xref: /openbmc/linux/drivers/staging/nvec/nvec.c (revision 61c3b197)
1 /*
2  * NVEC: NVIDIA compliant embedded controller interface
3  *
4  * Copyright (C) 2011 The AC100 Kernel Team <ac100@lists.lauchpad.net>
5  *
6  * Authors:  Pierre-Hugues Husson <phhusson@free.fr>
7  *           Ilya Petrov <ilya.muromec@gmail.com>
8  *           Marc Dietrich <marvin24@gmx.de>
9  *           Julian Andres Klode <jak@jak-linux.org>
10  *
11  * This file is subject to the terms and conditions of the GNU General Public
12  * License.  See the file "COPYING" in the main directory of this archive
13  * for more details.
14  *
15  */
16 
17 /* #define DEBUG */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/atomic.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/gpio.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/of.h>
31 #include <linux/of_gpio.h>
32 #include <linux/list.h>
33 #include <linux/mfd/core.h>
34 #include <linux/mutex.h>
35 #include <linux/notifier.h>
36 #include <linux/platform_device.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 
41 #include <mach/clk.h>
42 #include <mach/iomap.h>
43 
44 #include "nvec.h"
45 
46 #define I2C_CNFG			0x00
47 #define I2C_CNFG_PACKET_MODE_EN		(1<<10)
48 #define I2C_CNFG_NEW_MASTER_SFM		(1<<11)
49 #define I2C_CNFG_DEBOUNCE_CNT_SHIFT	12
50 
51 #define I2C_SL_CNFG		0x20
52 #define I2C_SL_NEWSL		(1<<2)
53 #define I2C_SL_NACK		(1<<1)
54 #define I2C_SL_RESP		(1<<0)
55 #define I2C_SL_IRQ		(1<<3)
56 #define END_TRANS		(1<<4)
57 #define RCVD			(1<<2)
58 #define RNW			(1<<1)
59 
60 #define I2C_SL_RCVD		0x24
61 #define I2C_SL_STATUS		0x28
62 #define I2C_SL_ADDR1		0x2c
63 #define I2C_SL_ADDR2		0x30
64 #define I2C_SL_DELAY_COUNT	0x3c
65 
66 /**
67  * enum nvec_msg_category - Message categories for nvec_msg_alloc()
68  * @NVEC_MSG_RX: The message is an incoming message (from EC)
69  * @NVEC_MSG_TX: The message is an outgoing message (to EC)
70  */
71 enum nvec_msg_category  {
72 	NVEC_MSG_RX,
73 	NVEC_MSG_TX,
74 };
75 
76 static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00";
77 static const unsigned char EC_ENABLE_EVENT_REPORTING[3]  = "\x04\x00\x01";
78 static const unsigned char EC_GET_FIRMWARE_VERSION[2]    = "\x07\x15";
79 
80 static struct nvec_chip *nvec_power_handle;
81 
82 static struct mfd_cell nvec_devices[] = {
83 	{
84 		.name = "nvec-kbd",
85 		.id = 1,
86 	},
87 	{
88 		.name = "nvec-mouse",
89 		.id = 1,
90 	},
91 	{
92 		.name = "nvec-power",
93 		.id = 1,
94 	},
95 	{
96 		.name = "nvec-power",
97 		.id = 2,
98 	},
99 	{
100 		.name = "nvec-leds",
101 		.id = 1,
102 	},
103 };
104 
105 /**
106  * nvec_register_notifier - Register a notifier with nvec
107  * @nvec: A &struct nvec_chip
108  * @nb: The notifier block to register
109  *
110  * Registers a notifier with @nvec. The notifier will be added to an atomic
111  * notifier chain that is called for all received messages except those that
112  * correspond to a request initiated by nvec_write_sync().
113  */
114 int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb,
115 			   unsigned int events)
116 {
117 	return atomic_notifier_chain_register(&nvec->notifier_list, nb);
118 }
119 EXPORT_SYMBOL_GPL(nvec_register_notifier);
120 
121 /**
122  * nvec_status_notifier - The final notifier
123  *
124  * Prints a message about control events not handled in the notifier
125  * chain.
