xref: /openbmc/linux/drivers/staging/nvec/nvec.c (revision 3b769edd)
1 /*
2  * NVEC: NVIDIA compliant embedded controller interface
3  *
4  * Copyright (C) 2011 The AC100 Kernel Team <ac100@lists.lauchpad.net>
5  *
6  * Authors:  Pierre-Hugues Husson <phhusson@free.fr>
7  *           Ilya Petrov <ilya.muromec@gmail.com>
8  *           Marc Dietrich <marvin24@gmx.de>
9  *           Julian Andres Klode <jak@jak-linux.org>
10  *
11  * This file is subject to the terms and conditions of the GNU General Public
12  * License.  See the file "COPYING" in the main directory of this archive
13  * for more details.
14  *
15  */
16 
17 /* #define DEBUG */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/atomic.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/gpio.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/list.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mutex.h>
33 #include <linux/notifier.h>
34 #include <linux/platform_device.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 
39 #include <mach/clk.h>
40 #include <mach/iomap.h>
41 
42 #include "nvec.h"
43 
44 #define I2C_CNFG			0x00
45 #define I2C_CNFG_PACKET_MODE_EN		(1<<10)
46 #define I2C_CNFG_NEW_MASTER_SFM		(1<<11)
47 #define I2C_CNFG_DEBOUNCE_CNT_SHIFT	12
48 
49 #define I2C_SL_CNFG		0x20
50 #define I2C_SL_NEWL		(1<<2)
51 #define I2C_SL_NACK		(1<<1)
52 #define I2C_SL_RESP		(1<<0)
53 #define I2C_SL_IRQ		(1<<3)
54 #define END_TRANS		(1<<4)
55 #define RCVD			(1<<2)
56 #define RNW			(1<<1)
57 
58 #define I2C_SL_RCVD		0x24
59 #define I2C_SL_STATUS		0x28
60 #define I2C_SL_ADDR1		0x2c
61 #define I2C_SL_ADDR2		0x30
62 #define I2C_SL_DELAY_COUNT	0x3c
63 
64 /**
65  * enum nvec_msg_category - Message categories for nvec_msg_alloc()
66  * @NVEC_MSG_RX: The message is an incoming message (from EC)
67  * @NVEC_MSG_TX: The message is an outgoing message (to EC)
68  */
69 enum nvec_msg_category  {
70 	NVEC_MSG_RX,
71 	NVEC_MSG_TX,
72 };
73 
74 static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00";
75 static const unsigned char EC_ENABLE_EVENT_REPORTING[3]  = "\x04\x00\x01";
76 static const unsigned char EC_GET_FIRMWARE_VERSION[2]    = "\x07\x15";
77 
78 static struct nvec_chip *nvec_power_handle;
79 
80 static struct mfd_cell nvec_devices[] = {
81 	{
82 		.name = "nvec-kbd",
83 		.id = 1,
84 	},
85 	{
86 		.name = "nvec-mouse",
87 		.id = 1,
88 	},
89 	{
90 		.name = "nvec-power",
91 		.id = 1,
92 	},
93 	{
94 		.name = "nvec-power",
95 		.id = 2,
96 	},
97 	{
98 		.name = "nvec-leds",
99 		.id = 1,
100 	},
101 };
102 
103 /**
104  * nvec_register_notifier - Register a notifier with nvec
105  * @nvec: A &struct nvec_chip
106  * @nb: The notifier block to register
107  *
108  * Registers a notifier with @nvec. The notifier will be added to an atomic
109  * notifier chain that is called for all received messages except those that
110  * correspond to a request initiated by nvec_write_sync().
111  */
112 int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb,
113 			   unsigned int events)
114 {
115 	return atomic_notifier_chain_register(&nvec->notifier_list, nb);
116 }
117 EXPORT_SYMBOL_GPL(nvec_register_notifier);
118 
119 /**
120  * nvec_status_notifier - The final notifier
121  *
122  * Prints a message about control events not handled in the notifier
123  * chain.
