1 /*
2  * Support for OmniVision OV5693 1080p HD camera sensor.
3  *
4  * Copyright (c) 2013 Intel Corporation. All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License version
8  * 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  *
16  */
17 
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/string.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kmod.h>
26 #include <linux/device.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/moduleparam.h>
31 #include <media/v4l2-device.h>
32 #include <linux/io.h>
33 #include <linux/acpi.h>
34 #include "../../include/linux/atomisp_gmin_platform.h"
35 
36 #include "ov5693.h"
37 #include "ad5823.h"
38 
39 #define __cci_delay(t) \
40 	do { \
41 		if ((t) < 10) { \
42 			usleep_range((t) * 1000, ((t) + 1) * 1000); \
43 		} else { \
44 			msleep((t)); \
45 		} \
46 	} while (0)
47 
48 /* Value 30ms reached through experimentation on byt ecs.
49  * The DS specifies a much lower value but when using a smaller value
50  * the I2C bus sometimes locks up permanently when starting the camera.
51  * This issue could not be reproduced on cht, so we can reduce the
52  * delay value to a lower value when insmod.
53  */
54 static uint up_delay = 30;
55 module_param(up_delay, uint, 0644);
56 MODULE_PARM_DESC(up_delay, "Delay prior to the first CCI transaction for ov5693");
57 
58 static int vcm_ad_i2c_wr8(struct i2c_client *client, u8 reg, u8 val)
59 {
60 	int err;
61 	struct i2c_msg msg;
62 	u8 buf[2];
63 
64 	buf[0] = reg;
65 	buf[1] = val;
66 
67 	msg.addr = VCM_ADDR;
68 	msg.flags = 0;
69 	msg.len = 2;
70 	msg.buf = &buf[0];
71 
72 	err = i2c_transfer(client->adapter, &msg, 1);
73 	if (err != 1) {
74 		dev_err(&client->dev, "%s: vcm i2c fail, err code = %d\n",
75 			__func__, err);
76 		return -EIO;
77 	}
78 	return 0;
79 }
80 
81 static int ad5823_i2c_write(struct i2c_client *client, u8 reg, u8 val)
82 {
83 	struct i2c_msg msg;
84 	u8 buf[2];
85 
86 	buf[0] = reg;
87 	buf[1] = val;
88 	msg.addr = AD5823_VCM_ADDR;
89 	msg.flags = 0;
90 	msg.len = 0x02;
91 	msg.buf = &buf[0];
92 
93 	if (i2c_transfer(client->adapter, &msg, 1) != 1)
94 		return -EIO;
95 	return 0;
96 }
97 
98 static int ad5823_i2c_read(struct i2c_client *client, u8 reg, u8 *val)
99 {
100 	struct i2c_msg msg[2];
101 	u8 buf[2];
102 
103 	buf[0] = reg;
104 	buf[1] = 0;
105 
106 	msg[0].addr = AD5823_VCM_ADDR;
107 	msg[0].flags = 0;
108 	msg[0].len = 0x01;
109 	msg[0].buf = &buf[0];
110 
111 	msg[1].addr = 0x0c;
112 	msg[1].flags = I2C_M_RD;
113 	msg[1].len = 0x01;
114 	msg[1].buf = &buf[1];
115 	*val = 0;
116 	if (i2c_transfer(client->adapter, msg, 2) != 2)
117 		return -EIO;
118 	*val = buf[1];
119 	return 0;
120 }
121 
122 
123 static const uint32_t ov5693_embedded_effective_size = 28;
124 
125 /* i2c read/write stuff */
126 static int ov5693_read_reg(struct i2c_client *client,
127 			   u16 data_length, u16 reg, u16 *val)
128 {