126  */
127 static int nvec_status_notifier(struct notifier_block *nb,
128 				unsigned long event_type, void *data)
129 {
130 	unsigned char *msg = (unsigned char *)data;
131 
132 	if (event_type != NVEC_CNTL)
133 		return NOTIFY_DONE;
134 
135 	printk(KERN_WARNING "unhandled msg type %ld\n", event_type);
136 	print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1,
137 		msg, msg[1] + 2, true);
138 
139 	return NOTIFY_OK;
140 }
141 
142 /**
143  * nvec_msg_alloc:
144  * @nvec: A &struct nvec_chip
145  * @category: Pool category, see &enum nvec_msg_category
146  *
147  * Allocate a single &struct nvec_msg object from the message pool of
148  * @nvec. The result shall be passed to nvec_msg_free() if no longer
149  * used.
150  *
151  * Outgoing messages are placed in the upper 75% of the pool, keeping the
152  * lower 25% available for RX buffers only. The reason is to prevent a
153  * situation where all buffers are full and a message is thus endlessly
154  * retried because the response could never be processed.
155  */
156 static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec,
157 				       enum nvec_msg_category category)
158 {
159 	int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0;
160 
161 	for (; i < NVEC_POOL_SIZE; i++) {
162 		if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) {
163 			dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i);
164 			return &nvec->msg_pool[i];
165 		}
166 	}
167 
168 	dev_err(nvec->dev, "could not allocate %s buffer\n",
169 		(category == NVEC_MSG_TX) ? "TX" : "RX");
170 
171 	return NULL;
172 }
173 
174 /**
175  * nvec_msg_free:
176  * @nvec: A &struct nvec_chip
177  * @msg:  A message (must be allocated by nvec_msg_alloc() and belong to @nvec)
178  *
179  * Free the given message
180  */
181 inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg)
182 {
183 	if (msg != &nvec->tx_scratch)
184 		dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool);
185 	atomic_set(&msg->used, 0);
186 }
187 EXPORT_SYMBOL_GPL(nvec_msg_free);
188 
189 /**
190  * nvec_msg_is_event - Return %true if @msg is an event
191  * @msg: A message
192  */
193 static bool nvec_msg_is_event(struct nvec_msg *msg)
194 {
195 	return msg->data[0] >> 7;
196 }
197 
198 /**
199  * nvec_msg_size - Get the size of a message
200  * @msg: The message to get the size for
201  *
202  * This only works for received messages, not for outgoing messages.
203  */
204 static size_t nvec_msg_size(struct nvec_msg *msg)
205 {
206 	bool is_event = nvec_msg_is_event(msg);
207 	int event_length = (msg->data[0] & 0x60) >> 5;
208 
209 	/* for variable size, payload size in byte 1 + count (1) + cmd (1) */
210 	if (!is_event || event_length == NVEC_VAR_SIZE)
211 		return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0;
212 	else if (event_length == NVEC_2BYTES)
213 		return 2;
214 	else if (event_length == NVEC_3BYTES)
215 		return 3;
216 	else
217 		return 0;
218 }
219 
220 /**
221  * nvec_gpio_set_value - Set the GPIO value
222  * @nvec: A &struct nvec_chip
223  * @value: The value to write (0 or 1)
224  *
225  * Like gpio_set_value(), but generating debugging information
226  */
227 static void nvec_gpio_set_value(struct nvec_chip *nvec, int value)
228 {
229 	dev_dbg(nvec->dev, "GPIO changed from %u to %u\n",
230 		gpio_get_value(nvec->gpio), value);
231 	gpio_set_value(nvec->gpio, value);
232 }
233 
234 /**
235  * nvec_write_async - Asynchronously write a message to NVEC
236  * @nvec: An nvec_chip instance
237  * @data: The message data, starting with the request type
238  * @size: The size of @data
239  *
240  * Queue a single message to be transferred to the embedded controller
241  * and return immediately.
242  *
243  * Returns: 0 on success, a negative error code on failure. If a failure
244  * occured, the nvec driver may print an error.
