1 /*
2  * Host AP crypt: host-based WEP encryption implementation for Host AP driver
3  *
4  * Copyright (c) 2002-2004, Jouni Malinen <jkmaline@cc.hut.fi>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation. See README and COPYING for
9  * more details.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/skbuff.h>
17 #include <linux/string.h>
18 
19 #include "ieee80211.h"
20 
21 #include <crypto/skcipher.h>
22 #include <linux/scatterlist.h>
23 #include <linux/crc32.h>
24 
25 MODULE_AUTHOR("Jouni Malinen");
26 MODULE_DESCRIPTION("Host AP crypt: WEP");
27 MODULE_LICENSE("GPL");
28 
29 struct prism2_wep_data {
30 	u32 iv;
31 #define WEP_KEY_LEN 13
32 	u8 key[WEP_KEY_LEN + 1];
33 	u8 key_len;
34 	u8 key_idx;
35 	struct crypto_skcipher *tx_tfm;
36 	struct crypto_skcipher *rx_tfm;
37 };
38 
39 
40 static void *prism2_wep_init(int keyidx)
41 {
42 	struct prism2_wep_data *priv;
43 
44 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
45 	if (!priv)
46 		return NULL;
47 	priv->key_idx = keyidx;
48 
49 	priv->tx_tfm = crypto_alloc_skcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
50 	if (IS_ERR(priv->tx_tfm))
51 		goto free_priv;
52 	priv->rx_tfm = crypto_alloc_skcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
53 	if (IS_ERR(priv->rx_tfm))
54 		goto free_tx;
55 
56 	/* start WEP IV from a random value */
57 	get_random_bytes(&priv->iv, 4);
58 
59 	return priv;
60 free_tx:
61 	crypto_free_skcipher(priv->tx_tfm);
62 free_priv:
63 	kfree(priv);
64 	return NULL;
65 }
66 
67 
68 static void prism2_wep_deinit(void *priv)
69 {
70 	struct prism2_wep_data *_priv = priv;
71 
72 	if (_priv) {
73 		crypto_free_skcipher(_priv->tx_tfm);
74 		crypto_free_skcipher(_priv->rx_tfm);
75 	}
76 	kfree(priv);
77 }
78 
79 /* Perform WEP encryption on given skb that has at least 4 bytes of headroom
80  * for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted,
81  * so the payload length increases with 8 bytes.
82  *
83  * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
84  */
85 static int prism2_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
86 {
87 	struct prism2_wep_data *wep = priv;
88 	u32 klen, len;
89 	u8 key[WEP_KEY_LEN + 3];
90 	u8 *pos;
91 	struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
92 	u32 crc;
93 	u8 *icv;
94 	struct scatterlist sg;
95 	int err;
96 
97 	if (skb_headroom(skb) < 4 || skb_tailroom(skb) < 4 ||
98 	    skb->len < hdr_len)
99 		return -1;
100 
101 	len = skb->len - hdr_len;
102 	pos = skb_push(skb, 4);
103 	memmove(pos, pos + 4, hdr_len);
104 	pos += hdr_len;
105 
106 	klen = 3 + wep->key_len;
107 
108 	wep->iv++;
109 
110 	/* Fluhrer, Mantin, and Shamir have reported weaknesses in the key
111 	 * scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N)
112 	 * can be used to speedup attacks, so avoid using them.
113 	 */
114 	if ((wep->iv & 0xff00) == 0xff00) {
115 		u8 B = (wep->iv >> 16) & 0xff;
116 
117 		if (B >= 3 && B < klen)
118 			wep->iv += 0x0100;
119 	}
120 
121 	/* Prepend 24-bit IV to RC4 key and TX frame */
122 	*pos++ = key[0] = (wep->iv >> 16) & 0xff;
123 	*pos++ = key[1] = (wep->iv >> 8) & 0xff;
124 	*pos++ = key[2] = wep->iv & 0xff;
125 	*pos++ = wep->key_idx << 6;
126 
127 	/* Copy rest of the WEP key (the secret part) */
128 	memcpy(key + 3, wep->key, wep->key_len);
129 
130 	if (!tcb_desc->bHwSec) {
131 		SKCIPHER_REQUEST_ON_STACK(req, wep->tx_tfm);
132 
133 		/* Append little-endian CRC32 and encrypt it to produce ICV */
134 		crc = ~crc32_le(~0, pos, len);
135 		icv = skb_put(skb, 4);
136 		icv[0] = crc;
137 		icv[1] = crc >> 8;
138 		icv[2] = crc >> 16;
139 		icv[3] = crc >> 24;
140 
141 		crypto_skcipher_setkey(wep->tx_tfm, key, klen);
142 		sg_init_one(&sg, pos, len+4);
143 
144 		skcipher_request_set_tfm(req, wep->tx_tfm);
145 		skcipher_request_set_callback(req, 0, NULL, NULL);
146 		skcipher_request_set_crypt(req, &sg, &sg, len + 4, NULL);
147 
148 		err = crypto_skcipher_encrypt(req);
149 		skcipher_request_zero(req);
150 		return err;
151 	}
152 
153 	return 0;
154 }
155 
156 
157 /* Perform WEP decryption on given buffer. Buffer includes whole WEP part of
158  * the frame: IV (4 bytes), encrypted payload (including SNAP header),
159  * ICV (4 bytes). len includes both IV and ICV.
