1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/module.h>
3 #include <linux/i2c.h>
4 #include <linux/dmi.h>
5 #include <linux/efi.h>
6 #include <linux/pci.h>
7 #include <linux/acpi.h>
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <media/v4l2-subdev.h>
11 #include <linux/mfd/intel_soc_pmic.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio.h>
15 #include <linux/platform_device.h>
16 #include "../../include/linux/atomisp_platform.h"
17 #include "../../include/linux/atomisp_gmin_platform.h"
18 
19 #define MAX_SUBDEVS 8
20 
21 enum clock_rate {
22 	VLV2_CLK_XTAL_25_0MHz = 0,
23 	VLV2_CLK_PLL_19P2MHZ = 1
24 };
25 
26 #define CLK_RATE_19_2MHZ	19200000
27 #define CLK_RATE_25_0MHZ	25000000
28 
29 /* Valid clock number range from 0 to 5 */
30 #define MAX_CLK_COUNT                   5
31 
32 /* X-Powers AXP288 register set */
33 #define ALDO1_SEL_REG	0x28
34 #define ALDO1_CTRL3_REG	0x13
35 #define ALDO1_2P8V	0x16
36 #define ALDO1_CTRL3_SHIFT 0x05
37 
38 #define ELDO_CTRL_REG   0x12
39 
40 #define ELDO1_SEL_REG	0x19
41 #define ELDO1_1P6V	0x12
42 #define ELDO1_CTRL_SHIFT 0x00
43 
44 #define ELDO2_SEL_REG	0x1a
45 #define ELDO2_1P8V	0x16
46 #define ELDO2_CTRL_SHIFT 0x01
47 
48 /* TI SND9039 PMIC register set */
49 #define LDO9_REG	0x49
50 #define LDO10_REG	0x4a
51 #define LDO11_REG	0x4b
52 
53 #define LDO_2P8V_ON	0x2f /* 0x2e selects 2.85V ...      */
54 #define LDO_2P8V_OFF	0x2e /* ... bottom bit is "enabled" */
55 
56 #define LDO_1P8V_ON	0x59 /* 0x58 selects 1.80V ...      */
57 #define LDO_1P8V_OFF	0x58 /* ... bottom bit is "enabled" */
58 
59 /* CRYSTAL COVE PMIC register set */
60 #define CRYSTAL_1P8V_REG	0x57
61 #define CRYSTAL_2P8V_REG	0x5d
62 #define CRYSTAL_ON		0x63
63 #define CRYSTAL_OFF		0x62
64 
65 struct gmin_subdev {
66 	struct v4l2_subdev *subdev;
67 	enum clock_rate clock_src;
68 	struct clk *pmc_clk;
69 	struct gpio_desc *gpio0;
70 	struct gpio_desc *gpio1;
71 	struct regulator *v1p8_reg;
72 	struct regulator *v2p8_reg;
73 	struct regulator *v1p2_reg;
74 	struct regulator *v2p8_vcm_reg;
75 	enum atomisp_camera_port csi_port;
76 	unsigned int csi_lanes;
77 	enum atomisp_input_format csi_fmt;
78 	enum atomisp_bayer_order csi_bayer;
79 
80 	bool clock_on;
81 	bool v1p8_on;
82 	bool v2p8_on;
83 	bool v1p2_on;
84 	bool v2p8_vcm_on;
85 
86 	int v1p8_gpio;
87 	int v2p8_gpio;
88 
89 	u8 pwm_i2c_addr;
90 
91 	/* For PMIC AXP */
92 	int eldo1_sel_reg, eldo1_1p6v, eldo1_ctrl_shift;
93 	int eldo2_sel_reg, eldo2_1p8v, eldo2_ctrl_shift;
94 };
95 
96 static struct gmin_subdev gmin_subdevs[MAX_SUBDEVS];
97 
98 /* ACPI HIDs for the PMICs that could be used by this driver */
99 #define PMIC_ACPI_AXP		"INT33F4"	/* XPower AXP288 PMIC */
100 #define PMIC_ACPI_TI		"INT33F5"	/* Dollar Cove TI PMIC */
101 #define PMIC_ACPI_CRYSTALCOVE	"INT33FD"	/* Crystal Cove PMIC */
102 
103 #define PMIC_PLATFORM_TI	"intel_soc_pmic_chtdc_ti"
104 
105 static enum {
106 	PMIC_UNSET = 0,
107 	PMIC_REGULATOR,
108 	PMIC_AXP,
109 	PMIC_TI,
110 	PMIC_CRYSTALCOVE
111 } pmic_id;
112 
113 static const char *pmic_name[] = {
114 	[PMIC_UNSET]		= "ACPI device PM",
115 	[PMIC_REGULATOR]	= "regulator driver",
116 	[PMIC_AXP]		= "XPower AXP288 PMIC",
117 	[PMIC_TI]		= "Dollar Cove TI PMIC",
118 	[PMIC_CRYSTALCOVE]	= "Crystal Cove PMIC",
119 };
120 
121 static DEFINE_MUTEX(gmin_regulator_mutex);
122 static int gmin_v1p8_enable_count;
123 static int gmin_v2p8_enable_count;
124 
125 /* The atomisp uses type==0 for the end-of-list marker, so leave space. */
126 static struct intel_v4l2_subdev_table pdata_subdevs[MAX_SUBDEVS + 1];
127 
128 static const struct atomisp_platform_data pdata = {
129 	.subdevs = pdata_subdevs,
130 };
131 
132 static LIST_HEAD(vcm_devices);
133 static DEFINE_MUTEX(vcm_lock);
134 
135 static struct gmin_subdev *find_gmin_subdev(struct v4l2_subdev *subdev);
136 
137 /*
138  * Legacy/stub behavior copied from upstream platform_camera.c.  The
139  * atomisp driver relies on these values being non-NULL in a few
140  * places, even though they are hard-coded in all current
141  * implementations.
142  */
143 const struct atomisp_camera_caps *atomisp_get_default_camera_caps(void)
144 {
145 	static const struct atomisp_camera_caps caps = {
146 		.sensor_num = 1,
147 		.sensor = {
148 			{ .stream_num = 1, },
149 		},
150 	};
151 	return &caps;
152 }
153 EXPORT_SYMBOL_GPL(atomisp_get_default_camera_caps);
154 
155 const struct atomisp_platform_data *atomisp_get_platform_data(void)
156 {
157 	return &pdata;
158 }
159 EXPORT_SYMBOL_GPL(atomisp_get_platform_data);
160 
161 int atomisp_register_i2c_module(struct v4l2_subdev *subdev,
162 				struct camera_sensor_platform_data *plat_data,
163 				enum intel_v4l2_subdev_type type)
164 {
165 	int i;
166 	struct i2c_board_info *bi;
167 	struct gmin_subdev *gs;
168 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
169 	struct acpi_device *adev = ACPI_COMPANION(&client->dev);
170 
171 	dev_info(&client->dev, "register atomisp i2c module type %d\n", type);
172 
173 	/* The windows driver model (and thus most BIOSes by default)
174 	 * uses ACPI runtime power management for camera devices, but
175 	 * we don't.  Disable it, or else the rails will be needlessly
176 	 * tickled during suspend/resume.  This has caused power and
177 	 * performance issues on multiple devices.