245  */
246 int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data,
247 			short size)
248 {
249 	struct nvec_msg *msg;
250 	unsigned long flags;
251 
252 	msg = nvec_msg_alloc(nvec, NVEC_MSG_TX);
253 
254 	if (msg == NULL)
255 		return -ENOMEM;
256 
257 	msg->data[0] = size;
258 	memcpy(msg->data + 1, data, size);
259 	msg->size = size + 1;
260 
261 	spin_lock_irqsave(&nvec->tx_lock, flags);
262 	list_add_tail(&msg->node, &nvec->tx_data);
263 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
264 
265 	queue_work(nvec->wq, &nvec->tx_work);
266 
267 	return 0;
268 }
269 EXPORT_SYMBOL(nvec_write_async);
270 
271 /**
272  * nvec_write_sync - Write a message to nvec and read the response
273  * @nvec: An &struct nvec_chip
274  * @data: The data to write
275  * @size: The size of @data
276  *
277  * This is similar to nvec_write_async(), but waits for the
278  * request to be answered before returning. This function
279  * uses a mutex and can thus not be called from e.g.
280  * interrupt handlers.
281  *
282  * Returns: A pointer to the response message on success,
283  * %NULL on failure. Free with nvec_msg_free() once no longer
284  * used.
285  */
286 struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec,
287 		const unsigned char *data, short size)
288 {
289 	struct nvec_msg *msg;
290 
291 	mutex_lock(&nvec->sync_write_mutex);
292 
293 	nvec->sync_write_pending = (data[1] << 8) + data[0];
294 
295 	if (nvec_write_async(nvec, data, size) < 0)
296 		return NULL;
297 
298 	dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n",
299 					nvec->sync_write_pending);
300 	if (!(wait_for_completion_timeout(&nvec->sync_write,
301 				msecs_to_jiffies(2000)))) {
302 		dev_warn(nvec->dev, "timeout waiting for sync write to complete\n");
303 		mutex_unlock(&nvec->sync_write_mutex);
304 		return NULL;
305 	}
306 
307 	dev_dbg(nvec->dev, "nvec_sync_write: pong!\n");
308 
309 	msg = nvec->last_sync_msg;
310 
311 	mutex_unlock(&nvec->sync_write_mutex);
312 
313 	return msg;
314 }
315 EXPORT_SYMBOL(nvec_write_sync);
316 
317 /**
318  * nvec_request_master - Process outgoing messages
319  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
320  *
321  * Processes all outgoing requests by sending the request and awaiting the
322  * response, then continuing with the next request. Once a request has a
323  * matching response, it will be freed and removed from the list.
324  */
325 static void nvec_request_master(struct work_struct *work)
326 {
327 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work);
328 	unsigned long flags;
329 	long err;
330 	struct nvec_msg *msg;
331 
332 	spin_lock_irqsave(&nvec->tx_lock, flags);
333 	while (!list_empty(&nvec->tx_data)) {
334 		msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node);
335 		spin_unlock_irqrestore(&nvec->tx_lock, flags);
336 		nvec_gpio_set_value(nvec, 0);
337 		err = wait_for_completion_interruptible_timeout(
338 				&nvec->ec_transfer, msecs_to_jiffies(5000));
339 
340 		if (err == 0) {
341 			dev_warn(nvec->dev, "timeout waiting for ec transfer\n");
342 			nvec_gpio_set_value(nvec, 1);
343 			msg->pos = 0;
344 		}
345 
346 		spin_lock_irqsave(&nvec->tx_lock, flags);
347 
348 		if (err > 0) {
349 			list_del_init(&msg->node);
350 			nvec_msg_free(nvec, msg);
351 		}
352 	}
353 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
354 }
355 
356 /**
357  * parse_msg - Print some information and call the notifiers on an RX message
358  * @nvec: A &struct nvec_chip
359  * @msg: A message received by @nvec
360  *
361  * Paarse some pieces of the message and then call the chain of notifiers
362  * registered via nvec_register_notifier.