160  *
161  * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
162  * failure. If frame is OK, IV and ICV will be removed.
163  */
164 static int prism2_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
165 {
166 	struct prism2_wep_data *wep = priv;
167 	u32  klen, plen;
168 	u8 key[WEP_KEY_LEN + 3];
169 	u8 keyidx, *pos;
170 	struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
171 	u32 crc;
172 	u8 icv[4];
173 	struct scatterlist sg;
174 	int err;
175 
176 	if (skb->len < hdr_len + 8)
177 		return -1;
178 
179 	pos = skb->data + hdr_len;
180 	key[0] = *pos++;
181 	key[1] = *pos++;
182 	key[2] = *pos++;
183 	keyidx = *pos++ >> 6;
184 	if (keyidx != wep->key_idx)
185 		return -1;
186 
187 	klen = 3 + wep->key_len;
188 
189 	/* Copy rest of the WEP key (the secret part) */
190 	memcpy(key + 3, wep->key, wep->key_len);
191 
192 	/* Apply RC4 to data and compute CRC32 over decrypted data */
193 	plen = skb->len - hdr_len - 8;
194 
195 	if (!tcb_desc->bHwSec) {
196 		SKCIPHER_REQUEST_ON_STACK(req, wep->rx_tfm);
197 
198 		crypto_skcipher_setkey(wep->rx_tfm, key, klen);
199 		sg_init_one(&sg, pos, plen+4);
200 
201 		skcipher_request_set_tfm(req, wep->rx_tfm);
202 		skcipher_request_set_callback(req, 0, NULL, NULL);
203 		skcipher_request_set_crypt(req, &sg, &sg, plen + 4, NULL);
204 
205 		err = crypto_skcipher_decrypt(req);
206 		skcipher_request_zero(req);
207 		if (err)
208 			return -7;
209 
210 		crc = ~crc32_le(~0, pos, plen);
211 		icv[0] = crc;
212 		icv[1] = crc >> 8;
213 		icv[2] = crc >> 16;
214 		icv[3] = crc >> 24;
215 		if (memcmp(icv, pos + plen, 4) != 0) {
216 			/* ICV mismatch - drop frame */
217 			return -2;
218 		}
219 	}
220 	/* Remove IV and ICV */
221 	memmove(skb->data + 4, skb->data, hdr_len);
222 	skb_pull(skb, 4);
223 	skb_trim(skb, skb->len - 4);
224 
225 	return 0;
226 }
227 
228 
229 static int prism2_wep_set_key(void *key, int len, u8 *seq, void *priv)
230 {
231 	struct prism2_wep_data *wep = priv;
232 
233 	if (len < 0 || len > WEP_KEY_LEN)
234 		return -1;
235 
236 	memcpy(wep->key, key, len);
237 	wep->key_len = len;
238 
239 	return 0;
240 }
241 
242 
243 static int prism2_wep_get_key(void *key, int len, u8 *seq, void *priv)
244 {
245 	struct prism2_wep_data *wep = priv;
246 
247 	if (len < wep->key_len)
248 		return -1;
249 
250 	memcpy(key, wep->key, wep->key_len);
251 
252 	return wep->key_len;
253 }
254 
255 
256 static char *prism2_wep_print_stats(char *p, void *priv)
257 {
258 	struct prism2_wep_data *wep = priv;
259 
260 	p += sprintf(p, "key[%d] alg=WEP len=%d\n",
261 		     wep->key_idx, wep->key_len);
262 	return p;
263 }
264 
265 
266 static struct ieee80211_crypto_ops ieee80211_crypt_wep = {
267 	.name			= "WEP",
268 	.init			= prism2_wep_init,
269 	.deinit			= prism2_wep_deinit,
270 	.encrypt_mpdu		= prism2_wep_encrypt,
271 	.decrypt_mpdu		= prism2_wep_decrypt,
272 	.encrypt_msdu		= NULL,
273 	.decrypt_msdu		= NULL,
274 	.set_key		= prism2_wep_set_key,
275 	.get_key		= prism2_wep_get_key,
276 	.print_stats		= prism2_wep_print_stats,
277 	.extra_prefix_len	= 4, /* IV */
278 	.extra_postfix_len	= 4, /* ICV */
279 	.owner			= THIS_MODULE,
280 };
281 
282 int __init ieee80211_crypto_wep_init(void)
283 {
284 	return ieee80211_register_crypto_ops(&ieee80211_crypt_wep);
285 }
286 
287 void __exit ieee80211_crypto_wep_exit(void)
288 {
289 	ieee80211_unregister_crypto_ops(&ieee80211_crypt_wep);
290 }
291 
292