178 	 */
179 	adev->power.flags.power_resources = 0;
180 
181 	for (i = 0; i < MAX_SUBDEVS; i++)
182 		if (!pdata.subdevs[i].type)
183 			break;
184 
185 	if (pdata.subdevs[i].type)
186 		return -ENOMEM;
187 
188 	/* Note subtlety of initialization order: at the point where
189 	 * this registration API gets called, the platform data
190 	 * callbacks have probably already been invoked, so the
191 	 * gmin_subdev struct is already initialized for us.
192 	 */
193 	gs = find_gmin_subdev(subdev);
194 	if (!gs)
195 		return -ENODEV;
196 
197 	pdata.subdevs[i].type = type;
198 	pdata.subdevs[i].port = gs->csi_port;
199 	pdata.subdevs[i].subdev = subdev;
200 	pdata.subdevs[i].v4l2_subdev.i2c_adapter_id = client->adapter->nr;
201 
202 	/* Convert i2c_client to i2c_board_info */
203 	bi = &pdata.subdevs[i].v4l2_subdev.board_info;
204 	memcpy(bi->type, client->name, I2C_NAME_SIZE);
205 	bi->flags = client->flags;
206 	bi->addr = client->addr;
207 	bi->irq = client->irq;
208 	bi->platform_data = plat_data;
209 
210 	return 0;
211 }
212 EXPORT_SYMBOL_GPL(atomisp_register_i2c_module);
213 
214 struct v4l2_subdev *atomisp_gmin_find_subdev(struct i2c_adapter *adapter,
215 	struct i2c_board_info *board_info)
216 {
217 	int i;
218 
219 	for (i = 0; i < MAX_SUBDEVS && pdata.subdevs[i].type; i++) {
220 		struct intel_v4l2_subdev_table *sd = &pdata.subdevs[i];
221 
222 		if (sd->v4l2_subdev.i2c_adapter_id == adapter->nr &&
223 		    sd->v4l2_subdev.board_info.addr == board_info->addr)
224 			return sd->subdev;
225 	}
226 	return NULL;
227 }
228 EXPORT_SYMBOL_GPL(atomisp_gmin_find_subdev);
229 
230 int atomisp_gmin_remove_subdev(struct v4l2_subdev *sd)
231 {
232 	int i, j;
233 
234 	if (!sd)
235 		return 0;
236 
237 	for (i = 0; i < MAX_SUBDEVS; i++) {
238 		if (pdata.subdevs[i].subdev == sd) {
239 			for (j = i + 1; j <= MAX_SUBDEVS; j++)
240 				pdata.subdevs[j - 1] = pdata.subdevs[j];
241 		}
242 		if (gmin_subdevs[i].subdev == sd) {
243 			if (gmin_subdevs[i].gpio0)
244 				gpiod_put(gmin_subdevs[i].gpio0);
245 			gmin_subdevs[i].gpio0 = NULL;
246 			if (gmin_subdevs[i].gpio1)
247 				gpiod_put(gmin_subdevs[i].gpio1);
248 			gmin_subdevs[i].gpio1 = NULL;
249 			if (pmic_id == PMIC_REGULATOR) {
250 				regulator_put(gmin_subdevs[i].v1p8_reg);
251 				regulator_put(gmin_subdevs[i].v2p8_reg);
252 				regulator_put(gmin_subdevs[i].v1p2_reg);
253 				regulator_put(gmin_subdevs[i].v2p8_vcm_reg);
254 			}
255 			gmin_subdevs[i].subdev = NULL;
256 		}
257 	}
258 	return 0;
259 }
260 EXPORT_SYMBOL_GPL(atomisp_gmin_remove_subdev);
261 
262 struct gmin_cfg_var {
263 	const char *name, *val;
264 };
265 
266 static struct gmin_cfg_var ffrd8_vars[] = {
267 	{ "INTCF1B:00_ImxId",    "0x134" },
268 	{ "INTCF1B:00_CsiPort",  "1" },
269 	{ "INTCF1B:00_CsiLanes", "4" },
270 	{ "INTCF1B:00_CamClk", "0" },
271 	{},
272 };
273 
274 /* Cribbed from MCG defaults in the mt9m114 driver, not actually verified
275  * vs. T100 hardware
276  */
277 static struct gmin_cfg_var t100_vars[] = {
278 	{ "INT33F0:00_CsiPort",  "0" },
279 	{ "INT33F0:00_CsiLanes", "1" },
280 	{ "INT33F0:00_CamClk",   "1" },
281 	{},
282 };
283 
284 static struct gmin_cfg_var mrd7_vars[] = {
285 	{"INT33F8:00_CamType", "1"},
286 	{"INT33F8:00_CsiPort", "1"},
287 	{"INT33F8:00_CsiLanes", "2"},
288 	{"INT33F8:00_CsiFmt", "13"},
289 	{"INT33F8:00_CsiBayer", "0"},
290 	{"INT33F8:00_CamClk", "0"},
291 
292 	{"INT33F9:00_CamType", "1"},
293 	{"INT33F9:00_CsiPort", "0"},
294 	{"INT33F9:00_CsiLanes", "1"},
295 	{"INT33F9:00_CsiFmt", "13"},
296 	{"INT33F9:00_CsiBayer", "0"},
297 	{"INT33F9:00_CamClk", "1"},
298 	{},
299 };
300 
301 static struct gmin_cfg_var ecs7_vars[] = {
302 	{"INT33BE:00_CsiPort", "1"},
303 	{"INT33BE:00_CsiLanes", "2"},
304 	{"INT33BE:00_CsiFmt", "13"},
305 	{"INT33BE:00_CsiBayer", "2"},
306 	{"INT33BE:00_CamClk", "0"},
307 
308 	{"INT33F0:00_CsiPort", "0"},
309 	{"INT33F0:00_CsiLanes", "1"},
310 	{"INT33F0:00_CsiFmt", "13"},
311 	{"INT33F0:00_CsiBayer", "0"},
312 	{"INT33F0:00_CamClk", "1"},
313 	{"gmin_V2P8GPIO", "402"},
314 	{},
315 };
316 
317 static struct gmin_cfg_var i8880_vars[] = {
318 	{"XXOV2680:00_CsiPort", "1"},
319 	{"XXOV2680:00_CsiLanes", "1"},
320 	{"XXOV2680:00_CamClk", "0"},
321 
322 	{"XXGC0310:00_CsiPort", "0"},
323 	{"XXGC0310:00_CsiLanes", "1"},
324 	{"XXGC0310:00_CamClk", "1"},
325 	{},
326 };
327 
328 /*
329  * Surface 3 does not describe CsiPort/CsiLanes in both DSDT and EFI.