363  */
364 static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg)
365 {
366 	if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) {
367 		dev_err(nvec->dev, "ec responded %02x %02x %02x %02x\n",
368 			msg->data[0], msg->data[1], msg->data[2], msg->data[3]);
369 		return -EINVAL;
370 	}
371 
372 	if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5)
373 		print_hex_dump(KERN_WARNING, "ec system event ",
374 				DUMP_PREFIX_NONE, 16, 1, msg->data,
375 				msg->data[1] + 2, true);
376 
377 	atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f,
378 				   msg->data);
379 
380 	return 0;
381 }
382 
383 /**
384  * nvec_dispatch - Process messages received from the EC
385  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
386  *
387  * Process messages previously received from the EC and put into the RX
388  * queue of the &struct nvec_chip instance associated with @work.
389  */
390 static void nvec_dispatch(struct work_struct *work)
391 {
392 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work);
393 	unsigned long flags;
394 	struct nvec_msg *msg;
395 
396 	spin_lock_irqsave(&nvec->rx_lock, flags);
397 	while (!list_empty(&nvec->rx_data)) {
398 		msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node);
399 		list_del_init(&msg->node);
400 		spin_unlock_irqrestore(&nvec->rx_lock, flags);
401 
402 		if (nvec->sync_write_pending ==
403 		      (msg->data[2] << 8) + msg->data[0]) {
404 			dev_dbg(nvec->dev, "sync write completed!\n");
405 			nvec->sync_write_pending = 0;
406 			nvec->last_sync_msg = msg;
407 			complete(&nvec->sync_write);
408 		} else {
409 			parse_msg(nvec, msg);
410 			nvec_msg_free(nvec, msg);
411 		}
412 		spin_lock_irqsave(&nvec->rx_lock, flags);
413 	}
414 	spin_unlock_irqrestore(&nvec->rx_lock, flags);
415 }
416 
417 /**
418  * nvec_tx_completed - Complete the current transfer
419  * @nvec: A &struct nvec_chip
420  *
421  * This is called when we have received an END_TRANS on a TX transfer.
422  */
423 static void nvec_tx_completed(struct nvec_chip *nvec)
424 {
425 	/* We got an END_TRANS, let's skip this, maybe there's an event */
426 	if (nvec->tx->pos != nvec->tx->size) {
427 		dev_err(nvec->dev, "premature END_TRANS, resending\n");
428 		nvec->tx->pos = 0;
429 		nvec_gpio_set_value(nvec, 0);
430 	} else {
431 		nvec->state = 0;
432 	}
433 }
434 
435 /**
436  * nvec_rx_completed - Complete the current transfer
437  * @nvec: A &struct nvec_chip
438  *
439  * This is called when we have received an END_TRANS on a RX transfer.
440  */
441 static void nvec_rx_completed(struct nvec_chip *nvec)
442 {
443 	if (nvec->rx->pos != nvec_msg_size(nvec->rx)) {
444 		dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n",
445 			   (uint) nvec_msg_size(nvec->rx),
446 			   (uint) nvec->rx->pos);
447 
448 		nvec_msg_free(nvec, nvec->rx);
449 		nvec->state = 0;
450 
451 		/* Battery quirk - Often incomplete, and likes to crash */
452 		if (nvec->rx->data[0] == NVEC_BAT)
453 			complete(&nvec->ec_transfer);
454 
455 		return;
456 	}
457 
458 	spin_lock(&nvec->rx_lock);
459 
460 	/* add the received data to the work list
461 	   and move the ring buffer pointer to the next entry */
462 	list_add_tail(&nvec->rx->node, &nvec->rx_data);
463 
464 	spin_unlock(&nvec->rx_lock);
465 
466 	nvec->state = 0;
467 
468 	if (!nvec_msg_is_event(nvec->rx))
469 		complete(&nvec->ec_transfer);
470 
471 	queue_work(nvec->wq, &nvec->rx_work);
472 }
473 
474 /**
475  * nvec_invalid_flags - Send an error message about invalid flags and jump
476  * @nvec: The nvec device
477  * @status: The status flags
478  * @reset: Whether we shall jump to state 0.
479  */
480 static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status,
481 			       bool reset)
482 {
483 	dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n",
484 		status, nvec->state);
485 	if (reset)
486 		nvec->state = 0;
487 }
488 
489 /**
490  * nvec_tx_set - Set the message to transfer (nvec->tx)
491  * @nvec: A &struct nvec_chip
492  *
493  * Gets the first entry from the tx_data list of @nvec and sets the
494  * tx member to it. If the tx_data list is empty, this uses the
495  * tx_scratch message to send a no operation message.