124  */
125 static int nvec_status_notifier(struct notifier_block *nb,
126 				unsigned long event_type, void *data)
127 {
128 	unsigned char *msg = (unsigned char *)data;
129 
130 	if (event_type != NVEC_CNTL)
131 		return NOTIFY_DONE;
132 
133 	printk(KERN_WARNING "unhandled msg type %ld\n", event_type);
134 	print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1,
135 		msg, msg[1] + 2, true);
136 
137 	return NOTIFY_OK;
138 }
139 
140 /**
141  * nvec_msg_alloc:
142  * @nvec: A &struct nvec_chip
143  * @category: Pool category, see &enum nvec_msg_category
144  *
145  * Allocate a single &struct nvec_msg object from the message pool of
146  * @nvec. The result shall be passed to nvec_msg_free() if no longer
147  * used.
148  *
149  * Outgoing messages are placed in the upper 75% of the pool, keeping the
150  * lower 25% available for RX buffers only. The reason is to prevent a
151  * situation where all buffers are full and a message is thus endlessly
152  * retried because the response could never be processed.
153  */
154 static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec,
155 				       enum nvec_msg_category category)
156 {
157 	int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0;
158 
159 	for (; i < NVEC_POOL_SIZE; i++) {
160 		if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) {
161 			dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i);
162 			return &nvec->msg_pool[i];
163 		}
164 	}
165 
166 	dev_err(nvec->dev, "could not allocate %s buffer\n",
167 		(category == NVEC_MSG_TX) ? "TX" : "RX");
168 
169 	return NULL;
170 }
171 
172 /**
173  * nvec_msg_free:
174  * @nvec: A &struct nvec_chip
175  * @msg:  A message (must be allocated by nvec_msg_alloc() and belong to @nvec)
176  *
177  * Free the given message
178  */
179 inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg)
180 {
181 	if (msg != &nvec->tx_scratch)
182 		dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool);
183 	atomic_set(&msg->used, 0);
184 }
185 EXPORT_SYMBOL_GPL(nvec_msg_free);
186 
187 /**
188  * nvec_msg_is_event - Return %true if @msg is an event
189  * @msg: A message
190  */
191 static bool nvec_msg_is_event(struct nvec_msg *msg)
192 {
193 	return msg->data[0] >> 7;
194 }
195 
196 /**
197  * nvec_msg_size - Get the size of a message
198  * @msg: The message to get the size for
199  *
200  * This only works for received messages, not for outgoing messages.
201  */
202 static size_t nvec_msg_size(struct nvec_msg *msg)
203 {
204 	bool is_event = nvec_msg_is_event(msg);
205 	int event_length = (msg->data[0] & 0x60) >> 5;
206 
207 	/* for variable size, payload size in byte 1 + count (1) + cmd (1) */
208 	if (!is_event || event_length == NVEC_VAR_SIZE)
209 		return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0;
210 	else if (event_length == NVEC_2BYTES)
211 		return 2;
212 	else if (event_length == NVEC_3BYTES)
213 		return 3;
214 	else
215 		return 0;
216 }
217 
218 /**
219  * nvec_gpio_set_value - Set the GPIO value
220  * @nvec: A &struct nvec_chip
221  * @value: The value to write (0 or 1)
222  *
223  * Like gpio_set_value(), but generating debugging information
224  */
225 static void nvec_gpio_set_value(struct nvec_chip *nvec, int value)
226 {
227 	dev_dbg(nvec->dev, "GPIO changed from %u to %u\n",
228 		gpio_get_value(nvec->gpio), value);
229 	gpio_set_value(nvec->gpio, value);
230 }
231 
232 /**
233  * nvec_write_async - Asynchronously write a message to NVEC
234  * @nvec: An nvec_chip instance
235  * @data: The message data, starting with the request type
236  * @size: The size of @data
237  *
238  * Queue a single message to be transferred to the embedded controller
239  * and return immediately.
240  *
241  * Returns: 0 on success, a negative error code on failure. If a failure
242  * occured, the nvec driver may print an error.
