1 /******************************************************************************
2  *
3  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  ******************************************************************************/
15 #define _HAL_INIT_C_
16 
17 #include <linux/firmware.h>
18 #include <linux/slab.h>
19 #include <drv_types.h>
20 #include <rtw_debug.h>
21 #include <rtl8723b_hal.h>
22 #include "hal_com_h2c.h"
23 
24 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
25 {
26 	u8 tmp, count = 0;
27 
28 	if (enable) {
29 		/*  8051 enable */
30 		tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
31 		rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
32 
33 		tmp = rtw_read8(padapter, REG_MCUFWDL);
34 		rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
35 
36 		do {
37 			tmp = rtw_read8(padapter, REG_MCUFWDL);
38 			if (tmp & 0x01)
39 				break;
40 			rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
41 			msleep(1);
42 		} while (count++ < 100);
43 
44 		if (count > 0)
45 			DBG_871X("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
46 
47 		/*  8051 reset */
48 		tmp = rtw_read8(padapter, REG_MCUFWDL+2);
49 		rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
50 	} else {
51 		/*  MCU firmware download disable. */
52 		tmp = rtw_read8(padapter, REG_MCUFWDL);
53 		rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
54 	}
55 }
56 
57 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
58 {
59 	int ret = _SUCCESS;
60 
61 	u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
62 	u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
63 	u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
64 	u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
65 	u32 remainSize_p1 = 0, remainSize_p2 = 0;
66 	u8 *bufferPtr = buffer;
67 	u32 i = 0, offset = 0;
68 
69 /* 	printk("====>%s %d\n", __func__, __LINE__); */
70 
71 	/* 3 Phase #1 */
72 	blockCount_p1 = buffSize / blockSize_p1;
73 	remainSize_p1 = buffSize % blockSize_p1;
74 
75 	if (blockCount_p1) {
76 		RT_TRACE(
77 			_module_hal_init_c_,
78 			_drv_notice_,
79 			(
80 				"_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
81 				buffSize,
82 				blockSize_p1,
83 				blockCount_p1,
84 				remainSize_p1
85 			)
86 		);
87 	}
88 
89 	for (i = 0; i < blockCount_p1; i++) {
90 		ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
91 		if (ret == _FAIL) {
92 			printk("====>%s %d i:%d\n", __func__, __LINE__, i);
93 			goto exit;
94 		}
95 	}
96 
97 	/* 3 Phase #2 */
98 	if (remainSize_p1) {
99 		offset = blockCount_p1 * blockSize_p1;
100 
101 		blockCount_p2 = remainSize_p1/blockSize_p2;
102 		remainSize_p2 = remainSize_p1%blockSize_p2;
103 
104 		if (blockCount_p2) {
105 				RT_TRACE(
106 					_module_hal_init_c_,
107 					_drv_notice_,
108 					(
109 						"_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
110 						(buffSize-offset),
111 						blockSize_p2,
112 						blockCount_p2,
113 						remainSize_p2
114 					)
115 				);
116 		}
117 
118 	}
119 
120 	/* 3 Phase #3 */
121 	if (remainSize_p2) {
122 		offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
123 
124 		blockCount_p3 = remainSize_p2 / blockSize_p3;
125 
126 		RT_TRACE(_module_hal_init_c_, _drv_notice_,
127 				("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
128 				(buffSize-offset), blockSize_p3, blockCount_p3));
129 
130 		for (i = 0; i < blockCount_p3; i++) {
131 			ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
132 
133 			if (ret == _FAIL) {
134 				printk("====>%s %d i:%d\n", __func__, __LINE__, i);
135 				goto exit;
136 			}
137 		}
138 	}
139 exit:
140 	return ret;
141 }
142 
143 static int _PageWrite(
144 	struct adapter *padapter,
145 	u32 page,
146 	void *buffer,
147 	u32 size
148 )
149 {
150 	u8 value8;
151 	u8 u8Page = (u8) (page & 0x07);
152 
153 	value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
154 	rtw_write8(padapter, REG_MCUFWDL+2, value8);
155 
156 	return _BlockWrite(padapter, buffer, size);
157 }
158 
159 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
160 {
161 	/*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
162 	/*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
163 	int ret = _SUCCESS;
164 	u32 pageNums, remainSize;
165 	u32 page, offset;
166 	u8 *bufferPtr = buffer;
167 
168 	pageNums = size / MAX_DLFW_PAGE_SIZE;
169 	/* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
170 	remainSize = size % MAX_DLFW_PAGE_SIZE;
171 
172 	for (page = 0; page < pageNums; page++) {
173 		offset = page * MAX_DLFW_PAGE_SIZE;
174 		ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
175 
176 		if (ret == _FAIL) {
177 			printk("====>%s %d\n", __func__, __LINE__);
178 			goto exit;
179 		}
180 	}
181 
182 	if (remainSize) {
183 		offset = pageNums * MAX_DLFW_PAGE_SIZE;
184 		page = pageNums;
185 		ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
186 
187 		if (ret == _FAIL) {
188 			printk("====>%s %d\n", __func__, __LINE__);
189 			goto exit;
190 		}
191 	}
192 	RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
193 
194 exit:
195 	return ret;
196 }
197 
198 void _8051Reset8723(struct adapter *padapter)
199 {
200 	u8 cpu_rst;
201 	u8 io_rst;
202 
203 
204 	/*  Reset 8051(WLMCU) IO wrapper */
205 	/*  0x1c[8] = 0 */
206 	/*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
207 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
208 	io_rst &= ~BIT(0);
209 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
210 
211 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
212 	cpu_rst &= ~BIT(2);
213 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
214 
215 	/*  Enable 8051 IO wrapper */
216 	/*  0x1c[8] = 1 */
217 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
218 	io_rst |= BIT(0);
219 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
220 
221 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
222 	cpu_rst |= BIT(2);
223 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
224 
225 	DBG_8192C("%s: Finish\n", __func__);
226 }
227 
228 u8 g_fwdl_chksum_fail = 0;
229 
230 static s32 polling_fwdl_chksum(
231 	struct adapter *adapter, u32 min_cnt, u32 timeout_ms
232 )
233 {
234 	s32 ret = _FAIL;
235 	u32 value32;
236 	unsigned long start = jiffies;
237 	u32 cnt = 0;
238 
239 	/* polling CheckSum report */
240 	do {
241 		cnt++;
242 		value32 = rtw_read32(adapter, REG_MCUFWDL);
243 		if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
244 			break;
245 		yield();
246 	} while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
247 
248 	if (!(value32 & FWDL_ChkSum_rpt)) {
249 		goto exit;
250 	}
251 
252 	if (g_fwdl_chksum_fail) {
253 		DBG_871X("%s: fwdl test case: fwdl_chksum_fail\n", __func__);
254 		g_fwdl_chksum_fail--;
255 		goto exit;
256 	}
257 
258 	ret = _SUCCESS;
259 
260 exit:
261 	DBG_871X(
262 		"%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
263 		__func__,
264 		(ret == _SUCCESS) ? "OK" : "Fail",
265 		cnt,
266 		jiffies_to_msecs(jiffies-start),
267 		value32
268 	);
269 
270 	return ret;
271 }
272 
273 u8 g_fwdl_wintint_rdy_fail = 0;
274 
275 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
276 {
277 	s32 ret = _FAIL;
278 	u32 value32;
279 	unsigned long start = jiffies;
280 	u32 cnt = 0;
281 
282 	value32 = rtw_read32(adapter, REG_MCUFWDL);
283 	value32 |= MCUFWDL_RDY;
284 	value32 &= ~WINTINI_RDY;
285 	rtw_write32(adapter, REG_MCUFWDL, value32);
286 
287 	_8051Reset8723(adapter);
288 
289 	/*  polling for FW ready */
290 	do {
291 		cnt++;
292 		value32 = rtw_read32(adapter, REG_MCUFWDL);
293 		if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
294 			break;
295 		yield();
296 	} while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
297 
298 	if (!(value32 & WINTINI_RDY)) {
299 		goto exit;
300 	}
301 
302 	if (g_fwdl_wintint_rdy_fail) {
303 		DBG_871X("%s: fwdl test case: wintint_rdy_fail\n", __func__);
304 		g_fwdl_wintint_rdy_fail--;
305 		goto exit;
306 	}
307 
308 	ret = _SUCCESS;
309 
310 exit:
311 	DBG_871X(
312 		"%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
313 		__func__,
314 		(ret == _SUCCESS) ? "OK" : "Fail",
315 		cnt,
316 		jiffies_to_msecs(jiffies-start),
317 		value32
318 	);
319 
320 	return ret;
321 }
322 
323 #define IS_FW_81xxC(padapter)	(((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
324 
325 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
326 {
327 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
328 	u8 u1bTmp;
329 	u8 Delay = 100;
330 
331 	if (
332 		!(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
333 	) { /*  after 88C Fw v33.1 */
334 		/* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
335 		rtw_write8(padapter, REG_HMETFR+3, 0x20);
336 
337 		u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
338 		while (u1bTmp & BIT2) {
339 			Delay--;
340 			if (Delay == 0)
341 				break;
342 			udelay(50);
343 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
344 		}
345 		RT_TRACE(_module_hal_init_c_, _drv_notice_, ("-%s: 8051 reset success (%d)\n", __func__, Delay));
346 
347 		if (Delay == 0) {
348 			RT_TRACE(_module_hal_init_c_, _drv_notice_, ("%s: Force 8051 reset!!!\n", __func__));
349 			/* force firmware reset */
350 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
351 			rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
352 		}
353 	}
354 }
355 
356 /*  */
357 /* 	Description: */
358 /* 		Download 8192C firmware code. */
359 /*  */
360 /*  */
361 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
362 {
363 	s32 rtStatus = _SUCCESS;
364 	u8 write_fw = 0;
365 	unsigned long fwdl_start_time;
366 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
367 	struct rt_firmware *pFirmware;
368 	struct rt_firmware *pBTFirmware;
369 	struct rt_firmware_hdr *pFwHdr = NULL;
370 	u8 *pFirmwareBuf;
371 	u32 FirmwareLen;
372 	const struct firmware *fw;
373 	struct device *device = dvobj_to_dev(padapter->dvobj);
374 	u8 *fwfilepath;
375 	struct dvobj_priv *psdpriv = padapter->dvobj;
376 	struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
377 	u8 tmp_ps;
378 
379 	RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
380 #ifdef CONFIG_WOWLAN
381 	RT_TRACE(_module_hal_init_c_, _drv_notice_, ("+%s, bUsedWoWLANFw:%d\n", __func__, bUsedWoWLANFw));
382 #endif
383 	pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
384 	if (!pFirmware)
385 		return _FAIL;
386 	pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
387 	if (!pBTFirmware) {
388 		kfree(pFirmware);
389 		return _FAIL;
390 	}
391 	tmp_ps = rtw_read8(padapter, 0xa3);
392 	tmp_ps &= 0xf8;
393 	tmp_ps |= 0x02;
394 	/* 1. write 0xA3[:2:0] = 3b'010 */
395 	rtw_write8(padapter, 0xa3, tmp_ps);
396 	/* 2. read power_state = 0xA0[1:0] */
397 	tmp_ps = rtw_read8(padapter, 0xa0);
398 	tmp_ps &= 0x03;
399 	if (tmp_ps != 0x01) {
400 		DBG_871X(FUNC_ADPT_FMT" tmp_ps =%x\n", FUNC_ADPT_ARG(padapter), tmp_ps);
401 		pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
402 	}
403 
404 #ifdef CONFIG_WOWLAN
405 	if (bUsedWoWLANFw)
406 		fwfilepath = "rtlwifi/rtl8723bs_wowlan.bin";
407 	else
408 #endif /*  CONFIG_WOWLAN */
409 		fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
410 
411 	pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
412 
413 	rtStatus = request_firmware(&fw, fwfilepath, device);
414 	if (rtStatus) {
415 		pr_err("Request firmware failed with error 0x%x\n", rtStatus);
416 		rtStatus = _FAIL;
417 		goto exit;
418 	}
419 
420 	if (!fw) {
421 		pr_err("Firmware %s not available\n", fwfilepath);
422 		rtStatus = _FAIL;
423 		goto exit;
424 	}
425 
426 	if (fw->size > FW_8723B_SIZE) {
427 		rtStatus = _FAIL;
428 		RT_TRACE(
429 			_module_hal_init_c_,
430 			_drv_err_,
431 			("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE)
432 		);
433 		goto exit;
434 	}
435 
436 	pFirmware->szFwBuffer = kzalloc(fw->size, GFP_KERNEL);
437 	if (!pFirmware->szFwBuffer) {
438 		rtStatus = _FAIL;
439 		goto exit;
440 	}
441 
442 	memcpy(pFirmware->szFwBuffer, fw->data, fw->size);
443 	pFirmware->ulFwLength = fw->size;
444 	release_firmware(fw);
445 	if (pFirmware->ulFwLength > FW_8723B_SIZE) {
446 		rtStatus = _FAIL;
447 		DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_8723B_SIZE);
448 		goto release_fw1;
449 	}
450 
451 	pFirmwareBuf = pFirmware->szFwBuffer;
452 	FirmwareLen = pFirmware->ulFwLength;
453 
454 	/*  To Check Fw header. Added by tynli. 2009.12.04. */
455 	pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
456 
457 	pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->Version);
458 	pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->Subversion);
459 	pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
460 
461 	DBG_871X(
462 		"%s: fw_ver =%x fw_subver =%04x sig = 0x%x, Month =%02x, Date =%02x, Hour =%02x, Minute =%02x\n",
463 		__func__,
464 		pHalData->FirmwareVersion,
465 		pHalData->FirmwareSubVersion,
466 		pHalData->FirmwareSignature,
467 		pFwHdr->Month,
468 		pFwHdr->Date,
469 		pFwHdr->Hour,
470 		pFwHdr->Minute
471 	);
472 
473 	if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
474 		DBG_871X("%s(): Shift for fw header!\n", __func__);
475 		/*  Shift 32 bytes for FW header */
476 		pFirmwareBuf = pFirmwareBuf + 32;
477 		FirmwareLen = FirmwareLen - 32;
478 	}
479 
480 	/*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
481 	/*  or it will cause download Fw fail. 2010.02.01. by tynli. */
482 	if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
483 		rtw_write8(padapter, REG_MCUFWDL, 0x00);
484 		rtl8723b_FirmwareSelfReset(padapter);
485 	}
486 
487 	_FWDownloadEnable(padapter, true);
488 	fwdl_start_time = jiffies;
489 	while (
490 		!padapter->bDriverStopped &&
491 		!padapter->bSurpriseRemoved &&
492 		(write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
493 	) {
494 		/* reset FWDL chksum */
495 		rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
496 
497 		rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
498 		if (rtStatus != _SUCCESS)
499 			continue;
500 
501 		rtStatus = polling_fwdl_chksum(padapter, 5, 50);
502 		if (rtStatus == _SUCCESS)
503 			break;
504 	}
505 	_FWDownloadEnable(padapter, false);
506 	if (_SUCCESS != rtStatus)
507 		goto fwdl_stat;
508 
509 	rtStatus = _FWFreeToGo(padapter, 10, 200);
510 	if (_SUCCESS != rtStatus)
511 		goto fwdl_stat;
512 
513 fwdl_stat:
514 	DBG_871X(
515 		"FWDL %s. write_fw:%u, %dms\n",
516 		(rtStatus == _SUCCESS)?"success":"fail",
517 		write_fw,
518 		jiffies_to_msecs(jiffies - fwdl_start_time)
519 	);
520 
521 exit:
522 	kfree(pFirmware->szFwBuffer);
523 	kfree(pFirmware);
524 release_fw1:
525 	kfree(pBTFirmware);
526 	DBG_871X(" <=== rtl8723b_FirmwareDownload()\n");
527 	return rtStatus;
528 }
529 
530 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
531 {
532 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
533 
534 	/*  Init Fw LPS related. */
535 	adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = false;
536 
537 	/* Init H2C cmd. */
538 	rtw_write8(padapter, REG_HMETFR, 0x0f);
539 
540 	/*  Init H2C counter. by tynli. 2009.12.09. */
541 	pHalData->LastHMEBoxNum = 0;
542 /* pHalData->H2CQueueHead = 0; */
543 /* pHalData->H2CQueueTail = 0; */
544 /* pHalData->H2CStopInsertQueue = false; */
545 }
546 
547 #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
548 /*  */
549 
550 /*  */
551 /*  Description: Prepare some information to Fw for WoWLAN. */
552 /* (1) Download wowlan Fw. */
553 /* (2) Download RSVD page packets. */
554 /* (3) Enable AP offload if needed. */
555 /*  */
556 /*  2011.04.12 by tynli. */
557 /*  */
558 void SetFwRelatedForWoWLAN8723b(
559 	struct adapter *padapter, u8 bHostIsGoingtoSleep
560 )
561 {
562 	int	status = _FAIL;
563 	/*  */
564 	/*  1. Before WoWLAN we need to re-download WoWLAN Fw. */
565 	/*  */
566 	status = rtl8723b_FirmwareDownload(padapter, bHostIsGoingtoSleep);
567 	if (status != _SUCCESS) {
568 		DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware failed!!\n");
569 		return;
570 	} else {
571 		DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware Success !!\n");
572 	}
573 	/*  */
574 	/*  2. Re-Init the variables about Fw related setting. */
575 	/*  */
576 	rtl8723b_InitializeFirmwareVars(padapter);
577 }
578 #endif /* CONFIG_WOWLAN */
579 
580 static void rtl8723b_free_hal_data(struct adapter *padapter)
581 {
582 }
583 
584 /*  */
585 /* 				Efuse related code */
586 /*  */
587 static u8 hal_EfuseSwitchToBank(
588 	struct adapter *padapter, u8 bank, bool bPseudoTest
589 )
590 {
591 	u8 bRet = false;
592 	u32 value32 = 0;
593 #ifdef HAL_EFUSE_MEMORY
594 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
595 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
596 #endif
597 
598 
599 	DBG_8192C("%s: Efuse switch bank to %d\n", __func__, bank);
600 	if (bPseudoTest) {
601 #ifdef HAL_EFUSE_MEMORY
602 		pEfuseHal->fakeEfuseBank = bank;
603 #else
604 		fakeEfuseBank = bank;
605 #endif
606 		bRet = true;
607 	} else {
608 		value32 = rtw_read32(padapter, EFUSE_TEST);
609 		bRet = true;
610 		switch (bank) {
611 		case 0:
612 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
613 			break;
614 		case 1:
615 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
616 			break;
617 		case 2:
618 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
619 			break;
620 		case 3:
621 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
622 			break;
623 		default:
624 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
625 			bRet = false;
626 			break;
627 		}
628 		rtw_write32(padapter, EFUSE_TEST, value32);
629 	}
630 
631 	return bRet;
632 }
633 
634 static void Hal_GetEfuseDefinition(
635 	struct adapter *padapter,
636 	u8 efuseType,
637 	u8 type,
638 	void *pOut,
639 	bool bPseudoTest
640 )
641 {
642 	switch (type) {
643 	case TYPE_EFUSE_MAX_SECTION:
644 		{
645 			u8 *pMax_section;
646 			pMax_section = pOut;
647 
648 			if (efuseType == EFUSE_WIFI)
649 				*pMax_section = EFUSE_MAX_SECTION_8723B;
650 			else
651 				*pMax_section = EFUSE_BT_MAX_SECTION;
652 		}
653 		break;
654 
655 	case TYPE_EFUSE_REAL_CONTENT_LEN:
656 		{
657 			u16 *pu2Tmp;
658 			pu2Tmp = pOut;
659 
660 			if (efuseType == EFUSE_WIFI)
661 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
662 			else
663 				*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
664 		}
665 		break;
666 
667 	case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
668 		{
669 			u16 *pu2Tmp;
670 			pu2Tmp = pOut;
671 
672 			if (efuseType == EFUSE_WIFI)
673 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
674 			else
675 				*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
676 		}
677 		break;
678 
679 	case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
680 		{
681 			u16 *pu2Tmp;
682 			pu2Tmp = pOut;
683 
684 			if (efuseType == EFUSE_WIFI)
685 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
686 			else
687 				*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
688 		}
689 		break;
690 
691 	case TYPE_EFUSE_MAP_LEN:
692 		{
693 			u16 *pu2Tmp;
694 			pu2Tmp = pOut;
695 
696 			if (efuseType == EFUSE_WIFI)
697 				*pu2Tmp = EFUSE_MAX_MAP_LEN;
698 			else
699 				*pu2Tmp = EFUSE_BT_MAP_LEN;
700 		}
701 		break;
702 
703 	case TYPE_EFUSE_PROTECT_BYTES_BANK:
704 		{
705 			u8 *pu1Tmp;
706 			pu1Tmp = pOut;
707 
708 			if (efuseType == EFUSE_WIFI)
709 				*pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
710 			else
711 				*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
712 		}
713 		break;
714 
715 	case TYPE_EFUSE_CONTENT_LEN_BANK:
716 		{
717 			u16 *pu2Tmp;
718 			pu2Tmp = pOut;
719 
720 			if (efuseType == EFUSE_WIFI)
721 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
722 			else
723 				*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
724 		}
725 		break;
726 
727 	default:
728 		{
729 			u8 *pu1Tmp;
730 			pu1Tmp = pOut;
731 			*pu1Tmp = 0;
732 		}
733 		break;
734 	}
735 }
736 
737 #define VOLTAGE_V25		0x03
738 #define LDOE25_SHIFT	28
739 
740 /*  */
741 /* 	The following is for compile ok */
742 /* 	That should be merged with the original in the future */
743 /*  */
744 #define EFUSE_ACCESS_ON_8723			0x69	/*  For RTL8723 only. */
745 #define EFUSE_ACCESS_OFF_8723			0x00	/*  For RTL8723 only. */
746 #define REG_EFUSE_ACCESS_8723			0x00CF	/*  Efuse access protection for RTL8723 */
747 
748 /*  */
749 static void Hal_BT_EfusePowerSwitch(
750 	struct adapter *padapter, u8 bWrite, u8 PwrState
751 )
752 {
753 	u8 tempval;
754 	if (PwrState == true) {
755 		/*  enable BT power cut */
756 		/*  0x6A[14] = 1 */
757 		tempval = rtw_read8(padapter, 0x6B);
758 		tempval |= BIT(6);
759 		rtw_write8(padapter, 0x6B, tempval);
760 
761 		/*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
762 		/*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
763 		msleep(1);
764 		/*  disable BT output isolation */
765 		/*  0x6A[15] = 0 */
766 		tempval = rtw_read8(padapter, 0x6B);
767 		tempval &= ~BIT(7);
768 		rtw_write8(padapter, 0x6B, tempval);
769 	} else {
770 		/*  enable BT output isolation */
771 		/*  0x6A[15] = 1 */
772 		tempval = rtw_read8(padapter, 0x6B);
773 		tempval |= BIT(7);
774 		rtw_write8(padapter, 0x6B, tempval);
775 
776 		/*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
777 		/*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
778 
779 		/*  disable BT power cut */
780 		/*  0x6A[14] = 1 */
781 		tempval = rtw_read8(padapter, 0x6B);
782 		tempval &= ~BIT(6);
783 		rtw_write8(padapter, 0x6B, tempval);
784 	}
785 
786 }
787 static void Hal_EfusePowerSwitch(
788 	struct adapter *padapter, u8 bWrite, u8 PwrState
789 )
790 {
791 	u8 tempval;
792 	u16 tmpV16;
793 
794 
795 	if (PwrState == true) {
796 		/*  To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
797 		/*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
798 		tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
799 		if (tempval & BIT(0)) { /*  SDIO local register is suspend */
800 			u8 count = 0;
801 
802 
803 			tempval &= ~BIT(0);
804 			rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
805 
806 			/*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
807 			do {
808 				tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
809 				tempval &= 0x3;
810 				if (tempval == 0x02)
811 					break;
812 
813 				count++;
814 				if (count >= 100)
815 					break;
816 
817 				mdelay(10);
818 			} while (1);
819 
820 			if (count >= 100) {
821 				DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86 =%#X\n",
822 					FUNC_ADPT_ARG(padapter), tempval);
823 			} else {
824 				DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86 =%#X\n",
825 					FUNC_ADPT_ARG(padapter), tempval);
826 			}
827 		}
828 
829 		rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
830 
831 		/*  Reset: 0x0000h[28], default valid */
832 		tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
833 		if (!(tmpV16 & FEN_ELDR)) {
834 			tmpV16 |= FEN_ELDR;
835 			rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
836 		}
837 
838 		/*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
839 		tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
840 		if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
841 			tmpV16 |= (LOADER_CLK_EN | ANA8M);
842 			rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
843 		}
844 
845 		if (bWrite == true) {
846 			/*  Enable LDO 2.5V before read/write action */
847 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
848 			tempval &= 0x0F;
849 			tempval |= (VOLTAGE_V25 << 4);
850 			rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
851 
852 			/* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
853 		}
854 	} else {
855 		rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
856 
857 		if (bWrite == true) {
858 			/*  Disable LDO 2.5V after read/write action */
859 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
860 			rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
861 		}
862 
863 	}
864 }
865 
866 static void hal_ReadEFuse_WiFi(
867 	struct adapter *padapter,
868 	u16 _offset,
869 	u16 _size_byte,
870 	u8 *pbuf,
871 	bool bPseudoTest
872 )
873 {
874 #ifdef HAL_EFUSE_MEMORY
875 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
876 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
877 #endif
878 	u8 *efuseTbl = NULL;
879 	u16 eFuse_Addr = 0;
880 	u8 offset, wden;
881 	u8 efuseHeader, efuseExtHdr, efuseData;
882 	u16 i, total, used;
883 	u8 efuse_usage = 0;
884 
885 	/* DBG_871X("YJ: ====>%s():_offset =%d _size_byte =%d bPseudoTest =%d\n", __func__, _offset, _size_byte, bPseudoTest); */
886 	/*  */
887 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
888 	/*  */
889 	if ((_offset+_size_byte) > EFUSE_MAX_MAP_LEN) {
890 		DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
891 		return;
892 	}
893 
894 	efuseTbl = (u8 *)rtw_malloc(EFUSE_MAX_MAP_LEN);
895 	if (efuseTbl == NULL) {
896 		DBG_8192C("%s: alloc efuseTbl fail!\n", __func__);
897 		return;
898 	}
899 	/*  0xff will be efuse default value instead of 0x00. */
900 	memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
901 
902 
903 #ifdef DEBUG
904 if (0) {
905 	for (i = 0; i < 256; i++)
906 		efuse_OneByteRead(padapter, i, &efuseTbl[i], false);
907 	DBG_871X("Efuse Content:\n");
908 	for (i = 0; i < 256; i++) {
909 		if (i % 16 == 0)
910 			printk("\n");
911 		printk("%02X ", efuseTbl[i]);
912 	}
913 	printk("\n");
914 }
915 #endif
916 
917 
918 	/*  switch bank back to bank 0 for later BT and wifi use. */
919 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
920 
921 	while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
922 		efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
923 		if (efuseHeader == 0xFF) {
924 			DBG_8192C("%s: data end at address =%#x\n", __func__, eFuse_Addr-1);
925 			break;
926 		}
927 		/* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */
928 
929 		/*  Check PG header for section num. */
930 		if (EXT_HEADER(efuseHeader)) { /* extended header */
931 			offset = GET_HDR_OFFSET_2_0(efuseHeader);
932 			/* DBG_8192C("%s: extended header offset = 0x%X\n", __func__, offset); */
933 
934 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
935 			/* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */
936 			if (ALL_WORDS_DISABLED(efuseExtHdr))
937 				continue;
938 
939 			offset |= ((efuseExtHdr & 0xF0) >> 1);
940 			wden = (efuseExtHdr & 0x0F);
941 		} else {
942 			offset = ((efuseHeader >> 4) & 0x0f);
943 			wden = (efuseHeader & 0x0f);
944 		}
945 		/* DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
946 
947 		if (offset < EFUSE_MAX_SECTION_8723B) {
948 			u16 addr;
949 			/*  Get word enable value from PG header */
950 /* 			DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
951 
952 			addr = offset * PGPKT_DATA_SIZE;
953 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
954 				/*  Check word enable condition in the section */
955 				if (!(wden & (0x01<<i))) {
956 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
957 /* 					DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
958 					efuseTbl[addr] = efuseData;
959 
960 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
961 /* 					DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
962 					efuseTbl[addr+1] = efuseData;
963 				}
964 				addr += 2;
965 			}
966 		} else {
967 			DBG_8192C(KERN_ERR "%s: offset(%d) is illegal!!\n", __func__, offset);
968 			eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
969 		}
970 	}
971 
972 	/*  Copy from Efuse map to output pointer memory!!! */
973 	for (i = 0; i < _size_byte; i++)
974 		pbuf[i] = efuseTbl[_offset+i];
975 
976 #ifdef DEBUG
977 if (1) {
978 	DBG_871X("Efuse Realmap:\n");
979 	for (i = 0; i < _size_byte; i++) {
980 		if (i % 16 == 0)
981 			printk("\n");
982 		printk("%02X ", pbuf[i]);
983 	}
984 	printk("\n");
985 }
986 #endif
987 	/*  Calculate Efuse utilization */
988 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
989 	used = eFuse_Addr - 1;
990 	efuse_usage = (u8)((used*100)/total);
991 	if (bPseudoTest) {
992 #ifdef HAL_EFUSE_MEMORY
993 		pEfuseHal->fakeEfuseUsedBytes = used;
994 #else
995 		fakeEfuseUsedBytes = used;
996 #endif
997 	} else {
998 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
999 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
1000 	}
1001 
1002 	kfree(efuseTbl);
1003 }
1004 
1005 static void hal_ReadEFuse_BT(
1006 	struct adapter *padapter,
1007 	u16 _offset,
1008 	u16 _size_byte,
1009 	u8 *pbuf,
1010 	bool bPseudoTest
1011 )
1012 {
1013 #ifdef HAL_EFUSE_MEMORY
1014 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1015 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1016 #endif
1017 	u8 *efuseTbl;
1018 	u8 bank;
1019 	u16 eFuse_Addr;
1020 	u8 efuseHeader, efuseExtHdr, efuseData;
1021 	u8 offset, wden;
1022 	u16 i, total, used;
1023 	u8 efuse_usage;
1024 
1025 
1026 	/*  */
1027 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
1028 	/*  */
1029 	if ((_offset+_size_byte) > EFUSE_BT_MAP_LEN) {
1030 		DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
1031 		return;
1032 	}
1033 
1034 	efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
1035 	if (efuseTbl == NULL) {
1036 		DBG_8192C("%s: efuseTbl malloc fail!\n", __func__);
1037 		return;
1038 	}
1039 	/*  0xff will be efuse default value instead of 0x00. */
1040 	memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
1041 
1042 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
1043 
1044 	for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
1045 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1046 			DBG_8192C("%s: hal_EfuseSwitchToBank Fail!!\n", __func__);
1047 			goto exit;
1048 		}
1049 
1050 		eFuse_Addr = 0;
1051 
1052 		while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
1053 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
1054 			if (efuseHeader == 0xFF)
1055 				break;
1056 			DBG_8192C("%s: efuse[%#X]= 0x%02x (header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseHeader);
1057 
1058 			/*  Check PG header for section num. */
1059 			if (EXT_HEADER(efuseHeader)) { /* extended header */
1060 				offset = GET_HDR_OFFSET_2_0(efuseHeader);
1061 				DBG_8192C("%s: extended header offset_2_0 = 0x%X\n", __func__, offset);
1062 
1063 				efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
1064 				DBG_8192C("%s: efuse[%#X]= 0x%02x (ext header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseExtHdr);
1065 				if (ALL_WORDS_DISABLED(efuseExtHdr))
1066 					continue;
1067 
1068 
1069 				offset |= ((efuseExtHdr & 0xF0) >> 1);
1070 				wden = (efuseExtHdr & 0x0F);
1071 			} else {
1072 				offset = ((efuseHeader >> 4) & 0x0f);
1073 				wden = (efuseHeader & 0x0f);
1074 			}
1075 
1076 			if (offset < EFUSE_BT_MAX_SECTION) {
1077 				u16 addr;
1078 
1079 				/*  Get word enable value from PG header */
1080 				DBG_8192C("%s: Offset =%d Worden =%#X\n", __func__, offset, wden);
1081 
1082 				addr = offset * PGPKT_DATA_SIZE;
1083 				for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1084 					/*  Check word enable condition in the section */
1085 					if (!(wden & (0x01<<i))) {
1086 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1087 						DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1088 						efuseTbl[addr] = efuseData;
1089 
1090 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1091 						DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1092 						efuseTbl[addr+1] = efuseData;
1093 					}
1094 					addr += 2;
1095 				}
1096 			} else {
1097 				DBG_8192C("%s: offset(%d) is illegal!!\n", __func__, offset);
1098 				eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
1099 			}
1100 		}
1101 
1102 		if ((eFuse_Addr-1) < total) {
1103 			DBG_8192C("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr-1);
1104 			break;
1105 		}
1106 	}
1107 
1108 	/*  switch bank back to bank 0 for later BT and wifi use. */
1109 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1110 
1111 	/*  Copy from Efuse map to output pointer memory!!! */
1112 	for (i = 0; i < _size_byte; i++)
1113 		pbuf[i] = efuseTbl[_offset+i];
1114 
1115 	/*  */
1116 	/*  Calculate Efuse utilization. */
1117 	/*  */
1118 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
1119 	used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
1120 	DBG_8192C("%s: bank(%d) data end at %#x , used =%d\n", __func__, bank, eFuse_Addr-1, used);
1121 	efuse_usage = (u8)((used*100)/total);
1122 	if (bPseudoTest) {
1123 #ifdef HAL_EFUSE_MEMORY
1124 		pEfuseHal->fakeBTEfuseUsedBytes = used;
1125 #else
1126 		fakeBTEfuseUsedBytes = used;
1127 #endif
1128 	} else {
1129 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
1130 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
1131 	}
1132 
1133 exit:
1134 	kfree(efuseTbl);
1135 }
1136 
1137 static void Hal_ReadEFuse(
1138 	struct adapter *padapter,
1139 	u8 efuseType,
1140 	u16 _offset,
1141 	u16 _size_byte,
1142 	u8 *pbuf,
1143 	bool bPseudoTest
1144 )
1145 {
1146 	if (efuseType == EFUSE_WIFI)
1147 		hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1148 	else
1149 		hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1150 }
1151 
1152 static u16 hal_EfuseGetCurrentSize_WiFi(
1153 	struct adapter *padapter, bool bPseudoTest
1154 )
1155 {
1156 #ifdef HAL_EFUSE_MEMORY
1157 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1158 	PEFUSE_HAL		pEfuseHal = &pHalData->EfuseHal;
1159 #endif
1160 	u16 efuse_addr = 0;
1161 	u16 start_addr = 0; /*  for debug */
1162 	u8 hoffset = 0, hworden = 0;
1163 	u8 efuse_data, word_cnts = 0;
1164 	u32 count = 0; /*  for debug */
1165 
1166 
1167 	if (bPseudoTest) {
1168 #ifdef HAL_EFUSE_MEMORY
1169 		efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1170 #else
1171 		efuse_addr = (u16)fakeEfuseUsedBytes;
1172 #endif
1173 	} else
1174 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1175 
1176 	start_addr = efuse_addr;
1177 	DBG_8192C("%s: start_efuse_addr = 0x%X\n", __func__, efuse_addr);
1178 
1179 	/*  switch bank back to bank 0 for later BT and wifi use. */
1180 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1181 
1182 	count = 0;
1183 	while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1184 		if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1185 			DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1186 			goto error;
1187 		}
1188 
1189 		if (efuse_data == 0xFF)
1190 			break;
1191 
1192 		if ((start_addr != 0) && (efuse_addr == start_addr)) {
1193 			count++;
1194 			DBG_8192C(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X = 0x%02X not 0xFF!!(%d times)\n",
1195 				FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count);
1196 
1197 			efuse_data = 0xFF;
1198 			if (count < 4) {
1199 				/*  try again! */
1200 
1201 				if (count > 2) {
1202 					/*  try again form address 0 */
1203 					efuse_addr = 0;
1204 					start_addr = 0;
1205 				}
1206 
1207 				continue;
1208 			}
1209 
1210 			goto error;
1211 		}
1212 
1213 		if (EXT_HEADER(efuse_data)) {
1214 			hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1215 			efuse_addr++;
1216 			efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1217 			if (ALL_WORDS_DISABLED(efuse_data))
1218 				continue;
1219 
1220 			hoffset |= ((efuse_data & 0xF0) >> 1);
1221 			hworden = efuse_data & 0x0F;
1222 		} else {
1223 			hoffset = (efuse_data>>4) & 0x0F;
1224 			hworden = efuse_data & 0x0F;
1225 		}
1226 
1227 		word_cnts = Efuse_CalculateWordCnts(hworden);
1228 		efuse_addr += (word_cnts*2)+1;
1229 	}
1230 
1231 	if (bPseudoTest) {
1232 #ifdef HAL_EFUSE_MEMORY