330  */
331 static struct gmin_cfg_var surface3_vars[] = {
332 	{"APTA0330:00_CsiPort", "0"},
333 	{"APTA0330:00_CsiLanes", "2"},
334 
335 	{"OVTI8835:00_CsiPort", "1"},
336 	{"OVTI8835:00_CsiLanes", "4"},
337 	{},
338 };
339 
340 static const struct dmi_system_id gmin_vars[] = {
341 	{
342 		.ident = "BYT-T FFD8",
343 		.matches = {
344 			DMI_MATCH(DMI_BOARD_NAME, "BYT-T FFD8"),
345 		},
346 		.driver_data = ffrd8_vars,
347 	},
348 	{
349 		.ident = "T100TA",
350 		.matches = {
351 			DMI_MATCH(DMI_BOARD_NAME, "T100TA"),
352 		},
353 		.driver_data = t100_vars,
354 	},
355 	{
356 		.ident = "MRD7",
357 		.matches = {
358 			DMI_MATCH(DMI_BOARD_NAME, "TABLET"),
359 			DMI_MATCH(DMI_BOARD_VERSION, "MRD 7"),
360 		},
361 		.driver_data = mrd7_vars,
362 	},
363 	{
364 		.ident = "ST70408",
365 		.matches = {
366 			DMI_MATCH(DMI_BOARD_NAME, "ST70408"),
367 		},
368 		.driver_data = ecs7_vars,
369 	},
370 	{
371 		.ident = "VTA0803",
372 		.matches = {
373 			DMI_MATCH(DMI_BOARD_NAME, "VTA0803"),
374 		},
375 		.driver_data = i8880_vars,
376 	},
377 	{
378 		.ident = "Surface 3",
379 		.matches = {
380 			DMI_MATCH(DMI_BOARD_NAME, "Surface 3"),
381 		},
382 		.driver_data = surface3_vars,
383 	},
384 	{}
385 };
386 
387 #define GMIN_CFG_VAR_EFI_GUID EFI_GUID(0xecb54cd9, 0xe5ae, 0x4fdc, \
388 				       0xa9, 0x71, 0xe8, 0x77,	   \
389 				       0x75, 0x60, 0x68, 0xf7)
390 
391 static const guid_t atomisp_dsm_guid = GUID_INIT(0xdc2f6c4f, 0x045b, 0x4f1d,
392 						 0x97, 0xb9, 0x88, 0x2a,
393 						 0x68, 0x60, 0xa4, 0xbe);
394 
395 #define CFG_VAR_NAME_MAX 64
396 
397 #define GMIN_PMC_CLK_NAME 14 /* "pmc_plt_clk_[0..5]" */
398 static char gmin_pmc_clk_name[GMIN_PMC_CLK_NAME];
399 
400 static struct i2c_client *gmin_i2c_dev_exists(struct device *dev, char *name,
401 					      struct i2c_client **client)
402 {
403 	struct acpi_device *adev;
404 	struct device *d;
405 
406 	adev = acpi_dev_get_first_match_dev(name, NULL, -1);
407 	if (!adev)
408 		return NULL;
409 
410 	d = bus_find_device_by_acpi_dev(&i2c_bus_type, adev);
411 	acpi_dev_put(adev);
412 	if (!d)
413 		return NULL;
414 
415 	*client = i2c_verify_client(d);
416 	put_device(d);
417 
418 	dev_dbg(dev, "found '%s' at address 0x%02x, adapter %d\n",
419 		(*client)->name, (*client)->addr, (*client)->adapter->nr);
420 	return *client;
421 }
422 
423 static int gmin_i2c_write(struct device *dev, u16 i2c_addr, u8 reg,
424 			  u32 value, u32 mask)
425 {
426 	int ret;
427 
428 	/*
429 	 * FIXME: Right now, the intel_pmic driver just write values
430 	 * directly at the regmap, instead of properly implementing
431 	 * i2c_transfer() mechanism. Let's use the same interface here,
432 	 * as otherwise we may face issues.
433 	 */
434 
435 	dev_dbg(dev,
436 		"I2C write, addr: 0x%02x, reg: 0x%02x, value: 0x%02x, mask: 0x%02x\n",
437 		i2c_addr, reg, value, mask);
438 
439 	ret = intel_soc_pmic_exec_mipi_pmic_seq_element(i2c_addr, reg, value, mask);
440 	if (ret == -EOPNOTSUPP)
441 		dev_err(dev,
442 			"ACPI didn't mapped the OpRegion needed to access I2C address 0x%02x.\n"
443 			"Need to compile the kernel using CONFIG_*_PMIC_OPREGION settings\n",
444 			i2c_addr);
445 
446 	return ret;
447 }
448 
449 static int atomisp_get_acpi_power(struct device *dev)
450 {
451 	char name[5];
452 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
453 	struct acpi_buffer b_name = { sizeof(name), name };
454 	union acpi_object *package, *element;
455 	acpi_handle handle = ACPI_HANDLE(dev);
456 	acpi_handle rhandle;
457 	acpi_status status;
458 	int clock_num = -1;
459 	int i;
460 
461 	status = acpi_evaluate_object(handle, "_PR0", NULL, &buffer);
462 	if (!ACPI_SUCCESS(status))
463 		return -1;
464 
465 	package = buffer.pointer;
466 
467 	if (!buffer.length || !package
468 	    || package->type != ACPI_TYPE_PACKAGE
469 	    || !package->package.count)
470 		goto fail;
471 
472 	for (i = 0; i < package->package.count; i++) {
473 		element = &package->package.elements[i];
474 
475 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE)
476 			continue;
477 
478 		rhandle = element->reference.handle;
479 		if (!rhandle)
480 			goto fail;
481 
482 		acpi_get_name(rhandle, ACPI_SINGLE_NAME, &b_name);
483 
484 		dev_dbg(dev, "Found PM resource '%s'\n", name);
485 		if (strlen(name) == 4 && !strncmp(name, "CLK", 3)) {
486 			if (name[3] >= '0' && name[3] <= '4')
487 				clock_num = name[3] - '0';
488 #if 0
489 			/*
490 			 * We could abort here, but let's parse all resources,
491 			 * as this is helpful for debugging purposes
492 			 */
493 			if (clock_num >= 0)
494 				break;
495 #endif
496 		}
497 	}
498 
499 fail:
500 	ACPI_FREE(buffer.pointer);
501 
502 	return clock_num;
503 }
504 
505 static u8 gmin_get_pmic_id_and_addr(struct device *dev)
506 {
507 	struct i2c_client *power = NULL;
508 	static u8 pmic_i2c_addr;
509 
510 	if (pmic_id)
511 		return pmic_i2c_addr;
512 
513 	if (gmin_i2c_dev_exists(dev, PMIC_ACPI_TI, &power))
514 		pmic_id = PMIC_TI;
515 	else if (gmin_i2c_dev_exists(dev, PMIC_ACPI_AXP, &power))
516 		pmic_id = PMIC_AXP;
517 	else if (gmin_i2c_dev_exists(dev, PMIC_ACPI_CRYSTALCOVE, &power))
518 		pmic_id = PMIC_CRYSTALCOVE;
519 	else
520 		pmic_id = PMIC_REGULATOR;
521 
522 	pmic_i2c_addr = power ? power->addr : 0;
523 	return pmic_i2c_addr;
524 }
525 
526 static int gmin_detect_pmic(struct v4l2_subdev *subdev)
527 {
528 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
529 	struct device *dev = &client->dev;
530 	u8 pmic_i2c_addr;
531 
532 	pmic_i2c_addr = gmin_get_pmic_id_and_addr(dev);
533 	dev_info(dev, "gmin: power management provided via %s (i2c addr 0x%02x)\n",