243  */
244 int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data,
245 			short size)
246 {
247 	struct nvec_msg *msg;
248 	unsigned long flags;
249 
250 	msg = nvec_msg_alloc(nvec, NVEC_MSG_TX);
251 
252 	if (msg == NULL)
253 		return -ENOMEM;
254 
255 	msg->data[0] = size;
256 	memcpy(msg->data + 1, data, size);
257 	msg->size = size + 1;
258 
259 	spin_lock_irqsave(&nvec->tx_lock, flags);
260 	list_add_tail(&msg->node, &nvec->tx_data);
261 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
262 
263 	queue_work(nvec->wq, &nvec->tx_work);
264 
265 	return 0;
266 }
267 EXPORT_SYMBOL(nvec_write_async);
268 
269 /**
270  * nvec_write_sync - Write a message to nvec and read the response
271  * @nvec: An &struct nvec_chip
272  * @data: The data to write
273  * @size: The size of @data
274  *
275  * This is similar to nvec_write_async(), but waits for the
276  * request to be answered before returning. This function
277  * uses a mutex and can thus not be called from e.g.
278  * interrupt handlers.
279  *
280  * Returns: A pointer to the response message on success,
281  * %NULL on failure. Free with nvec_msg_free() once no longer
282  * used.
283  */
284 struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec,
285 		const unsigned char *data, short size)
286 {
287 	struct nvec_msg *msg;
288 
289 	mutex_lock(&nvec->sync_write_mutex);
290 
291 	nvec->sync_write_pending = (data[1] << 8) + data[0];
292 
293 	if (nvec_write_async(nvec, data, size) < 0)
294 		return NULL;
295 
296 	dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n",
297 					nvec->sync_write_pending);
298 	if (!(wait_for_completion_timeout(&nvec->sync_write,
299 				msecs_to_jiffies(2000)))) {
300 		dev_warn(nvec->dev, "timeout waiting for sync write to complete\n");
301 		mutex_unlock(&nvec->sync_write_mutex);
302 		return NULL;
303 	}
304 
305 	dev_dbg(nvec->dev, "nvec_sync_write: pong!\n");
306 
307 	msg = nvec->last_sync_msg;
308 
309 	mutex_unlock(&nvec->sync_write_mutex);
310 
311 	return msg;
312 }
313 EXPORT_SYMBOL(nvec_write_sync);
314 
315 /**
316  * nvec_request_master - Process outgoing messages
317  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
318  *
319  * Processes all outgoing requests by sending the request and awaiting the
320  * response, then continuing with the next request. Once a request has a
321  * matching response, it will be freed and removed from the list.
322  */
323 static void nvec_request_master(struct work_struct *work)
324 {
325 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work);
326 	unsigned long flags;
327 	long err;
328 	struct nvec_msg *msg;
329 
330 	spin_lock_irqsave(&nvec->tx_lock, flags);
331 	while (!list_empty(&nvec->tx_data)) {
332 		msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node);
333 		spin_unlock_irqrestore(&nvec->tx_lock, flags);
334 		nvec_gpio_set_value(nvec, 0);
335 		err = wait_for_completion_interruptible_timeout(
336 				&nvec->ec_transfer, msecs_to_jiffies(5000));
337 
338 		if (err == 0) {
339 			dev_warn(nvec->dev, "timeout waiting for ec transfer\n");
340 			nvec_gpio_set_value(nvec, 1);
341 			msg->pos = 0;
342 		}
343 
344 		spin_lock_irqsave(&nvec->tx_lock, flags);
345 
346 		if (err > 0) {
347 			list_del_init(&msg->node);
348 			nvec_msg_free(nvec, msg);
349 		}
350 	}
351 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
352 }
353 
354 /**
355  * parse_msg - Print some information and call the notifiers on an RX message
356  * @nvec: A &struct nvec_chip
357  * @msg: A message received by @nvec
358  *
359  * Paarse some pieces of the message and then call the chain of notifiers
360  * registered via nvec_register_notifier.