1233 		pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1234 #else
1235 		fakeEfuseUsedBytes = efuse_addr;
1236 #endif
1237 	} else
1238 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1239 
1240 	goto exit;
1241 
1242 error:
1243 	/*  report max size to prevent wirte efuse */
1244 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1245 
1246 exit:
1247 	DBG_8192C("%s: CurrentSize =%d\n", __func__, efuse_addr);
1248 
1249 	return efuse_addr;
1250 }
1251 
1252 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1253 {
1254 #ifdef HAL_EFUSE_MEMORY
1255 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1256 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1257 #endif
1258 	u16 btusedbytes;
1259 	u16 efuse_addr;
1260 	u8 bank, startBank;
1261 	u8 hoffset = 0, hworden = 0;
1262 	u8 efuse_data, word_cnts = 0;
1263 	u16 retU2 = 0;
1264 
1265 	if (bPseudoTest) {
1266 #ifdef HAL_EFUSE_MEMORY
1267 		btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1268 #else
1269 		btusedbytes = fakeBTEfuseUsedBytes;
1270 #endif
1271 	} else
1272 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1273 
1274 	efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1275 	startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1276 
1277 	DBG_8192C("%s: start from bank =%d addr = 0x%X\n", __func__, startBank, efuse_addr);
1278 
1279 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1280 
1281 	for (bank = startBank; bank < 3; bank++) {
1282 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1283 			DBG_8192C(KERN_ERR "%s: switch bank(%d) Fail!!\n", __func__, bank);
1284 			/* bank = EFUSE_MAX_BANK; */
1285 			break;
1286 		}
1287 
1288 		/*  only when bank is switched we have to reset the efuse_addr. */
1289 		if (bank != startBank)
1290 			efuse_addr = 0;
1291 #if 1
1292 
1293 		while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1294 			if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1295 				DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1296 				/* bank = EFUSE_MAX_BANK; */
1297 				break;
1298 			}
1299 			DBG_8192C("%s: efuse_OneByteRead ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1300 
1301 			if (efuse_data == 0xFF)
1302 				break;
1303 
1304 			if (EXT_HEADER(efuse_data)) {
1305 				hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1306 				efuse_addr++;
1307 				efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1308 				DBG_8192C("%s: efuse_OneByteRead EXT_HEADER ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1309 
1310 				if (ALL_WORDS_DISABLED(efuse_data)) {
1311 					efuse_addr++;
1312 					continue;
1313 				}
1314 
1315 /* 				hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1316 				hoffset |= ((efuse_data & 0xF0) >> 1);
1317 				hworden = efuse_data & 0x0F;
1318 			} else {
1319 				hoffset = (efuse_data>>4) & 0x0F;
1320 				hworden =  efuse_data & 0x0F;
1321 			}
1322 
1323 			DBG_8192C(FUNC_ADPT_FMT": Offset =%d Worden =%#X\n",
1324 				FUNC_ADPT_ARG(padapter), hoffset, hworden);
1325 
1326 			word_cnts = Efuse_CalculateWordCnts(hworden);
1327 			/* read next header */
1328 			efuse_addr += (word_cnts*2)+1;
1329 		}
1330 #else
1331 	while (
1332 		bContinual &&
1333 		efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1334 		AVAILABLE_EFUSE_ADDR(efuse_addr)
1335 	) {
1336 			if (efuse_data != 0xFF) {
1337 				if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1338 					hoffset = efuse_data;
1339 					efuse_addr++;
1340 					efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1341 					if ((efuse_data & 0x0F) == 0x0F) {
1342 						efuse_addr++;
1343 						continue;
1344 					} else {
1345 						hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1346 						hworden = efuse_data & 0x0F;
1347 					}
1348 				} else {
1349 					hoffset = (efuse_data>>4) & 0x0F;
1350 					hworden =  efuse_data & 0x0F;
1351 				}
1352 				word_cnts = Efuse_CalculateWordCnts(hworden);
1353 				/* read next header */
1354 				efuse_addr = efuse_addr + (word_cnts*2)+1;
1355 			} else
1356 				bContinual = false;
1357 		}
1358 #endif
1359 
1360 
1361 		/*  Check if we need to check next bank efuse */
1362 		if (efuse_addr < retU2)
1363 			break; /*  don't need to check next bank. */
1364 	}
1365 
1366 	retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1367 	if (bPseudoTest) {
1368 		pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1369 		/* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */
1370 	} else {
1371 		pEfuseHal->BTEfuseUsedBytes = retU2;
1372 		/* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */
1373 	}
1374 
1375 	DBG_8192C("%s: CurrentSize =%d\n", __func__, retU2);
1376 	return retU2;
1377 }
1378 
1379 static u16 Hal_EfuseGetCurrentSize(
1380 	struct adapter *padapter, u8 efuseType, bool bPseudoTest
1381 )
1382 {
1383 	u16 ret = 0;
1384 
1385 	if (efuseType == EFUSE_WIFI)
1386 		ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1387 	else
1388 		ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1389 
1390 	return ret;
1391 }
1392 
1393 static u8 Hal_EfuseWordEnableDataWrite(
1394 	struct adapter *padapter,
1395 	u16 efuse_addr,
1396 	u8 word_en,
1397 	u8 *data,
1398 	bool bPseudoTest
1399 )
1400 {
1401 	u16 tmpaddr = 0;
1402 	u16 start_addr = efuse_addr;
1403 	u8 badworden = 0x0F;
1404 	u8 tmpdata[PGPKT_DATA_SIZE];
1405 
1406 
1407 /* 	DBG_8192C("%s: efuse_addr =%#x word_en =%#x\n", __func__, efuse_addr, word_en); */
1408 	memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1409 
1410 	if (!(word_en & BIT(0))) {
1411 		tmpaddr = start_addr;
1412 		efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1413 		efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1414 
1415 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1416 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1417 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1418 			badworden &= (~BIT(0));
1419 		}
1420 	}
1421 	if (!(word_en & BIT(1))) {
1422 		tmpaddr = start_addr;
1423 		efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1424 		efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1425 
1426 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1427 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1428 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1429 			badworden &= (~BIT(1));
1430 		}
1431 	}
1432 
1433 	if (!(word_en & BIT(2))) {
1434 		tmpaddr = start_addr;
1435 		efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1436 		efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1437 
1438 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1439 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1440 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1441 			badworden &= (~BIT(2));
1442 		}
1443 	}
1444 
1445 	if (!(word_en & BIT(3))) {
1446 		tmpaddr = start_addr;
1447 		efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1448 		efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1449 
1450 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1451 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1452 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1453 			badworden &= (~BIT(3));
1454 		}
1455 	}
1456 
1457 	return badworden;
1458 }
1459 
1460 static s32 Hal_EfusePgPacketRead(
1461 	struct adapter *padapter,
1462 	u8 offset,
1463 	u8 *data,
1464 	bool bPseudoTest
1465 )
1466 {
1467 	u8 efuse_data, word_cnts = 0;
1468 	u16 efuse_addr = 0;
1469 	u8 hoffset = 0, hworden = 0;
1470 	u8 i;
1471 	u8 max_section = 0;
1472 	s32	ret;
1473 
1474 
1475 	if (data == NULL)
1476 		return false;
1477 
1478 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1479 	if (offset > max_section) {
1480 		DBG_8192C("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section);
1481 		return false;
1482 	}
1483 
1484 	memset(data, 0xFF, PGPKT_DATA_SIZE);
1485 	ret = true;
1486 
1487 	/*  */
1488 	/*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1489 	/*  Skip dummy parts to prevent unexpected data read from Efuse. */
1490 	/*  By pass right now. 2009.02.19. */
1491 	/*  */
1492 	while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1493 		if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1494 			ret = false;
1495 			break;
1496 		}
1497 
1498 		if (efuse_data == 0xFF)
1499 			break;
1500 
1501 		if (EXT_HEADER(efuse_data)) {
1502 			hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1503 			efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1504 			if (ALL_WORDS_DISABLED(efuse_data)) {
1505 				DBG_8192C("%s: Error!! All words disabled!\n", __func__);
1506 				continue;
1507 			}
1508 
1509 			hoffset |= ((efuse_data & 0xF0) >> 1);
1510 			hworden = efuse_data & 0x0F;
1511 		} else {
1512 			hoffset = (efuse_data>>4) & 0x0F;
1513 			hworden =  efuse_data & 0x0F;
1514 		}
1515 
1516 		if (hoffset == offset) {
1517 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1518 				/*  Check word enable condition in the section */
1519 				if (!(hworden & (0x01<<i))) {
1520 					efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1521 /* 					DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1522 					data[i*2] = efuse_data;
1523 
1524 					efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1525 /* 					DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1526 					data[(i*2)+1] = efuse_data;
1527 				}
1528 			}
1529 		} else {
1530 			word_cnts = Efuse_CalculateWordCnts(hworden);
1531 			efuse_addr += word_cnts*2;
1532 		}
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 static u8 hal_EfusePgCheckAvailableAddr(
1539 	struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1540 )
1541 {
1542 	u16 max_available = 0;
1543 	u16 current_size;
1544 
1545 
1546 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1547 /* 	DBG_8192C("%s: max_available =%d\n", __func__, max_available); */
1548 
1549 	current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1550 	if (current_size >= max_available) {
1551 		DBG_8192C("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available);
1552 		return false;
1553 	}
1554 	return true;
1555 }
1556 
1557 static void hal_EfuseConstructPGPkt(
1558 	u8 offset,
1559 	u8 word_en,
1560 	u8 *pData,
1561 	PPGPKT_STRUCT pTargetPkt
1562 )
1563 {
1564 	memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1565 	pTargetPkt->offset = offset;
1566 	pTargetPkt->word_en = word_en;
1567 	efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1568 	pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1569 }
1570 
1571 static u8 hal_EfusePartialWriteCheck(
1572 	struct adapter *padapter,
1573 	u8 efuseType,
1574 	u16 *pAddr,
1575 	PPGPKT_STRUCT pTargetPkt,
1576 	u8 bPseudoTest
1577 )
1578 {
1579 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1580 	PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1581 	u8 bRet = false;
1582 	u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1583 	u8 efuse_data = 0;
1584 
1585 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1586 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1587 
1588 	if (efuseType == EFUSE_WIFI) {
1589 		if (bPseudoTest) {
1590 #ifdef HAL_EFUSE_MEMORY
1591 			startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1592 #else
1593 			startAddr = (u16)fakeEfuseUsedBytes;
1594 #endif
1595 		} else
1596 			rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1597 	} else {
1598 		if (bPseudoTest) {
1599 #ifdef HAL_EFUSE_MEMORY
1600 			startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1601 #else
1602 			startAddr = (u16)fakeBTEfuseUsedBytes;
1603 #endif
1604 		} else
1605 			rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1606 	}
1607 	startAddr %= efuse_max;
1608 	DBG_8192C("%s: startAddr =%#X\n", __func__, startAddr);
1609 
1610 	while (1) {
1611 		if (startAddr >= efuse_max_available_len) {
1612 			bRet = false;
1613 			DBG_8192C("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __func__, startAddr, efuse_max_available_len);
1614 			break;
1615 		}
1616 
1617 		if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1618 #if 1
1619 			bRet = false;
1620 			DBG_8192C("%s: Something Wrong! last bytes(%#X = 0x%02X) is not 0xFF\n",
1621 				__func__, startAddr, efuse_data);
1622 			break;
1623 #else
1624 			if (EXT_HEADER(efuse_data)) {
1625 				cur_header = efuse_data;
1626 				startAddr++;
1627 				efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1628 				if (ALL_WORDS_DISABLED(efuse_data)) {
1629 					DBG_8192C("%s: Error condition, all words disabled!", __func__);
1630 					bRet = false;
1631 					break;
1632 				} else {
1633 					curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1634 					curPkt.word_en = efuse_data & 0x0F;
1635 				}
1636 			} else {
1637 				cur_header  =  efuse_data;
1638 				curPkt.offset = (cur_header>>4) & 0x0F;
1639 				curPkt.word_en = cur_header & 0x0F;
1640 			}
1641 
1642 			curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1643 			/*  if same header is found but no data followed */
1644 			/*  write some part of data followed by the header. */
1645 			if (
1646 				(curPkt.offset == pTargetPkt->offset) &&
1647 				(hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1648 				wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1649 			) {
1650 				DBG_8192C("%s: Need to partial write data by the previous wrote header\n", __func__);
1651 				/*  Here to write partial data */
1652 				badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1653 				if (badworden != 0x0F) {
1654 					u32 PgWriteSuccess = 0;
1655 					/*  if write fail on some words, write these bad words again */
1656 					if (efuseType == EFUSE_WIFI)
1657 						PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1658 					else
1659 						PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1660 
1661 					if (!PgWriteSuccess) {
1662 						bRet = false;	/*  write fail, return */
1663 						break;
1664 					}
1665 				}
1666 				/*  partial write ok, update the target packet for later use */
1667 				for (i = 0; i < 4; i++) {
1668 					if ((matched_wden & (0x1<<i)) == 0) { /*  this word has been written */
1669 						pTargetPkt->word_en |= (0x1<<i);	/*  disable the word */
1670 					}
1671 				}
1672 				pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1673 			}
1674 			/*  read from next header */
1675 			startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1676 #endif
1677 		} else {
1678 			/*  not used header, 0xff */
1679 			*pAddr = startAddr;
1680 /* 			DBG_8192C("%s: Started from unused header offset =%d\n", __func__, startAddr)); */
1681 			bRet = true;
1682 			break;
1683 		}
1684 	}
1685 
1686 	return bRet;
1687 }
1688 
1689 static u8 hal_EfusePgPacketWrite1ByteHeader(
1690 	struct adapter *padapter,
1691 	u8 efuseType,
1692 	u16 *pAddr,
1693 	PPGPKT_STRUCT pTargetPkt,
1694 	u8 bPseudoTest
1695 )
1696 {
1697 	u8 pg_header = 0, tmp_header = 0;
1698 	u16 efuse_addr = *pAddr;
1699 	u8 repeatcnt = 0;
1700 
1701 
1702 /* 	DBG_8192C("%s\n", __func__); */
1703 	pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1704 
1705 	do {
1706 		efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1707 		efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1708 		if (tmp_header != 0xFF)
1709 			break;
1710 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1711 			DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1712 			return false;
1713 		}
1714 	} while (1);
1715 
1716 	if (tmp_header != pg_header) {
1717 		DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1718 		return false;
1719 	}
1720 
1721 	*pAddr = efuse_addr;
1722 
1723 	return true;
1724 }
1725 
1726 static u8 hal_EfusePgPacketWrite2ByteHeader(
1727 	struct adapter *padapter,
1728 	u8 efuseType,
1729 	u16 *pAddr,
1730 	PPGPKT_STRUCT pTargetPkt,
1731 	u8 bPseudoTest
1732 )
1733 {
1734 	u16 efuse_addr, efuse_max_available_len = 0;
1735 	u8 pg_header = 0, tmp_header = 0;
1736 	u8 repeatcnt = 0;
1737 
1738 
1739 /* 	DBG_8192C("%s\n", __func__); */
1740 	EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1741 
1742 	efuse_addr = *pAddr;
1743 	if (efuse_addr >= efuse_max_available_len) {
1744 		DBG_8192C("%s: addr(%d) over available (%d)!!\n", __func__,
1745 			  efuse_addr, efuse_max_available_len);
1746 		return false;
1747 	}
1748 
1749 	pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1750 /* 	DBG_8192C("%s: pg_header = 0x%x\n", __func__, pg_header); */
1751 
1752 	do {
1753 		efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1754 		efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1755 		if (tmp_header != 0xFF)
1756 			break;
1757 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1758 			DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1759 			return false;
1760 		}
1761 	} while (1);
1762 
1763 	if (tmp_header != pg_header) {
1764 		DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1765 		return false;
1766 	}
1767 
1768 	/*  to write ext_header */
1769 	efuse_addr++;
1770 	pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1771 
1772 	do {
1773 		efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1774 		efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1775 		if (tmp_header != 0xFF)
1776 			break;
1777 		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1778 			DBG_8192C("%s: Repeat over limit for ext_header!!\n", __func__);
1779 			return false;
1780 		}
1781 	} while (1);
1782 
1783 	if (tmp_header != pg_header) { /* offset PG fail */
1784 		DBG_8192C(KERN_ERR "%s: PG EXT Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1785 		return false;
1786 	}
1787 
1788 	*pAddr = efuse_addr;
1789 
1790 	return true;
1791 }
1792 
1793 static u8 hal_EfusePgPacketWriteHeader(
1794 	struct adapter *padapter,
1795 	u8 efuseType,
1796 	u16 *pAddr,
1797 	PPGPKT_STRUCT pTargetPkt,
1798 	u8 bPseudoTest
1799 )
1800 {
1801 	u8 bRet = false;