129 	int err;
130 	struct i2c_msg msg[2];
131 	unsigned char data[6];
132 
133 	if (!client->adapter) {
134 		dev_err(&client->dev, "%s error, no client->adapter\n",
135 			__func__);
136 		return -ENODEV;
137 	}
138 
139 	if (data_length != OV5693_8BIT && data_length != OV5693_16BIT
140 					&& data_length != OV5693_32BIT) {
141 		dev_err(&client->dev, "%s error, invalid data length\n",
142 			__func__);
143 		return -EINVAL;
144 	}
145 
146 	memset(msg, 0, sizeof(msg));
147 
148 	msg[0].addr = client->addr;
149 	msg[0].flags = 0;
150 	msg[0].len = I2C_MSG_LENGTH;
151 	msg[0].buf = data;
152 
153 	/* high byte goes out first */
154 	data[0] = (u8)(reg >> 8);
155 	data[1] = (u8)(reg & 0xff);
156 
157 	msg[1].addr = client->addr;
158 	msg[1].len = data_length;
159 	msg[1].flags = I2C_M_RD;
160 	msg[1].buf = data;
161 
162 	err = i2c_transfer(client->adapter, msg, 2);
163 	if (err != 2) {
164 		if (err >= 0)
165 			err = -EIO;
166 		dev_err(&client->dev,
167 			"read from offset 0x%x error %d", reg, err);
168 		return err;
169 	}
170 
171 	*val = 0;
172 	/* high byte comes first */
173 	if (data_length == OV5693_8BIT)
174 		*val = (u8)data[0];
175 	else if (data_length == OV5693_16BIT)
176 		*val = be16_to_cpu(*(u16 *)&data[0]);
177 	else
178 		*val = be32_to_cpu(*(u32 *)&data[0]);
179 
180 	return 0;
181 }
182 
183 static int ov5693_i2c_write(struct i2c_client *client, u16 len, u8 *data)
184 {
185 	struct i2c_msg msg;
186 	const int num_msg = 1;
187 	int ret;
188 
189 	msg.addr = client->addr;
190 	msg.flags = 0;
191 	msg.len = len;
192 	msg.buf = data;
193 	ret = i2c_transfer(client->adapter, &msg, 1);
194 
195 	return ret == num_msg ? 0 : -EIO;
196 }
197 
198 static int vcm_dw_i2c_write(struct i2c_client *client, u16 data)
199 {
200 	struct i2c_msg msg;
201 	const int num_msg = 1;
202 	int ret;
203 	u16 val;
204 
205 	val = cpu_to_be16(data);
206 	msg.addr = VCM_ADDR;
207 	msg.flags = 0;
208 	msg.len = OV5693_16BIT;
209 	msg.buf = (u8 *)&val;
210 
211 	ret = i2c_transfer(client->adapter, &msg, 1);
212 
213 	return ret == num_msg ? 0 : -EIO;
214 }
215 
216 /*
217  * Theory: per datasheet, the two VCMs both allow for a 2-byte read.
218  * The DW9714 doesn't actually specify what this does (it has a
219  * two-byte write-only protocol, but specifies the read sequence as
220  * legal), but it returns the same data (zeroes) always, after an
221  * undocumented initial NAK.  The AD5823 has a one-byte address
222  * register to which all writes go, and subsequent reads will cycle
223  * through the 8 bytes of registers.  Notably, the default values (the
224  * device is always power-cycled affirmatively, so we can rely on
225  * these) in AD5823 are not pairwise repetitions of the same 16 bit
226  * word.  So all we have to do is sequentially read two bytes at a
227  * time and see if we detect a difference in any of the first four
228  * pairs.
