word_en,
1606 	u8 *pData,
1607 	bool bPseudoTest
1608 )
1609 {
1610 	struct pgpkt_struct targetPkt;
1611 	u16 startAddr = 0;
1612 	u8 efuseType = EFUSE_BT;
1613 
1614 	if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1615 		return false;
1616 
1617 	hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1618 
1619 	if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1620 		return false;
1621 
1622 	if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1623 		return false;
1624 
1625 	if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1626 		return false;
1627 
1628 	return true;
1629 }
1630 
1631 static struct hal_version ReadChipVersion8723B(struct adapter *padapter)
1632 {
1633 	u32 value32;
1634 	struct hal_version ChipVersion;
1635 	struct hal_com_data *pHalData;
1636 
1637 /* YJ, TODO, move read chip type here */
1638 	pHalData = GET_HAL_DATA(padapter);
1639 
1640 	value32 = rtw_read32(padapter, REG_SYS_CFG);
1641 	ChipVersion.ICType = CHIP_8723B;
1642 	ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1643 	ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1644 	ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1645 
1646 	/*  For regulator mode. by tynli. 2011.01.14 */
1647 	pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1648 
1649 	value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1650 	ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);	/*  ROM code version. */
1651 
1652 	/*  For multi-function consideration. Added by Roger, 2010.10.06. */
1653 	pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1654 	value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1655 	pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1656 	pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1657 	pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1658 	pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1659 #if 1
1660 	dump_chip_info(ChipVersion);
1661 #endif
1662 	pHalData->VersionID = ChipVersion;
1663 
1664 	return ChipVersion;
1665 }
1666 
1667 static void rtl8723b_read_chip_version(struct adapter *padapter)
1668 {
1669 	ReadChipVersion8723B(padapter);
1670 }
1671 
1672 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1673 {
1674 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1675 	u16 val16;
1676 	u8 val8;
1677 
1678 
1679 	val8 = DIS_TSF_UDT;
1680 	val16 = val8 | (val8 << 8); /*  port0 and port1 */
1681 
1682 	/*  Enable prot0 beacon function for PSTDMA */
1683 	val16 |= EN_BCN_FUNCTION;
1684 
1685 	rtw_write16(padapter, REG_BCN_CTRL, val16);
1686 
1687 	/*  TODO: Remove these magic number */
1688 	rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1689 	/*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1690 	/*  so don't set this register on STA mode. */
1691 	if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1692 		rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1693 	rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1694 
1695 	/*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1696 	/*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1697 	rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1698 
1699 	pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1700 	pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1701 	pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1702 	pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1703 	pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1704 }
1705 
1706 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1707 {
1708 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1709 
1710 	rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1711 	rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);		/* for VHT packet length 11K */
1712 	rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1713 	rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1714 	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1715 	if (pHalData->AMPDUBurstMode)
1716 		rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1717 	rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1718 
1719 	/*  ARFB table 9 for 11ac 5G 2SS */
1720 	rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1721 	if (IS_NORMAL_CHIP(pHalData->VersionID))
1722 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1723 	else
1724 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1725 
1726 	/*  ARFB table 10 for 11ac 5G 1SS */
1727 	rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1728 	rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1729 }
1730 
1731 static void ResumeTxBeacon(struct adapter *padapter)
1732 {
1733 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1734 
1735 	pHalData->RegFwHwTxQCtrl |= BIT(6);
1736 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1737 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
1738 	pHalData->RegReg542 |= BIT(0);
1739 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1740 }
1741 
1742 static void StopTxBeacon(struct adapter *padapter)
1743 {
1744 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1745 
1746 	pHalData->RegFwHwTxQCtrl &= ~BIT(6);
1747 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1748 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
1749 	pHalData->RegReg542 &= ~BIT(0);
1750 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1751 
1752 	CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
1753 }
1754 
1755 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
1756 {
1757 	rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
1758 	rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
1759 }
1760 
1761 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
1762 {
1763 	u8 val8;
1764 	u32 value32;
1765 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1766 	struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1767 	u32 bcn_ctrl_reg;
1768 
1769 	/* reset TSF, enable update TSF, correcting TSF On Beacon */
1770 
1771 	/* REG_BCN_INTERVAL */
1772 	/* REG_BCNDMATIM */
1773 	/* REG_ATIMWND */
1774 	/* REG_TBTT_PROHIBIT */
1775 	/* REG_DRVERLYINT */
1776 	/* REG_BCN_MAX_ERR */
1777 	/* REG_BCNTCFG (0x510) */
1778 	/* REG_DUAL_TSF_RST */
1779 	/* REG_BCN_CTRL (0x550) */
1780 
1781 
1782 	bcn_ctrl_reg = REG_BCN_CTRL;
1783 
1784 	/*  */
1785 	/*  ATIM window */
1786 	/*  */
1787 	rtw_write16(padapter, REG_ATIMWND, 2);
1788 
1789 	/*  */
1790 	/*  Beacon interval (in unit of TU). */
1791 	/*  */
1792 	rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1793 
1794 	rtl8723b_InitBeaconParameters(padapter);
1795 
1796 	rtw_write8(padapter, REG_SLOT, 0x09);
1797 
1798 	/*  */
1799 	/*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
1800 	/*  */
1801 	value32 = rtw_read32(padapter, REG_TCR);
1802 	value32 &= ~TSFRST;
1803 	rtw_write32(padapter, REG_TCR, value32);
1804 
1805 	value32 |= TSFRST;
1806 	rtw_write32(padapter, REG_TCR, value32);
1807 
1808 	/*  NOTE: Fix test chip's bug (about contention windows's randomness) */
1809 	if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
1810 		rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
1811 		rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
1812 	}
1813 
1814 	_BeaconFunctionEnable(padapter, true, true);
1815 
1816 	ResumeTxBeacon(padapter);
1817 	val8 = rtw_read8(padapter, bcn_ctrl_reg);
1818 	val8 |= DIS_BCNQ_SUB;
1819 	rtw_write8(padapter, bcn_ctrl_reg, val8);
1820 }
1821 
1822 static void rtl8723b_GetHalODMVar(
1823 	struct adapter *Adapter,
1824 	enum hal_odm_variable eVariable,
1825 	void *pValue1,
1826 	void *pValue2
1827 )
1828 {
1829 	GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
1830 }
1831 
1832 static void rtl8723b_SetHalODMVar(
1833 	struct adapter *Adapter,
1834 	enum hal_odm_variable eVariable,
1835 	void *pValue1,
1836 	bool bSet
1837 )
1838 {
1839 	SetHalODMVar(Adapter, eVariable, pValue1, bSet);
1840 }
1841 
1842 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
1843 {
1844 	if (enable)
1845 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
1846 	else
1847 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
1848 }
1849 
1850 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
1851 {
1852 	u32 mask, rate_bitmap;
1853 	u8 shortGIrate = false;
1854 	struct sta_info *psta;
1855 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1856 	struct dm_priv *pdmpriv = &pHalData->dmpriv;
1857 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1858 	struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
1859 
1860 	if (mac_id >= NUM_STA) /* CAM_SIZE */
1861 		return;
1862 
1863 	psta = pmlmeinfo->FW_sta_info[mac_id].psta;
1864 	if (!psta)
1865 		return;
1866 
1867 	shortGIrate = query_ra_short_GI(psta);
1868 
1869 	mask = psta->ra_mask;
1870 
1871 	rate_bitmap = 0xffffffff;
1872 	rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
1873 
1874 	mask &= rate_bitmap;
1875 
1876 	rate_bitmap = hal_btcoex_GetRaMask(padapter);
1877 	mask &= ~rate_bitmap;
1878 
1879 	if (pHalData->fw_ractrl) {
1880 		rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
1881 	}
1882 
1883 	/* set correct initial date rate for each mac_id */