1802 
1803 	if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1804 		bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1805 	else
1806 		bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1807 
1808 	return bRet;
1809 }
1810 
1811 static u8 hal_EfusePgPacketWriteData(
1812 	struct adapter *padapter,
1813 	u8 efuseType,
1814 	u16 *pAddr,
1815 	PPGPKT_STRUCT pTargetPkt,
1816 	u8 bPseudoTest
1817 )
1818 {
1819 	u16 efuse_addr;
1820 	u8 badworden;
1821 
1822 
1823 	efuse_addr = *pAddr;
1824 	badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1825 	if (badworden != 0x0F) {
1826 		DBG_8192C("%s: Fail!!\n", __func__);
1827 		return false;
1828 	}
1829 
1830 /* 	DBG_8192C("%s: ok\n", __func__); */
1831 	return true;
1832 }
1833 
1834 static s32 Hal_EfusePgPacketWrite(
1835 	struct adapter *padapter,
1836 	u8 offset,
1837 	u8 word_en,
1838 	u8 *pData,
1839 	bool bPseudoTest
1840 )
1841 {
1842 	PGPKT_STRUCT targetPkt;
1843 	u16 startAddr = 0;
1844 	u8 efuseType = EFUSE_WIFI;
1845 
1846 	if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1847 		return false;
1848 
1849 	hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1850 
1851 	if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1852 		return false;
1853 
1854 	if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1855 		return false;
1856 
1857 	if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1858 		return false;
1859 
1860 	return true;
1861 }
1862 
1863 static bool Hal_EfusePgPacketWrite_BT(
1864 	struct adapter *padapter,
1865 	u8 offset,
1866 	u8 word_en,
1867 	u8 *pData,
1868 	bool bPseudoTest
1869 )
1870 {
1871 	PGPKT_STRUCT targetPkt;
1872 	u16 startAddr = 0;
1873 	u8 efuseType = EFUSE_BT;
1874 
1875 	if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1876 		return false;
1877 
1878 	hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1879 
1880 	if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1881 		return false;
1882 
1883 	if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1884 		return false;
1885 
1886 	if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1887 		return false;
1888 
1889 	return true;
1890 }
1891 
1892 static HAL_VERSION ReadChipVersion8723B(struct adapter *padapter)
1893 {
1894 	u32 value32;
1895 	HAL_VERSION ChipVersion;
1896 	struct hal_com_data *pHalData;
1897 
1898 /* YJ, TODO, move read chip type here */
1899 	pHalData = GET_HAL_DATA(padapter);
1900 
1901 	value32 = rtw_read32(padapter, REG_SYS_CFG);
1902 	ChipVersion.ICType = CHIP_8723B;
1903 	ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1904 	ChipVersion.RFType = RF_TYPE_1T1R;
1905 	ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1906 	ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1907 
1908 	/*  For regulator mode. by tynli. 2011.01.14 */
1909 	pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1910 
1911 	value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1912 	ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);	/*  ROM code version. */
1913 
1914 	/*  For multi-function consideration. Added by Roger, 2010.10.06. */
1915 	pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1916 	value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1917 	pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1918 	pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1919 	pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1920 	pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1921 #if 1
1922 	dump_chip_info(ChipVersion);
1923 #endif
1924 	pHalData->VersionID = ChipVersion;
1925 	if (IS_1T2R(ChipVersion))
1926 		pHalData->rf_type = RF_1T2R;
1927 	else if (IS_2T2R(ChipVersion))
1928 		pHalData->rf_type = RF_2T2R;
1929 	else
1930 		pHalData->rf_type = RF_1T1R;
1931 
1932 	MSG_8192C("RF_Type is %x!!\n", pHalData->rf_type);
1933 
1934 	return ChipVersion;
1935 }
1936 
1937 static void rtl8723b_read_chip_version(struct adapter *padapter)
1938 {
1939 	ReadChipVersion8723B(padapter);
1940 }
1941 
1942 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1943 {
1944 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1945 	u16 val16;
1946 	u8 val8;
1947 
1948 
1949 	val8 = DIS_TSF_UDT;
1950 	val16 = val8 | (val8 << 8); /*  port0 and port1 */
1951 
1952 	/*  Enable prot0 beacon function for PSTDMA */
1953 	val16 |= EN_BCN_FUNCTION;
1954 
1955 	rtw_write16(padapter, REG_BCN_CTRL, val16);
1956 
1957 	/*  TODO: Remove these magic number */
1958 	rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1959 	/*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1960 	/*  so don't set this register on STA mode. */
1961 	if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1962 		rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1963 	rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1964 
1965 	/*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1966 	/*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1967 	rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1968 
1969 	pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1970 	pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1971 	pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1972 	pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1973 	pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1974 }
1975 
1976 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1977 {
1978 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1979 
1980 	rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1981 	rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);		/* for VHT packet length 11K */
1982 	rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1983 	rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1984 	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1985 	if (pHalData->AMPDUBurstMode)
1986 		rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1987 	rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1988 
1989 	/*  ARFB table 9 for 11ac 5G 2SS */
1990 	rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1991 	if (IS_NORMAL_CHIP(pHalData->VersionID))
1992 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1993 	else
1994 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1995 
1996 	/*  ARFB table 10 for 11ac 5G 1SS */
1997 	rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1998 	rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1999 }
2000 
2001 static void ResumeTxBeacon(struct adapter *padapter)
2002 {
2003 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2004 
2005 
2006 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2007 	/*  which should be read from register to a global variable. */
2008 
2009 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
2010 
2011 	pHalData->RegFwHwTxQCtrl |= BIT(6);
2012 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2013 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
2014 	pHalData->RegReg542 |= BIT(0);
2015 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2016 }
2017 
2018 static void StopTxBeacon(struct adapter *padapter)
2019 {
2020 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2021 
2022 
2023 	/*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2024 	/*  which should be read from register to a global variable. */
2025 
2026 	RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
2027 
2028 	pHalData->RegFwHwTxQCtrl &= ~BIT(6);
2029 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2030 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
2031 	pHalData->RegReg542 &= ~BIT(0);
2032 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2033 
2034 	CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
2035 }
2036 
2037 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
2038 {
2039 	rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
2040 	rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
2041 }
2042 
2043 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
2044 {
2045 	u8 val8;
2046 	u32 value32;
2047 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2048 	struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
2049 	u32 bcn_ctrl_reg;
2050 
2051 	/* reset TSF, enable update TSF, correcting TSF On Beacon */
2052 
2053 	/* REG_BCN_INTERVAL */
2054 	/* REG_BCNDMATIM */
2055 	/* REG_ATIMWND */
2056 	/* REG_TBTT_PROHIBIT */
2057 	/* REG_DRVERLYINT */
2058 	/* REG_BCN_MAX_ERR */
2059 	/* REG_BCNTCFG (0x510) */
2060 	/* REG_DUAL_TSF_RST */
2061 	/* REG_BCN_CTRL (0x550) */
2062 
2063 
2064 	bcn_ctrl_reg = REG_BCN_CTRL;
2065 
2066 	/*  */
2067 	/*  ATIM window */
2068 	/*  */
2069 	rtw_write16(padapter, REG_ATIMWND, 2);
2070 
2071 	/*  */
2072 	/*  Beacon interval (in unit of TU). */
2073 	/*  */
2074 	rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
2075 
2076 	rtl8723b_InitBeaconParameters(padapter);
2077 
2078 	rtw_write8(padapter, REG_SLOT, 0x09);
2079 
2080 	/*  */
2081 	/*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
2082 	/*  */
2083 	value32 = rtw_read32(padapter, REG_TCR);
2084 	value32 &= ~TSFRST;
2085 	rtw_write32(padapter, REG_TCR, value32);
2086 
2087 	value32 |= TSFRST;
2088 	rtw_write32(padapter, REG_TCR, value32);
2089 
2090 	/*  NOTE: Fix test chip's bug (about contention windows's randomness) */
2091 	if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
2092 		rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
2093 		rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
2094 	}
2095 
2096 	_BeaconFunctionEnable(padapter, true, true);
2097 
2098 	ResumeTxBeacon(padapter);
2099 	val8 = rtw_read8(padapter, bcn_ctrl_reg);
2100 	val8 |= DIS_BCNQ_SUB;
2101 	rtw_write8(padapter, bcn_ctrl_reg, val8);
2102 }
2103 
2104 static void rtl8723b_GetHalODMVar(
2105 	struct adapter *Adapter,
2106 	enum HAL_ODM_VARIABLE eVariable,
2107 	void *pValue1,
2108 	void *pValue2
2109 )
2110 {
2111 	GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
2112 }
2113 
2114 static void rtl8723b_SetHalODMVar(
2115 	struct adapter *Adapter,
2116 	enum HAL_ODM_VARIABLE eVariable,
2117 	void *pValue1,
2118 	bool bSet
2119 )
2120 {
2121 	SetHalODMVar(Adapter, eVariable, pValue1, bSet);
2122 }
2123 
2124 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
2125 {
2126 	if (enable) {
2127 		DBG_871X("Enable notch filter\n");
2128 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
2129 	} else {
2130 		DBG_871X("Disable notch filter\n");
2131 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
2132 	}
2133 }
2134 
2135 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
2136 {
2137 	u32 mask, rate_bitmap;
2138 	u8 shortGIrate = false;
2139 	struct sta_info *psta;
2140 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2141 	struct dm_priv *pdmpriv = &pHalData->dmpriv;
2142 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2143 	struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
2144 
2145 	DBG_871X("%s(): mac_id =%d rssi_level =%d\n", __func__, mac_id, rssi_level);
2146 
2147 	if (mac_id >= NUM_STA) /* CAM_SIZE */
2148 		return;
2149 
2150 	psta = pmlmeinfo->FW_sta_info[mac_id].psta;
2151 	if (psta == NULL)
2152 		return;
2153 
2154 	shortGIrate = query_ra_short_GI(psta);
2155 
2156 	mask = psta->ra_mask;
2157 
2158 	rate_bitmap = 0xffffffff;
2159 	rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
2160 	DBG_871X("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
2161 			__func__, mac_id, psta->wireless_mode, mask, rssi_level, rate_bitmap);
2162 
2163 	mask &= rate_bitmap;
2164 
2165 	rate_bitmap = rtw_btcoex_GetRaMask(padapter);
2166 	mask &= ~rate_bitmap;
2167 
2168 #ifdef CONFIG_CMCC_TEST
2169 	if (pmlmeext->cur_wireless_mode & WIRELESS_11G) {
2170 		if (mac_id == 0) {
2171 			DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2172 			mask &= 0xffffff00; /* disable CCK & <24M OFDM rate for 11G mode for CMCC */
2173 			DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2174 		}
2175 	}
2176 #endif
2177 
2178 	if (pHalData->fw_ractrl == true) {
2179 		rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
2180 	}
2181 
2182 	/* set correct initial date rate for each mac_id */
2183 	pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
2184 	DBG_871X("%s(): mac_id =%d raid = 0x%x bw =%d mask = 0x%x init_rate = 0x%x\n", __func__, mac_id, psta->raid, psta->bw_mode, mask, psta->init_rate);
2185 }
2186 
2187 
2188 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
2189 {
2190 	pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
2191 
2192 	pHalFunc->dm_init = &rtl8723b_init_dm_priv;
2193 
2194 	pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
2195 
2196 	pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
2197 
2198 	pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
2199 	pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
2200 	pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
2201 
2202 	pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
2203 	pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
2204 
2205 	pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
2206 	pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
2207 
2208 
2209 	pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
2210 
2211 	pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
2212 
2213 	pHalFunc->run_thread = &rtl8723b_start_thread;
2214 	pHalFunc->cancel_thread = &rtl8723b_stop_thread;
2215 
2216 	pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
2217 	pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
2218 	pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
2219 	pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
2220 
2221 	/*  Efuse related function */
2222 	pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
2223 	pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
2224 	pHalFunc->ReadEFuse = &Hal_ReadEFuse;
2225 	pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
2226 	pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
2227 	pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
2228 	pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
2229 	pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
2230 	pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
2231 
2232 	pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
2233 	pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
2234 
2235 	pHalFunc->xmit_thread_handler = &hal_xmit_handler;
2236 	pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
2237 
2238 	pHalFunc->c2h_handler = c2h_handler_8723b;
2239 	pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
2240 
2241 	pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
2242 }
2243 
2244 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
2245 {
2246 	struct hal_com_data *pHalData;
2247 	u8 val;
2248 
2249 
2250 	pHalData = GET_HAL_DATA(padapter);
2251 
2252 	val = rtw_read8(padapter, REG_LEDCFG2);
2253 	/*  Let 8051 take control antenna settting */
2254 	val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
2255 	rtw_write8(padapter, REG_LEDCFG2, val);
2256 }
2257 
2258 void rtl8723b_init_default_value(struct adapter *padapter)
2259 {
2260 	struct hal_com_data *pHalData;
2261 	struct dm_priv *pdmpriv;
2262 	u8 i;
2263 
2264 
2265 	pHalData = GET_HAL_DATA(padapter);
2266 	pdmpriv = &pHalData->dmpriv;
2267 
2268 	padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
2269 
2270 	/*  init default value */
2271 	pHalData->fw_ractrl = false;
2272 	pHalData->bIQKInitialized = false;
2273 	if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
2274 		pHalData->LastHMEBoxNum = 0;
2275 
2276 	pHalData->bIQKInitialized = false;
2277 
2278 	/*  init dm default value */
2279 	pdmpriv->TM_Trigger = 0;/* for IQK */
2280 /* 	pdmpriv->binitialized = false; */
2281 /* 	pdmpriv->prv_traffic_idx = 3; */
2282 /* 	pdmpriv->initialize = 0; */
2283 
2284 	pdmpriv->ThermalValue_HP_index = 0;
2285 	for (i = 0; i < HP_THERMAL_NUM; i++)
2286 		pdmpriv->ThermalValue_HP[i] = 0;
2287 
2288 	/*  init Efuse variables */
2289 	pHalData->EfuseUsedBytes = 0;
2290 	pHalData->EfuseUsedPercentage = 0;
2291 #ifdef HAL_EFUSE_MEMORY
2292 	pHalData->EfuseHal.fakeEfuseBank = 0;
2293 	pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
2294 	memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
2295 	memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
2296 	memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
2297 	pHalData->EfuseHal.BTEfuseUsedBytes = 0;
2298 	pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
2299 	memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2300 	memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2301 	memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2302 	pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
2303 	memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2304 	memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2305 	memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2306 #endif
2307 }
2308 
2309 u8 GetEEPROMSize8723B(struct adapter *padapter)
2310 {
2311 	u8 size = 0;
2312 	u32 cr;
2313 
2314 	cr = rtw_read16(padapter, REG_9346CR);
2315 	/*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2316 	size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2317 
2318 	MSG_8192C("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
2319 
2320 	return size;
2321 }
2322 
2323 /*  */
2324 /*  */
2325 /*  LLT R/W/Init function */
2326 /*  */
2327 /*  */
2328 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2329 {
2330 	unsigned long start, passing_time;
2331 	u32 val32;
2332 	s32 ret;
2333 
2334 
2335 	ret = _FAIL;
2336 
2337 	val32 = rtw_read32(padapter, REG_AUTO_LLT);
2338 	val32 |= BIT_AUTO_INIT_LLT;
2339 	rtw_write32(padapter, REG_AUTO_LLT, val32);
2340 
2341 	start = jiffies;
2342 
2343 	do {
2344 		val32 = rtw_read32(padapter, REG_AUTO_LLT);