496  */
497 static void nvec_tx_set(struct nvec_chip *nvec)
498 {
499 	spin_lock(&nvec->tx_lock);
500 	if (list_empty(&nvec->tx_data)) {
501 		dev_err(nvec->dev, "empty tx - sending no-op\n");
502 		memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3);
503 		nvec->tx_scratch.size = 3;
504 		nvec->tx_scratch.pos = 0;
505 		nvec->tx = &nvec->tx_scratch;
506 		list_add_tail(&nvec->tx->node, &nvec->tx_data);
507 	} else {
508 		nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg,
509 					    node);
510 		nvec->tx->pos = 0;
511 	}
512 	spin_unlock(&nvec->tx_lock);
513 
514 	dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n",
515 		(uint)nvec->tx->size, nvec->tx->data[1]);
516 }
517 
518 /**
519  * nvec_interrupt - Interrupt handler
520  * @irq: The IRQ
521  * @dev: The nvec device
522  *
523  * Interrupt handler that fills our RX buffers and empties our TX
524  * buffers. This uses a finite state machine with ridiculous amounts
525  * of error checking, in order to be fairly reliable.
526  */
527 static irqreturn_t nvec_interrupt(int irq, void *dev)
528 {
529 	unsigned long status;
530 	unsigned int received = 0;
531 	unsigned char to_send = 0xff;
532 	const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW;
533 	struct nvec_chip *nvec = dev;
534 	unsigned int state = nvec->state;
535 
536 	status = readl(nvec->base + I2C_SL_STATUS);
537 
538 	/* Filter out some errors */
539 	if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) {
540 		dev_err(nvec->dev, "unexpected irq mask %lx\n", status);
541 		return IRQ_HANDLED;
542 	}
543 	if ((status & I2C_SL_IRQ) == 0) {
544 		dev_err(nvec->dev, "Spurious IRQ\n");
545 		return IRQ_HANDLED;
546 	}
547 
548 	/* The EC did not request a read, so it send us something, read it */
549 	if ((status & RNW) == 0) {
550 		received = readl(nvec->base + I2C_SL_RCVD);
551 		if (status & RCVD)
552 			writel(0, nvec->base + I2C_SL_RCVD);
553 	}
554 
555 	if (status == (I2C_SL_IRQ | RCVD))
556 		nvec->state = 0;
557 
558 	switch (nvec->state) {
559 	case 0:		/* Verify that its a transfer start, the rest later */
560 		if (status != (I2C_SL_IRQ | RCVD))
561 			nvec_invalid_flags(nvec, status, false);
562 		break;
563 	case 1:		/* command byte */
564 		if (status != I2C_SL_IRQ) {
565 			nvec_invalid_flags(nvec, status, true);
566 		} else {
567 			nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX);
568 			/* Should not happen in a normal world */
569 			if (unlikely(nvec->rx == NULL)) {
570 				nvec->state = 0;
571 				break;
572 			}
573 			nvec->rx->data[0] = received;
574 			nvec->rx->pos = 1;
575 			nvec->state = 2;
576 		}
577 		break;
578 	case 2:		/* first byte after command */
579 		if (status == (I2C_SL_IRQ | RNW | RCVD)) {
580 			udelay(33);
581 			if (nvec->rx->data[0] != 0x01) {
582 				dev_err(nvec->dev,
583 					"Read without prior read command\n");
584 				nvec->state = 0;
585 				break;
586 			}
587 			nvec_msg_free(nvec, nvec->rx);
588 			nvec->state = 3;
589 			nvec_tx_set(nvec);
590 			BUG_ON(nvec->tx->size < 1);
591 			to_send = nvec->tx->data[0];
592 			nvec->tx->pos = 1;
593 		} else if (status == (I2C_SL_IRQ)) {
594 			BUG_ON(nvec->rx == NULL);
595 			nvec->rx->data[1] = received;
596 			nvec->rx->pos = 2;
597 			nvec->state = 4;
598 		} else {
599 			nvec_invalid_flags(nvec, status, true);
600 		}
601 		break;
602 	case 3:		/* EC does a block read, we transmit data */