229  */
230 static int vcm_detect(struct i2c_client *client)
231 {
232 	int i, ret;
233 	struct i2c_msg msg;
234 	u16 data0 = 0, data;
235 
236 	for (i = 0; i < 4; i++) {
237 		msg.addr = VCM_ADDR;
238 		msg.flags = I2C_M_RD;
239 		msg.len = sizeof(data);
240 		msg.buf = (u8 *)&data;
241 		ret = i2c_transfer(client->adapter, &msg, 1);
242 
243 		/*
244 		 * DW9714 always fails the first read and returns
245 		 * zeroes for subsequent ones
246 		 */
247 		if (i == 0 && ret == -EREMOTEIO) {
248 			data0 = 0;
249 			continue;
250 		}
251 
252 		if (i == 0)
253 			data0 = data;
254 
255 		if (data != data0)
256 			return VCM_AD5823;
257 	}
258 	return ret == 1 ? VCM_DW9714 : ret;
259 }
260 
261 static int ov5693_write_reg(struct i2c_client *client, u16 data_length,
262 							u16 reg, u16 val)
263 {
264 	int ret;
265 	unsigned char data[4] = {0};
266 	u16 *wreg = (u16 *)data;
267 	const u16 len = data_length + sizeof(u16); /* 16-bit address + data */
268 
269 	if (data_length != OV5693_8BIT && data_length != OV5693_16BIT) {
270 		dev_err(&client->dev,
271 			"%s error, invalid data_length\n", __func__);
272 		return -EINVAL;
273 	}
274 
275 	/* high byte goes out first */
276 	*wreg = cpu_to_be16(reg);
277 
278 	if (data_length == OV5693_8BIT) {
279 		data[2] = (u8)(val);
280 	} else {
281 		/* OV5693_16BIT */
282 		u16 *wdata = (u16 *)&data[2];
283 		*wdata = cpu_to_be16(val);
284 	}
285 
286 	ret = ov5693_i2c_write(client, len, data);
287 	if (ret)
288 		dev_err(&client->dev,
289 			"write error: wrote 0x%x to offset 0x%x error %d",
290 			val, reg, ret);
291 
292 	return ret;
293 }
294 
295 /*
296  * ov5693_write_reg_array - Initializes a list of OV5693 registers
297  * @client: i2c driver client structure
298  * @reglist: list of registers to be written
299  *
300  * This function initializes a list of registers. When consecutive addresses
301  * are found in a row on the list, this function creates a buffer and sends
302  * consecutive data in a single i2c_transfer().
303  *
304  * __ov5693_flush_reg_array, __ov5693_buf_reg_array() and
305  * __ov5693_write_reg_is_consecutive() are internal functions to
306  * ov5693_write_reg_array_fast() and should be not used anywhere else.
307  *
308  */
309 
310 static int __ov5693_flush_reg_array(struct i2c_client *client,
311 				    struct ov5693_write_ctrl *ctrl)
312 {
313 	u16 size;
314 
315 	if (ctrl->index == 0)
316 		return 0;
317 
318 	size = sizeof(u16) + ctrl->index; /* 16-bit address + data */
319 	ctrl->buffer.addr = cpu_to_be16(ctrl->buffer.addr);
320 	ctrl->index = 0;
321 
322 	return ov5693_i2c_write(client, size, (u8 *)&ctrl->buffer);
323 }
324 
325 static int __ov5693_buf_reg_array(struct i2c_client *client,
326 				  struct ov5693_write_ctrl *ctrl,
327 				  const struct ov5693_reg *next)
328 {
329 	int size;
330 	u16 *data16;
331 
332 	switch (next->type) {
333 	case OV5693_8BIT:
334 		size = 1;
335 		ctrl->buffer.data[ctrl->index] = (u8)next->val;
336 		break;
337 	case OV5693_16BIT:
338 		size = 2;
339 		data16 = (u16 *)&ctrl->buffer.data[ctrl->index];
340 		*data16 = cpu_to_be16((u16)next->val);
341 		break;
342 	default:
343 		return -EINVAL;
344 	}
345 
346 	/* When first item is added, we need to store its starting address */
347 	if (ctrl->index == 0)
348 		ctrl->buffer.addr = next->reg;
349 
350 	ctrl->index += size;
351 
352 	/*
353 	 * Buffer cannot guarantee free space for u32? Better flush it to avoid
354 	 * possible lack of memory for next item.
355 	 */
356 	if (ctrl->index + sizeof(u16) >= OV5693_MAX_WRITE_BUF_SIZE)
357 		return __ov5693_flush_reg_array(client, ctrl);
358 
359 	return 0;
360 }
361 
362 static int __ov5693_write_reg_is_consecutive(struct i2c_client *client,
363 					     struct ov5693_write_ctrl *ctrl,
364 					     const struct ov5693_reg *next)
365 {
366 	if (ctrl->index == 0)
367 		return 1;
368 
369 	return ctrl->buffer.addr + ctrl->index == next->reg;
370 }
371 
372 static int ov5693_write_reg_array(struct i2c_client *client,
373 				  const struct ov5693_reg *reglist)
374 {
375 	const struct ov5693_reg *next = reglist;
376 	struct ov5693_write_ctrl ctrl;
377 	int err;
378 
379 	ctrl.index = 0;
380 	for (; next->type != OV5693_TOK_TERM; next++) {
381 		switch (next->type & OV5693_TOK_MASK) {
382 		case OV5693_TOK_DELAY:
383 			err = __ov5693_flush_reg_array(client, &ctrl);
384 			if (err)
385 				return err;
386 			msleep(next->val);
387 			break;
388 		default:
389 			/*
390 			 * If next address is not consecutive, data needs to be
391 			 * flushed before proceed.