361  */
362 static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg)
363 {
364 	if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) {
365 		dev_err(nvec->dev, "ec responded %02x %02x %02x %02x\n",
366 			msg->data[0], msg->data[1], msg->data[2], msg->data[3]);
367 		return -EINVAL;
368 	}
369 
370 	if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5)
371 		print_hex_dump(KERN_WARNING, "ec system event ",
372 				DUMP_PREFIX_NONE, 16, 1, msg->data,
373 				msg->data[1] + 2, true);
374 
375 	atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f,
376 				   msg->data);
377 
378 	return 0;
379 }
380 
381 /**
382  * nvec_dispatch - Process messages received from the EC
383  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
384  *
385  * Process messages previously received from the EC and put into the RX
386  * queue of the &struct nvec_chip instance associated with @work.
387  */
388 static void nvec_dispatch(struct work_struct *work)
389 {
390 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work);
391 	unsigned long flags;
392 	struct nvec_msg *msg;
393 
394 	spin_lock_irqsave(&nvec->rx_lock, flags);
395 	while (!list_empty(&nvec->rx_data)) {
396 		msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node);
397 		list_del_init(&msg->node);
398 		spin_unlock_irqrestore(&nvec->rx_lock, flags);
399 
400 		if (nvec->sync_write_pending ==
401 		      (msg->data[2] << 8) + msg->data[0]) {
402 			dev_dbg(nvec->dev, "sync write completed!\n");
403 			nvec->sync_write_pending = 0;
404 			nvec->last_sync_msg = msg;
405 			complete(&nvec->sync_write);
406 		} else {
407 			parse_msg(nvec, msg);
408 			nvec_msg_free(nvec, msg);
409 		}
410 		spin_lock_irqsave(&nvec->rx_lock, flags);
411 	}
412 	spin_unlock_irqrestore(&nvec->rx_lock, flags);
413 }
414 
415 /**
416  * nvec_tx_completed - Complete the current transfer
417  * @nvec: A &struct nvec_chip
418  *
419  * This is called when we have received an END_TRANS on a TX transfer.
420  */
421 static void nvec_tx_completed(struct nvec_chip *nvec)
422 {
423 	/* We got an END_TRANS, let's skip this, maybe there's an event */
424 	if (nvec->tx->pos != nvec->tx->size) {
425 		dev_err(nvec->dev, "premature END_TRANS, resending\n");
426 		nvec->tx->pos = 0;
427 		nvec_gpio_set_value(nvec, 0);
428 	} else {
429 		nvec->state = 0;
430 	}
431 }
432 
433 /**
434  * nvec_rx_completed - Complete the current transfer
435  * @nvec: A &struct nvec_chip
436  *
437  * This is called when we have received an END_TRANS on a RX transfer.
438  */
439 static void nvec_rx_completed(struct nvec_chip *nvec)
440 {
441 	if (nvec->rx->pos != nvec_msg_size(nvec->rx)) {
442 		dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n",
443 			   (uint) nvec_msg_size(nvec->rx),
444 			   (uint) nvec->rx->pos);
445 
446 		nvec_msg_free(nvec, nvec->rx);
447 		nvec->state = 0;
448 
449 		/* Battery quirk - Often incomplete, and likes to crash */
450 		if (nvec->rx->data[0] == NVEC_BAT)
451 			complete(&nvec->ec_transfer);
452 
453 		return;
454 	}
455 
456 	spin_lock(&nvec->rx_lock);
457 
458 	/* add the received data to the work list
459 	   and move the ring buffer pointer to the next entry */
460 	list_add_tail(&nvec->rx->node, &nvec->rx_data);
461 
462 	spin_unlock(&nvec->rx_lock);
463 
464 	nvec->state = 0;
465 
466 	if (!nvec_msg_is_event(nvec->rx))
467 		complete(&nvec->ec_transfer);
468 
469 	queue_work(nvec->wq, &nvec->rx_work);
470 }
471 
472 /**
473  * nvec_invalid_flags - Send an error message about invalid flags and jump
474  * @nvec: The nvec device
475  * @status: The status flags
476  * @reset: Whether we shall jump to state 0.