534 		 pmic_name[pmic_id], pmic_i2c_addr);
535 	return pmic_i2c_addr;
536 }
537 
538 static int gmin_subdev_add(struct gmin_subdev *gs)
539 {
540 	struct i2c_client *client = v4l2_get_subdevdata(gs->subdev);
541 	struct device *dev = &client->dev;
542 	struct acpi_device *adev = ACPI_COMPANION(dev);
543 	int ret, clock_num = -1;
544 
545 	dev_info(dev, "%s: ACPI path is %pfw\n", __func__, dev_fwnode(dev));
546 
547 	/*WA:CHT requires XTAL clock as PLL is not stable.*/
548 	gs->clock_src = gmin_get_var_int(dev, false, "ClkSrc",
549 				         VLV2_CLK_PLL_19P2MHZ);
550 
551 	gs->csi_port = gmin_get_var_int(dev, false, "CsiPort", 0);
552 	gs->csi_lanes = gmin_get_var_int(dev, false, "CsiLanes", 1);
553 
554 	gs->gpio0 = gpiod_get_index(dev, NULL, 0, GPIOD_OUT_LOW);
555 	if (IS_ERR(gs->gpio0))
556 		gs->gpio0 = NULL;
557 	else
558 		dev_info(dev, "will handle gpio0 via ACPI\n");
559 
560 	gs->gpio1 = gpiod_get_index(dev, NULL, 1, GPIOD_OUT_LOW);
561 	if (IS_ERR(gs->gpio1))
562 		gs->gpio1 = NULL;
563 	else
564 		dev_info(dev, "will handle gpio1 via ACPI\n");
565 
566 	/*
567 	 * Those are used only when there is an external regulator apart
568 	 * from the PMIC that would be providing power supply, like on the
569 	 * two cases below:
570 	 *
571 	 * The ECS E7 board drives camera 2.8v from an external regulator
572 	 * instead of the PMIC.  There's a gmin_CamV2P8 config variable
573 	 * that specifies the GPIO to handle this particular case,
574 	 * but this needs a broader architecture for handling camera power.
575 	 *
576 	 * The CHT RVP board drives camera 1.8v from an* external regulator
577 	 * instead of the PMIC just like ECS E7 board.
578 	 */
579 
580 	gs->v1p8_gpio = gmin_get_var_int(dev, true, "V1P8GPIO", -1);
581 	gs->v2p8_gpio = gmin_get_var_int(dev, true, "V2P8GPIO", -1);
582 
583 	/*
584 	 * FIXME:
585 	 *
586 	 * The ACPI handling code checks for the _PR? tables in order to
587 	 * know what is required to switch the device from power state
588 	 * D0 (_PR0) up to D3COLD (_PR3).
589 	 *
590 	 * The adev->flags.power_manageable is set to true if the device
591 	 * has a _PR0 table, which can be checked by calling
592 	 * acpi_device_power_manageable(adev).
593 	 *
594 	 * However, this only says that the device can be set to power off
595 	 * mode.
596 	 *
597 	 * At least on the DSDT tables we've seen so far, there's no _PR3,
598 	 * nor _PS3 (which would have a somewhat similar effect).
599 	 * So, using ACPI for power management won't work, except if adding
600 	 * an ACPI override logic somewhere.
601 	 *
602 	 * So, at least for the existing devices we know, the check below
603 	 * will always be false.
604 	 */
605 	if (acpi_device_can_wakeup(adev) &&
606 	    acpi_device_can_poweroff(adev)) {
607 		dev_info(dev,
608 			 "gmin: power management provided via device PM\n");
609 		return 0;
610 	}
611 
612 	/*
613 	 * The code below is here due to backward compatibility with devices
614 	 * whose ACPI BIOS may not contain everything that would be needed
615 	 * in order to set clocks and do power management.
616 	 */
617 
618 	/*
619 	 * According with :
620 	 *   https://github.com/projectceladon/hardware-intel-kernelflinger/blob/master/doc/fastboot.md
621 	 *
622 	 * The "CamClk" EFI var is set via fastboot on some Android devices,
623 	 * and seems to contain the number of the clock used to feed the
624 	 * sensor.
625 	 *
626 	 * On systems with a proper ACPI table, this is given via the _PR0
627 	 * power resource table. The logic below should first check if there
628 	 * is a power resource already, falling back to the EFI vars detection
629 	 * otherwise.
630 	 */
631 
632 	/* Try first to use ACPI to get the clock resource */
633 	if (acpi_device_power_manageable(adev))
634 		clock_num = atomisp_get_acpi_power(dev);
635 
636 	/* Fall-back use EFI and/or DMI match */
637 	if (clock_num < 0)
638 		clock_num = gmin_get_var_int(dev, false, "CamClk", 0);
639 
640 	if (clock_num < 0 || clock_num > MAX_CLK_COUNT) {
641 		dev_err(dev, "Invalid clock number\n");
642 		return -EINVAL;
643 	}
644 
645 	snprintf(gmin_pmc_clk_name, sizeof(gmin_pmc_clk_name),
646 		 "%s_%d", "pmc_plt_clk", clock_num);
647 
648 	gs->pmc_clk = devm_clk_get(dev, gmin_pmc_clk_name);
649 	if (IS_ERR(gs->pmc_clk)) {
650 		ret = PTR_ERR(gs->pmc_clk);
651 		dev_err(dev, "Failed to get clk from %s: %d\n", gmin_pmc_clk_name, ret);
652 		return ret;
653 	}
654 	dev_info(dev, "Will use CLK%d (%s)\n", clock_num, gmin_pmc_clk_name);
655 
656 	/*
657 	 * The firmware might enable the clock at
658 	 * boot (this information may or may not
659 	 * be reflected in the enable clock register).
660 	 * To change the rate we must disable the clock
661 	 * first to cover these cases. Due to common
662 	 * clock framework restrictions that do not allow
663 	 * to disable a clock that has not been enabled,
664 	 * we need to enable the clock first.
665 	 */
666 	ret = clk_prepare_enable(gs->pmc_clk);
667 	if (!ret)
668 		clk_disable_unprepare(gs->pmc_clk);
669 
670 	switch (pmic_id) {
671 	case PMIC_REGULATOR:
672 		gs->v1p8_reg = regulator_get(dev, "V1P8SX");
673 		gs->v2p8_reg = regulator_get(dev, "V2P8SX");
674 
675 		gs->v1p2_reg = regulator_get(dev, "V1P2A");
676 		gs->v2p8_vcm_reg = regulator_get(dev, "VPROG4B");
677 
678 		/* Note: ideally we would initialize v[12]p8_on to the
679 		 * output of regulator_is_enabled(), but sadly that
680 		 * API is broken with the current drivers, returning
681 		 * "1" for a regulator that will then emit a
682 		 * "unbalanced disable" WARNing if we try to disable
683 		 * it.