1884 	pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
1885 }
1886 
1887 
1888 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
1889 {
1890 	pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
1891 
1892 	pHalFunc->dm_init = &rtl8723b_init_dm_priv;
1893 
1894 	pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
1895 
1896 	pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
1897 
1898 	pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
1899 	pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
1900 	pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
1901 
1902 	pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
1903 	pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
1904 
1905 	pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
1906 	pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
1907 
1908 
1909 	pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
1910 
1911 	pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
1912 
1913 	pHalFunc->run_thread = &rtl8723b_start_thread;
1914 	pHalFunc->cancel_thread = &rtl8723b_stop_thread;
1915 
1916 	pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
1917 	pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
1918 	pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
1919 	pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
1920 
1921 	/*  Efuse related function */
1922 	pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
1923 	pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
1924 	pHalFunc->ReadEFuse = &Hal_ReadEFuse;
1925 	pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
1926 	pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
1927 	pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
1928 	pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
1929 	pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
1930 	pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
1931 
1932 	pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
1933 	pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
1934 
1935 	pHalFunc->xmit_thread_handler = &hal_xmit_handler;
1936 	pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
1937 
1938 	pHalFunc->c2h_handler = c2h_handler_8723b;
1939 	pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
1940 
1941 	pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
1942 }
1943 
1944 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
1945 {
1946 	u8 val;
1947 
1948 	val = rtw_read8(padapter, REG_LEDCFG2);
1949 	/*  Let 8051 take control antenna setting */
1950 	val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
1951 	rtw_write8(padapter, REG_LEDCFG2, val);
1952 }
1953 
1954 void rtl8723b_init_default_value(struct adapter *padapter)
1955 {
1956 	struct hal_com_data *pHalData;
1957 	struct dm_priv *pdmpriv;
1958 	u8 i;
1959 
1960 
1961 	pHalData = GET_HAL_DATA(padapter);
1962 	pdmpriv = &pHalData->dmpriv;
1963 
1964 	padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
1965 
1966 	/*  init default value */
1967 	pHalData->fw_ractrl = false;
1968 	pHalData->bIQKInitialized = false;
1969 	if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
1970 		pHalData->LastHMEBoxNum = 0;
1971 
1972 	pHalData->bIQKInitialized = false;
1973 
1974 	/*  init dm default value */
1975 	pdmpriv->TM_Trigger = 0;/* for IQK */
1976 /* 	pdmpriv->binitialized = false; */
1977 /* 	pdmpriv->prv_traffic_idx = 3; */
1978 /* 	pdmpriv->initialize = 0; */
1979 
1980 	pdmpriv->ThermalValue_HP_index = 0;
1981 	for (i = 0; i < HP_THERMAL_NUM; i++)
1982 		pdmpriv->ThermalValue_HP[i] = 0;
1983 
1984 	/*  init Efuse variables */
1985 	pHalData->EfuseUsedBytes = 0;
1986 	pHalData->EfuseUsedPercentage = 0;
1987 #ifdef HAL_EFUSE_MEMORY
1988 	pHalData->EfuseHal.fakeEfuseBank = 0;
1989 	pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
1990 	memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
1991 	memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
1992 	memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
1993 	pHalData->EfuseHal.BTEfuseUsedBytes = 0;
1994 	pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
1995 	memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
1996 	memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1997 	memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1998 	pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
1999 	memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2000 	memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2001 	memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2002 #endif
2003 }
2004 
2005 u8 GetEEPROMSize8723B(struct adapter *padapter)
2006 {
2007 	u8 size = 0;
2008 	u32 cr;
2009 
2010 	cr = rtw_read16(padapter, REG_9346CR);
2011 	/*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2012 	size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2013 
2014 	return size;
2015 }
2016 
2017 /*  */
2018 /*  */
2019 /*  LLT R/W/Init function */
2020 /*  */
2021 /*  */
2022 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2023 {
2024 	unsigned long start, passing_time;
2025 	u32 val32;
2026 	s32 ret;
2027 
2028 
2029 	ret = _FAIL;
2030 
2031 	val32 = rtw_read32(padapter, REG_AUTO_LLT);
2032 	val32 |= BIT_AUTO_INIT_LLT;
2033 	rtw_write32(padapter, REG_AUTO_LLT, val32);
2034 
2035 	start = jiffies;
2036 
2037 	do {
2038 		val32 = rtw_read32(padapter, REG_AUTO_LLT);
2039 		if (!(val32 & BIT_AUTO_INIT_LLT)) {
2040 			ret = _SUCCESS;
2041 			break;
2042 		}
2043 
2044 		passing_time = jiffies_to_msecs(jiffies - start);
2045 		if (passing_time > 1000)
2046 			break;
2047 
2048 		msleep(1);
2049 	} while (1);
2050 
2051 	return ret;
2052 }
2053 
2054 static void hal_get_chnl_group_8723b(u8 channel, u8 *group)
2055 {
2056 	if (1  <= channel && channel <= 2)
2057 		*group = 0;
2058 	else if (3  <= channel && channel <= 5)
2059 		*group = 1;
2060 	else if (6  <= channel && channel <= 8)
2061 		*group = 2;
2062 	else if (9  <= channel && channel <= 11)
2063 		*group = 3;
2064 	else if (12 <= channel && channel <= 14)
2065 		*group = 4;
2066 }
2067 
2068 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2069 {
2070 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2071 
2072 	if (!pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
2073 		if (!pEEPROM->EepromOrEfuse) {
2074 			/*  Read EFUSE real map to shadow. */
2075 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2076 			memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2077 		}
2078 	} else {/* autoload fail */
2079 		if (!pEEPROM->EepromOrEfuse)
2080 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2081 		memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2082 	}
2083 }
2084 
2085 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2086 {
2087 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2088 /* 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter); */
2089 	u16 EEPROMId;
2090 
2091 
2092 	/*  Checl 0x8129 again for making sure autoload status!! */
2093 	EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2094 	if (EEPROMId != RTL_EEPROM_ID) {
2095 		pEEPROM->bautoload_fail_flag = true;
2096 	} else
2097 		pEEPROM->bautoload_fail_flag = false;
2098 }
2099 
2100 static void Hal_ReadPowerValueFromPROM_8723B(
2101 	struct adapter *Adapter,
2102 	struct TxPowerInfo24G *pwrInfo24G,
2103 	u8 *PROMContent,
2104 	bool AutoLoadFail
2105 )
2106 {
2107 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2108 	u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2109 
2110 	memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2111 
2112 	if (0xFF == PROMContent[eeAddr+1])
2113 		AutoLoadFail = true;
2114 
2115 	if (AutoLoadFail) {
2116 		for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2117 			/* 2.4G default value */
2118 			for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2119 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2120 				pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2121 			}
2122 
2123 			for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2124 				if (TxCount == 0) {
2125 					pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2126 					pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2127 				} else {
2128 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2129 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2130 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2131 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2132 				}
2133 			}
2134 		}
2135 
2136 		return;
2137 	}
2138 
2139 	pHalData->bTXPowerDataReadFromEEPORM = true;		/* YJ, move, 120316 */
2140 
2141 	for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2142 		/* 2 2.4G default value */
2143 		for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2144 			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
2145 			if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2146 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2147 		}
2148 
2149 		for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2150 			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