392 			 */
393 			if (!__ov5693_write_reg_is_consecutive(client, &ctrl,
394 								next)) {
395 				err = __ov5693_flush_reg_array(client, &ctrl);
396 				if (err)
397 					return err;
398 			}
399 			err = __ov5693_buf_reg_array(client, &ctrl, next);
400 			if (err) {
401 				dev_err(&client->dev,
402 					"%s: write error, aborted\n",
403 					__func__);
404 				return err;
405 			}
406 			break;
407 		}
408 	}
409 
410 	return __ov5693_flush_reg_array(client, &ctrl);
411 }
412 static int ov5693_g_focal(struct v4l2_subdev *sd, s32 *val)
413 {
414 	*val = (OV5693_FOCAL_LENGTH_NUM << 16) | OV5693_FOCAL_LENGTH_DEM;
415 	return 0;
416 }
417 
418 static int ov5693_g_fnumber(struct v4l2_subdev *sd, s32 *val)
419 {
420 	/*const f number for imx*/
421 	*val = (OV5693_F_NUMBER_DEFAULT_NUM << 16) | OV5693_F_NUMBER_DEM;
422 	return 0;
423 }
424 
425 static int ov5693_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
426 {
427 	*val = (OV5693_F_NUMBER_DEFAULT_NUM << 24) |
428 		(OV5693_F_NUMBER_DEM << 16) |
429 		(OV5693_F_NUMBER_DEFAULT_NUM << 8) | OV5693_F_NUMBER_DEM;
430 	return 0;
431 }
432 
433 static int ov5693_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
434 {
435 	struct ov5693_device *dev = to_ov5693_sensor(sd);
436 
437 	*val = ov5693_res[dev->fmt_idx].bin_factor_x;
438 
439 	return 0;
440 }
441 
442 static int ov5693_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
443 {
444 	struct ov5693_device *dev = to_ov5693_sensor(sd);
445 
446 	*val = ov5693_res[dev->fmt_idx].bin_factor_y;
447 
448 	return 0;
449 }
450 
451 static int ov5693_get_intg_factor(struct i2c_client *client,
452 				struct camera_mipi_info *info,
453 				const struct ov5693_resolution *res)
454 {
455 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
456 	struct ov5693_device *dev = to_ov5693_sensor(sd);
457 	struct atomisp_sensor_mode_data *buf = &info->data;
458 	unsigned int pix_clk_freq_hz;
459 	u16 reg_val;
460 	int ret;
461 
462 	if (info == NULL)
463 		return -EINVAL;
464 
465 	/* pixel clock */
466 	pix_clk_freq_hz = res->pix_clk_freq * 1000000;
467 
468 	dev->vt_pix_clk_freq_mhz = pix_clk_freq_hz;
469 	buf->vt_pix_clk_freq_mhz = pix_clk_freq_hz;
470 
471 	/* get integration time */
472 	buf->coarse_integration_time_min = OV5693_COARSE_INTG_TIME_MIN;
473 	buf->coarse_integration_time_max_margin =
474 					OV5693_COARSE_INTG_TIME_MAX_MARGIN;
475 
476 	buf->fine_integration_time_min = OV5693_FINE_INTG_TIME_MIN;
477 	buf->fine_integration_time_max_margin =
478 					OV5693_FINE_INTG_TIME_MAX_MARGIN;
479 
480 	buf->fine_integration_time_def = OV5693_FINE_INTG_TIME_MIN;
481 	buf->frame_length_lines = res->lines_per_frame;
482 	buf->line_length_pck = res->pixels_per_line;
483 	buf->read_mode = res->bin_mode;
484 
485 	/* get the cropping and output resolution to ISP for this mode. */