2345 		if (!(val32 & BIT_AUTO_INIT_LLT)) {
2346 			ret = _SUCCESS;
2347 			break;
2348 		}
2349 
2350 		passing_time = jiffies_to_msecs(jiffies - start);
2351 		if (passing_time > 1000) {
2352 			DBG_8192C(
2353 				"%s: FAIL!! REG_AUTO_LLT(0x%X) =%08x\n",
2354 				__func__,
2355 				REG_AUTO_LLT,
2356 				val32
2357 			);
2358 			break;
2359 		}
2360 
2361 		msleep(1);
2362 	} while (1);
2363 
2364 	return ret;
2365 }
2366 
2367 static bool Hal_GetChnlGroup8723B(u8 Channel, u8 *pGroup)
2368 {
2369 	bool bIn24G = true;
2370 
2371 	if (Channel <= 14) {
2372 		bIn24G = true;
2373 
2374 		if (1  <= Channel && Channel <= 2)
2375 			*pGroup = 0;
2376 		else if (3  <= Channel && Channel <= 5)
2377 			*pGroup = 1;
2378 		else if (6  <= Channel && Channel <= 8)
2379 			*pGroup = 2;
2380 		else if (9  <= Channel && Channel <= 11)
2381 			*pGroup = 3;
2382 		else if (12 <= Channel && Channel <= 14)
2383 			*pGroup = 4;
2384 		else {
2385 			RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 2.4 G, but Channel %d in Group not found\n", Channel));
2386 		}
2387 	} else {
2388 		bIn24G = false;
2389 
2390 		if (36   <= Channel && Channel <=  42)
2391 			*pGroup = 0;
2392 		else if (44   <= Channel && Channel <=  48)
2393 			*pGroup = 1;
2394 		else if (50   <= Channel && Channel <=  58)
2395 			*pGroup = 2;
2396 		else if (60   <= Channel && Channel <=  64)
2397 			*pGroup = 3;
2398 		else if (100  <= Channel && Channel <= 106)
2399 			*pGroup = 4;
2400 		else if (108  <= Channel && Channel <= 114)
2401 			*pGroup = 5;
2402 		else if (116  <= Channel && Channel <= 122)
2403 			*pGroup = 6;
2404 		else if (124  <= Channel && Channel <= 130)
2405 			*pGroup = 7;
2406 		else if (132  <= Channel && Channel <= 138)
2407 			*pGroup = 8;
2408 		else if (140  <= Channel && Channel <= 144)
2409 			*pGroup = 9;
2410 		else if (149  <= Channel && Channel <= 155)
2411 			*pGroup = 10;
2412 		else if (157  <= Channel && Channel <= 161)
2413 			*pGroup = 11;
2414 		else if (165  <= Channel && Channel <= 171)
2415 			*pGroup = 12;
2416 		else if (173  <= Channel && Channel <= 177)
2417 			*pGroup = 13;
2418 		else {
2419 			RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 5G, but Channel %d in Group not found\n", Channel));
2420 		}
2421 
2422 	}
2423 	RT_TRACE(
2424 		_module_hci_hal_init_c_,
2425 		_drv_info_,
2426 		(
2427 			"<==Hal_GetChnlGroup8723B,  (%s) Channel = %d, Group =%d,\n",
2428 			bIn24G ? "2.4G" : "5G",
2429 			Channel,
2430 			*pGroup
2431 		)
2432 	);
2433 	return bIn24G;
2434 }
2435 
2436 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2437 {
2438 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2439 
2440 	if (false == pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
2441 		if (!pEEPROM->EepromOrEfuse) {
2442 			/*  Read EFUSE real map to shadow. */
2443 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2444 			memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2445 		}
2446 	} else {/* autoload fail */
2447 		RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
2448 		if (false == pEEPROM->EepromOrEfuse)
2449 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2450 		memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2451 	}
2452 }
2453 
2454 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2455 {
2456 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2457 /* 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter); */
2458 	u16 EEPROMId;
2459 
2460 
2461 	/*  Checl 0x8129 again for making sure autoload status!! */
2462 	EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2463 	if (EEPROMId != RTL_EEPROM_ID) {
2464 		DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
2465 		pEEPROM->bautoload_fail_flag = true;
2466 	} else
2467 		pEEPROM->bautoload_fail_flag = false;
2468 
2469 	RT_TRACE(_module_hal_init_c_, _drv_notice_, ("EEPROM ID = 0x%04x\n", EEPROMId));
2470 }
2471 
2472 static void Hal_ReadPowerValueFromPROM_8723B(
2473 	struct adapter *Adapter,
2474 	struct TxPowerInfo24G *pwrInfo24G,
2475 	u8 *PROMContent,
2476 	bool AutoLoadFail
2477 )
2478 {
2479 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2480 	u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2481 
2482 	memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2483 
2484 	if (0xFF == PROMContent[eeAddr+1])
2485 		AutoLoadFail = true;
2486 
2487 	if (AutoLoadFail) {
2488 		DBG_871X("%s(): Use Default value!\n", __func__);
2489 		for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2490 			/* 2.4G default value */
2491 			for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2492 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2493 				pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2494 			}
2495 
2496 			for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2497 				if (TxCount == 0) {
2498 					pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2499 					pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2500 				} else {
2501 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2502 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2503 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2504 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2505 				}
2506 			}
2507 		}
2508 
2509 		return;
2510 	}
2511 
2512 	pHalData->bTXPowerDataReadFromEEPORM = true;		/* YJ, move, 120316 */
2513 
2514 	for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2515 		/* 2 2.4G default value */
2516 		for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2517 			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
2518 			if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2519 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2520 		}
2521 
2522 		for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2523 			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
2524 			if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2525 				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
2526 		}
2527 
2528 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2529 			if (TxCount == 0) {
2530 				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2531 				if (PROMContent[eeAddr] == 0xFF)
2532 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_24G_HT20_DIFF;
2533 				else {
2534 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;
2535 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2536 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2537 				}
2538 
2539 				if (PROMContent[eeAddr] == 0xFF)
2540 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2541 				else {
2542 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2543 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2544 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2545 				}
2546 				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2547 				eeAddr++;
2548 			} else {
2549 				if (PROMContent[eeAddr] == 0xFF)
2550 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2551 				else {
2552 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2553 					if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2554 						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2555 				}
2556 
2557 				if (PROMContent[eeAddr] == 0xFF)
2558 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2559 				else {
2560 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2561 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2562 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2563 				}
2564 				eeAddr++;
2565 
2566 				if (PROMContent[eeAddr] == 0xFF)
2567 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2568 				else {
2569 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2570 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2571 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2572 				}
2573 
2574 				if (PROMContent[eeAddr] == 0xFF)
2575 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2576 				else {
2577 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2578 					if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
2579 						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2580 				}
2581 				eeAddr++;
2582 			}
2583 		}
2584 	}
2585 }
2586 
2587 
2588 void Hal_EfuseParseTxPowerInfo_8723B(
2589 	struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2590 )
2591 {
2592 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2593 	struct TxPowerInfo24G	pwrInfo24G;
2594 	u8 	rfPath, ch, TxCount = 1;
2595 
2596 	Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2597 	for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2598 		for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2599 			u8 group = 0;
2600 
2601 			Hal_GetChnlGroup8723B(ch+1, &group);
2602 
2603 			if (ch == 14-1) {
2604 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2605 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2606 			} else {
2607 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2608 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2609 			}
2610 #ifdef DEBUG
2611 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("======= Path %d, ChannelIndex %d, Group %d =======\n", rfPath, ch, group));
2612 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_CCK_Base[rfPath][ch]));
2613 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_BW40_Base[rfPath][ch]));
2614 #endif
2615 		}
2616 
2617 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2618 			pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2619 			pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2620 			pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2621 			pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2622 
2623 #ifdef DEBUG
2624 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("--------------------------------------- 2.4G ---------------------------------------\n"));
2625 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CCK_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]));
2626 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("OFDM_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]));
2627 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW20_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]));
2628 			RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW40_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]));
2629 #endif
2630 		}
2631 	}
2632 
2633 	/*  2010/10/19 MH Add Regulator recognize for CU. */
2634 	if (!AutoLoadFail) {
2635 		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);	/* bit0~2 */
2636 		if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2637 			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7);	/* bit0~2 */
2638 	} else
2639 		pHalData->EEPROMRegulatory = 0;
2640 
2641 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
2642 }
2643 
2644 void Hal_EfuseParseBTCoexistInfo_8723B(
2645 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2646 )
2647 {
2648 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2649 	u8 tempval;
2650 	u32 tmpu4;
2651 
2652 	if (!AutoLoadFail) {
2653 		tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2654 		if (tmpu4 & BT_FUNC_EN)
2655 			pHalData->EEPROMBluetoothCoexist = true;
2656 		else
2657 			pHalData->EEPROMBluetoothCoexist = false;
2658 
2659 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
2660 
2661 		tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2662 		if (tempval != 0xFF) {
2663 			pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2664 			/*  EFUSE_0xC3[6] == 0, S1(Main)-ODM_RF_PATH_A; */
2665 			/*  EFUSE_0xC3[6] == 1, S0(Aux)-ODM_RF_PATH_B */
2666 			pHalData->ant_path = (tempval & BIT(6))?ODM_RF_PATH_B:ODM_RF_PATH_A;
2667 		} else {
2668 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
2669 			if (pHalData->PackageType == PACKAGE_QFN68)
2670 				pHalData->ant_path = ODM_RF_PATH_B;
2671 			else
2672 				pHalData->ant_path = ODM_RF_PATH_A;
2673 		}
2674 	} else {
2675 		pHalData->EEPROMBluetoothCoexist = false;
2676 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
2677 		pHalData->EEPROMBluetoothAntNum = Ant_x1;
2678 		pHalData->ant_path = ODM_RF_PATH_A;
2679 	}
2680 
2681 	if (padapter->registrypriv.ant_num > 0) {
2682 		DBG_8192C(
2683 			"%s: Apply driver defined antenna number(%d) to replace origin(%d)\n",
2684 			__func__,
2685 			padapter->registrypriv.ant_num,
2686 			pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2687 		);
2688 
2689 		switch (padapter->registrypriv.ant_num) {
2690 		case 1:
2691 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
2692 			break;
2693 		case 2:
2694 			pHalData->EEPROMBluetoothAntNum = Ant_x2;
2695 			break;
2696 		default:
2697 			DBG_8192C(
2698 				"%s: Discard invalid driver defined antenna number(%d)!\n",
2699 				__func__,
2700 				padapter->registrypriv.ant_num
2701 			);
2702 			break;
2703 		}
2704 	}
2705 
2706 	rtw_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2707 	rtw_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
2708 	rtw_btcoex_SetPGAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2709 	if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2710 		rtw_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2711 
2712 	DBG_8192C(
2713 		"%s: %s BT-coex, ant_num =%d\n",
2714 		__func__,
2715 		pHalData->EEPROMBluetoothCoexist == true ? "Enable" : "Disable",
2716 		pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2717 	);
2718 }
2719 
2720 void Hal_EfuseParseEEPROMVer_8723B(
2721 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2722 )
2723 {
2724 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2725 
2726 /* 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2727 	if (!AutoLoadFail)
2728 		pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2729 	else
2730 		pHalData->EEPROMVersion = 1;
2731 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
2732 		pHalData->EEPROMVersion));
2733 }
2734 
2735 
2736 
2737 void Hal_EfuseParsePackageType_8723B(
2738 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2739 )
2740 {
2741 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2742 	u8 package;
2743 	u8 efuseContent;
2744 
2745 	Efuse_PowerSwitch(padapter, false, true);
2746 	efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2747 	DBG_871X("%s phy efuse read 0x1FB =%x\n", __func__, efuseContent);
2748 	Efuse_PowerSwitch(padapter, false, false);
2749 
2750 	package = efuseContent & 0x7;
2751 	switch (package) {
2752 	case 0x4:
2753 		pHalData->PackageType = PACKAGE_TFBGA79;
2754 		break;
2755 	case 0x5:
2756 		pHalData->PackageType = PACKAGE_TFBGA90;
2757 		break;
2758 	case 0x6:
2759 		pHalData->PackageType = PACKAGE_QFN68;
2760 		break;
2761 	case 0x7:
2762 		pHalData->PackageType = PACKAGE_TFBGA80;
2763 		break;
2764 
2765 	default:
2766 		pHalData->PackageType = PACKAGE_DEFAULT;
2767 		break;
2768 	}
2769 
2770 	DBG_871X("PackageType = 0x%X\n", pHalData->PackageType);
2771 }
2772 
2773 
2774 void Hal_EfuseParseVoltage_8723B(
2775 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2776 )
2777 {
2778 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2779 
2780 	/* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2781 	DBG_871X("%s hwinfo[EEPROM_Voltage_ADDR_8723B] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8723B]);
2782 	pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2783 	DBG_871X("%s pEEPROM->adjuseVoltageVal =%x\n", __func__, pEEPROM->adjuseVoltageVal);
2784 }
2785 
2786 void Hal_EfuseParseChnlPlan_8723B(
2787 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2788 )
2789 {
2790 	padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2791 		padapter,
2792 		hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2793 		padapter->registrypriv.channel_plan,
2794 		RT_CHANNEL_DOMAIN_WORLD_NULL,
2795 		AutoLoadFail
2796 	);
2797 
2798 	Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2799 
2800 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan));
2801 }
2802 
2803 void Hal_EfuseParseCustomerID_8723B(
2804 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2805 )
2806 {
2807 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2808 
2809 /* 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2810 	if (!AutoLoadFail)
2811 		pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2812 	else
2813 		pHalData->EEPROMCustomerID = 0;
2814 
2815 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
2816 }
2817 
2818 void Hal_EfuseParseAntennaDiversity_8723B(
2819 	struct adapter *padapter,
2820 	u8 *hwinfo,
2821 	bool AutoLoadFail
2822 )
2823 {
2824 }
2825 
2826 void Hal_EfuseParseXtal_8723B(
2827 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2828 )
2829 {
2830 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
2831 
2832 /* 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2833 	if (!AutoLoadFail) {
2834 		pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2835 		if (pHalData->CrystalCap == 0xFF)
2836 			pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;	   /* what value should 8812 set? */
2837 	} else
2838 		pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2839 
2840 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM CrystalCap: 0x%2x\n", pHalData->CrystalCap));
2841 }
2842 
2843 
2844 void Hal_EfuseParseThermalMeter_8723B(
2845 	struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2846 )
2847 {
2848 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2849 
2850 /* 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2851 	/*  */
2852 	/*  ThermalMeter from EEPROM */
2853 	/*  */
2854 	if (false == AutoLoadFail)
2855 		pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2856 	else
2857 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2858 
2859 	if ((pHalData->EEPROMThermalMeter == 0xff) || (true == AutoLoadFail)) {