477  */
478 static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status,
479 			       bool reset)
480 {
481 	dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n",
482 		status, nvec->state);
483 	if (reset)
484 		nvec->state = 0;
485 }
486 
487 /**
488  * nvec_tx_set - Set the message to transfer (nvec->tx)
489  * @nvec: A &struct nvec_chip
490  *
491  * Gets the first entry from the tx_data list of @nvec and sets the
492  * tx member to it. If the tx_data list is empty, this uses the
493  * tx_scratch message to send a no operation message.
494  */
495 static void nvec_tx_set(struct nvec_chip *nvec)
496 {
497 	spin_lock(&nvec->tx_lock);
498 	if (list_empty(&nvec->tx_data)) {
499 		dev_err(nvec->dev, "empty tx - sending no-op\n");
500 		memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3);
501 		nvec->tx_scratch.size = 3;
502 		nvec->tx_scratch.pos = 0;
503 		nvec->tx = &nvec->tx_scratch;
504 		list_add_tail(&nvec->tx->node, &nvec->tx_data);
505 	} else {
506 		nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg,
507 					    node);
508 		nvec->tx->pos = 0;
509 	}
510 	spin_unlock(&nvec->tx_lock);
511 
512 	dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n",
513 		(uint)nvec->tx->size, nvec->tx->data[1]);
514 }
515 
516 /**
517  * nvec_interrupt - Interrupt handler
518  * @irq: The IRQ
519  * @dev: The nvec device
520  *
521  * Interrupt handler that fills our RX buffers and empties our TX
522  * buffers. This uses a finite state machine with ridiculous amounts
523  * of error checking, in order to be fairly reliable.
524  */
525 static irqreturn_t nvec_interrupt(int irq, void *dev)
526 {
527 	unsigned long status;
528 	unsigned int received = 0;
529 	unsigned char to_send = 0xff;
530 	const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW;
531 	struct nvec_chip *nvec = dev;
532 	unsigned int state = nvec->state;
533 
534 	status = readl(nvec->base + I2C_SL_STATUS);
535 
536 	/* Filter out some errors */
537 	if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) {
538 		dev_err(nvec->dev, "unexpected irq mask %lx\n", status);
539 		return IRQ_HANDLED;
540 	}
541 	if ((status & I2C_SL_IRQ) == 0) {
542 		dev_err(nvec->dev, "Spurious IRQ\n");
543 		return IRQ_HANDLED;
544 	}
545 
546 	/* The EC did not request a read, so it send us something, read it */
547 	if ((status & RNW) == 0) {
548 		received = readl(nvec->base + I2C_SL_RCVD);
549 		if (status & RCVD)
550 			writel(0, nvec->base + I2C_SL_RCVD);
551 	}
552 
553 	if (status == (I2C_SL_IRQ | RCVD))
554 		nvec->state = 0;
555 
556 	switch (nvec->state) {
557 	case 0:		/* Verify that its a transfer start, the rest later */
558 		if (status != (I2C_SL_IRQ | RCVD))
559 			nvec_invalid_flags(nvec, status, false);
560 		break;
561 	case 1:		/* command byte */
562 		if (status != I2C_SL_IRQ) {
563 			nvec_invalid_flags(nvec, status, true);
564 		} else {
565 			nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX);
566 			/* Should not happen in a normal world */
567 			if (unlikely(nvec->rx == NULL)) {
568 				nvec->state = 0;
569 				break;
570 			}
571 			nvec->rx->data[0] = received;