603 		if (status & END_TRANS) {
604 			nvec_tx_completed(nvec);
605 		} else if ((status & RNW) == 0 || (status & RCVD)) {
606 			nvec_invalid_flags(nvec, status, true);
607 		} else if (nvec->tx && nvec->tx->pos < nvec->tx->size) {
608 			to_send = nvec->tx->data[nvec->tx->pos++];
609 		} else {
610 			dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n",
611 				nvec->tx,
612 				(uint) (nvec->tx ? nvec->tx->pos : 0),
613 				(uint) (nvec->tx ? nvec->tx->size : 0));
614 			nvec->state = 0;
615 		}
616 		break;
617 	case 4:		/* EC does some write, we read the data */
618 		if ((status & (END_TRANS | RNW)) == END_TRANS)
619 			nvec_rx_completed(nvec);
620 		else if (status & (RNW | RCVD))
621 			nvec_invalid_flags(nvec, status, true);
622 		else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE)
623 			nvec->rx->data[nvec->rx->pos++] = received;
624 		else
625 			dev_err(nvec->dev,
626 				"RX buffer overflow on %p: "
627 				"Trying to write byte %u of %u\n",
628 				nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE);
629 		break;
630 	default:
631 		nvec->state = 0;
632 	}
633 
634 	/* If we are told that a new transfer starts, verify it */
635 	if ((status & (RCVD | RNW)) == RCVD) {
636 		if (received != nvec->i2c_addr)
637 			dev_err(nvec->dev,
638 			"received address 0x%02x, expected 0x%02x\n",
639 			received, nvec->i2c_addr);
640 		nvec->state = 1;
641 	}
642 
643 	/* Send data if requested, but not on end of transmission */
644 	if ((status & (RNW | END_TRANS)) == RNW)
645 		writel(to_send, nvec->base + I2C_SL_RCVD);
646 
647 	/* If we have send the first byte */
648 	if (status == (I2C_SL_IRQ | RNW | RCVD))
649 		nvec_gpio_set_value(nvec, 1);
650 
651 	dev_dbg(nvec->dev,
652 		"Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n",
653 		(status & RNW) == 0 ? "received" : "R=",
654 		received,
655 		(status & (RNW | END_TRANS)) ? "sent" : "S=",
656 		to_send,
657 		state,
658 		status & END_TRANS ? " END_TRANS" : "",
659 		status & RCVD ? " RCVD" : "",
660 		status & RNW ? " RNW" : "");
661 
662 
663 	/*
664 	 * TODO: A correct fix needs to be found for this.
665 	 *
666 	 * We experience less incomplete messages with this delay than without
667 	 * it, but we don't know why. Help is appreciated.
668 	 */
669 	udelay(100);
670 
671 	return IRQ_HANDLED;
672 }
673 
674 static void tegra_init_i2c_slave(struct nvec_chip *nvec)
675 {
676 	u32 val;
677 
678 	clk_prepare_enable(nvec->i2c_clk);
679 
680 	tegra_periph_reset_assert(nvec->i2c_clk);
681 	udelay(2);
682 	tegra_periph_reset_deassert(nvec->i2c_clk);
683 
684 	val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN |
685 	    (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
686 	writel(val, nvec->base + I2C_CNFG);
687 
688 	clk_set_rate(nvec->i2c_clk, 8 * 80000);
689 
690 	writel(I2C_SL_NEWSL, nvec->base + I2C_SL_CNFG);
691 	writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT);
692 
693 	writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1);
694 	writel(0, nvec->base + I2C_SL_ADDR2);
695 
696 	enable_irq(nvec->irq);
697 
698 	clk_disable_unprepare(nvec->i2c_clk);
699 }
700 
701 static void nvec_disable_i2c_slave(struct nvec_chip *nvec)
702 {
703 	disable_irq(nvec->irq);
704 	writel(I2C_SL_NEWSL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG);
705 	clk_disable_unprepare(nvec->i2c_clk);
706 }
707 
708 static void nvec_power_off(void)
709 {