2860 		pHalData->bAPKThermalMeterIgnore = true;
2861 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2862 	}
2863 
2864 	RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter));
2865 }
2866 
2867 
2868 void Hal_ReadRFGainOffset(
2869 	struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2870 )
2871 {
2872 	/*  */
2873 	/*  BB_RF Gain Offset from EEPROM */
2874 	/*  */
2875 
2876 	if (!AutoloadFail) {
2877 		Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2878 		DBG_871X("AutoloadFail =%x,\n", AutoloadFail);
2879 		Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2880 		DBG_871X("Adapter->eeprompriv.EEPROMRFGainVal =%x\n", Adapter->eeprompriv.EEPROMRFGainVal);
2881 	} else {
2882 		Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2883 		Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2884 		DBG_871X("else AutoloadFail =%x,\n", AutoloadFail);
2885 	}
2886 	DBG_871X("EEPRORFGainOffset = 0x%02x\n", Adapter->eeprompriv.EEPROMRFGainOffset);
2887 }
2888 
2889 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2890 {
2891 	u8 BWSettingOfDesc = 0;
2892 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2893 
2894 	/* DBG_871X("BWMapping pHalData->CurrentChannelBW %d, pattrib->bwmode %d\n", pHalData->CurrentChannelBW, pattrib->bwmode); */
2895 
2896 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2897 		if (pattrib->bwmode == CHANNEL_WIDTH_80)
2898 			BWSettingOfDesc = 2;
2899 		else if (pattrib->bwmode == CHANNEL_WIDTH_40)
2900 			BWSettingOfDesc = 1;
2901 		else
2902 			BWSettingOfDesc = 0;
2903 	} else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2904 		if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
2905 			BWSettingOfDesc = 1;
2906 		else
2907 			BWSettingOfDesc = 0;
2908 	} else
2909 		BWSettingOfDesc = 0;
2910 
2911 	/* if (pTcb->bBTTxPacket) */
2912 	/* 	BWSettingOfDesc = 0; */
2913 
2914 	return BWSettingOfDesc;
2915 }
2916 
2917 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2918 {
2919 	u8 SCSettingOfDesc = 0;
2920 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2921 
2922 	/* DBG_871X("SCMapping: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur80MhzPrimeSC, pHalData->nCur40MhzPrimeSC); */
2923 
2924 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2925 		if (pattrib->bwmode == CHANNEL_WIDTH_80) {
2926 			SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2927 		} else if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2928 			if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
2929 				SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ;
2930 			else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
2931 				SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ;
2932 			else
2933 				DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2934 		} else {
2935 			if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2936 				SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
2937 			else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2938 				SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2939 			else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2940 				SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2941 			else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2942 				SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
2943 			else
2944 				DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2945 		}
2946 	} else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2947 		/* DBG_871X("SCMapping: HT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur40MhzPrimeSC); */
2948 
2949 		if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2950 			SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2951 		} else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2952 			if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2953 				SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2954 			} else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2955 				SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2956 			} else {
2957 				SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2958 			}
2959 		}
2960 	} else {
2961 		SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2962 	}
2963 
2964 	return SCSettingOfDesc;
2965 }
2966 
2967 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2968 {
2969 	u16 *usPtr = (u16 *)ptxdesc;
2970 	u32 count;
2971 	u32 index;
2972 	u16 checksum = 0;
2973 
2974 
2975 	/*  Clear first */
2976 	ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2977 
2978 	/*  checksume is always calculated by first 32 bytes, */
2979 	/*  and it doesn't depend on TX DESC length. */
2980 	/*  Thomas, Lucas@SD4, 20130515 */
2981 	count = 16;
2982 
2983 	for (index = 0; index < count; index++) {
2984 		checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2985 	}
2986 
2987 	ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2988 }
2989 
2990 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2991 {
2992 	u8 sectype = 0;
2993 	if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2994 		switch (pattrib->encrypt) {
2995 		/*  SEC_TYPE */
2996 		case _WEP40_:
2997 		case _WEP104_:
2998 		case _TKIP_:
2999 		case _TKIP_WTMIC_:
3000 			sectype = 1;
3001 			break;
3002 
3003 		case _AES_:
3004 			sectype = 3;
3005 			break;
3006 
3007 		case _NO_PRIVACY_:
3008 		default:
3009 			break;
3010 		}
3011 	}
3012 	return sectype;
3013 }
3014 
3015 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3016 {
3017 	/* DBG_8192C("cvs_mode =%d\n", pattrib->vcs_mode); */
3018 
3019 	if (pattrib->vcs_mode) {
3020 		switch (pattrib->vcs_mode) {
3021 		case RTS_CTS:
3022 			ptxdesc->rtsen = 1;
3023 			/*  ENABLE HW RTS */
3024 			ptxdesc->hw_rts_en = 1;
3025 			break;
3026 
3027 		case CTS_TO_SELF:
3028 			ptxdesc->cts2self = 1;
3029 			break;
3030 
3031 		case NONE_VCS:
3032 		default:
3033 			break;
3034 		}
3035 
3036 		ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
3037 		ptxdesc->rts_ratefb_lmt = 0xF;
3038 
3039 		if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
3040 			ptxdesc->rts_short = 1;
3041 
3042 		/*  Set RTS BW */
3043 		if (pattrib->ht_en)
3044 			ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
3045 	}
3046 }
3047 
3048 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3049 {
3050 	/* DBG_8192C("bwmode =%d, ch_off =%d\n", pattrib->bwmode, pattrib->ch_offset); */
3051 
3052 	if (pattrib->ht_en) {
3053 		ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
3054 
3055 		ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
3056 	}
3057 }
3058 
3059 static void rtl8723b_fill_default_txdesc(
3060 	struct xmit_frame *pxmitframe, u8 *pbuf
3061 )
3062 {
3063 	struct adapter *padapter;
3064 	struct hal_com_data *pHalData;
3065 	struct dm_priv *pdmpriv;
3066 	struct mlme_ext_priv *pmlmeext;
3067 	struct mlme_ext_info *pmlmeinfo;
3068 	struct pkt_attrib *pattrib;
3069 	PTXDESC_8723B ptxdesc;
3070 	s32 bmcst;
3071 
3072 	memset(pbuf, 0, TXDESC_SIZE);
3073 
3074 	padapter = pxmitframe->padapter;
3075 	pHalData = GET_HAL_DATA(padapter);
3076 	pdmpriv = &pHalData->dmpriv;
3077 	pmlmeext = &padapter->mlmeextpriv;
3078 	pmlmeinfo = &(pmlmeext->mlmext_info);
3079 
3080 	pattrib = &pxmitframe->attrib;
3081 	bmcst = IS_MCAST(pattrib->ra);
3082 
3083 	ptxdesc = (PTXDESC_8723B)pbuf;
3084 
3085 	if (pxmitframe->frame_tag == DATA_FRAMETAG) {
3086 		u8 drv_userate = 0;
3087 
3088 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3089 		ptxdesc->rate_id = pattrib->raid;
3090 		ptxdesc->qsel = pattrib->qsel;
3091 		ptxdesc->seq = pattrib->seqnum;
3092 
3093 		ptxdesc->sectype = fill_txdesc_sectype(pattrib);
3094 		fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
3095 
3096 		if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
3097 			drv_userate = 1;
3098 
3099 		if (
3100 			(pattrib->ether_type != 0x888e) &&
3101 			(pattrib->ether_type != 0x0806) &&
3102 			(pattrib->ether_type != 0x88B4) &&
3103 			(pattrib->dhcp_pkt != 1) &&
3104 			(drv_userate != 1)
3105 #ifdef CONFIG_AUTO_AP_MODE
3106 			&& (pattrib->pctrl != true)
3107 #endif
3108 		) {
3109 			/*  Non EAP & ARP & DHCP type data packet */
3110 
3111 			if (pattrib->ampdu_en == true) {
3112 				ptxdesc->agg_en = 1; /*  AGG EN */
3113 				ptxdesc->max_agg_num = 0x1f;
3114 				ptxdesc->ampdu_density = pattrib->ampdu_spacing;
3115 			} else
3116 				ptxdesc->bk = 1; /*  AGG BK */
3117 
3118 			fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
3119 
3120 			ptxdesc->data_ratefb_lmt = 0x1F;
3121 
3122 			if (pHalData->fw_ractrl == false) {
3123 				ptxdesc->userate = 1;
3124 
3125 				if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
3126 					ptxdesc->data_short = 1;
3127 
3128 				ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
3129 			}
3130 
3131 			if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
3132 				ptxdesc->userate = 1;
3133 				if (padapter->fix_rate & BIT(7))
3134 					ptxdesc->data_short = 1;
3135 
3136 				ptxdesc->datarate = (padapter->fix_rate & 0x7F);
3137 				ptxdesc->disdatafb = 1;
3138 			}
3139 
3140 			if (pattrib->ldpc)
3141 				ptxdesc->data_ldpc = 1;
3142 			if (pattrib->stbc)
3143 				ptxdesc->data_stbc = 1;
3144 
3145 #ifdef CONFIG_CMCC_TEST
3146 			ptxdesc->data_short = 1; /* use cck short premble */
3147 #endif
3148 		} else {
3149 			/*  EAP data packet and ARP packet. */
3150 			/*  Use the 1M data rate to send the EAP/ARP packet. */
3151 			/*  This will maybe make the handshake smooth. */
3152 
3153 			ptxdesc->bk = 1; /*  AGG BK */
3154 			ptxdesc->userate = 1; /*  driver uses rate */
3155 			if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
3156 				ptxdesc->data_short = 1;/*  DATA_SHORT */
3157 			ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3158 			DBG_871X("YJ: %s(): ARP Data: userate =%d, datarate = 0x%x\n", __func__, ptxdesc->userate, ptxdesc->datarate);
3159 		}
3160 
3161 		ptxdesc->usb_txagg_num = pxmitframe->agg_num;
3162 	} else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
3163 /* 		RT_TRACE(_module_hal_xmit_c_, _drv_notice_, ("%s: MGNT_FRAMETAG\n", __func__)); */
3164 
3165 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3166 		ptxdesc->qsel = pattrib->qsel;
3167 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3168 		ptxdesc->seq = pattrib->seqnum;
3169 		ptxdesc->userate = 1; /*  driver uses rate, 1M */
3170 
3171 		ptxdesc->mbssid = pattrib->mbssid & 0xF;
3172 
3173 		ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
3174 		if (pattrib->retry_ctrl == true) {
3175 			ptxdesc->data_rt_lmt = 6;
3176 		} else {
3177 			ptxdesc->data_rt_lmt = 12;
3178 		}
3179 
3180 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3181 
3182 		/*  CCX-TXRPT ack for xmit mgmt frames. */
3183 		if (pxmitframe->ack_report) {
3184 			#ifdef DBG_CCX
3185 			DBG_8192C("%s set spe_rpt\n", __func__);
3186 			#endif
3187 			ptxdesc->spe_rpt = 1;
3188 			ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
3189 		}
3190 	} else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
3191 		RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: TXAGG_FRAMETAG\n", __func__));
3192 	} else {
3193 		RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: frame_tag = 0x%x\n", __func__, pxmitframe->frame_tag));
3194 
3195 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3196 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3197 		ptxdesc->qsel = pattrib->qsel;
3198 		ptxdesc->seq = pattrib->seqnum;
3199 		ptxdesc->userate = 1; /*  driver uses rate */
3200 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3201 	}
3202 
3203 	ptxdesc->pktlen = pattrib->last_txcmdsz;
3204 	ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
3205 
3206 	if (bmcst)
3207 		ptxdesc->bmc = 1;
3208 
3209 	/*  2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
3210 	/*  (1) The sequence number of each non-Qos frame / broadcast / multicast / */
3211 	/*  mgnt frame should be controled by Hw because Fw will also send null data */
3212 	/*  which we cannot control when Fw LPS enable. */
3213 	/*  --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */
3214 	/*  (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */
3215 	/*  (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */
3216 	/*  2010.06.23. Added by tynli. */
3217 	if (!pattrib->qos_en) /*  Hw set sequence number */
3218 		ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
3219 }
3220 
3221 /*
3222  *Description:
3223  *
3224  *Parameters:
3225  *	pxmitframe	xmitframe
3226  *	pbuf		where to fill tx desc
3227  */
3228 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
3229 {
3230 	struct tx_desc *pdesc;
3231 
3232 	rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
3233 
3234 	pdesc = (struct tx_desc *)pbuf;
3235 	pdesc->txdw0 = pdesc->txdw0;
3236 	pdesc->txdw1 = pdesc->txdw1;
3237 	pdesc->txdw2 = pdesc->txdw2;
3238 	pdesc->txdw3 = pdesc->txdw3;
3239 	pdesc->txdw4 = pdesc->txdw4;
3240 	pdesc->txdw5 = pdesc->txdw5;
3241 	pdesc->txdw6 = pdesc->txdw6;
3242 	pdesc->txdw7 = pdesc->txdw7;
3243 	pdesc->txdw8 = pdesc->txdw8;
3244 	pdesc->txdw9 = pdesc->txdw9;
3245 
3246 	rtl8723b_cal_txdesc_chksum(pdesc);
3247 }
3248 
3249 /*  */
3250 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
3251 /* 			in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
3252 /* 			Fw can tell Hw to send these packet derectly. */
3253 /*  Added by tynli. 2009.10.15. */
3254 /*  */
3255 /* type1:pspoll, type2:null */
3256 void rtl8723b_fill_fake_txdesc(
3257 	struct adapter *padapter,
3258 	u8 *pDesc,
3259 	u32 BufferLen,
3260 	u8 IsPsPoll,
3261 	u8 IsBTQosNull,
3262 	u8 bDataFrame
3263 )
3264 {
3265 	/*  Clear all status */
3266 	memset(pDesc, 0, TXDESC_SIZE);
3267 
3268 	SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
3269 	SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
3270 
3271 	SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
3272 
3273 	SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
3274 	SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
3275 
3276 	/*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
3277 	if (true == IsPsPoll) {
3278 		SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
3279 	} else {
3280 		SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
3281 		SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
3282 	}
3283 
3284 	if (true == IsBTQosNull) {
3285 		SET_TX_DESC_BT_INT_8723B(pDesc, 1);
3286 	}
3287 
3288 	SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
3289 	SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
3290 
3291 	SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
3292 
3293 	/*  */
3294 	/*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
3295 	/*  */
3296 	if (true == bDataFrame) {
3297 		u32 EncAlg;
3298 
3299 		EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
3300 		switch (EncAlg) {
3301 		case _NO_PRIVACY_:
3302 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3303 			break;
3304 		case _WEP40_:
3305 		case _WEP104_:
3306 		case _TKIP_:
3307 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
3308 			break;
3309 		case _SMS4_:
3310 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
3311 			break;
3312 		case _AES_:
3313 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
3314 			break;
3315 		default:
3316 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3317 			break;
3318 		}
3319 	}
3320 
3321 	/*  USB interface drop packet if the checksum of descriptor isn't correct. */
3322 	/*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
3323 	rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
3324 }
3325 
3326 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
3327 {
3328 	u8 val8;
3329 	u8 mode = *((u8 *)val);
3330 
3331 	{
3332 		/*  disable Port0 TSF update */
3333 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
3334 		val8 |= DIS_TSF_UDT;
3335 		rtw_write8(padapter, REG_BCN_CTRL, val8);
3336 
3337 		/*  set net_type */
3338 		Set_MSR(padapter, mode);
3339 		DBG_871X("#### %s() -%d iface_type(0) mode = %d ####\n", __func__, __LINE__, mode);
3340 
3341 		if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
3342 			{
3343 				StopTxBeacon(padapter);
3344 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3345 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3346 				rtw_write8(padapter, REG_DRVERLYINT, 0x05); /*  restore early int time to 5ms */
3347 				UpdateInterruptMask8812AU(padapter, true, 0, IMR_BCNDMAINT0_8723B);
3348 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3349 
3350 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3351 				UpdateInterruptMask8812AU(padapter, true, 0, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B));
3352 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3353 
3354 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3355 			}
3356 
3357 			/*  disable atim wnd */
3358 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
3359 			/* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
3360 		} else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/) {
3361 			ResumeTxBeacon(padapter);
3362 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
3363 		} else if (mode == _HW_STATE_AP_) {
3364 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3365 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3366 			UpdateInterruptMask8723BU(padapter, true, IMR_BCNDMAINT0_8723B, 0);
3367 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3368 
3369 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3370 			UpdateInterruptMask8723BU(padapter, true, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B), 0);
3371 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3372 
3373 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3374 
3375 			ResumeTxBeacon(padapter);