572 			nvec->rx->pos = 1;
573 			nvec->state = 2;
574 		}
575 		break;
576 	case 2:		/* first byte after command */
577 		if (status == (I2C_SL_IRQ | RNW | RCVD)) {
578 			udelay(33);
579 			if (nvec->rx->data[0] != 0x01) {
580 				dev_err(nvec->dev,
581 					"Read without prior read command\n");
582 				nvec->state = 0;
583 				break;
584 			}
585 			nvec_msg_free(nvec, nvec->rx);
586 			nvec->state = 3;
587 			nvec_tx_set(nvec);
588 			BUG_ON(nvec->tx->size < 1);
589 			to_send = nvec->tx->data[0];
590 			nvec->tx->pos = 1;
591 		} else if (status == (I2C_SL_IRQ)) {
592 			BUG_ON(nvec->rx == NULL);
593 			nvec->rx->data[1] = received;
594 			nvec->rx->pos = 2;
595 			nvec->state = 4;
596 		} else {
597 			nvec_invalid_flags(nvec, status, true);
598 		}
599 		break;
600 	case 3:		/* EC does a block read, we transmit data */
601 		if (status & END_TRANS) {
602 			nvec_tx_completed(nvec);
603 		} else if ((status & RNW) == 0 || (status & RCVD)) {
604 			nvec_invalid_flags(nvec, status, true);
605 		} else if (nvec->tx && nvec->tx->pos < nvec->tx->size) {
606 			to_send = nvec->tx->data[nvec->tx->pos++];
607 		} else {
608 			dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n",
609 				nvec->tx,
610 				(uint) (nvec->tx ? nvec->tx->pos : 0),
611 				(uint) (nvec->tx ? nvec->tx->size : 0));
612 			nvec->state = 0;
613 		}
614 		break;
615 	case 4:		/* EC does some write, we read the data */
616 		if ((status & (END_TRANS | RNW)) == END_TRANS)
617 			nvec_rx_completed(nvec);
618 		else if (status & (RNW | RCVD))
619 			nvec_invalid_flags(nvec, status, true);
620 		else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE)
621 			nvec->rx->data[nvec->rx->pos++] = received;
622 		else
623 			dev_err(nvec->dev,
624 				"RX buffer overflow on %p: "
625 				"Trying to write byte %u of %u\n",
626 				nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE);
627 		break;
628 	default:
629 		nvec->state = 0;
630 	}
631 
632 	/* If we are told that a new transfer starts, verify it */
633 	if ((status & (RCVD | RNW)) == RCVD) {
634 		if (received != nvec->i2c_addr)
635 			dev_err(nvec->dev,
636 			"received address 0x%02x, expected 0x%02x\n",
637 			received, nvec->i2c_addr);
638 		nvec->state = 1;
639 	}
640 
641 	/* Send data if requested, but not on end of transmission */
642 	if ((status & (RNW | END_TRANS)) == RNW)
643 		writel(to_send, nvec->base + I2C_SL_RCVD);
644 
645 	/* If we have send the first byte */
646 	if (status == (I2C_SL_IRQ | RNW | RCVD))
647 		nvec_gpio_set_value(nvec, 1);
648 
649 	dev_dbg(nvec->dev,
650 		"Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n",
651 		(status & RNW) == 0 ? "received" : "R=",
652 		received,
653 		(status & (RNW | END_TRANS)) ? "sent" : "S=",
654 		to_send,
655 		state,
656 		status & END_TRANS ? " END_TRANS" : "",
657 		status & RCVD ? " RCVD" : "",
658 		status & RNW ? " RNW" : "");
659 
660 
661 	/*
662 	 * TODO: A correct fix needs to be found for this.
663 	 *
664 	 * We experience less incomplete messages with this delay than without
665 	 * it, but we don't know why. Help is appreciated.
