1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Host AP crypt: host-based WEP encryption implementation for Host AP driver
4  *
5  * Copyright (c) 2002-2004, Jouni Malinen <jkmaline@cc.hut.fi>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/random.h>
12 #include <linux/skbuff.h>
13 #include <linux/string.h>
14 
15 #include "ieee80211.h"
16 
17 #include <crypto/skcipher.h>
18 #include <linux/scatterlist.h>
19 #include <linux/crc32.h>
20 
21 MODULE_AUTHOR("Jouni Malinen");
22 MODULE_DESCRIPTION("Host AP crypt: WEP");
23 MODULE_LICENSE("GPL");
24 
25 struct prism2_wep_data {
26 	u32 iv;
27 #define WEP_KEY_LEN 13
28 	u8 key[WEP_KEY_LEN + 1];
29 	u8 key_len;
30 	u8 key_idx;
31 	struct crypto_sync_skcipher *tx_tfm;
32 	struct crypto_sync_skcipher *rx_tfm;
33 };
34 
35 
36 static void *prism2_wep_init(int keyidx)
37 {
38 	struct prism2_wep_data *priv;
39 
40 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
41 	if (!priv)
42 		return NULL;
43 	priv->key_idx = keyidx;
44 
45 	priv->tx_tfm = crypto_alloc_sync_skcipher("ecb(arc4)", 0, 0);
46 	if (IS_ERR(priv->tx_tfm))
47 		goto free_priv;
48 	priv->rx_tfm = crypto_alloc_sync_skcipher("ecb(arc4)", 0, 0);
49 	if (IS_ERR(priv->rx_tfm))
50 		goto free_tx;
51 
52 	/* start WEP IV from a random value */
53 	get_random_bytes(&priv->iv, 4);
54 
55 	return priv;
56 free_tx:
57 	crypto_free_sync_skcipher(priv->tx_tfm);
58 free_priv:
59 	kfree(priv);
60 	return NULL;
61 }
62 
63 
64 static void prism2_wep_deinit(void *priv)
65 {
66 	struct prism2_wep_data *_priv = priv;
67 
68 	if (_priv) {
69 		crypto_free_sync_skcipher(_priv->tx_tfm);
70 		crypto_free_sync_skcipher(_priv->rx_tfm);
71 	}
72 	kfree(priv);
73 }
74 
75 /* Perform WEP encryption on given skb that has at least 4 bytes of headroom
76  * for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted,
77  * so the payload length increases with 8 bytes.
78  *
79  * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
80  */
81 static int prism2_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
82 {
83 	struct prism2_wep_data *wep = priv;
84 	u32 klen, len;
85 	u8 key[WEP_KEY_LEN + 3];
86 	u8 *pos;
87 	struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
88 	u32 crc;
89 	u8 *icv;
90 	struct scatterlist sg;
91 	int err;
92 
93 	if (skb_headroom(skb) < 4 || skb_tailroom(skb) < 4 ||
94 	    skb->len < hdr_len)
95 		return -1;
96 
97 	len = skb->len - hdr_len;
98 	pos = skb_push(skb, 4);
99 	memmove(pos, pos + 4, hdr_len);
100 	pos += hdr_len;
101 
102 	klen = 3 + wep->key_len;
103 
104 	wep->iv++;
105 
106 	/* Fluhrer, Mantin, and Shamir have reported weaknesses in the key
107 	 * scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N)
108 	 * can be used to speedup attacks, so avoid using them.
109 	 */
110 	if ((wep->iv & 0xff00) == 0xff00) {
111 		u8 B = (wep->iv >> 16) & 0xff;
112 
113 		if (B >= 3 && B < klen)
114 			wep->iv += 0x0100;
115 	}
116 
117 	/* Prepend 24-bit IV to RC4 key and TX frame */
118 	*pos++ = key[0] = (wep->iv >> 16) & 0xff;
119 	*pos++ = key[1] = (wep->iv >> 8) & 0xff;
120 	*pos++ = key[2] = wep->iv & 0xff;
121 	*pos++ = wep->key_idx << 6;
122 
123 	/* Copy rest of the WEP key (the secret part) */
124 	memcpy(key + 3, wep->key, wep->key_len);
125 
126 	if (!tcb_desc->bHwSec) {
127 		SYNC_SKCIPHER_REQUEST_ON_STACK(req, wep->tx_tfm);
128 
129 		/* Append little-endian CRC32 and encrypt it to produce ICV */
130 		crc = ~crc32_le(~0, pos, len);
131 		icv = skb_put(skb, 4);
132 		icv[0] = crc;
133 		icv[1] = crc >> 8;
134 		icv[2] = crc >> 16;
135 		icv[3] = crc >> 24;
136 
137 		crypto_sync_skcipher_setkey(wep->tx_tfm, key, klen);
138 		sg_init_one(&sg, pos, len+4);
139 
140 		skcipher_request_set_sync_tfm(req, wep->tx_tfm);
141 		skcipher_request_set_callback(req, 0, NULL, NULL);
142 		skcipher_request_set_crypt(req, &sg, &sg, len + 4, NULL);
143 
144 		err = crypto_skcipher_encrypt(req);
145 		skcipher_request_zero(req);
146 		return err;
147 	}
148 
149 	return 0;
150 }
151 
152 
153 /* Perform WEP decryption on given buffer. Buffer includes whole WEP part of
154  * the frame: IV (4 bytes), encrypted payload (including SNAP header),
155  * ICV (4 bytes). len includes both IV and ICV.