2151 			if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2152 				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
2153 		}
2154 
2155 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2156 			if (TxCount == 0) {
2157 				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2158 				if (PROMContent[eeAddr] == 0xFF)
2159 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_24G_HT20_DIFF;
2160 				else {
2161 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;
2162 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2163 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2164 				}
2165 
2166 				if (PROMContent[eeAddr] == 0xFF)
2167 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2168 				else {
2169 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2170 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2171 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2172 				}
2173 				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2174 				eeAddr++;
2175 			} else {
2176 				if (PROMContent[eeAddr] == 0xFF)
2177 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2178 				else {
2179 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2180 					if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2181 						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2182 				}
2183 
2184 				if (PROMContent[eeAddr] == 0xFF)
2185 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2186 				else {
2187 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2188 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2189 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2190 				}
2191 				eeAddr++;
2192 
2193 				if (PROMContent[eeAddr] == 0xFF)
2194 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2195 				else {
2196 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2197 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2198 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2199 				}
2200 
2201 				if (PROMContent[eeAddr] == 0xFF)
2202 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2203 				else {
2204 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2205 					if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2206 						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2207 				}
2208 				eeAddr++;
2209 			}
2210 		}
2211 	}
2212 }
2213 
2214 
2215 void Hal_EfuseParseTxPowerInfo_8723B(
2216 	struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2217 )
2218 {
2219 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2220 	struct TxPowerInfo24G	pwrInfo24G;
2221 	u8 	rfPath, ch, TxCount = 1;
2222 
2223 	Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2224 	for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2225 		for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2226 			u8 group = 0;
2227 
2228 			hal_get_chnl_group_8723b(ch + 1, &group);
2229 
2230 			if (ch == 14-1) {
2231 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2232 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2233 			} else {
2234 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2235 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2236 			}
2237 		}
2238 
2239 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2240 			pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2241 			pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2242 			pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2243 			pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2244 		}
2245 	}
2246 
2247 	/*  2010/10/19 MH Add Regulator recognize for CU. */
2248 	if (!AutoLoadFail) {
2249 		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);	/* bit0~2 */
2250 		if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2251 			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7);	/* bit0~2 */
2252 	} else
2253 		pHalData->EEPROMRegulatory = 0;
2254 }
2255 
2256 void Hal_EfuseParseBTCoexistInfo_8723B(
2257 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2258 )
2259 {
2260 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2261 	u8 tempval;
2262 	u32 tmpu4;
2263 
2264 	if (!AutoLoadFail) {
2265 		tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2266 		if (tmpu4 & BT_FUNC_EN)
2267 			pHalData->EEPROMBluetoothCoexist = true;
2268 		else
2269 			pHalData->EEPROMBluetoothCoexist = false;
2270 
2271 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
2272 
2273 		tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2274 		if (tempval != 0xFF) {
2275 			pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2276 			/*  EFUSE_0xC3[6] == 0, S1(Main)-RF_PATH_A; */
2277 			/*  EFUSE_0xC3[6] == 1, S0(Aux)-RF_PATH_B */
2278 			pHalData->ant_path = (tempval & BIT(6))? RF_PATH_B : RF_PATH_A;
2279 		} else {
2280 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
2281 			if (pHalData->PackageType == PACKAGE_QFN68)
2282 				pHalData->ant_path = RF_PATH_B;
2283 			else
2284 				pHalData->ant_path = RF_PATH_A;
2285 		}
2286 	} else {
2287 		pHalData->EEPROMBluetoothCoexist = false;
2288 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
2289 		pHalData->EEPROMBluetoothAntNum = Ant_x1;
2290 		pHalData->ant_path = RF_PATH_A;
2291 	}
2292 
2293 	if (padapter->registrypriv.ant_num > 0) {
2294 		switch (padapter->registrypriv.ant_num) {
2295 		case 1:
2296 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
2297 			break;
2298 		case 2:
2299 			pHalData->EEPROMBluetoothAntNum = Ant_x2;
2300 			break;
2301 		default:
2302 			break;
2303 		}
2304 	}
2305 
2306 	hal_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2307 	hal_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
2308 	hal_btcoex_SetPgAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2309 	if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2310 		hal_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2311 }
2312 
2313 void Hal_EfuseParseEEPROMVer_8723B(
2314 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2315 )
2316 {
2317 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2318 
2319 	if (!AutoLoadFail)
2320 		pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2321 	else
2322 		pHalData->EEPROMVersion = 1;
2323 }
2324 
2325 
2326 
2327 void Hal_EfuseParsePackageType_8723B(
2328 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2329 )
2330 {
2331 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2332 	u8 package;
2333 	u8 efuseContent;
2334 
2335 	Efuse_PowerSwitch(padapter, false, true);
2336 	efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2337 	Efuse_PowerSwitch(padapter, false, false);
2338 
2339 	package = efuseContent & 0x7;
2340 	switch (package) {
2341 	case 0x4:
2342 		pHalData->PackageType = PACKAGE_TFBGA79;
2343 		break;
2344 	case 0x5:
2345 		pHalData->PackageType = PACKAGE_TFBGA90;
2346 		break;
2347 	case 0x6:
2348 		pHalData->PackageType = PACKAGE_QFN68;
2349 		break;
2350 	case 0x7:
2351 		pHalData->PackageType = PACKAGE_TFBGA80;
2352 		break;
2353 
2354 	default:
2355 		pHalData->PackageType = PACKAGE_DEFAULT;
2356 		break;
2357 	}
2358 }
2359 
2360 
2361 void Hal_EfuseParseVoltage_8723B(
2362 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2363 )
2364 {
2365 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2366 
2367 	/* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2368 	pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2369 }
2370 
2371 void Hal_EfuseParseChnlPlan_8723B(
2372 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2373 )
2374 {
2375 	padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2376 		padapter,
2377 		hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2378 		padapter->registrypriv.channel_plan,
2379 		RT_CHANNEL_DOMAIN_WORLD_NULL,
2380 		AutoLoadFail
2381 	);
2382 
2383 	Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2384 }
2385 
2386 void Hal_EfuseParseCustomerID_8723B(
2387 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2388 )
2389 {
2390 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2391 
2392 	if (!AutoLoadFail)
2393 		pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2394 	else
2395 		pHalData->EEPROMCustomerID = 0;
2396 }
2397 
2398 void Hal_EfuseParseAntennaDiversity_8723B(
2399 	struct adapter *padapter,
2400 	u8 *hwinfo,
2401 	bool AutoLoadFail
2402 )
2403 {
2404 }
2405 
2406 void Hal_EfuseParseXtal_8723B(
2407 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2408 )
2409 {
2410 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2411 
2412 	if (!AutoLoadFail) {
2413 		pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2414 		if (pHalData->CrystalCap == 0xFF)
2415 			pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;	   /* what value should 8812 set? */
2416 	} else
2417 		pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2418 }
2419 
2420 
2421 void Hal_EfuseParseThermalMeter_8723B(
2422 	struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2423 )
2424 {
2425 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2426 
2427 	/*  */
2428 	/*  ThermalMeter from EEPROM */
2429 	/*  */
2430 	if (!AutoLoadFail)
2431 		pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2432 	else
2433 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2434 