666 	 */
667 	udelay(100);
668 
669 	return IRQ_HANDLED;
670 }
671 
672 static void tegra_init_i2c_slave(struct nvec_chip *nvec)
673 {
674 	u32 val;
675 
676 	clk_enable(nvec->i2c_clk);
677 
678 	tegra_periph_reset_assert(nvec->i2c_clk);
679 	udelay(2);
680 	tegra_periph_reset_deassert(nvec->i2c_clk);
681 
682 	val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN |
683 	    (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
684 	writel(val, nvec->base + I2C_CNFG);
685 
686 	clk_set_rate(nvec->i2c_clk, 8 * 80000);
687 
688 	writel(I2C_SL_NEWL, nvec->base + I2C_SL_CNFG);
689 	writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT);
690 
691 	writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1);
692 	writel(0, nvec->base + I2C_SL_ADDR2);
693 
694 	enable_irq(nvec->irq);
695 
696 	clk_disable(nvec->i2c_clk);
697 }
698 
699 static void nvec_disable_i2c_slave(struct nvec_chip *nvec)
700 {
701 	disable_irq(nvec->irq);
702 	writel(I2C_SL_NEWL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG);
703 	clk_disable(nvec->i2c_clk);
704 }
705 
706 static void nvec_power_off(void)
707 {
708 	nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3);
709 	nvec_write_async(nvec_power_handle, "\x04\x01", 2);
710 }
711 
712 static int __devinit tegra_nvec_probe(struct platform_device *pdev)
713 {
714 	int err, ret;
715 	struct clk *i2c_clk;
716 	struct nvec_platform_data *pdata = pdev->dev.platform_data;
717 	struct nvec_chip *nvec;
718 	struct nvec_msg *msg;
719 	struct resource *res;
720 	struct resource *iomem;
721 	void __iomem *base;
722 
723 	nvec = kzalloc(sizeof(struct nvec_chip), GFP_KERNEL);
724 	if (nvec == NULL) {
725 		dev_err(&pdev->dev, "failed to reserve memory\n");
726 		return -ENOMEM;
727 	}
728 	platform_set_drvdata(pdev, nvec);
729 	nvec->dev = &pdev->dev;
730 	nvec->gpio = pdata->gpio;
731 	nvec->i2c_addr = pdata->i2c_addr;
732 
733 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
734 	if (!res) {
735 		dev_err(&pdev->dev, "no mem resource?\n");
736 		return -ENODEV;
737 	}
738 
739 	iomem = request_mem_region(res->start, resource_size(res), pdev->name);
740 	if (!iomem) {
741 		dev_err(&pdev->dev, "I2C region already claimed\n");
742 		return -EBUSY;
743 	}
744 
745 	base = ioremap(iomem->start, resource_size(iomem));
746 	if (!base) {
747 		dev_err(&pdev->dev, "Can't ioremap I2C region\n");
748 		return -ENOMEM;
749 	}
750 
751 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
752 	if (!res) {
753 		dev_err(&pdev->dev, "no irq resource?\n");
754 		ret = -ENODEV;
755 		goto err_iounmap;
756 	}
757 
758 	i2c_clk = clk_get_sys("tegra-i2c.2", NULL);
759 	if (IS_ERR(i2c_clk)) {
760 		dev_err(nvec->dev, "failed to get controller clock\n");
761 		goto err_iounmap;
762 	}
763 
764 	nvec->base = base;
765 	nvec->irq = res->start;
766 	nvec->i2c_clk = i2c_clk;
767 	nvec->rx = &nvec->msg_pool[0];
768 
769 	/* Set the gpio to low when we've got something to say */
770 	err = gpio_request(nvec->gpio, "nvec gpio");
771 	if (err < 0)
772 		dev_err(nvec->dev, "couldn't request gpio\n");
773 
774 	ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list);
775 
776 	init_completion(&nvec->sync_write);
777 	init_completion(&nvec->ec_transfer);
778 	mutex_init(&nvec->sync_write_mutex);
779 	spin_lock_init(&nvec->tx_lock);
780 	spin_lock_init(&nvec->rx_lock);
781 	INIT_LIST_HEAD(&nvec->rx_data);
782 	INIT_LIST_HEAD(&nvec->tx_data);
783 	INIT_WORK(&nvec->rx_work, nvec_dispatch);
784 	INIT_WORK(&nvec->tx_work, nvec_request_master);
785 	nvec->wq = alloc_workqueue("nvec", WQ_NON_REENTRANT, 2);
786 