684 		 */
685 		break;
686 
687 	case PMIC_AXP:
688 		gs->eldo1_1p6v = gmin_get_var_int(dev, false,
689 						  "eldo1_1p8v",
690 						  ELDO1_1P6V);
691 		gs->eldo1_sel_reg = gmin_get_var_int(dev, false,
692 						     "eldo1_sel_reg",
693 						     ELDO1_SEL_REG);
694 		gs->eldo1_ctrl_shift = gmin_get_var_int(dev, false,
695 							"eldo1_ctrl_shift",
696 							ELDO1_CTRL_SHIFT);
697 		gs->eldo2_1p8v = gmin_get_var_int(dev, false,
698 						  "eldo2_1p8v",
699 						  ELDO2_1P8V);
700 		gs->eldo2_sel_reg = gmin_get_var_int(dev, false,
701 						     "eldo2_sel_reg",
702 						     ELDO2_SEL_REG);
703 		gs->eldo2_ctrl_shift = gmin_get_var_int(dev, false,
704 							"eldo2_ctrl_shift",
705 							ELDO2_CTRL_SHIFT);
706 		break;
707 
708 	default:
709 		break;
710 	}
711 
712 	return 0;
713 }
714 
715 static struct gmin_subdev *find_gmin_subdev(struct v4l2_subdev *subdev)
716 {
717 	int i;
718 
719 	for (i = 0; i < MAX_SUBDEVS; i++)
720 		if (gmin_subdevs[i].subdev == subdev)
721 			return &gmin_subdevs[i];
722 	return NULL;
723 }
724 
725 static struct gmin_subdev *find_free_gmin_subdev_slot(void)
726 {
727 	unsigned int i;
728 
729 	for (i = 0; i < MAX_SUBDEVS; i++)
730 		if (gmin_subdevs[i].subdev == NULL)
731 			return &gmin_subdevs[i];
732 	return NULL;
733 }
734 
735 static int axp_regulator_set(struct device *dev, struct gmin_subdev *gs,
736 			     int sel_reg, u8 setting,
737 			     int ctrl_reg, int shift, bool on)
738 {
739 	int ret;
740 	int val;
741 
742 	ret = gmin_i2c_write(dev, gs->pwm_i2c_addr, sel_reg, setting, 0xff);
743 	if (ret)
744 		return ret;
745 
746 	val = on ? 1 << shift : 0;
747 
748 	ret = gmin_i2c_write(dev, gs->pwm_i2c_addr, ctrl_reg, val, 1 << shift);
749 	if (ret)
750 		return ret;
751 
752 	return 0;
753 }
754 
755 static int axp_v1p8_on(struct device *dev, struct gmin_subdev *gs)
756 {
757 	int ret;
758 
759 	ret = axp_regulator_set(dev, gs, gs->eldo2_sel_reg, gs->eldo2_1p8v,
760 				ELDO_CTRL_REG, gs->eldo2_ctrl_shift, true);
761 	if (ret)
762 		return ret;
763 
764 	/*
765 	 * This sleep comes out of the gc2235 driver, which is the
766 	 * only one I currently see that wants to set both 1.8v rails.
767 	 */
768 	usleep_range(110, 150);
769 
770 	ret = axp_regulator_set(dev, gs, gs->eldo1_sel_reg, gs->eldo1_1p6v,
771 				ELDO_CTRL_REG, gs->eldo1_ctrl_shift, true);
772 	return ret;
773 }
774 
775 static int axp_v1p8_off(struct device *dev, struct gmin_subdev *gs)
776 {
777 	int ret;
778 
779 	ret = axp_regulator_set(dev, gs, gs->eldo1_sel_reg, gs->eldo1_1p6v,
780 				ELDO_CTRL_REG, gs->eldo1_ctrl_shift, false);
781 	if (ret)
782 		return ret;
783 
784 	ret = axp_regulator_set(dev, gs, gs->eldo2_sel_reg, gs->eldo2_1p8v,
785 				ELDO_CTRL_REG, gs->eldo2_ctrl_shift, false);
786 	return ret;
787 }
788 
789 static int gmin_gpio0_ctrl(struct v4l2_subdev *subdev, int on)
790 {
791 	struct gmin_subdev *gs = find_gmin_subdev(subdev);
792 
793 	if (gs) {
794 		gpiod_set_value(gs->gpio0, on);
795 		return 0;
796 	}
797 	return -EINVAL;
798 }
799 
800 static int gmin_gpio1_ctrl(struct v4l2_subdev *subdev, int on)
801 {
802 	struct gmin_subdev *gs = find_gmin_subdev(subdev);
803 
804 	if (gs) {
805 		gpiod_set_value(gs->gpio1, on);
806 		return 0;
807 	}
808 	return -EINVAL;
809 }
810 
811 static int gmin_v1p2_ctrl(struct v4l2_subdev *subdev, int on)
812 {
813 	struct gmin_subdev *gs = find_gmin_subdev(subdev);
814 
815 	if (!gs || gs->v1p2_on == on)
816 		return 0;
817 	gs->v1p2_on = on;
818 
819 	/* use regulator for PMIC */
820 	if (gs->v1p2_reg) {
821 		if (on)
822 			return regulator_enable(gs->v1p2_reg);
823 		else
824 			return regulator_disable(gs->v1p2_reg);
825 	}
826 
827 	/* TODO:v1p2 may need to extend to other PMICs */
828 
829 	return -EINVAL;
830 }
831 
832 static int gmin_v1p8_ctrl(struct v4l2_subdev *subdev, int on)
833 {
834 	struct gmin_subdev *gs = find_gmin_subdev(subdev);
835 	int ret;
836 	int value;
837 
838 	if (!gs || gs->v1p8_on == on)
839 		return 0;
840 
841 	if (gs->v1p8_gpio >= 0) {
842 		pr_info("atomisp_gmin_platform: 1.8v power on GPIO %d\n",
843 			gs->v1p8_gpio);
844 		ret = gpio_request(gs->v1p8_gpio, "camera_v1p8_en");
845 		if (!ret)
846 			ret = gpio_direction_output(gs->v1p8_gpio, 0);
847 		if (ret)
848 			pr_err("V1P8 GPIO initialization failed\n");
849 	}
850 
851 	gs->v1p8_on = on;
852 
853 	ret = 0;
854 	mutex_lock(&gmin_regulator_mutex);
855 	if (on) {
856 		gmin_v1p8_enable_count++;
857 		if (gmin_v1p8_enable_count > 1)
858 			goto out; /* Already on */
859 	} else {
860 		gmin_v1p8_enable_count--;
861 		if (gmin_v1p8_enable_count > 0)
862 			goto out; /* Still needed */
863 	}
864 
865 	if (gs->v1p8_gpio >= 0)
866 		gpio_set_value(gs->v1p8_gpio, on);
867 
868 	if (gs->v1p8_reg) {
869 		regulator_set_voltage(gs->v1p8_reg, 1800000, 1800000);
870 		if (on)
871 			ret = regulator_enable(gs->v1p8_reg);
872 		else
873 			ret = regulator_disable(gs->v1p8_reg);
874 
875 		goto out;
876 	}
877 
878 	switch (pmic_id) {
879 	case PMIC_AXP:
880 		if (on)
881 			ret = axp_v1p8_on(subdev->dev, gs);
882 		else
883 			ret = axp_v1p8_off(subdev->dev, gs);
884 		break;
885 	case PMIC_TI:
886 		value = on ? LDO_1P8V_ON : LDO_1P8V_OFF;
887 
888 		ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
889 				     LDO10_REG, value, 0xff);
890 		break;
891 	case PMIC_CRYSTALCOVE:
892 		value = on ? CRYSTAL_ON : CRYSTAL_OFF;
893 
894 		ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
895 				     CRYSTAL_1P8V_REG, value, 0xff);
896 		break;
897 	default:
898 		dev_err(subdev->dev, "Couldn't set power mode for v1p8\n");
899 		ret = -EINVAL;
900 	}
901 
902 out:
903 	mutex_unlock(&gmin_regulator_mutex);
904 	return ret;
905 }
906 
907 static int gmin_v2p8_ctrl(struct v4l2_subdev *subdev, int on)
908 {
909 	struct gmin_subdev *gs = find_gmin_subdev(subdev);
910 	int ret;
911 	int value;
912 
913 	if (WARN_ON(!gs))
914 		return -ENODEV;
915 
916 	if (gs->v2p8_gpio >= 0) {
917 		pr_info("atomisp_gmin_platform: 2.8v power on GPIO %d\n",
918 			gs->v2p8_gpio);
919 		ret = gpio_request(gs->v2p8_gpio, "camera_v2p8");
920 		if (!ret)
921 			ret = gpio_direction_output(gs->v2p8_gpio, 0);
922 		if (ret)
923 			pr_err("V2P8 GPIO initialization failed\n");
924 	}
925 
926 	if (gs->v2p8_on == on)
927 		return 0;
928 	gs->v2p8_on = on;
929 
930 	ret = 0;
931 	mutex_lock(&gmin_regulator_mutex);
932 	if (on) {
933 		gmin_v2p8_enable_count++;
934 		if (gmin_v2p8_enable_count > 1)
935 			goto out; /* Already on */
936 	} else {
937 		gmin_v2p8_enable_count--;
938 		if (gmin_v2p8_enable_count > 0)
939 			goto out; /* Still needed */
940 	}
941 
942 	if (gs->v2p8_gpio >= 0)
943 		gpio_set_value(gs->v2p8_gpio, on);
944 
945 	if (gs->v2p8_reg) {
946 		regulator_set_voltage(gs->v2p8_reg, 2900000, 2900000);
947 		if (on)
948 			ret = regulator_enable(gs->v2p8_reg);
949 		else
950 			ret = regulator_disable(gs->v2p8_reg);
951 
952 		goto out;
953 	}
954 
955 	switch (pmic_id) {
956 	case PMIC_AXP:
957 		ret = axp_regulator_set(subdev->dev, gs, ALDO1_SEL_REG,
958 					ALDO1_2P8V, ALDO1_CTRL3_REG,
959 					ALDO1_CTRL3_SHIFT, on);
960 		break;
961 	case PMIC_TI:
962 		value = on ? LDO_2P8V_ON : LDO_2P8V_OFF;
963 
964 		ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
965 				     LDO9_REG, value, 0xff);
966 		break;
967 	case PMIC_CRYSTALCOVE:
968 		value = on ? CRYSTAL_ON : CRYSTAL_OFF;
969 
970 		ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
971 				     CRYSTAL_2P8V_REG, value, 0xff);
972 		break;
973 	default:
974 		dev_err(subdev->dev, "Couldn't set power mode for v2p8\n");
975 		ret = -EINVAL;
976 	}
977 
978 out:
979 	mutex_unlock(&gmin_regulator_mutex);
980 	return ret;
981 }
982 
983 static int gmin_acpi_pm_ctrl(struct v4l2_subdev *subdev, int on)
984 {
985 	int ret = 0;
986 	struct gmin_subdev *gs = find_gmin_subdev(subdev);
987 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
988 	struct acpi_device *adev = ACPI_COMPANION(&client->dev);
989 
990 	/* Use the ACPI power management to control it */
991 	on = !!on;
992 	if (gs->clock_on == on)
993 		return 0;
994 
995 	dev_dbg(subdev->dev, "Setting power state to %s\n",
996 		on ? "on" : "off");
997 
998 	if (on)
999 		ret = acpi_device_set_power(adev,
1000 					    ACPI_STATE_D0);
1001 	else
1002 		ret = acpi_device_set_power(adev,
1003 					    ACPI_STATE_D3_COLD);
1004 
1005 	if (!ret)
1006 		gs->clock_on = on;
1007 	else
1008 		dev_err(subdev->dev, "Couldn't set power state to %s\n",
1009 			on ? "on" : "off");
1010 
1011 	return ret;
1012 }
1013 
1014 static int gmin_flisclk_ctrl(struct v4l2_subdev *subdev, int on)
1015 {
1016 	int ret = 0;
1017 	struct gmin_subdev *gs = find_gmin_subdev(subdev);
1018 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1019 
1020 	if (gs->clock_on == !!on)
1021 		return 0;
1022 
1023 	if (on) {
1024 		ret = clk_set_rate(gs->pmc_clk,
1025 				   gs->clock_src ? CLK_RATE_19_2MHZ : CLK_RATE_25_0MHZ);
1026 
1027 		if (ret)
1028 			dev_err(&client->dev, "unable to set PMC rate %d\n",
1029 				gs->clock_src);
1030 
1031 		ret = clk_prepare_enable(gs->pmc_clk);
1032 		if (ret == 0)
1033 			gs->clock_on = true;
1034 	} else {
1035 		clk_disable_unprepare(gs->pmc_clk);
1036 		gs->clock_on = false;
1037 	}
1038 
1039 	return ret;
1040 }
1041 
1042 static int gmin_csi_cfg(struct v4l2_subdev *sd, int flag)
1043 {
1044 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1045 	struct gmin_subdev *gs = find_gmin_subdev(sd);
1046 
1047 	if (!client || !gs)
1048 		return -ENODEV;
1049 
1050 	return camera_sensor_csi(sd, gs->csi_port, gs->csi_lanes,
1051 				 gs->csi_fmt, gs->csi_bayer, flag);
1052 }
1053 
1054 static struct camera_vcm_control *gmin_get_vcm_ctrl(struct v4l2_subdev *subdev,
1055 	char *camera_module)
1056 {
1057 	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1058 	struct gmin_subdev *gs = find_gmin_subdev(subdev);
1059 	struct camera_vcm_control *vcm;
1060 
1061 	if (!client || !gs)
1062 		return NULL;
1063 
1064 	if (!camera_module)
1065 		return NULL;
1066 