156  *
157  * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
158  * failure. If frame is OK, IV and ICV will be removed.
159  */
160 static int prism2_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
161 {
162 	struct prism2_wep_data *wep = priv;
163 	u32  klen, plen;
164 	u8 key[WEP_KEY_LEN + 3];
165 	u8 keyidx, *pos;
166 	struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
167 	u32 crc;
168 	u8 icv[4];
169 	struct scatterlist sg;
170 	int err;
171 
172 	if (skb->len < hdr_len + 8)
173 		return -1;
174 
175 	pos = skb->data + hdr_len;
176 	key[0] = *pos++;
177 	key[1] = *pos++;
178 	key[2] = *pos++;
179 	keyidx = *pos++ >> 6;
180 	if (keyidx != wep->key_idx)
181 		return -1;
182 
183 	klen = 3 + wep->key_len;
184 
185 	/* Copy rest of the WEP key (the secret part) */
186 	memcpy(key + 3, wep->key, wep->key_len);
187 
188 	/* Apply RC4 to data and compute CRC32 over decrypted data */
189 	plen = skb->len - hdr_len - 8;
190 
191 	if (!tcb_desc->bHwSec) {
192 		SYNC_SKCIPHER_REQUEST_ON_STACK(req, wep->rx_tfm);
193 
194 		crypto_sync_skcipher_setkey(wep->rx_tfm, key, klen);
195 		sg_init_one(&sg, pos, plen+4);
196 
197 		skcipher_request_set_sync_tfm(req, wep->rx_tfm);
198 		skcipher_request_set_callback(req, 0, NULL, NULL);
199 		skcipher_request_set_crypt(req, &sg, &sg, plen + 4, NULL);
200 
201 		err = crypto_skcipher_decrypt(req);
202 		skcipher_request_zero(req);
203 		if (err)
204 			return -7;
205 
206 		crc = ~crc32_le(~0, pos, plen);
207 		icv[0] = crc;
208 		icv[1] = crc >> 8;
209 		icv[2] = crc >> 16;
210 		icv[3] = crc >> 24;
211 		if (memcmp(icv, pos + plen, 4) != 0) {
212 			/* ICV mismatch - drop frame */
213 			return -2;
214 		}
215 	}
216 	/* Remove IV and ICV */
217 	memmove(skb->data + 4, skb->data, hdr_len);
218 	skb_pull(skb, 4);
219 	skb_trim(skb, skb->len - 4);
220 
221 	return 0;
222 }
223 
224 
225 static int prism2_wep_set_key(void *key, int len, u8 *seq, void *priv)
226 {
227 	struct prism2_wep_data *wep = priv;
228 
229 	if (len < 0 || len > WEP_KEY_LEN)
230 		return -1;
231 
232 	memcpy(wep->key, key, len);
233 	wep->key_len = len;
234 
235 	return 0;
236 }
237 
238 
239 static int prism2_wep_get_key(void *key, int len, u8 *seq, void *priv)
240 {
241 	struct prism2_wep_data *wep = priv;
242 
243 	if (len < wep->key_len)
244 		return -1;
245 
246 	memcpy(key, wep->key, wep->key_len);
247 
248 	return wep->key_len;
249 }
250 
251 
252 static char *prism2_wep_print_stats(char *p, void *priv)
253 {
254 	struct prism2_wep_data *wep = priv;
255 
256 	p += sprintf(p, "key[%d] alg=WEP len=%d\n",
257 		     wep->key_idx, wep->key_len);
258 	return p;
259 }
260 
261 
262 static struct ieee80211_crypto_ops ieee80211_crypt_wep = {
263 	.name			= "WEP",
264 	.init			= prism2_wep_init,
265 	.deinit			= prism2_wep_deinit,
266 	.encrypt_mpdu		= prism2_wep_encrypt,
267 	.decrypt_mpdu		= prism2_wep_decrypt,
268 	.encrypt_msdu		= NULL,
269 	.decrypt_msdu		= NULL,
270 	.set_key		= prism2_wep_set_key,
271 	.get_key		= prism2_wep_get_key,
272 	.print_stats		= prism2_wep_print_stats,
273 	.extra_prefix_len	= 4, /* IV */
274 	.extra_postfix_len	= 4, /* ICV */
275 	.owner			= THIS_MODULE,
276 };
277 
278 int __init ieee80211_crypto_wep_init(void)
279 {
280 	return ieee80211_register_crypto_ops(&ieee80211_crypt_wep);
281 }
282 
283 void __exit ieee80211_crypto_wep_exit(void)
284 {
285 	ieee80211_unregister_crypto_ops(&ieee80211_crypt_wep);
286 }
287 
288