2435 	if ((pHalData->EEPROMThermalMeter == 0xff) || AutoLoadFail) {
2436 		pHalData->bAPKThermalMeterIgnore = true;
2437 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2438 	}
2439 }
2440 
2441 
2442 void Hal_ReadRFGainOffset(
2443 	struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2444 )
2445 {
2446 	/*  */
2447 	/*  BB_RF Gain Offset from EEPROM */
2448 	/*  */
2449 
2450 	if (!AutoloadFail) {
2451 		Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2452 		Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2453 	} else {
2454 		Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2455 		Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2456 	}
2457 }
2458 
2459 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2460 {
2461 	u8 BWSettingOfDesc = 0;
2462 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2463 
2464 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2465 		if (pattrib->bwmode == CHANNEL_WIDTH_40)
2466 			BWSettingOfDesc = 1;
2467 		else
2468 			BWSettingOfDesc = 0;
2469 	} else
2470 		BWSettingOfDesc = 0;
2471 
2472 	/* if (pTcb->bBTTxPacket) */
2473 	/* 	BWSettingOfDesc = 0; */
2474 
2475 	return BWSettingOfDesc;
2476 }
2477 
2478 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2479 {
2480 	u8 SCSettingOfDesc = 0;
2481 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2482 
2483 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2484 		if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2485 			SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2486 		} else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2487 			if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2488 				SCSettingOfDesc = HT_DATA_SC_20_UPPER_OF_40MHZ;
2489 			} else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2490 				SCSettingOfDesc = HT_DATA_SC_20_LOWER_OF_40MHZ;
2491 			} else {
2492 				SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2493 			}
2494 		}
2495 	} else {
2496 		SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
2497 	}
2498 
2499 	return SCSettingOfDesc;
2500 }
2501 
2502 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2503 {
2504 	u16 *usPtr = (u16 *)ptxdesc;
2505 	u32 count;
2506 	u32 index;
2507 	u16 checksum = 0;
2508 
2509 
2510 	/*  Clear first */
2511 	ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2512 
2513 	/*  checksume is always calculated by first 32 bytes, */
2514 	/*  and it doesn't depend on TX DESC length. */
2515 	/*  Thomas, Lucas@SD4, 20130515 */
2516 	count = 16;
2517 
2518 	for (index = 0; index < count; index++) {
2519 		checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2520 	}
2521 
2522 	ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2523 }
2524 
2525 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2526 {
2527 	u8 sectype = 0;
2528 	if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2529 		switch (pattrib->encrypt) {
2530 		/*  SEC_TYPE */
2531 		case _WEP40_:
2532 		case _WEP104_:
2533 		case _TKIP_:
2534 		case _TKIP_WTMIC_:
2535 			sectype = 1;
2536 			break;
2537 
2538 		case _AES_:
2539 			sectype = 3;
2540 			break;
2541 
2542 		case _NO_PRIVACY_:
2543 		default:
2544 			break;
2545 		}
2546 	}
2547 	return sectype;
2548 }
2549 
2550 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2551 {
2552 	if (pattrib->vcs_mode) {
2553 		switch (pattrib->vcs_mode) {
2554 		case RTS_CTS:
2555 			ptxdesc->rtsen = 1;
2556 			/*  ENABLE HW RTS */
2557 			ptxdesc->hw_rts_en = 1;
2558 			break;
2559 
2560 		case CTS_TO_SELF:
2561 			ptxdesc->cts2self = 1;
2562 			break;
2563 
2564 		case NONE_VCS:
2565 		default:
2566 			break;
2567 		}
2568 
2569 		ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
2570 		ptxdesc->rts_ratefb_lmt = 0xF;
2571 
2572 		if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
2573 			ptxdesc->rts_short = 1;
2574 
2575 		/*  Set RTS BW */
2576 		if (pattrib->ht_en)
2577 			ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
2578 	}
2579 }
2580 
2581 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2582 {
2583 	if (pattrib->ht_en) {
2584 		ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
2585 
2586 		ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
2587 	}
2588 }
2589 
2590 static void rtl8723b_fill_default_txdesc(
2591 	struct xmit_frame *pxmitframe, u8 *pbuf
2592 )
2593 {
2594 	struct adapter *padapter;
2595 	struct hal_com_data *pHalData;
2596 	struct mlme_ext_priv *pmlmeext;
2597 	struct mlme_ext_info *pmlmeinfo;
2598 	struct pkt_attrib *pattrib;
2599 	struct txdesc_8723b *ptxdesc;
2600 	s32 bmcst;
2601 
2602 	memset(pbuf, 0, TXDESC_SIZE);
2603 
2604 	padapter = pxmitframe->padapter;
2605 	pHalData = GET_HAL_DATA(padapter);
2606 	pmlmeext = &padapter->mlmeextpriv;
2607 	pmlmeinfo = &(pmlmeext->mlmext_info);
2608 
2609 	pattrib = &pxmitframe->attrib;
2610 	bmcst = IS_MCAST(pattrib->ra);
2611 
2612 	ptxdesc = (struct txdesc_8723b *)pbuf;
2613 
2614 	if (pxmitframe->frame_tag == DATA_FRAMETAG) {
2615 		u8 drv_userate = 0;
2616 
2617 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2618 		ptxdesc->rate_id = pattrib->raid;
2619 		ptxdesc->qsel = pattrib->qsel;
2620 		ptxdesc->seq = pattrib->seqnum;
2621 
2622 		ptxdesc->sectype = fill_txdesc_sectype(pattrib);
2623 		fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
2624 
2625 		if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
2626 			drv_userate = 1;
2627 
2628 		if (
2629 			(pattrib->ether_type != 0x888e) &&
2630 			(pattrib->ether_type != 0x0806) &&
2631 			(pattrib->ether_type != 0x88B4) &&
2632 			(pattrib->dhcp_pkt != 1) &&
2633 			(drv_userate != 1)
2634 		) {
2635 			/*  Non EAP & ARP & DHCP type data packet */
2636 
2637 			if (pattrib->ampdu_en) {
2638 				ptxdesc->agg_en = 1; /*  AGG EN */
2639 				ptxdesc->max_agg_num = 0x1f;
2640 				ptxdesc->ampdu_density = pattrib->ampdu_spacing;
2641 			} else
2642 				ptxdesc->bk = 1; /*  AGG BK */
2643 
2644 			fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
2645 
2646 			ptxdesc->data_ratefb_lmt = 0x1F;
2647 
2648 			if (!pHalData->fw_ractrl) {
2649 				ptxdesc->userate = 1;
2650 
2651 				if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
2652 					ptxdesc->data_short = 1;
2653 
2654 				ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
2655 			}
2656 
2657 			if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
2658 				ptxdesc->userate = 1;
2659 				if (padapter->fix_rate & BIT(7))
2660 					ptxdesc->data_short = 1;
2661 
2662 				ptxdesc->datarate = (padapter->fix_rate & 0x7F);
2663 				ptxdesc->disdatafb = 1;
2664 			}
2665 
2666 			if (pattrib->ldpc)
2667 				ptxdesc->data_ldpc = 1;
2668 			if (pattrib->stbc)
2669 				ptxdesc->data_stbc = 1;
2670 		} else {
2671 			/*  EAP data packet and ARP packet. */
2672 			/*  Use the 1M data rate to send the EAP/ARP packet. */
2673 			/*  This will maybe make the handshake smooth. */
2674 
2675 			ptxdesc->bk = 1; /*  AGG BK */
2676 			ptxdesc->userate = 1; /*  driver uses rate */
2677 			if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
2678 				ptxdesc->data_short = 1;/*  DATA_SHORT */
2679 			ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2680 		}
2681 
2682 		ptxdesc->usb_txagg_num = pxmitframe->agg_num;
2683 	} else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
2684 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2685 		ptxdesc->qsel = pattrib->qsel;
2686 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2687 		ptxdesc->seq = pattrib->seqnum;
2688 		ptxdesc->userate = 1; /*  driver uses rate, 1M */
2689 
2690 		ptxdesc->mbssid = pattrib->mbssid & 0xF;
2691 
2692 		ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
2693 		if (pattrib->retry_ctrl) {
2694 			ptxdesc->data_rt_lmt = 6;
2695 		} else {
2696 			ptxdesc->data_rt_lmt = 12;
2697 		}
2698 
2699 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2700 
2701 		/*  CCX-TXRPT ack for xmit mgmt frames. */
2702 		if (pxmitframe->ack_report) {
2703 			ptxdesc->spe_rpt = 1;
2704 			ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
2705 		}
2706 	} else {
2707 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2708 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2709 		ptxdesc->qsel = pattrib->qsel;
2710 		ptxdesc->seq = pattrib->seqnum;
2711 		ptxdesc->userate = 1; /*  driver uses rate */
2712 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2713 	}
2714 
2715 	ptxdesc->pktlen = pattrib->last_txcmdsz;
2716 	ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
2717 
2718 	if (bmcst)
2719 		ptxdesc->bmc = 1;
2720 
2721 	/* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS.
2722 	 * (1) The sequence number of each non-Qos frame / broadcast /
2723 	 * multicast / mgnt frame should be controlled by Hw because Fw
2724 	 * will also send null data which we cannot control when Fw LPS
2725 	 * enable.
2726 	 * --> default enable non-Qos data sequense number. 2010.06.23.
2727 	 * by tynli.
2728 	 * (2) Enable HW SEQ control for beacon packet, because we use
2729 	 * Hw beacon.
2730 	 * (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos
2731 	 * packets.
2732 	 * 2010.06.23. Added by tynli.