3376 
3377 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
3378 
3379 			/* Set RCR */
3380 			rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
3381 			/* enable to rx data frame */
3382 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3383 			/* enable to rx ps-poll */
3384 			rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
3385 
3386 			/* Beacon Control related register for first time */
3387 			rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
3388 
3389 			/* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
3390 			rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
3391 			rtw_write16(padapter, REG_BCNTCFG, 0x00);
3392 			rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
3393 			rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
3394 
3395 			/* reset TSF */
3396 			rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3397 
3398 			/* enable BCN0 Function for if1 */
3399 			/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
3400 			rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
3401 
3402 			/* SW_BCN_SEL - Port0 */
3403 			/* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
3404 			rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
3405 
3406 			/*  select BCN on port 0 */
3407 			rtw_write8(
3408 				padapter,
3409 				REG_CCK_CHECK_8723B,
3410 				(rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
3411 			);
3412 
3413 			/*  dis BCN1 ATIM  WND if if2 is station */
3414 			val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
3415 			val8 |= DIS_ATIM;
3416 			rtw_write8(padapter, REG_BCN_CTRL_1, val8);
3417 		}
3418 	}
3419 }
3420 
3421 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
3422 {
3423 	u8 idx = 0;
3424 	u32 reg_macid;
3425 
3426 	reg_macid = REG_MACID;
3427 
3428 	for (idx = 0 ; idx < 6; idx++)
3429 		rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
3430 }
3431 
3432 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
3433 {
3434 	u8 idx = 0;
3435 	u32 reg_bssid;
3436 
3437 	reg_bssid = REG_BSSID;
3438 
3439 	for (idx = 0 ; idx < 6; idx++)
3440 		rtw_write8(padapter, (reg_bssid+idx), val[idx]);
3441 }
3442 
3443 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
3444 {
3445 	u32 bcn_ctrl_reg;
3446 
3447 	bcn_ctrl_reg = REG_BCN_CTRL;
3448 
3449 	if (*(u8 *)val)
3450 		rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
3451 	else {
3452 		u8 val8;
3453 		val8 = rtw_read8(padapter, bcn_ctrl_reg);
3454 		val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
3455 
3456 		/*  Always enable port0 beacon function for PSTDMA */
3457 		if (REG_BCN_CTRL == bcn_ctrl_reg)
3458 			val8 |= EN_BCN_FUNCTION;
3459 
3460 		rtw_write8(padapter, bcn_ctrl_reg, val8);
3461 	}
3462 }
3463 
3464 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
3465 {
3466 	u8 val8;
3467 	u64 tsf;
3468 	struct mlme_ext_priv *pmlmeext;
3469 	struct mlme_ext_info *pmlmeinfo;
3470 
3471 
3472 	pmlmeext = &padapter->mlmeextpriv;
3473 	pmlmeinfo = &pmlmeext->mlmext_info;
3474 
3475 	tsf = pmlmeext->TSFValue-rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
3476 
3477 	if (
3478 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3479 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3480 	)
3481 		StopTxBeacon(padapter);
3482 
3483 	{
3484 		/*  disable related TSF function */
3485 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
3486 		val8 &= ~EN_BCN_FUNCTION;
3487 		rtw_write8(padapter, REG_BCN_CTRL, val8);
3488 
3489 		rtw_write32(padapter, REG_TSFTR, tsf);
3490 		rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
3491 
3492 		/*  enable related TSF function */
3493 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
3494 		val8 |= EN_BCN_FUNCTION;
3495 		rtw_write8(padapter, REG_BCN_CTRL, val8);
3496 	}
3497 
3498 	if (
3499 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3500 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3501 	)
3502 		ResumeTxBeacon(padapter);
3503 }
3504 
3505 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
3506 {
3507 	u8 val8;
3508 
3509 	/*  Set RCR to not to receive data frame when NO LINK state */
3510 	/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
3511 	/*  reject all data frames */
3512 	rtw_write16(padapter, REG_RXFLTMAP2, 0);
3513 
3514 	/*  reset TSF */
3515 	rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3516 
3517 	/*  disable update TSF */
3518 	val8 = rtw_read8(padapter, REG_BCN_CTRL);
3519 	val8 |= DIS_TSF_UDT;
3520 	rtw_write8(padapter, REG_BCN_CTRL, val8);
3521 }
3522 
3523 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3524 {
3525 	u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3526 	u16 value_rxfltmap2;
3527 	u8 val8;
3528 	struct hal_com_data *pHalData;
3529 	struct mlme_priv *pmlmepriv;
3530 
3531 
3532 	pHalData = GET_HAL_DATA(padapter);
3533 	pmlmepriv = &padapter->mlmepriv;
3534 
3535 	reg_bcn_ctl = REG_BCN_CTRL;
3536 
3537 	rcr_clear_bit = RCR_CBSSID_BCN;
3538 
3539 	/*  config RCR to receive different BSSID & not to receive data frame */
3540 	value_rxfltmap2 = 0;
3541 
3542 	if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3543 		rcr_clear_bit = RCR_CBSSID_BCN;
3544 
3545 	value_rcr = rtw_read32(padapter, REG_RCR);
3546 
3547 	if (*((u8 *)val)) {
3548 		/*  under sitesurvey */
3549 		value_rcr &= ~(rcr_clear_bit);
3550 		rtw_write32(padapter, REG_RCR, value_rcr);
3551 
3552 		rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3553 
3554 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3555 			/*  disable update TSF */
3556 			val8 = rtw_read8(padapter, reg_bcn_ctl);
3557 			val8 |= DIS_TSF_UDT;
3558 			rtw_write8(padapter, reg_bcn_ctl, val8);
3559 		}
3560 
3561 		/*  Save orignal RRSR setting. */
3562 		pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3563 	} else {
3564 		/*  sitesurvey done */
3565 		if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3566 			/*  enable to rx data frame */
3567 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3568 
3569 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3570 			/*  enable update TSF */
3571 			val8 = rtw_read8(padapter, reg_bcn_ctl);
3572 			val8 &= ~DIS_TSF_UDT;
3573 			rtw_write8(padapter, reg_bcn_ctl, val8);
3574 		}
3575 
3576 		value_rcr |= rcr_clear_bit;
3577 		rtw_write32(padapter, REG_RCR, value_rcr);
3578 
3579 		/*  Restore orignal RRSR setting. */
3580 		rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3581 	}
3582 }
3583 
3584 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3585 {
3586 	u8 val8;
3587 	u16 val16;
3588 	u32 val32;
3589 	u8 RetryLimit;
3590 	u8 type;
3591 	struct hal_com_data *pHalData;
3592 	struct mlme_priv *pmlmepriv;
3593 	struct eeprom_priv *pEEPROM;
3594 
3595 
3596 	RetryLimit = 0x30;
3597 	type = *(u8 *)val;
3598 	pHalData = GET_HAL_DATA(padapter);
3599 	pmlmepriv = &padapter->mlmepriv;
3600 	pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3601 
3602 	if (type == 0) { /*  prepare to join */
3603 		/* enable to rx data frame.Accept all data frame */
3604 		/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3605 		rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3606 
3607 		val32 = rtw_read32(padapter, REG_RCR);
3608 		if (padapter->in_cta_test)
3609 			val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
3610 		else
3611 			val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3612 		rtw_write32(padapter, REG_RCR, val32);
3613 
3614 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3615 			RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3616 		else /*  Ad-hoc Mode */
3617 			RetryLimit = 0x7;
3618 	} else if (type == 1) /* joinbss_event call back when join res < 0 */
3619 		rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3620 	else if (type == 2) { /* sta add event call back */
3621 		/* enable update TSF */
3622 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
3623 		val8 &= ~DIS_TSF_UDT;
3624 		rtw_write8(padapter, REG_BCN_CTRL, val8);
3625 
3626 		if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3627 			RetryLimit = 0x7;
3628 	}
3629 
3630 	val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3631 	rtw_write16(padapter, REG_RL, val16);
3632 }
3633 
3634 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3635 {
3636 	u8 seq_no;
3637 
3638 #define	GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3639 #define	GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3640 
3641 	/* DBG_871X("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */
3642 	/* 		*pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */
3643 
3644 	seq_no = *(pdata+6);
3645 
3646 	if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3647 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3648 	}
3649 /*
3650 	else if (seq_no != padapter->xmitpriv.seq_no) {
3651 		DBG_871X("tx_seq_no =%d, rpt_seq_no =%d\n", padapter->xmitpriv.seq_no, seq_no);
3652 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3653 	}
3654 */
3655 	else
3656 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3657 }
3658 
3659 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3660 {
3661 	struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3662 	s32 ret = false;
3663 	if (c2h_evt->id == C2H_CCX_TX_RPT)
3664 		ret = true;
3665 
3666 	return ret;
3667 }
3668 
3669 
3670 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3671 {
3672 	struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3673 	s32 ret = _SUCCESS;
3674 	u8 index = 0;
3675 
3676 	if (pC2hEvent == NULL) {
3677 		DBG_8192C("%s(): pC2hEventis NULL\n", __func__);
3678 		ret = _FAIL;
3679 		goto exit;
3680 	}
3681 
3682 	switch (pC2hEvent->id) {
3683 	case C2H_AP_RPT_RSP:
3684 		break;
3685 	case C2H_DBG:
3686 		{
3687 			RT_TRACE(_module_hal_init_c_, _drv_info_, ("c2h_handler_8723b: %s\n", pC2hEvent->payload));
3688 		}
3689 		break;
3690 
3691 	case C2H_CCX_TX_RPT:
3692 /* 			CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3693 		break;
3694 
3695 	case C2H_EXT_RA_RPT:
3696 /* 			C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3697 		break;
3698 
3699 	case C2H_HW_INFO_EXCH:
3700 		RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3701 		for (index = 0; index < pC2hEvent->plen; index++) {
3702 			RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, pC2hEvent->payload[index]));
3703 		}
3704 		break;
3705 
3706 	case C2H_8723B_BT_INFO:
3707 		rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3708 		break;
3709 
3710 	default:
3711 		break;
3712 	}
3713 
3714 	/*  Clear event to notify FW we have read the command. */
3715 	/*  Note: */
3716 	/* 	If this field isn't clear, the FW won't update the next command message. */
3717 /* 	rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3718 exit:
3719 	return ret;
3720 }
3721 
3722 static void process_c2h_event(struct adapter *padapter, PC2H_EVT_HDR pC2hEvent, u8 *c2hBuf)
3723 {
3724 	u8 index = 0;
3725 
3726 	if (c2hBuf == NULL) {
3727 		DBG_8192C("%s c2hbuff is NULL\n", __func__);
3728 		return;
3729 	}
3730 
3731 	switch (pC2hEvent->CmdID) {
3732 	case C2H_AP_RPT_RSP:
3733 		break;
3734 	case C2H_DBG:
3735 		{
3736 			RT_TRACE(_module_hal_init_c_, _drv_info_, ("C2HCommandHandler: %s\n", c2hBuf));
3737 		}
3738 		break;
3739 
3740 	case C2H_CCX_TX_RPT:
3741 /* 			CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3742 		break;
3743 
3744 	case C2H_EXT_RA_RPT:
3745 /* 			C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3746 		break;
3747 
3748 	case C2H_HW_INFO_EXCH:
3749 		RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3750 		for (index = 0; index < pC2hEvent->CmdLen; index++) {
3751 			RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, c2hBuf[index]));
3752 		}
3753 		break;
3754 
3755 	case C2H_8723B_BT_INFO:
3756 		rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3757 		break;
3758 
3759 	default:
3760 		break;
3761 	}
3762 }
3763 
3764 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3765 {
3766 	C2H_EVT_HDR	C2hEvent;
3767 	u8 *tmpBuf = NULL;
3768 #ifdef CONFIG_WOWLAN
3769 	struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3770 
3771 	if (pwrpriv->wowlan_mode == true) {
3772 		DBG_871X("%s(): return because wowolan_mode ==true! CMDID =%d\n", __func__, pbuffer[0]);
3773 		return;
3774 	}
3775 #endif
3776 	C2hEvent.CmdID = pbuffer[0];
3777 	C2hEvent.CmdSeq = pbuffer[1];
3778 	C2hEvent.CmdLen = length-2;
3779 	tmpBuf = pbuffer+2;
3780 
3781 	/* DBG_871X("%s C2hEvent.CmdID:%x C2hEvent.CmdLen:%x C2hEvent.CmdSeq:%x\n", */
3782 	/* 		__func__, C2hEvent.CmdID, C2hEvent.CmdLen, C2hEvent.CmdSeq); */
3783 	RT_PRINT_DATA(_module_hal_init_c_, _drv_notice_, "C2HPacketHandler_8723B(): Command Content:\n", tmpBuf, C2hEvent.CmdLen);
3784 
3785 	process_c2h_event(padapter, &C2hEvent, tmpBuf);
3786 	/* c2h_handler_8723b(padapter,&C2hEvent); */
3787 	return;
3788 }
3789 
3790 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3791 {
3792 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3793 	u8 val8;
3794 	u32 val32;
3795 
3796 	switch (variable) {
3797 	case HW_VAR_MEDIA_STATUS:
3798 		val8 = rtw_read8(padapter, MSR) & 0x0c;
3799 		val8 |= *val;
3800 		rtw_write8(padapter, MSR, val8);
3801 		break;
3802 
3803 	case HW_VAR_MEDIA_STATUS1:
3804 		val8 = rtw_read8(padapter, MSR) & 0x03;
3805 		val8 |= *val << 2;
3806 		rtw_write8(padapter, MSR, val8);
3807 		break;
3808 
3809 	case HW_VAR_SET_OPMODE:
3810 		hw_var_set_opmode(padapter, variable, val);
3811 		break;
3812 
3813 	case HW_VAR_MAC_ADDR:
3814 		hw_var_set_macaddr(padapter, variable, val);
3815 		break;
3816 
3817 	case HW_VAR_BSSID:
3818 		hw_var_set_bssid(padapter, variable, val);
3819 		break;
3820 
3821 	case HW_VAR_BASIC_RATE:
3822 	{
3823 		struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3824 		u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
3825 		u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3826 		u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3827 
3828 		HalSetBrateCfg(padapter, val, &BrateCfg);
3829 		input_b = BrateCfg;
3830 
3831 		/* apply force and allow mask */
3832 		BrateCfg |= rrsr_2g_force_mask;
3833 		BrateCfg &= rrsr_2g_allow_mask;
3834 		masked = BrateCfg;
3835 
3836 		#ifdef CONFIG_CMCC_TEST
3837 		BrateCfg |= (RRSR_11M|RRSR_5_5M|RRSR_1M); /* use 11M to send ACK */
3838 		BrateCfg |= (RRSR_24M|RRSR_18M|RRSR_12M); /* CMCC_OFDM_ACK 12/18/24M */
3839 		#endif
3840 
3841 		/* IOT consideration */
3842 		if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3843 			/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3844 			if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3845 				BrateCfg |= RRSR_6M;
3846 		}
3847 		ioted = BrateCfg;
3848 
3849 		pHalData->BasicRateSet = BrateCfg;
3850 
3851 		DBG_8192C("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
3852 
3853 		/*  Set RRSR rate table. */
3854 		rtw_write16(padapter, REG_RRSR, BrateCfg);
3855 		rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3856 	}
3857 		break;
3858 
3859 	case HW_VAR_TXPAUSE:
3860 		rtw_write8(padapter, REG_TXPAUSE, *val);
3861 		break;
3862 
3863 	case HW_VAR_BCN_FUNC:
3864 		hw_var_set_bcn_func(padapter, variable, val);
3865 		break;
3866 
3867 	case HW_VAR_CORRECT_TSF:
3868 		hw_var_set_correct_tsf(padapter, variable, val);
3869 		break;
3870 
3871 	case HW_VAR_CHECK_BSSID:
3872 		{
3873 			u32 val32;
3874 			val32 = rtw_read32(padapter, REG_RCR);
3875 			if (*val)
3876 				val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3877 			else
3878 				val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3879 			rtw_write32(padapter, REG_RCR, val32);
3880 		}
3881 		break;
3882 
3883 	case HW_VAR_MLME_DISCONNECT:
3884 		hw_var_set_mlme_disconnect(padapter, variable, val);
3885 		break;
3886 
3887 	case HW_VAR_MLME_SITESURVEY:
3888 		hw_var_set_mlme_sitesurvey(padapter, variable,  val);
3889 
3890 		rtw_btcoex_ScanNotify(padapter, *val?true:false);
3891 		break;
3892 
3893 	case HW_VAR_MLME_JOIN:
3894 		hw_var_set_mlme_join(padapter, variable, val);
3895 
3896 		switch (*val) {
3897 		case 0:
3898 			/*  prepare to join */
3899 			rtw_btcoex_ConnectNotify(padapter, true);
3900 			break;
3901 		case 1:
3902 			/*  joinbss_event callback when join res < 0 */
3903 			rtw_btcoex_ConnectNotify(padapter, false);
3904 			break;
3905 		case 2:
3906 			/*  sta add event callback */
3907 /* 				rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3908 			break;
3909 		}
3910 		break;
3911 
3912 	case HW_VAR_ON_RCR_AM:
3913 		val32 = rtw_read32(padapter, REG_RCR);
3914 		val32 |= RCR_AM;
3915 		rtw_write32(padapter, REG_RCR, val32);
3916 		DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3917 		break;
3918 
3919 	case HW_VAR_OFF_RCR_AM:
3920 		val32 = rtw_read32(padapter, REG_RCR);
3921 		val32 &= ~RCR_AM;
3922 		rtw_write32(padapter, REG_RCR, val32);
3923 		DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3924 		break;
3925 
3926 	case HW_VAR_BEACON_INTERVAL:
3927 		rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3928 		break;
3929 
3930 	case HW_VAR_SLOT_TIME:
3931 		rtw_write8(padapter, REG_SLOT, *val);
3932 		break;
3933 
3934 	case HW_VAR_RESP_SIFS:
3935 		/* SIFS_Timer = 0x0a0a0808; */
3936 		/* RESP_SIFS for CCK */
3937 		rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
3938 		rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3939 		/* RESP_SIFS for OFDM */
3940 		rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3941 		rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3942 		break;
3943 
3944 	case HW_VAR_ACK_PREAMBLE:
3945 		{
3946 			u8 regTmp;
3947 			u8 bShortPreamble = *val;
3948 
3949 			/*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3950 			/* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3951 			regTmp = 0;
3952 			if (bShortPreamble)