710 	nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3);
711 	nvec_write_async(nvec_power_handle, "\x04\x01", 2);
712 }
713 
714 static int __devinit tegra_nvec_probe(struct platform_device *pdev)
715 {
716 	int err, ret;
717 	struct clk *i2c_clk;
718 	struct nvec_platform_data *pdata = pdev->dev.platform_data;
719 	struct nvec_chip *nvec;
720 	struct nvec_msg *msg;
721 	struct resource *res;
722 	struct resource *iomem;
723 	void __iomem *base;
724 
725 	nvec = kzalloc(sizeof(struct nvec_chip), GFP_KERNEL);
726 	if (nvec == NULL) {
727 		dev_err(&pdev->dev, "failed to reserve memory\n");
728 		return -ENOMEM;
729 	}
730 	platform_set_drvdata(pdev, nvec);
731 	nvec->dev = &pdev->dev;
732 
733 	if (pdata) {
734 		nvec->gpio = pdata->gpio;
735 		nvec->i2c_addr = pdata->i2c_addr;
736 	} else if (nvec->dev->of_node) {
737 		nvec->gpio = of_get_named_gpio(nvec->dev->of_node, "request-gpios", 0);
738 		if (nvec->gpio < 0) {
739 			dev_err(&pdev->dev, "no gpio specified");
740 			goto failed;
741 		}
742 		if (of_property_read_u32(nvec->dev->of_node, "slave-addr", &nvec->i2c_addr)) {
743 			dev_err(&pdev->dev, "no i2c address specified");
744 			goto failed;
745 		}
746 	} else {
747 		dev_err(&pdev->dev, "no platform data\n");
748 		goto failed;
749 	}
750 
751 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
752 	if (!res) {
753 		dev_err(&pdev->dev, "no mem resource?\n");
754 		return -ENODEV;
755 	}
756 
757 	iomem = request_mem_region(res->start, resource_size(res), pdev->name);
758 	if (!iomem) {
759 		dev_err(&pdev->dev, "I2C region already claimed\n");
760 		return -EBUSY;
761 	}
762 
763 	base = ioremap(iomem->start, resource_size(iomem));
764 	if (!base) {
765 		dev_err(&pdev->dev, "Can't ioremap I2C region\n");
766 		return -ENOMEM;
767 	}
768 
769 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
770 	if (!res) {
771 		dev_err(&pdev->dev, "no irq resource?\n");
772 		ret = -ENODEV;
773 		goto err_iounmap;
774 	}
775 
776 	i2c_clk = clk_get_sys("tegra-i2c.2", NULL);
777 	if (IS_ERR(i2c_clk)) {
778 		dev_err(nvec->dev, "failed to get controller clock\n");
779 		goto err_iounmap;
780 	}
781 
782 	nvec->base = base;
783 	nvec->irq = res->start;
784 	nvec->i2c_clk = i2c_clk;
785 	nvec->rx = &nvec->msg_pool[0];
786 
787 	ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list);
788 
789 	init_completion(&nvec->sync_write);
790 	init_completion(&nvec->ec_transfer);
791 	mutex_init(&nvec->sync_write_mutex);
792 	spin_lock_init(&nvec->tx_lock);
793 	spin_lock_init(&nvec->rx_lock);
794 	INIT_LIST_HEAD(&nvec->rx_data);
795 	INIT_LIST_HEAD(&nvec->tx_data);
796 	INIT_WORK(&nvec->rx_work, nvec_dispatch);
797 	INIT_WORK(&nvec->tx_work, nvec_request_master);
798 	nvec->wq = alloc_workqueue("nvec", WQ_NON_REENTRANT, 2);
799 
800 	err = gpio_request_one(nvec->gpio, GPIOF_OUT_INIT_HIGH, "nvec gpio");
801 	if (err < 0) {
802 		dev_err(nvec->dev, "couldn't request gpio\n");
803 		goto failed;
804 	}
805 
806 	err = request_irq(nvec->irq, nvec_interrupt, 0, "nvec", nvec);
807 	if (err) {
808 		dev_err(nvec->dev, "couldn't request irq\n");
809 		goto failed;
810 	}
811 	disable_irq(nvec->irq);
812 
813 	tegra_init_i2c_slave(nvec);
814 
815 	clk_prepare_enable(i2c_clk);
816 
817 
818 	/* enable event reporting */
819 	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING,
820 			 sizeof(EC_ENABLE_EVENT_REPORTING));
821 