2733 	 */
2734 	if (!pattrib->qos_en) /*  Hw set sequence number */
2735 		ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
2736 }
2737 
2738 /* Description:
2739  *
2740  * Parameters:
2741  *	pxmitframe	xmitframe
2742  *	pbuf		where to fill tx desc
2743  */
2744 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
2745 {
2746 	struct tx_desc *pdesc;
2747 
2748 	rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
2749 
2750 	pdesc = (struct tx_desc *)pbuf;
2751 	pdesc->txdw0 = pdesc->txdw0;
2752 	pdesc->txdw1 = pdesc->txdw1;
2753 	pdesc->txdw2 = pdesc->txdw2;
2754 	pdesc->txdw3 = pdesc->txdw3;
2755 	pdesc->txdw4 = pdesc->txdw4;
2756 	pdesc->txdw5 = pdesc->txdw5;
2757 	pdesc->txdw6 = pdesc->txdw6;
2758 	pdesc->txdw7 = pdesc->txdw7;
2759 	pdesc->txdw8 = pdesc->txdw8;
2760 	pdesc->txdw9 = pdesc->txdw9;
2761 
2762 	rtl8723b_cal_txdesc_chksum(pdesc);
2763 }
2764 
2765 /*  */
2766 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
2767 /* 			in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
2768 /* 			Fw can tell Hw to send these packet derectly. */
2769 /*  Added by tynli. 2009.10.15. */
2770 /*  */
2771 /* type1:pspoll, type2:null */
2772 void rtl8723b_fill_fake_txdesc(
2773 	struct adapter *padapter,
2774 	u8 *pDesc,
2775 	u32 BufferLen,
2776 	u8 IsPsPoll,
2777 	u8 IsBTQosNull,
2778 	u8 bDataFrame
2779 )
2780 {
2781 	/*  Clear all status */
2782 	memset(pDesc, 0, TXDESC_SIZE);
2783 
2784 	SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
2785 	SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
2786 
2787 	SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
2788 
2789 	SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
2790 	SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
2791 
2792 	/*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
2793 	if (IsPsPoll) {
2794 		SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
2795 	} else {
2796 		SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
2797 		SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
2798 	}
2799 
2800 	if (IsBTQosNull) {
2801 		SET_TX_DESC_BT_INT_8723B(pDesc, 1);
2802 	}
2803 
2804 	SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
2805 	SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
2806 
2807 	SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
2808 
2809 	/*  */
2810 	/*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
2811 	/*  */
2812 	if (bDataFrame) {
2813 		u32 EncAlg;
2814 
2815 		EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
2816 		switch (EncAlg) {
2817 		case _NO_PRIVACY_:
2818 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2819 			break;
2820 		case _WEP40_:
2821 		case _WEP104_:
2822 		case _TKIP_:
2823 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
2824 			break;
2825 		case _SMS4_:
2826 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
2827 			break;
2828 		case _AES_:
2829 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
2830 			break;
2831 		default:
2832 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2833 			break;
2834 		}
2835 	}
2836 
2837 	/*  USB interface drop packet if the checksum of descriptor isn't correct. */
2838 	/*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
2839 	rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
2840 }
2841 
2842 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
2843 {
2844 	u8 val8;
2845 	u8 mode = *((u8 *)val);
2846 
2847 	{
2848 		/*  disable Port0 TSF update */
2849 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2850 		val8 |= DIS_TSF_UDT;
2851 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2852 
2853 		/*  set net_type */
2854 		Set_MSR(padapter, mode);
2855 
2856 		if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
2857 			{
2858 				StopTxBeacon(padapter);
2859 			}
2860 
2861 			/*  disable atim wnd */
2862 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
2863 			/* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
2864 		} else if (mode == _HW_STATE_ADHOC_) {
2865 			ResumeTxBeacon(padapter);
2866 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
2867 		} else if (mode == _HW_STATE_AP_) {
2868 
2869 			ResumeTxBeacon(padapter);
2870 
2871 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
2872 
2873 			/* Set RCR */
2874 			rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
2875 			/* enable to rx data frame */
2876 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2877 			/* enable to rx ps-poll */
2878 			rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
2879 
2880 			/* Beacon Control related register for first time */
2881 			rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
2882 
2883 			/* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
2884 			rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
2885 			rtw_write16(padapter, REG_BCNTCFG, 0x00);
2886 			rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
2887 			rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
2888 
2889 			/* reset TSF */
2890 			rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2891 
2892 			/* enable BCN0 Function for if1 */
2893 			/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
2894 			rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
2895 
2896 			/* SW_BCN_SEL - Port0 */
2897 			/* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
2898 			rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
2899 
2900 			/*  select BCN on port 0 */
2901 			rtw_write8(
2902 				padapter,
2903 				REG_CCK_CHECK_8723B,
2904 				(rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
2905 			);
2906 
2907 			/*  dis BCN1 ATIM  WND if if2 is station */
2908 			val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
2909 			val8 |= DIS_ATIM;
2910 			rtw_write8(padapter, REG_BCN_CTRL_1, val8);
2911 		}
2912 	}
2913 }
2914 
2915 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
2916 {
2917 	u8 idx = 0;
2918 	u32 reg_macid;
2919 
2920 	reg_macid = REG_MACID;
2921 
2922 	for (idx = 0 ; idx < 6; idx++)
2923 		rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
2924 }
2925 
2926 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
2927 {
2928 	u8 idx = 0;
2929 	u32 reg_bssid;
2930 
2931 	reg_bssid = REG_BSSID;
2932 
2933 	for (idx = 0 ; idx < 6; idx++)
2934 		rtw_write8(padapter, (reg_bssid+idx), val[idx]);
2935 }
2936 
2937 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
2938 {
2939 	u32 bcn_ctrl_reg;
2940 
2941 	bcn_ctrl_reg = REG_BCN_CTRL;
2942 
2943 	if (*(u8 *)val)
2944 		rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
2945 	else {
2946 		u8 val8;
2947 		val8 = rtw_read8(padapter, bcn_ctrl_reg);
2948 		val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
2949 
2950 		/*  Always enable port0 beacon function for PSTDMA */
2951 		if (REG_BCN_CTRL == bcn_ctrl_reg)
2952 			val8 |= EN_BCN_FUNCTION;
2953 
2954 		rtw_write8(padapter, bcn_ctrl_reg, val8);
2955 	}
2956 }
2957 
2958 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
2959 {
2960 	u8 val8;
2961 	u64 tsf;
2962 	struct mlme_ext_priv *pmlmeext;
2963 	struct mlme_ext_info *pmlmeinfo;
2964 
2965 
2966 	pmlmeext = &padapter->mlmeextpriv;
2967 	pmlmeinfo = &pmlmeext->mlmext_info;
2968 
2969 	tsf = pmlmeext->TSFValue-do_div(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
2970 
2971 	if (
2972 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2973 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2974 	)
2975 		StopTxBeacon(padapter);
2976 
2977 	{
2978 		/*  disable related TSF function */
2979 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2980 		val8 &= ~EN_BCN_FUNCTION;
2981 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2982 
2983 		rtw_write32(padapter, REG_TSFTR, tsf);
2984 		rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
2985 
2986 		/*  enable related TSF function */
2987 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2988 		val8 |= EN_BCN_FUNCTION;
2989 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2990 	}
2991 
2992 	if (
2993 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2994 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2995 	)
2996 		ResumeTxBeacon(padapter);
2997 }
2998 
2999 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