3953 				regTmp |= 0x80;
3954 			rtw_write8(padapter, REG_RRSR+2, regTmp);
3955 		}
3956 		break;
3957 
3958 	case HW_VAR_CAM_EMPTY_ENTRY:
3959 		{
3960 			u8 ucIndex = *val;
3961 			u8 i;
3962 			u32 ulCommand = 0;
3963 			u32 ulContent = 0;
3964 			u32 ulEncAlgo = CAM_AES;
3965 
3966 			for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3967 				/*  filled id in CAM config 2 byte */
3968 				if (i == 0) {
3969 					ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3970 					/* ulContent |= CAM_VALID; */
3971 				} else
3972 					ulContent = 0;
3973 
3974 				/*  polling bit, and No Write enable, and address */
3975 				ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3976 				ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3977 				/*  write content 0 is equall to mark invalid */
3978 				rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
3979 				/* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx\n", ulContent)); */
3980 				rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
3981 				/* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx\n", ulCommand)); */
3982 			}
3983 		}
3984 		break;
3985 
3986 	case HW_VAR_CAM_INVALID_ALL:
3987 		rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3988 		break;
3989 
3990 	case HW_VAR_CAM_WRITE:
3991 		{
3992 			u32 cmd;
3993 			u32 *cam_val = (u32 *)val;
3994 
3995 			rtw_write32(padapter, WCAMI, cam_val[0]);
3996 
3997 			cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3998 			rtw_write32(padapter, RWCAM, cmd);
3999 		}
4000 		break;
4001 
4002 	case HW_VAR_AC_PARAM_VO:
4003 		rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
4004 		break;
4005 
4006 	case HW_VAR_AC_PARAM_VI:
4007 		rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
4008 		break;
4009 
4010 	case HW_VAR_AC_PARAM_BE:
4011 		pHalData->AcParam_BE = ((u32 *)(val))[0];
4012 		rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
4013 		break;
4014 
4015 	case HW_VAR_AC_PARAM_BK:
4016 		rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
4017 		break;
4018 
4019 	case HW_VAR_ACM_CTRL:
4020 		{
4021 			u8 ctrl = *((u8 *)val);
4022 			u8 hwctrl = 0;
4023 
4024 			if (ctrl != 0) {
4025 				hwctrl |= AcmHw_HwEn;
4026 
4027 				if (ctrl & BIT(1)) /*  BE */
4028 					hwctrl |= AcmHw_BeqEn;
4029 
4030 				if (ctrl & BIT(2)) /*  VI */
4031 					hwctrl |= AcmHw_ViqEn;
4032 
4033 				if (ctrl & BIT(3)) /*  VO */
4034 					hwctrl |= AcmHw_VoqEn;
4035 			}
4036 
4037 			DBG_8192C("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
4038 			rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
4039 		}
4040 		break;
4041 
4042 	case HW_VAR_AMPDU_FACTOR:
4043 		{
4044 			u32 AMPDULen =  (*((u8 *)val));
4045 
4046 			if (AMPDULen < HT_AGG_SIZE_32K)
4047 				AMPDULen = (0x2000 << (*((u8 *)val)))-1;
4048 			else
4049 				AMPDULen = 0x7fff;
4050 
4051 			rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
4052 		}
4053 		break;
4054 
4055 	case HW_VAR_H2C_FW_PWRMODE:
4056 		{
4057 			u8 psmode = *val;
4058 
4059 			/*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
4060 			/*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
4061 			if (psmode != PS_MODE_ACTIVE) {
4062 				ODM_RF_Saving(&pHalData->odmpriv, true);
4063 			}
4064 
4065 			/* if (psmode != PS_MODE_ACTIVE)	{ */
4066 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
4067 			/*  else { */
4068 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
4069 			/*  */
4070 			rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
4071 		}
4072 		break;
4073 	case HW_VAR_H2C_PS_TUNE_PARAM:
4074 		rtl8723b_set_FwPsTuneParam_cmd(padapter);
4075 		break;
4076 
4077 	case HW_VAR_H2C_FW_JOINBSSRPT:
4078 		rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
4079 		break;
4080 
4081 	case HW_VAR_INITIAL_GAIN:
4082 		{
4083 			DIG_T *pDigTable = &pHalData->odmpriv.DM_DigTable;
4084 			u32 rx_gain = *(u32 *)val;
4085 
4086 			if (rx_gain == 0xff) {/* restore rx gain */
4087 				ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
4088 			} else {
4089 				pDigTable->BackupIGValue = pDigTable->CurIGValue;
4090 				ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
4091 			}
4092 		}
4093 		break;
4094 
4095 	case HW_VAR_EFUSE_USAGE:
4096 		pHalData->EfuseUsedPercentage = *val;
4097 		break;
4098 
4099 	case HW_VAR_EFUSE_BYTES:
4100 		pHalData->EfuseUsedBytes = *((u16 *)val);
4101 		break;
4102 
4103 	case HW_VAR_EFUSE_BT_USAGE:
4104 #ifdef HAL_EFUSE_MEMORY
4105 		pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
4106 #endif
4107 		break;
4108 
4109 	case HW_VAR_EFUSE_BT_BYTES:
4110 #ifdef HAL_EFUSE_MEMORY
4111 		pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
4112 #else
4113 		BTEfuseUsedBytes = *((u16 *)val);
4114 #endif
4115 		break;
4116 
4117 	case HW_VAR_FIFO_CLEARN_UP:
4118 		{
4119 			#define RW_RELEASE_EN		BIT(18)
4120 			#define RXDMA_IDLE			BIT(17)
4121 
4122 			struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
4123 			u8 trycnt = 100;
4124 
4125 			/*  pause tx */
4126 			rtw_write8(padapter, REG_TXPAUSE, 0xff);
4127 
4128 			/*  keep sn */
4129 			padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
4130 
4131 			if (pwrpriv->bkeepfwalive != true) {
4132 				/* RX DMA stop */
4133 				val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4134 				val32 |= RW_RELEASE_EN;
4135 				rtw_write32(padapter, REG_RXPKT_NUM, val32);
4136 				do {
4137 					val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4138 					val32 &= RXDMA_IDLE;
4139 					if (val32)
4140 						break;
4141 
4142 					DBG_871X("%s: [HW_VAR_FIFO_CLEARN_UP] val =%x times:%d\n", __func__, val32, trycnt);
4143 				} while (--trycnt);
4144 
4145 				if (trycnt == 0) {
4146 					DBG_8192C("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
4147 				}
4148 
4149 				/*  RQPN Load 0 */
4150 				rtw_write16(padapter, REG_RQPN_NPQ, 0);
4151 				rtw_write32(padapter, REG_RQPN, 0x80000000);
4152 				mdelay(2);
4153 			}
4154 		}
4155 		break;
4156 
4157 	case HW_VAR_APFM_ON_MAC:
4158 		pHalData->bMacPwrCtrlOn = *val;
4159 		DBG_8192C("%s: bMacPwrCtrlOn =%d\n", __func__, pHalData->bMacPwrCtrlOn);
4160 		break;
4161 
4162 	case HW_VAR_NAV_UPPER:
4163 		{
4164 			u32 usNavUpper = *((u32 *)val);
4165 
4166 			if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF) {
4167 				RT_TRACE(_module_hal_init_c_, _drv_notice_, ("The setting value (0x%08X us) of NAV_UPPER is larger than (%d * 0xFF)!!!\n", usNavUpper, HAL_NAV_UPPER_UNIT_8723B));
4168 				break;
4169 			}
4170 
4171 			/*  The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B) */
4172 			/*  is getting the upper integer. */
4173 			usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B;
4174 			rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
4175 		}
4176 		break;
4177 
4178 	case HW_VAR_H2C_MEDIA_STATUS_RPT:
4179 		{
4180 			u16 mstatus_rpt = (*(u16 *)val);
4181 			u8 mstatus, macId;
4182 
4183 			mstatus = (u8) (mstatus_rpt & 0xFF);
4184 			macId = (u8)(mstatus_rpt >> 8);
4185 			rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
4186 		}
4187 		break;
4188 	case HW_VAR_BCN_VALID:
4189 		{
4190 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
4191 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
4192 			val8 |= BIT(0);
4193 			rtw_write8(padapter, REG_TDECTRL+2, val8);
4194 		}
4195 		break;
4196 
4197 	case HW_VAR_DL_BCN_SEL:
4198 		{
4199 			/*  SW_BCN_SEL - Port0 */
4200 			val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
4201 			val8 &= ~BIT(4);
4202 			rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
4203 		}
4204 		break;
4205 
4206 	case HW_VAR_DO_IQK:
4207 		pHalData->bNeedIQK = true;
4208 		break;
4209 
4210 	case HW_VAR_DL_RSVD_PAGE:
4211 		if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
4212 			rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
4213 		else
4214 			rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
4215 		break;
4216 
4217 	case HW_VAR_MACID_SLEEP:
4218 		/*  Input is MACID */
4219 		val32 = *(u32 *)val;
4220 		if (val32 > 31) {
4221 			DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] Invalid macid(%d)\n",
4222 				FUNC_ADPT_ARG(padapter), val32);
4223 			break;
4224 		}
4225 		val8 = (u8)val32; /*  macid is between 0~31 */
4226 
4227 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4228 		DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4229 			FUNC_ADPT_ARG(padapter), val8, val32);
4230 		if (val32 & BIT(val8))
4231 			break;
4232 		val32 |= BIT(val8);
4233 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
4234 		break;
4235 
4236 	case HW_VAR_MACID_WAKEUP:
4237 		/*  Input is MACID */
4238 		val32 = *(u32 *)val;
4239 		if (val32 > 31) {
4240 			DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] Invalid macid(%d)\n",
4241 				FUNC_ADPT_ARG(padapter), val32);
4242 			break;
4243 		}
4244 		val8 = (u8)val32; /*  macid is between 0~31 */
4245 
4246 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4247 		DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4248 			FUNC_ADPT_ARG(padapter), val8, val32);
4249 		if (!(val32 & BIT(val8)))
4250 			break;
4251 		val32 &= ~BIT(val8);
4252 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
4253 		break;
4254 
4255 	default:
4256 		SetHwReg(padapter, variable, val);
4257 		break;
4258 	}
4259 }
4260 
4261 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
4262 {
4263 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
4264 	u8 val8;
4265 	u16 val16;
4266 
4267 	switch (variable) {
4268 	case HW_VAR_TXPAUSE:
4269 		*val = rtw_read8(padapter, REG_TXPAUSE);
4270 		break;
4271 
4272 	case HW_VAR_BCN_VALID:
4273 		{
4274 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
4275 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
4276 			*val = (BIT(0) & val8) ? true : false;
4277 		}
4278 		break;
4279 
4280 	case HW_VAR_FWLPS_RF_ON:
4281 		{
4282 			/*  When we halt NIC, we should check if FW LPS is leave. */
4283 			u32 valRCR;
4284 
4285 			if (
4286 				(padapter->bSurpriseRemoved == true) ||
4287 				(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
4288 			) {
4289 				/*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
4290 				/*  because Fw is unload. */
4291 				*val = true;
4292 			} else {
4293 				valRCR = rtw_read32(padapter, REG_RCR);
4294 				valRCR &= 0x00070000;
4295 				if (valRCR)
4296 					*val = false;
4297 				else
4298 					*val = true;
4299 			}
4300 		}
4301 		break;
4302 
4303 	case HW_VAR_EFUSE_USAGE:
4304 		*val = pHalData->EfuseUsedPercentage;
4305 		break;
4306 
4307 	case HW_VAR_EFUSE_BYTES:
4308 		*((u16 *)val) = pHalData->EfuseUsedBytes;
4309 		break;
4310 
4311 	case HW_VAR_EFUSE_BT_USAGE:
4312 #ifdef HAL_EFUSE_MEMORY
4313 		*val = pHalData->EfuseHal.BTEfuseUsedPercentage;
4314 #endif
4315 		break;
4316 
4317 	case HW_VAR_EFUSE_BT_BYTES:
4318 #ifdef HAL_EFUSE_MEMORY
4319 		*((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
4320 #else
4321 		*((u16 *)val) = BTEfuseUsedBytes;
4322 #endif
4323 		break;
4324 
4325 	case HW_VAR_APFM_ON_MAC:
4326 		*val = pHalData->bMacPwrCtrlOn;
4327 		break;
4328 	case HW_VAR_CHK_HI_QUEUE_EMPTY:
4329 		val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
4330 		*val = (val16 & BIT(10)) ? true:false;
4331 		break;
4332 #ifdef CONFIG_WOWLAN
4333 	case HW_VAR_RPWM_TOG:
4334 		*val = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1) & BIT7;
4335 		break;
4336 	case HW_VAR_WAKEUP_REASON:
4337 		*val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON);
4338 		if (*val == 0xEA)
4339 			*val = 0;
4340 		break;
4341 	case HW_VAR_SYS_CLKR:
4342 		*val = rtw_read8(padapter, REG_SYS_CLKR);
4343 		break;
4344 #endif
4345 	default:
4346 		GetHwReg(padapter, variable, val);
4347 		break;
4348 	}
4349 }
4350 
4351 /*
4352  *Description:
4353  *	Change default setting of specified variable.
4354  */
4355 u8 SetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4356 {
4357 	struct hal_com_data *pHalData;
4358 	u8 bResult;
4359 
4360 
4361 	pHalData = GET_HAL_DATA(padapter);
4362 	bResult = _SUCCESS;
4363 
4364 	switch (variable) {
4365 	default:
4366 		bResult = SetHalDefVar(padapter, variable, pval);
4367 		break;
4368 	}
4369 
4370 	return bResult;
4371 }
4372 
4373 /*
4374  *Description:
4375  *	Query setting of specified variable.
4376  */
4377 u8 GetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4378 {
4379 	struct hal_com_data *pHalData;
4380 	u8 bResult;
4381 
4382 
4383 	pHalData = GET_HAL_DATA(padapter);
4384 	bResult = _SUCCESS;
4385 
4386 	switch (variable) {
4387 	case HAL_DEF_MAX_RECVBUF_SZ:
4388 		*((u32 *)pval) = MAX_RECVBUF_SZ;
4389 		break;
4390 
4391 	case HAL_DEF_RX_PACKET_OFFSET:
4392 		*((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
4393 		break;
4394 
4395 	case HW_VAR_MAX_RX_AMPDU_FACTOR:
4396 		/*  Stanley@BB.SD3 suggests 16K can get stable performance */
4397 		/*  The experiment was done on SDIO interface */
4398 		/*  coding by Lucas@20130730 */
4399 		*(u32 *)pval = MAX_AMPDU_FACTOR_16K;
4400 		break;
4401 	case HAL_DEF_TX_LDPC:
4402 	case HAL_DEF_RX_LDPC:
4403 		*((u8 *)pval) = false;
4404 		break;
4405 	case HAL_DEF_TX_STBC:
4406 		*((u8 *)pval) = 0;
4407 		break;
4408 	case HAL_DEF_RX_STBC:
4409 		*((u8 *)pval) = 1;
4410 		break;
4411 	case HAL_DEF_EXPLICIT_BEAMFORMER:
4412 	case HAL_DEF_EXPLICIT_BEAMFORMEE:
4413 		*((u8 *)pval) = false;
4414 		break;
4415 
4416 	case HW_DEF_RA_INFO_DUMP:
4417 		{
4418 			u8 mac_id = *(u8 *)pval;
4419 			u32 cmd;
4420 			u32 ra_info1, ra_info2;
4421 			u32 rate_mask1, rate_mask2;
4422 			u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
4423 
4424 			DBG_8192C("============ RA status check  Mac_id:%d ===================\n", mac_id);
4425 
4426 			cmd = 0x40000100 | mac_id;
4427 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4428 			msleep(10);
4429 			ra_info1 = rtw_read32(padapter, 0x2F0);
4430 			curr_tx_rate = ra_info1&0x7F;
4431 			curr_tx_sgi = (ra_info1>>7)&0x01;
4432 			DBG_8192C("[ ra_info1:0x%08x ] =>cur_tx_rate = %s, cur_sgi:%d, PWRSTS = 0x%02x \n",
4433 				ra_info1,
4434 				HDATA_RATE(curr_tx_rate),
4435 				curr_tx_sgi,
4436 				(ra_info1>>8)  & 0x07);
4437 
4438 			cmd = 0x40000400 | mac_id;
4439 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4440 			msleep(10);
4441 			ra_info1 = rtw_read32(padapter, 0x2F0);
4442 			ra_info2 = rtw_read32(padapter, 0x2F4);
4443 			rate_mask1 = rtw_read32(padapter, 0x2F8);
4444 			rate_mask2 = rtw_read32(padapter, 0x2FC);
4445 			hight_rate = ra_info2&0xFF;
4446 			lowest_rate = (ra_info2>>8)  & 0xFF;
4447 
4448 			DBG_8192C("[ ra_info1:0x%08x ] =>RSSI =%d, BW_setting = 0x%02x, DISRA = 0x%02x, VHT_EN = 0x%02x\n",
4449 				ra_info1,
4450 				ra_info1&0xFF,
4451 				(ra_info1>>8)  & 0xFF,
4452 				(ra_info1>>16) & 0xFF,
4453 				(ra_info1>>24) & 0xFF);
4454 
4455 			DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate =%s, lowest_rate =%s, SGI = 0x%02x, RateID =%d\n",
4456 				ra_info2,
4457 				HDATA_RATE(hight_rate),
4458 				HDATA_RATE(lowest_rate),
4459 				(ra_info2>>16) & 0xFF,
4460 				(ra_info2>>24) & 0xFF);
4461 
4462 			DBG_8192C("rate_mask2 = 0x%08x, rate_mask1 = 0x%08x\n", rate_mask2, rate_mask1);
4463 
4464 		}
4465 		break;
4466 
4467 	case HAL_DEF_TX_PAGE_BOUNDARY:
4468 		if (!padapter->registrypriv.wifi_spec) {
4469 			*(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
4470 		} else {
4471 			*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
4472 		}
4473 		break;
4474 
4475 	case HAL_DEF_MACID_SLEEP:
4476 		*(u8 *)pval = true; /*  support macid sleep */
4477 		break;
4478 
4479 	default:
4480 		bResult = GetHalDefVar(padapter, variable, pval);
4481 		break;
4482 	}
4483 
4484 	return bResult;
4485 }
4486 
4487 #ifdef CONFIG_WOWLAN
4488 void Hal_DetectWoWMode(struct adapter *padapter)
4489 {
4490 	adapter_to_pwrctl(padapter)->bSupportRemoteWakeup = true;
4491 	DBG_871X("%s\n", __func__);
4492 }
4493 #endif /* CONFIG_WOWLAN */
4494 
4495 void rtl8723b_start_thread(struct adapter *padapter)
4496 {
4497 #ifndef CONFIG_SDIO_TX_TASKLET
4498 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4499 
4500 	xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
4501 	if (IS_ERR(xmitpriv->SdioXmitThread)) {
4502 		RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8723bs_xmit_thread FAIL!!\n", __func__));
4503 	}
4504 #endif
4505 }
4506 
4507 void rtl8723b_stop_thread(struct adapter *padapter)
4508 {
4509 #ifndef CONFIG_SDIO_TX_TASKLET
4510 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4511 
4512 	/*  stop xmit_buf_thread */
4513 	if (xmitpriv->SdioXmitThread) {
4514 		up(&xmitpriv->SdioXmitSema);
4515 		down(&xmitpriv->SdioXmitTerminateSema);
4516 		xmitpriv->SdioXmitThread = NULL;
4517 	}
4518 #endif
4519 }
4520 
4521 #if defined(CONFIG_CHECK_BT_HANG)
4522 extern void check_bt_status_work(void *data);
4523 void rtl8723bs_init_checkbthang_workqueue(struct adapter *adapter)
4524 {
4525 	adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
4526 	INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work);
4527 }
4528 
4529 void rtl8723bs_free_checkbthang_workqueue(struct adapter *adapter)
4530 {
4531 	if (adapter->priv_checkbt_wq) {
4532 		cancel_delayed_work_sync(&adapter->checkbt_work);
4533 		flush_workqueue(adapter->priv_checkbt_wq);
4534 		destroy_workqueue(adapter->priv_checkbt_wq);
4535 		adapter->priv_checkbt_wq = NULL;
4536 	}
4537 }
4538 
4539 void rtl8723bs_cancle_checkbthang_workqueue(struct adapter *adapter)
4540 {
4541 	if (adapter->priv_checkbt_wq)
4542 		cancel_delayed_work_sync(&adapter->checkbt_work);
4543 }
4544 
4545 void rtl8723bs_hal_check_bt_hang(struct adapter *adapter)
4546 {
4547 	if (adapter->priv_checkbt_wq)
4548 		queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
4549 }
4550 #endif
4551