486 	ret =  ov5693_read_reg(client, OV5693_16BIT,
487 					OV5693_HORIZONTAL_START_H, &reg_val);
488 	if (ret)
489 		return ret;
490 	buf->crop_horizontal_start = reg_val;
491 
492 	ret =  ov5693_read_reg(client, OV5693_16BIT,
493 					OV5693_VERTICAL_START_H, &reg_val);
494 	if (ret)
495 		return ret;
496 	buf->crop_vertical_start = reg_val;
497 
498 	ret = ov5693_read_reg(client, OV5693_16BIT,
499 					OV5693_HORIZONTAL_END_H, &reg_val);
500 	if (ret)
501 		return ret;
502 	buf->crop_horizontal_end = reg_val;
503 
504 	ret = ov5693_read_reg(client, OV5693_16BIT,
505 					OV5693_VERTICAL_END_H, &reg_val);
506 	if (ret)
507 		return ret;
508 	buf->crop_vertical_end = reg_val;
509 
510 	ret = ov5693_read_reg(client, OV5693_16BIT,
511 				OV5693_HORIZONTAL_OUTPUT_SIZE_H, &reg_val);
512 	if (ret)
513 		return ret;
514 	buf->output_width = reg_val;
515 
516 	ret = ov5693_read_reg(client, OV5693_16BIT,
517 				OV5693_VERTICAL_OUTPUT_SIZE_H, &reg_val);
518 	if (ret)
519 		return ret;
520 	buf->output_height = reg_val;
521 
522 	buf->binning_factor_x = res->bin_factor_x ?
523 					res->bin_factor_x : 1;
524 	buf->binning_factor_y = res->bin_factor_y ?
525 					res->bin_factor_y : 1;
526 	return 0;
527 }
528 
529 static long __ov5693_set_exposure(struct v4l2_subdev *sd, int coarse_itg,
530 				 int gain, int digitgain)
531 
532 {
533 	struct i2c_client *client = v4l2_get_subdevdata(sd);
534 	struct ov5693_device *dev = to_ov5693_sensor(sd);
535 	u16 vts, hts;
536 	int ret, exp_val;
537 
538 	hts = ov5693_res[dev->fmt_idx].pixels_per_line;
539 	vts = ov5693_res[dev->fmt_idx].lines_per_frame;
540 	/*
541 	 * If coarse_itg is larger than 1<<15, can not write to reg directly.
542 	 * The way is to write coarse_itg/2 to the reg, meanwhile write 2*hts
543 	 * to the reg.
544 	 */
545 	if (coarse_itg > (1 << 15)) {
546 		hts = hts * 2;
547 		coarse_itg = (int)coarse_itg / 2;
548 	}
549 	/* group hold */
550 	ret = ov5693_write_reg(client, OV5693_8BIT,
551 				OV5693_GROUP_ACCESS, 0x00);
552 	if (ret) {
553 		dev_err(&client->dev, "%s: write %x error, aborted\n",
554 			__func__, OV5693_GROUP_ACCESS);
555 		return ret;
556 	}
557 
558 	ret = ov5693_write_reg(client, OV5693_8BIT,
559 				OV5693_TIMING_HTS_H, (hts >> 8) & 0xFF);
560 	if (ret) {
561 		dev_err(&client->dev, "%s: write %x error, aborted\n",
562 			__func__, OV5693_TIMING_HTS_H);
563 		return ret;
564 	}
565 
566 	ret = ov5693_write_reg(client, OV5693_8BIT,
567 				OV5693_TIMING_HTS_L, hts & 0xFF);
568 	if (ret) {
569 		dev_err(&client->dev, "%s: write %x error, aborted\n",
570 			__func__, OV5693_TIMING_HTS_L);
571 		return ret;
572 	}
573 	/* Increase the VTS to match exposure + MARGIN */
574 	if (coarse_itg > vts - OV5693_INTEGRATION_TIME_MARGIN)
575 		vts = (u16) coarse_itg + OV5693_INTEGRATION_TIME_MARGIN;
576 