3000 {
3001 	u8 val8;
3002 
3003 	/*  Set RCR to not to receive data frame when NO LINK state */
3004 	/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
3005 	/*  reject all data frames */
3006 	rtw_write16(padapter, REG_RXFLTMAP2, 0);
3007 
3008 	/*  reset TSF */
3009 	rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3010 
3011 	/*  disable update TSF */
3012 	val8 = rtw_read8(padapter, REG_BCN_CTRL);
3013 	val8 |= DIS_TSF_UDT;
3014 	rtw_write8(padapter, REG_BCN_CTRL, val8);
3015 }
3016 
3017 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3018 {
3019 	u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3020 	u16 value_rxfltmap2;
3021 	u8 val8;
3022 	struct hal_com_data *pHalData;
3023 	struct mlme_priv *pmlmepriv;
3024 
3025 
3026 	pHalData = GET_HAL_DATA(padapter);
3027 	pmlmepriv = &padapter->mlmepriv;
3028 
3029 	reg_bcn_ctl = REG_BCN_CTRL;
3030 
3031 	rcr_clear_bit = RCR_CBSSID_BCN;
3032 
3033 	/*  config RCR to receive different BSSID & not to receive data frame */
3034 	value_rxfltmap2 = 0;
3035 
3036 	if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3037 		rcr_clear_bit = RCR_CBSSID_BCN;
3038 
3039 	value_rcr = rtw_read32(padapter, REG_RCR);
3040 
3041 	if (*((u8 *)val)) {
3042 		/*  under sitesurvey */
3043 		value_rcr &= ~(rcr_clear_bit);
3044 		rtw_write32(padapter, REG_RCR, value_rcr);
3045 
3046 		rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3047 
3048 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3049 			/*  disable update TSF */
3050 			val8 = rtw_read8(padapter, reg_bcn_ctl);
3051 			val8 |= DIS_TSF_UDT;
3052 			rtw_write8(padapter, reg_bcn_ctl, val8);
3053 		}
3054 
3055 		/*  Save original RRSR setting. */
3056 		pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3057 	} else {
3058 		/*  sitesurvey done */
3059 		if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3060 			/*  enable to rx data frame */
3061 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3062 
3063 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3064 			/*  enable update TSF */
3065 			val8 = rtw_read8(padapter, reg_bcn_ctl);
3066 			val8 &= ~DIS_TSF_UDT;
3067 			rtw_write8(padapter, reg_bcn_ctl, val8);
3068 		}
3069 
3070 		value_rcr |= rcr_clear_bit;
3071 		rtw_write32(padapter, REG_RCR, value_rcr);
3072 
3073 		/*  Restore original RRSR setting. */
3074 		rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3075 	}
3076 }
3077 
3078 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3079 {
3080 	u8 val8;
3081 	u16 val16;
3082 	u32 val32;
3083 	u8 RetryLimit;
3084 	u8 type;
3085 	struct mlme_priv *pmlmepriv;
3086 	struct eeprom_priv *pEEPROM;
3087 
3088 
3089 	RetryLimit = 0x30;
3090 	type = *(u8 *)val;
3091 	pmlmepriv = &padapter->mlmepriv;
3092 	pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3093 
3094 	if (type == 0) { /*  prepare to join */
3095 		/* enable to rx data frame.Accept all data frame */
3096 		/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3097 		rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3098 
3099 		val32 = rtw_read32(padapter, REG_RCR);
3100 		if (padapter->in_cta_test)
3101 			val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
3102 		else
3103 			val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3104 		rtw_write32(padapter, REG_RCR, val32);
3105 
3106 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3107 			RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3108 		else /*  Ad-hoc Mode */
3109 			RetryLimit = 0x7;
3110 	} else if (type == 1) /* joinbss_event call back when join res < 0 */
3111 		rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3112 	else if (type == 2) { /* sta add event call back */
3113 		/* enable update TSF */
3114 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
3115 		val8 &= ~DIS_TSF_UDT;
3116 		rtw_write8(padapter, REG_BCN_CTRL, val8);
3117 
3118 		if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3119 			RetryLimit = 0x7;
3120 	}
3121 
3122 	val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3123 	rtw_write16(padapter, REG_RL, val16);
3124 }
3125 
3126 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3127 {
3128 
3129 #define	GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3130 #define	GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3131 
3132 	if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3133 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3134 	}
3135 /*
3136 	else if (seq_no != padapter->xmitpriv.seq_no) {
3137 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3138 	}
3139 */
3140 	else
3141 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3142 }
3143 
3144 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3145 {
3146 	struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3147 	s32 ret = false;
3148 	if (c2h_evt->id == C2H_CCX_TX_RPT)
3149 		ret = true;
3150 
3151 	return ret;
3152 }
3153 
3154 
3155 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3156 {
3157 	struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3158 	s32 ret = _SUCCESS;
3159 
3160 	if (!pC2hEvent) {
3161 		ret = _FAIL;
3162 		goto exit;
3163 	}
3164 
3165 	switch (pC2hEvent->id) {
3166 	case C2H_AP_RPT_RSP:
3167 		break;
3168 	case C2H_DBG:
3169 		{
3170 		}
3171 		break;
3172 
3173 	case C2H_CCX_TX_RPT:
3174 /* 			CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3175 		break;
3176 
3177 	case C2H_EXT_RA_RPT:
3178 /* 			C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3179 		break;
3180 
3181 	case C2H_HW_INFO_EXCH:
3182 		break;
3183 
3184 	case C2H_8723B_BT_INFO:
3185 		hal_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3186 		break;
3187 
3188 	default:
3189 		break;
3190 	}
3191 
3192 	/*  Clear event to notify FW we have read the command. */
3193 	/*  Note: */
3194 	/* 	If this field isn't clear, the FW won't update the next command message. */
3195 /* 	rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3196 exit:
3197 	return ret;
3198 }
3199 
3200 static void process_c2h_event(struct adapter *padapter, struct c2h_evt_hdr_t *pC2hEvent, u8 *c2hBuf)
3201 {
3202 	if (!c2hBuf)
3203 		return;
3204 
3205 	switch (pC2hEvent->CmdID) {
3206 	case C2H_AP_RPT_RSP:
3207 		break;
3208 	case C2H_DBG:
3209 		{
3210 		}
3211 		break;
3212 
3213 	case C2H_CCX_TX_RPT:
3214 /* 			CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3215 		break;
3216 
3217 	case C2H_EXT_RA_RPT:
3218 /* 			C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3219 		break;
3220 
3221 	case C2H_HW_INFO_EXCH:
3222 		break;
3223 
3224 	case C2H_8723B_BT_INFO:
3225 		hal_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3226 		break;
3227 
3228 	default:
3229 		break;
3230 	}
3231 }
3232 
3233 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3234 {
3235 	struct c2h_evt_hdr_t	C2hEvent;
3236 	u8 *tmpBuf = NULL;
3237 	C2hEvent.CmdID = pbuffer[0];
3238 	C2hEvent.CmdSeq = pbuffer[1];
3239 	C2hEvent.CmdLen = length-2;
3240 	tmpBuf = pbuffer+2;
3241 
3242 	process_c2h_event(padapter, &C2hEvent, tmpBuf);
3243 	/* c2h_handler_8723b(padapter,&C2hEvent); */
3244 }
3245 
3246 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3247 {
3248 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3249 	u8 val8;
3250 	u32 val32;
3251 
3252 	switch (variable) {
3253 	case HW_VAR_MEDIA_STATUS:
3254 		val8 = rtw_read8(padapter, MSR) & 0x0c;
3255 		val8 |= *val;
3256 		rtw_write8(padapter, MSR, val8);
3257 		break;
3258 
3259 	case HW_VAR_MEDIA_STATUS1:
3260 		val8 = rtw_read8(padapter, MSR) & 0x03;
3261 		val8 |= *val << 2;
3262 		rtw_write8(padapter, MSR, val8);
3263 		break;
3264 
3265 	case HW_VAR_SET_OPMODE:
3266 		hw_var_set_opmode(padapter, variable, val);
3267 		break;
3268 
3269 	case HW_VAR_MAC_ADDR:
3270 		hw_var_set_macaddr(padapter, variable, val);
3271 		break;
3272 
3273 	case HW_VAR_BSSID:
3274 		hw_var_set_bssid(padapter, variable, val);
3275 		break;
3276 
3277 	case HW_VAR_BASIC_RATE:
3278 	{
3279 		struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3280 		u16 BrateCfg = 0;
3281 		u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3282 		u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3283 
3284 		HalSetBrateCfg(padapter, val, &BrateCfg);
3285 