1067 	mutex_lock(&vcm_lock);
1068 	list_for_each_entry(vcm, &vcm_devices, list) {
1069 		if (!strcmp(camera_module, vcm->camera_module)) {
1070 			mutex_unlock(&vcm_lock);
1071 			return vcm;
1072 		}
1073 	}
1074 
1075 	mutex_unlock(&vcm_lock);
1076 	return NULL;
1077 }
1078 
1079 static struct camera_sensor_platform_data pmic_gmin_plat = {
1080 	.gpio0_ctrl = gmin_gpio0_ctrl,
1081 	.gpio1_ctrl = gmin_gpio1_ctrl,
1082 	.v1p8_ctrl = gmin_v1p8_ctrl,
1083 	.v2p8_ctrl = gmin_v2p8_ctrl,
1084 	.v1p2_ctrl = gmin_v1p2_ctrl,
1085 	.flisclk_ctrl = gmin_flisclk_ctrl,
1086 	.csi_cfg = gmin_csi_cfg,
1087 	.get_vcm_ctrl = gmin_get_vcm_ctrl,
1088 };
1089 
1090 static struct camera_sensor_platform_data acpi_gmin_plat = {
1091 	.gpio0_ctrl = gmin_gpio0_ctrl,
1092 	.gpio1_ctrl = gmin_gpio1_ctrl,
1093 	.v1p8_ctrl = gmin_acpi_pm_ctrl,
1094 	.v2p8_ctrl = gmin_acpi_pm_ctrl,
1095 	.v1p2_ctrl = gmin_acpi_pm_ctrl,
1096 	.flisclk_ctrl = gmin_acpi_pm_ctrl,
1097 	.csi_cfg = gmin_csi_cfg,
1098 	.get_vcm_ctrl = gmin_get_vcm_ctrl,
1099 };
1100 
1101 struct camera_sensor_platform_data *
1102 gmin_camera_platform_data(struct v4l2_subdev *subdev,
1103 			  enum atomisp_input_format csi_format,
1104 			  enum atomisp_bayer_order csi_bayer)
1105 {
1106 	u8 pmic_i2c_addr = gmin_detect_pmic(subdev);
1107 	struct gmin_subdev *gs;
1108 
1109 	gs = find_free_gmin_subdev_slot();
1110 	gs->subdev = subdev;
1111 	gs->csi_fmt = csi_format;
1112 	gs->csi_bayer = csi_bayer;
1113 	gs->pwm_i2c_addr = pmic_i2c_addr;
1114 
1115 	gmin_subdev_add(gs);
1116 	if (gs->pmc_clk)
1117 		return &pmic_gmin_plat;
1118 	else
1119 		return &acpi_gmin_plat;
1120 }
1121 EXPORT_SYMBOL_GPL(gmin_camera_platform_data);
1122 
1123 int atomisp_gmin_register_vcm_control(struct camera_vcm_control *vcmCtrl)
1124 {
1125 	if (!vcmCtrl)
1126 		return -EINVAL;
1127 
1128 	mutex_lock(&vcm_lock);
1129 	list_add_tail(&vcmCtrl->list, &vcm_devices);
1130 	mutex_unlock(&vcm_lock);
1131 
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(atomisp_gmin_register_vcm_control);
1135 
1136 static int gmin_get_hardcoded_var(struct device *dev,
1137 				  struct gmin_cfg_var *varlist,
1138 				  const char *var8, char *out, size_t *out_len)
1139 {
1140 	struct gmin_cfg_var *gv;
1141 
1142 	for (gv = varlist; gv->name; gv++) {
1143 		size_t vl;
1144 
1145 		if (strcmp(var8, gv->name))
1146 			continue;
1147 
1148 		dev_info(dev, "Found DMI entry for '%s'\n", var8);
1149 
1150 		vl = strlen(gv->val);
1151 		if (vl > *out_len - 1)
1152 			return -ENOSPC;
1153 
1154 		strscpy(out, gv->val, *out_len);
1155 		*out_len = vl;
1156 		return 0;
1157 	}
1158 
1159 	return -EINVAL;
1160 }
1161 
1162 
1163 static int gmin_get_config_dsm_var(struct device *dev,
1164 				   const char *var,
1165 				   char *out, size_t *out_len)
1166 {
1167 	acpi_handle handle = ACPI_HANDLE(dev);
1168 	union acpi_object *obj, *cur = NULL;
1169 	int i;
1170 
1171 	/*
1172 	 * The data reported by "CamClk" seems to be either 0 or 1 at the
1173 	 * _DSM table.
1174 	 *
1175 	 * At the ACPI tables we looked so far, this is not related to the
1176 	 * actual clock source for the sensor, which is given by the
1177 	 * _PR0 ACPI table. So, ignore it, as otherwise this will be
1178 	 * set to a wrong value.
1179 	 */
1180 	if (!strcmp(var, "CamClk"))
1181 		return -EINVAL;
1182 
1183 	obj = acpi_evaluate_dsm(handle, &atomisp_dsm_guid, 0, 0, NULL);
1184 	if (!obj) {
1185 		dev_info_once(dev, "Didn't find ACPI _DSM table.\n");
1186 		return -EINVAL;
1187 	}
1188 
1189 	/* Return on unexpected object type */
1190 	if (obj->type != ACPI_TYPE_PACKAGE)
1191 		return -EINVAL;
1192 
1193 #if 0 /* Just for debugging purposes */
1194 	for (i = 0; i < obj->package.count; i++) {
1195 		union acpi_object *cur = &obj->package.elements[i];
1196 
1197 		if (cur->type == ACPI_TYPE_INTEGER)
1198 			dev_info(dev, "object #%d, type %d, value: %lld\n",
1199 				 i, cur->type, cur->integer.value);
1200 		else if (cur->type == ACPI_TYPE_STRING)
1201 			dev_info(dev, "object #%d, type %d, string: %s\n",
1202 				 i, cur->type, cur->string.pointer);
1203 		else
1204 			dev_info(dev, "object #%d, type %d\n",
1205 				 i, cur->type);
1206 	}
1207 #endif
1208 
1209 	/* Seek for the desired var */
1210 	for (i = 0; i < obj->package.count - 1; i += 2) {
1211 		if (obj->package.elements[i].type == ACPI_TYPE_STRING &&
1212 		    !strcmp(obj->package.elements[i].string.pointer, var)) {
1213 			/* Next element should be the required value */
1214 			cur = &obj->package.elements[i + 1];
1215 			break;
1216 		}
1217 	}
1218 
1219 	if (!cur) {
1220 		dev_info(dev, "didn't found _DSM entry for '%s'\n", var);
1221 		ACPI_FREE(obj);
1222 		return -EINVAL;
1223 	}
1224 
1225 	/*
1226 	 * While it could be possible to have an ACPI_TYPE_INTEGER,
1227 	 * and read the value from cur->integer.value, the table
1228 	 * seen so far uses the string type. So, produce a warning
1229 	 * if it founds something different than string, letting it
1230 	 * to fall back to the old code.