822 	nvec->nvec_status_notifier.notifier_call = nvec_status_notifier;
823 	nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0);
824 
825 	nvec_power_handle = nvec;
826 	pm_power_off = nvec_power_off;
827 
828 	/* Get Firmware Version */
829 	msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION,
830 		sizeof(EC_GET_FIRMWARE_VERSION));
831 
832 	if (msg) {
833 		dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n",
834 			msg->data[4], msg->data[5], msg->data[6], msg->data[7]);
835 
836 		nvec_msg_free(nvec, msg);
837 	}
838 
839 	ret = mfd_add_devices(nvec->dev, -1, nvec_devices,
840 			      ARRAY_SIZE(nvec_devices), base, 0);
841 	if (ret)
842 		dev_err(nvec->dev, "error adding subdevices\n");
843 
844 	/* unmute speakers? */
845 	nvec_write_async(nvec, "\x0d\x10\x59\x95", 4);
846 
847 	/* enable lid switch event */
848 	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7);
849 
850 	/* enable power button event */
851 	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7);
852 
853 	return 0;
854 
855 err_iounmap:
856 	iounmap(base);
857 failed:
858 	kfree(nvec);
859 	return -ENOMEM;
860 }
861 
862 static int __devexit tegra_nvec_remove(struct platform_device *pdev)
863 {
864 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
865 
866 	nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3);
867 	mfd_remove_devices(nvec->dev);
868 	free_irq(nvec->irq, &nvec_interrupt);
869 	iounmap(nvec->base);
870 	gpio_free(nvec->gpio);
871 	destroy_workqueue(nvec->wq);
872 	kfree(nvec);
873 
874 	return 0;
875 }
876 
877 #ifdef CONFIG_PM
878 
879 static int tegra_nvec_suspend(struct platform_device *pdev, pm_message_t state)
880 {
881 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
882 	struct nvec_msg *msg;
883 
884 	dev_dbg(nvec->dev, "suspending\n");
885 
886 	/* keep these sync or you'll break suspend */
887 	msg = nvec_write_sync(nvec, EC_DISABLE_EVENT_REPORTING, 3);
888 	nvec_msg_free(nvec, msg);
889 	msg = nvec_write_sync(nvec, "\x04\x02", 2);
890 	nvec_msg_free(nvec, msg);
891 
892 	nvec_disable_i2c_slave(nvec);
893 
894 	return 0;
895 }
896 
897 static int tegra_nvec_resume(struct platform_device *pdev)
898 {
899 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
900 
901 	dev_dbg(nvec->dev, "resuming\n");
902 	tegra_init_i2c_slave(nvec);
903 	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3);
904 
905 	return 0;
906 }
907 
908 #else
909 #define tegra_nvec_suspend NULL
910 #define tegra_nvec_resume NULL
911 #endif
912 
913 /* Match table for of_platform binding */
914 static const struct of_device_id nvidia_nvec_of_match[] __devinitconst = {
915 	{ .compatible = "nvidia,nvec", },
916 	{},
917 };
918 MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match);
919 
920 static struct platform_driver nvec_device_driver = {
921 	.probe   = tegra_nvec_probe,
922 	.remove  = __devexit_p(tegra_nvec_remove),
923 	.suspend = tegra_nvec_suspend,
924 	.resume  = tegra_nvec_resume,
925 	.driver  = {
926 		.name = "nvec",
927 		.owner = THIS_MODULE,
928 		.of_match_table = nvidia_nvec_of_match,
929 	}
930 };
931 
932 static int __init tegra_nvec_init(void)
933 {
934 	return platform_driver_register(&nvec_device_driver);
935 }
936 
937 module_init(tegra_nvec_init);
938 
939 MODULE_ALIAS("platform:nvec");
940 MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface");
941 MODULE_AUTHOR("Marc Dietrich <marvin24@gmx.de>");
942 MODULE_LICENSE("GPL");
943