3286 		/* apply force and allow mask */
3287 		BrateCfg |= rrsr_2g_force_mask;
3288 		BrateCfg &= rrsr_2g_allow_mask;
3289 
3290 		/* IOT consideration */
3291 		if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3292 			/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3293 			if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3294 				BrateCfg |= RRSR_6M;
3295 		}
3296 
3297 		pHalData->BasicRateSet = BrateCfg;
3298 
3299 		/*  Set RRSR rate table. */
3300 		rtw_write16(padapter, REG_RRSR, BrateCfg);
3301 		rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3302 	}
3303 		break;
3304 
3305 	case HW_VAR_TXPAUSE:
3306 		rtw_write8(padapter, REG_TXPAUSE, *val);
3307 		break;
3308 
3309 	case HW_VAR_BCN_FUNC:
3310 		hw_var_set_bcn_func(padapter, variable, val);
3311 		break;
3312 
3313 	case HW_VAR_CORRECT_TSF:
3314 		hw_var_set_correct_tsf(padapter, variable, val);
3315 		break;
3316 
3317 	case HW_VAR_CHECK_BSSID:
3318 		{
3319 			u32 val32;
3320 			val32 = rtw_read32(padapter, REG_RCR);
3321 			if (*val)
3322 				val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3323 			else
3324 				val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3325 			rtw_write32(padapter, REG_RCR, val32);
3326 		}
3327 		break;
3328 
3329 	case HW_VAR_MLME_DISCONNECT:
3330 		hw_var_set_mlme_disconnect(padapter, variable, val);
3331 		break;
3332 
3333 	case HW_VAR_MLME_SITESURVEY:
3334 		hw_var_set_mlme_sitesurvey(padapter, variable,  val);
3335 
3336 		hal_btcoex_ScanNotify(padapter, *val?true:false);
3337 		break;
3338 
3339 	case HW_VAR_MLME_JOIN:
3340 		hw_var_set_mlme_join(padapter, variable, val);
3341 
3342 		switch (*val) {
3343 		case 0:
3344 			/*  prepare to join */
3345 			hal_btcoex_ConnectNotify(padapter, true);
3346 			break;
3347 		case 1:
3348 			/*  joinbss_event callback when join res < 0 */
3349 			hal_btcoex_ConnectNotify(padapter, false);
3350 			break;
3351 		case 2:
3352 			/*  sta add event callback */
3353 /* 				rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3354 			break;
3355 		}
3356 		break;
3357 
3358 	case HW_VAR_ON_RCR_AM:
3359 		val32 = rtw_read32(padapter, REG_RCR);
3360 		val32 |= RCR_AM;
3361 		rtw_write32(padapter, REG_RCR, val32);
3362 		break;
3363 
3364 	case HW_VAR_OFF_RCR_AM:
3365 		val32 = rtw_read32(padapter, REG_RCR);
3366 		val32 &= ~RCR_AM;
3367 		rtw_write32(padapter, REG_RCR, val32);
3368 		break;
3369 
3370 	case HW_VAR_BEACON_INTERVAL:
3371 		rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3372 		break;
3373 
3374 	case HW_VAR_SLOT_TIME:
3375 		rtw_write8(padapter, REG_SLOT, *val);
3376 		break;
3377 
3378 	case HW_VAR_RESP_SIFS:
3379 		/* SIFS_Timer = 0x0a0a0808; */
3380 		/* RESP_SIFS for CCK */
3381 		rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
3382 		rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3383 		/* RESP_SIFS for OFDM */
3384 		rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3385 		rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3386 		break;
3387 
3388 	case HW_VAR_ACK_PREAMBLE:
3389 		{
3390 			u8 regTmp;
3391 			u8 bShortPreamble = *val;
3392 
3393 			/*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3394 			/* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3395 			regTmp = 0;
3396 			if (bShortPreamble)
3397 				regTmp |= 0x80;
3398 			rtw_write8(padapter, REG_RRSR+2, regTmp);
3399 		}
3400 		break;
3401 
3402 	case HW_VAR_CAM_EMPTY_ENTRY:
3403 		{
3404 			u8 ucIndex = *val;
3405 			u8 i;
3406 			u32 ulCommand = 0;
3407 			u32 ulContent = 0;
3408 			u32 ulEncAlgo = CAM_AES;
3409 
3410 			for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3411 				/*  filled id in CAM config 2 byte */
3412 				if (i == 0) {
3413 					ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3414 					/* ulContent |= CAM_VALID; */
3415 				} else
3416 					ulContent = 0;
3417 
3418 				/*  polling bit, and No Write enable, and address */
3419 				ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3420 				ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3421 				/*  write content 0 is equall to mark invalid */
3422 				rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
3423 				rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
3424 			}
3425 		}
3426 		break;
3427 
3428 	case HW_VAR_CAM_INVALID_ALL:
3429 		rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3430 		break;
3431 
3432 	case HW_VAR_CAM_WRITE:
3433 		{
3434 			u32 cmd;
3435 			u32 *cam_val = (u32 *)val;
3436 
3437 			rtw_write32(padapter, WCAMI, cam_val[0]);
3438 
3439 			cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3440 			rtw_write32(padapter, RWCAM, cmd);
3441 		}
3442 		break;
3443 
3444 	case HW_VAR_AC_PARAM_VO:
3445 		rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
3446 		break;
3447 
3448 	case HW_VAR_AC_PARAM_VI:
3449 		rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
3450 		break;
3451 
3452 	case HW_VAR_AC_PARAM_BE:
3453 		pHalData->AcParam_BE = ((u32 *)(val))[0];
3454 		rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
3455 		break;
3456 
3457 	case HW_VAR_AC_PARAM_BK:
3458 		rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
3459 		break;
3460 
3461 	case HW_VAR_ACM_CTRL:
3462 		{
3463 			u8 ctrl = *((u8 *)val);
3464 			u8 hwctrl = 0;
3465 
3466 			if (ctrl != 0) {
3467 				hwctrl |= AcmHw_HwEn;
3468 
3469 				if (ctrl & BIT(1)) /*  BE */
3470 					hwctrl |= AcmHw_BeqEn;
3471 
3472 				if (ctrl & BIT(2)) /*  VI */
3473 					hwctrl |= AcmHw_ViqEn;
3474 
3475 				if (ctrl & BIT(3)) /*  VO */
3476 					hwctrl |= AcmHw_VoqEn;
3477 			}
3478 
3479 			rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
3480 		}
3481 		break;
3482 
3483 	case HW_VAR_AMPDU_FACTOR:
3484 		{
3485 			u32 AMPDULen =  (*((u8 *)val));
3486 
3487 			if (AMPDULen < HT_AGG_SIZE_32K)
3488 				AMPDULen = (0x2000 << (*((u8 *)val)))-1;
3489 			else
3490 				AMPDULen = 0x7fff;
3491 
3492 			rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
3493 		}
3494 		break;
3495 
3496 	case HW_VAR_H2C_FW_PWRMODE:
3497 		{
3498 			u8 psmode = *val;
3499 
3500 			/*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
3501 			/*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
3502 			if (psmode != PS_MODE_ACTIVE) {
3503 				ODM_RF_Saving(&pHalData->odmpriv, true);
3504 			}
3505 
3506 			/* if (psmode != PS_MODE_ACTIVE)	{ */
3507 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
3508 			/*  else { */
3509 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
3510 			/*  */
3511 			rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
3512 		}
3513 		break;
3514 	case HW_VAR_H2C_PS_TUNE_PARAM:
3515 		rtl8723b_set_FwPsTuneParam_cmd(padapter);
3516 		break;
3517 
3518 	case HW_VAR_H2C_FW_JOINBSSRPT:
3519 		rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
3520 		break;
3521 
3522 	case HW_VAR_INITIAL_GAIN:
3523 		{
3524 			struct dig_t *pDigTable = &pHalData->odmpriv.DM_DigTable;
3525 			u32 rx_gain = *(u32 *)val;
3526 
3527 			if (rx_gain == 0xff) {/* restore rx gain */
3528 				ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
3529 			} else {
3530 				pDigTable->BackupIGValue = pDigTable->CurIGValue;
3531 				ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
3532 			}
3533 		}
3534 		break;
3535 
3536 	case HW_VAR_EFUSE_USAGE:
3537 		pHalData->EfuseUsedPercentage = *val;
3538 		break;
3539 
3540 	case HW_VAR_EFUSE_BYTES:
3541 		pHalData->EfuseUsedBytes = *((u16 *)val);
3542 		break;
3543 
3544 	case HW_VAR_EFUSE_BT_USAGE:
3545 #ifdef HAL_EFUSE_MEMORY
3546 		pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
3547 #endif
3548 		break;
3549 
3550 	case HW_VAR_EFUSE_BT_BYTES:
3551 #ifdef HAL_EFUSE_MEMORY
3552 		pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
3553 #else
3554 		BTEfuseUsedBytes = *((u16 *)val);
3555 #endif
3556 		break;
3557 
3558 	case HW_VAR_FIFO_CLEARN_UP:
3559 		{
3560 			#define RW_RELEASE_EN		BIT(18)
3561 			#define RXDMA_IDLE			BIT(17)
3562 
3563 			struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3564 			u8 trycnt = 100;
3565 
3566 			/*  pause tx */
3567 			rtw_write8(padapter, REG_TXPAUSE, 0xff);
3568 
3569 			/*  keep sn */
3570 			padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
3571 