1231 	 */
1232 	if (cur && cur->type != ACPI_TYPE_STRING) {
1233 		dev_info(dev, "found non-string _DSM entry for '%s'\n", var);
1234 		ACPI_FREE(obj);
1235 		return -EINVAL;
1236 	}
1237 
1238 	dev_info(dev, "found _DSM entry for '%s': %s\n", var,
1239 		 cur->string.pointer);
1240 	strscpy(out, cur->string.pointer, *out_len);
1241 	*out_len = strlen(cur->string.pointer);
1242 
1243 	ACPI_FREE(obj);
1244 	return 0;
1245 }
1246 
1247 /* Retrieves a device-specific configuration variable.  The dev
1248  * argument should be a device with an ACPI companion, as all
1249  * configuration is based on firmware ID.
1250  */
1251 static int gmin_get_config_var(struct device *maindev,
1252 			       bool is_gmin,
1253 			       const char *var,
1254 			       char *out, size_t *out_len)
1255 {
1256 	efi_char16_t var16[CFG_VAR_NAME_MAX];
1257 	const struct dmi_system_id *id;
1258 	struct device *dev = maindev;
1259 	char var8[CFG_VAR_NAME_MAX];
1260 	struct efivar_entry *ev;
1261 	int i, ret;
1262 
1263 	/* For sensors, try first to use the _DSM table */
1264 	if (!is_gmin) {
1265 		ret = gmin_get_config_dsm_var(maindev, var, out, out_len);
1266 		if (!ret)
1267 			return 0;
1268 	}
1269 
1270 	/* Fall-back to other approaches */
1271 
1272 	if (!is_gmin && ACPI_COMPANION(dev))
1273 		dev = &ACPI_COMPANION(dev)->dev;
1274 
1275 	if (!is_gmin)
1276 		ret = snprintf(var8, sizeof(var8), "%s_%s", dev_name(dev), var);
1277 	else
1278 		ret = snprintf(var8, sizeof(var8), "gmin_%s", var);
1279 
1280 	if (ret < 0 || ret >= sizeof(var8) - 1)
1281 		return -EINVAL;
1282 
1283 	/* First check a hard-coded list of board-specific variables.
1284 	 * Some device firmwares lack the ability to set EFI variables at
1285 	 * runtime.
1286 	 */
1287 	id = dmi_first_match(gmin_vars);
1288 	if (id) {
1289 		ret = gmin_get_hardcoded_var(maindev, id->driver_data, var8,
1290 					     out, out_len);
1291 		if (!ret)
1292 			return 0;
1293 	}
1294 
1295 	/* Our variable names are ASCII by construction, but EFI names
1296 	 * are wide chars.  Convert and zero-pad.
1297 	 */
1298 	memset(var16, 0, sizeof(var16));
1299 	for (i = 0; i < sizeof(var8) && var8[i]; i++)
1300 		var16[i] = var8[i];
1301 
1302 	/* Not sure this API usage is kosher; efivar_entry_get()'s
1303 	 * implementation simply uses VariableName and VendorGuid from
1304 	 * the struct and ignores the rest, but it seems like there
1305 	 * ought to be an "official" efivar_entry registered
1306 	 * somewhere?
1307 	 */
1308 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1309 	if (!ev)
1310 		return -ENOMEM;
1311 	memcpy(&ev->var.VariableName, var16, sizeof(var16));
1312 	ev->var.VendorGuid = GMIN_CFG_VAR_EFI_GUID;
1313 	ev->var.DataSize = *out_len;
1314 
1315 	ret = efivar_entry_get(ev, &ev->var.Attributes,
1316 			       &ev->var.DataSize, ev->var.Data);
1317 	if (ret == 0) {
1318 		memcpy(out, ev->var.Data, ev->var.DataSize);
1319 		*out_len = ev->var.DataSize;
1320 		dev_info(maindev, "found EFI entry for '%s'\n", var8);
1321 	} else if (is_gmin) {
1322 		dev_info(maindev, "Failed to find EFI gmin variable %s\n", var8);
1323 	} else {
1324 		dev_info(maindev, "Failed to find EFI variable %s\n", var8);
1325 	}
1326 
1327 	kfree(ev);
1328 
1329 	return ret;
1330 }
1331 
1332 int gmin_get_var_int(struct device *dev, bool is_gmin, const char *var, int def)
1333 {
1334 	char val[CFG_VAR_NAME_MAX];
1335 	size_t len = sizeof(val);
1336 	long result;
1337 	int ret;
1338 
1339 	ret = gmin_get_config_var(dev, is_gmin, var, val, &len);
1340 	if (!ret) {
1341 		val[len] = 0;
1342 		ret = kstrtol(val, 0, &result);
1343 	} else {
1344 		dev_info(dev, "%s: using default (%d)\n", var, def);
1345 	}
1346 
1347 	return ret ? def : result;
1348 }
1349 EXPORT_SYMBOL_GPL(gmin_get_var_int);
1350 
1351 int camera_sensor_csi(struct v4l2_subdev *sd, u32 port,
1352 		      u32 lanes, u32 format, u32 bayer_order, int flag)
1353 {
1354 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1355 	struct camera_mipi_info *csi = NULL;
1356 
1357 	if (flag) {
1358 		csi = kzalloc(sizeof(*csi), GFP_KERNEL);
1359 		if (!csi)
1360 			return -ENOMEM;
1361 		csi->port = port;
1362 		csi->num_lanes = lanes;
1363 		csi->input_format = format;
1364 		csi->raw_bayer_order = bayer_order;
1365 		v4l2_set_subdev_hostdata(sd, (void *)csi);
1366 		csi->metadata_format = ATOMISP_INPUT_FORMAT_EMBEDDED;
1367 		csi->metadata_effective_width = NULL;
1368 		dev_info(&client->dev,
1369 			 "camera pdata: port: %d lanes: %d order: %8.8x\n",
1370 			 port, lanes, bayer_order);
1371 	} else {
1372 		csi = v4l2_get_subdev_hostdata(sd);
1373 		kfree(csi);
1374 	}
1375 
1376 	return 0;
1377 }
1378 EXPORT_SYMBOL_GPL(camera_sensor_csi);
1379 
1380 /* PCI quirk: The BYT ISP advertises PCI runtime PM but it doesn't
1381  * work.  Disable so the kernel framework doesn't hang the device
1382  * trying.  The driver itself does direct calls to the PUNIT to manage
1383  * ISP power.
1384  */
1385 static void isp_pm_cap_fixup(struct pci_dev *pdev)
1386 {
1387 	dev_info(&pdev->dev, "Disabling PCI power management on camera ISP\n");
1388 	pdev->pm_cap = 0;
1389 }
1390 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, 0x0f38, isp_pm_cap_fixup);
1391 
1392 MODULE_DESCRIPTION("Ancillary routines for binding ACPI devices");
1393 MODULE_LICENSE("GPL");
1394