787 	err = request_irq(nvec->irq, nvec_interrupt, 0, "nvec", nvec);
788 	if (err) {
789 		dev_err(nvec->dev, "couldn't request irq\n");
790 		goto failed;
791 	}
792 	disable_irq(nvec->irq);
793 
794 	tegra_init_i2c_slave(nvec);
795 
796 	clk_enable(i2c_clk);
797 
798 	gpio_direction_output(nvec->gpio, 1);
799 	gpio_set_value(nvec->gpio, 1);
800 
801 	/* enable event reporting */
802 	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING,
803 			 sizeof(EC_ENABLE_EVENT_REPORTING));
804 
805 	nvec->nvec_status_notifier.notifier_call = nvec_status_notifier;
806 	nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0);
807 
808 	nvec_power_handle = nvec;
809 	pm_power_off = nvec_power_off;
810 
811 	/* Get Firmware Version */
812 	msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION,
813 		sizeof(EC_GET_FIRMWARE_VERSION));
814 
815 	if (msg) {
816 		dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n",
817 			msg->data[4], msg->data[5], msg->data[6], msg->data[7]);
818 
819 		nvec_msg_free(nvec, msg);
820 	}
821 
822 	ret = mfd_add_devices(nvec->dev, -1, nvec_devices,
823 			      ARRAY_SIZE(nvec_devices), base, 0);
824 	if (ret)
825 		dev_err(nvec->dev, "error adding subdevices\n");
826 
827 	/* unmute speakers? */
828 	nvec_write_async(nvec, "\x0d\x10\x59\x95", 4);
829 
830 	/* enable lid switch event */
831 	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7);
832 
833 	/* enable power button event */
834 	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7);
835 
836 	return 0;
837 
838 err_iounmap:
839 	iounmap(base);
840 failed:
841 	kfree(nvec);
842 	return -ENOMEM;
843 }
844 
845 static int __devexit tegra_nvec_remove(struct platform_device *pdev)
846 {
847 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
848 
849 	nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3);
850 	mfd_remove_devices(nvec->dev);
851 	free_irq(nvec->irq, &nvec_interrupt);
852 	iounmap(nvec->base);
853 	gpio_free(nvec->gpio);
854 	destroy_workqueue(nvec->wq);
855 	kfree(nvec);
856 
857 	return 0;
858 }
859 
860 #ifdef CONFIG_PM
861 
862 static int tegra_nvec_suspend(struct platform_device *pdev, pm_message_t state)
863 {
864 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
865 	struct nvec_msg *msg;
866 
867 	dev_dbg(nvec->dev, "suspending\n");
868 
869 	/* keep these sync or you'll break suspend */
870 	msg = nvec_write_sync(nvec, EC_DISABLE_EVENT_REPORTING, 3);
871 	nvec_msg_free(nvec, msg);
872 	msg = nvec_write_sync(nvec, "\x04\x02", 2);
873 	nvec_msg_free(nvec, msg);
874 
875 	nvec_disable_i2c_slave(nvec);
876 
877 	return 0;
878 }
879 
880 static int tegra_nvec_resume(struct platform_device *pdev)
881 {
882 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
883 
884 	dev_dbg(nvec->dev, "resuming\n");
885 	tegra_init_i2c_slave(nvec);
886 	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3);
887 
888 	return 0;
889 }
890 
891 #else
892 #define tegra_nvec_suspend NULL
893 #define tegra_nvec_resume NULL
894 #endif
895 
896 static struct platform_driver nvec_device_driver = {
897 	.probe   = tegra_nvec_probe,
898 	.remove  = __devexit_p(tegra_nvec_remove),
899 	.suspend = tegra_nvec_suspend,
900 	.resume  = tegra_nvec_resume,
901 	.driver  = {
902 		.name = "nvec",
903 		.owner = THIS_MODULE,
904 	}
905 };
906 
907 static int __init tegra_nvec_init(void)
908 {
909 	return platform_driver_register(&nvec_device_driver);
910 }
911 
912 module_init(tegra_nvec_init);
913 
914 MODULE_ALIAS("platform:nvec");
915 MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface");
916 MODULE_AUTHOR("Marc Dietrich <marvin24@gmx.de>");
917 MODULE_LICENSE("GPL");
918