3572 			if (!pwrpriv->bkeepfwalive) {
3573 				/* RX DMA stop */
3574 				val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3575 				val32 |= RW_RELEASE_EN;
3576 				rtw_write32(padapter, REG_RXPKT_NUM, val32);
3577 				do {
3578 					val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3579 					val32 &= RXDMA_IDLE;
3580 					if (val32)
3581 						break;
3582 				} while (--trycnt);
3583 
3584 				/*  RQPN Load 0 */
3585 				rtw_write16(padapter, REG_RQPN_NPQ, 0);
3586 				rtw_write32(padapter, REG_RQPN, 0x80000000);
3587 				mdelay(2);
3588 			}
3589 		}
3590 		break;
3591 
3592 	case HW_VAR_APFM_ON_MAC:
3593 		pHalData->bMacPwrCtrlOn = *val;
3594 		break;
3595 
3596 	case HW_VAR_NAV_UPPER:
3597 		{
3598 			u32 usNavUpper = *((u32 *)val);
3599 
3600 			if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF)
3601 				break;
3602 
3603 			usNavUpper = DIV_ROUND_UP(usNavUpper,
3604 						  HAL_NAV_UPPER_UNIT_8723B);
3605 			rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
3606 		}
3607 		break;
3608 
3609 	case HW_VAR_H2C_MEDIA_STATUS_RPT:
3610 		{
3611 			u16 mstatus_rpt = (*(u16 *)val);
3612 			u8 mstatus, macId;
3613 
3614 			mstatus = (u8) (mstatus_rpt & 0xFF);
3615 			macId = (u8)(mstatus_rpt >> 8);
3616 			rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
3617 		}
3618 		break;
3619 	case HW_VAR_BCN_VALID:
3620 		{
3621 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
3622 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
3623 			val8 |= BIT(0);
3624 			rtw_write8(padapter, REG_TDECTRL+2, val8);
3625 		}
3626 		break;
3627 
3628 	case HW_VAR_DL_BCN_SEL:
3629 		{
3630 			/*  SW_BCN_SEL - Port0 */
3631 			val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
3632 			val8 &= ~BIT(4);
3633 			rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
3634 		}
3635 		break;
3636 
3637 	case HW_VAR_DO_IQK:
3638 		pHalData->bNeedIQK = true;
3639 		break;
3640 
3641 	case HW_VAR_DL_RSVD_PAGE:
3642 		if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
3643 			rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
3644 		else
3645 			rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
3646 		break;
3647 
3648 	case HW_VAR_MACID_SLEEP:
3649 		/*  Input is MACID */
3650 		val32 = *(u32 *)val;
3651 		if (val32 > 31)
3652 			break;
3653 
3654 		val8 = (u8)val32; /*  macid is between 0~31 */
3655 
3656 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3657 		if (val32 & BIT(val8))
3658 			break;
3659 		val32 |= BIT(val8);
3660 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
3661 		break;
3662 
3663 	case HW_VAR_MACID_WAKEUP:
3664 		/*  Input is MACID */
3665 		val32 = *(u32 *)val;
3666 		if (val32 > 31)
3667 			break;
3668 
3669 		val8 = (u8)val32; /*  macid is between 0~31 */
3670 
3671 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3672 		if (!(val32 & BIT(val8)))
3673 			break;
3674 		val32 &= ~BIT(val8);
3675 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
3676 		break;
3677 
3678 	default:
3679 		SetHwReg(padapter, variable, val);
3680 		break;
3681 	}
3682 }
3683 
3684 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3685 {
3686 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3687 	u8 val8;
3688 	u16 val16;
3689 
3690 	switch (variable) {
3691 	case HW_VAR_TXPAUSE:
3692 		*val = rtw_read8(padapter, REG_TXPAUSE);
3693 		break;
3694 
3695 	case HW_VAR_BCN_VALID:
3696 		{
3697 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
3698 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
3699 			*val = (BIT(0) & val8) ? true : false;
3700 		}
3701 		break;
3702 
3703 	case HW_VAR_FWLPS_RF_ON:
3704 		{
3705 			/*  When we halt NIC, we should check if FW LPS is leave. */
3706 			u32 valRCR;
3707 
3708 			if (
3709 				padapter->bSurpriseRemoved  ||
3710 				(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
3711 			) {
3712 				/*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
3713 				/*  because Fw is unload. */
3714 				*val = true;
3715 			} else {
3716 				valRCR = rtw_read32(padapter, REG_RCR);
3717 				valRCR &= 0x00070000;
3718 				if (valRCR)
3719 					*val = false;
3720 				else
3721 					*val = true;
3722 			}
3723 		}
3724 		break;
3725 
3726 	case HW_VAR_EFUSE_USAGE:
3727 		*val = pHalData->EfuseUsedPercentage;
3728 		break;
3729 
3730 	case HW_VAR_EFUSE_BYTES:
3731 		*((u16 *)val) = pHalData->EfuseUsedBytes;
3732 		break;
3733 
3734 	case HW_VAR_EFUSE_BT_USAGE:
3735 #ifdef HAL_EFUSE_MEMORY
3736 		*val = pHalData->EfuseHal.BTEfuseUsedPercentage;
3737 #endif
3738 		break;
3739 
3740 	case HW_VAR_EFUSE_BT_BYTES:
3741 #ifdef HAL_EFUSE_MEMORY
3742 		*((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
3743 #else
3744 		*((u16 *)val) = BTEfuseUsedBytes;
3745 #endif
3746 		break;
3747 
3748 	case HW_VAR_APFM_ON_MAC:
3749 		*val = pHalData->bMacPwrCtrlOn;
3750 		break;
3751 	case HW_VAR_CHK_HI_QUEUE_EMPTY:
3752 		val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
3753 		*val = (val16 & BIT(10)) ? true:false;
3754 		break;
3755 	default:
3756 		GetHwReg(padapter, variable, val);
3757 		break;
3758 	}
3759 }
3760 
3761 /* Description:
3762  *	Change default setting of specified variable.
3763  */
3764 u8 SetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3765 {
3766 	u8 bResult;
3767 
3768 	bResult = _SUCCESS;
3769 
3770 	switch (variable) {
3771 	default:
3772 		bResult = SetHalDefVar(padapter, variable, pval);
3773 		break;
3774 	}
3775 
3776 	return bResult;
3777 }
3778 
3779 /* Description:
3780  *	Query setting of specified variable.
3781  */
3782 u8 GetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3783 {
3784 	u8 bResult;
3785 
3786 	bResult = _SUCCESS;
3787 
3788 	switch (variable) {
3789 	case HAL_DEF_MAX_RECVBUF_SZ:
3790 		*((u32 *)pval) = MAX_RECVBUF_SZ;
3791 		break;
3792 
3793 	case HAL_DEF_RX_PACKET_OFFSET:
3794 		*((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
3795 		break;
3796 
3797 	case HW_VAR_MAX_RX_AMPDU_FACTOR:
3798 		/*  Stanley@BB.SD3 suggests 16K can get stable performance */
3799 		/*  The experiment was done on SDIO interface */
3800 		/*  coding by Lucas@20130730 */
3801 		*(u32 *)pval = IEEE80211_HT_MAX_AMPDU_16K;
3802 		break;
3803 	case HAL_DEF_TX_LDPC:
3804 	case HAL_DEF_RX_LDPC:
3805 		*((u8 *)pval) = false;
3806 		break;
3807 	case HAL_DEF_TX_STBC:
3808 		*((u8 *)pval) = 0;
3809 		break;
3810 	case HAL_DEF_RX_STBC:
3811 		*((u8 *)pval) = 1;
3812 		break;
3813 	case HAL_DEF_EXPLICIT_BEAMFORMER:
3814 	case HAL_DEF_EXPLICIT_BEAMFORMEE:
3815 		*((u8 *)pval) = false;
3816 		break;
3817 
3818 	case HW_DEF_RA_INFO_DUMP:
3819 		{
3820 			u8 mac_id = *(u8 *)pval;
3821 			u32 cmd;
3822 
3823 			cmd = 0x40000100 | mac_id;
3824 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3825 			msleep(10);
3826 			rtw_read32(padapter, 0x2F0);	// info 1
3827 
3828 			cmd = 0x40000400 | mac_id;
3829 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3830 			msleep(10);
3831 			rtw_read32(padapter, 0x2F0);	// info 1
3832 			rtw_read32(padapter, 0x2F4);	// info 2
3833 			rtw_read32(padapter, 0x2F8);	// rate mask 1
3834 			rtw_read32(padapter, 0x2FC);	// rate mask 2
3835 		}
3836 		break;
3837 
3838 	case HAL_DEF_TX_PAGE_BOUNDARY:
3839 		if (!padapter->registrypriv.wifi_spec) {
3840 			*(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
3841 		} else {
3842 			*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
3843 		}
3844 		break;
3845 
3846 	case HAL_DEF_MACID_SLEEP:
3847 		*(u8 *)pval = true; /*  support macid sleep */
3848 		break;
3849 
3850 	default:
3851 		bResult = GetHalDefVar(padapter, variable, pval);
3852 		break;
3853 	}
3854 
3855 	return bResult;
3856 }
3857 
3858 void rtl8723b_start_thread(struct adapter *padapter)
3859 {
3860 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3861 
3862 	xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
3863 }
3864 
3865 void rtl8723b_stop_thread(struct adapter *padapter)
3866 {
3867 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3868 
3869 	/*  stop xmit_buf_thread */
3870 	if (xmitpriv->SdioXmitThread) {
3871 		complete(&xmitpriv->SdioXmitStart);
3872 		wait_for_completion(&xmitpriv->SdioXmitTerminate);
3873 		xmitpriv->SdioXmitThread = NULL;
3874 	}
3875 }
3876