577 	ret = ov5693_write_reg(client, OV5693_8BIT,
578 				OV5693_TIMING_VTS_H, (vts >> 8) & 0xFF);
579 	if (ret) {
580 		dev_err(&client->dev, "%s: write %x error, aborted\n",
581 			__func__, OV5693_TIMING_VTS_H);
582 		return ret;
583 	}
584 
585 	ret = ov5693_write_reg(client, OV5693_8BIT,
586 					OV5693_TIMING_VTS_L, vts & 0xFF);
587 	if (ret) {
588 		dev_err(&client->dev, "%s: write %x error, aborted\n",
589 			__func__, OV5693_TIMING_VTS_L);
590 		return ret;
591 	}
592 
593 	/* set exposure */
594 
595 	/* Lower four bit should be 0*/
596 	exp_val = coarse_itg << 4;
597 	ret = ov5693_write_reg(client, OV5693_8BIT,
598 			       OV5693_EXPOSURE_L, exp_val & 0xFF);
599 	if (ret) {
600 		dev_err(&client->dev, "%s: write %x error, aborted\n",
601 			__func__, OV5693_EXPOSURE_L);
602 		return ret;
603 	}
604 
605 	ret = ov5693_write_reg(client, OV5693_8BIT,
606 			       OV5693_EXPOSURE_M, (exp_val >> 8) & 0xFF);
607 	if (ret) {
608 		dev_err(&client->dev, "%s: write %x error, aborted\n",
609 			__func__, OV5693_EXPOSURE_M);
610 		return ret;
611 	}
612 
613 	ret = ov5693_write_reg(client, OV5693_8BIT,
614 			       OV5693_EXPOSURE_H, (exp_val >> 16) & 0x0F);
615 	if (ret) {
616 		dev_err(&client->dev, "%s: write %x error, aborted\n",
617 			__func__, OV5693_EXPOSURE_H);
618 		return ret;
619 	}
620 
621 	/* Analog gain */
622 	ret = ov5693_write_reg(client, OV5693_8BIT,
623 				OV5693_AGC_L, gain & 0xff);
624 	if (ret) {
625 		dev_err(&client->dev, "%s: write %x error, aborted\n",
626 			__func__, OV5693_AGC_L);
627 		return ret;
628 	}
629 
630 	ret = ov5693_write_reg(client, OV5693_8BIT,
631 				OV5693_AGC_H, (gain >> 8) & 0xff);
632 	if (ret) {
633 		dev_err(&client->dev, "%s: write %x error, aborted\n",
634 			__func__, OV5693_AGC_H);
635 		return ret;
636 	}
637 
638 	/* Digital gain */
639 	if (digitgain) {
640 		ret = ov5693_write_reg(client, OV5693_16BIT,
641 				OV5693_MWB_RED_GAIN_H, digitgain);
642 		if (ret) {
643 			dev_err(&client->dev, "%s: write %x error, aborted\n",
644 				__func__, OV5693_MWB_RED_GAIN_H);
645 			return ret;
646 		}
647 
648 		ret = ov5693_write_reg(client, OV5693_16BIT,
649 				OV5693_MWB_GREEN_GAIN_H, digitgain);
650 		if (ret) {
651 			dev_err(&client->dev, "%s: write %x error, aborted\n",
652 				__func__, OV5693_MWB_RED_GAIN_H);
653 			return ret;
654 		}
655 
656 		ret = ov5693_write_reg(client, OV5693_16BIT,
657 				OV5693_MWB_BLUE_GAIN_H, digitgain);
658 		if (ret) {
659 			dev_err(&client->dev, "%s: write %x error, aborted\n",
660 				__func__, OV5693_MWB_RED_GAIN_H);
661 			return ret;
662 		}
663 	}
664 
665 	/* End group */
666 	ret = ov5693_write_reg(client, OV5693_8BIT,
667 				OV5693_GROUP_ACCESS, 0x10);
668 	if (ret)
669 		return ret;
670 
671 	/* Delay launch group */
672 	ret = ov5693_write_reg(client, OV5693_8BIT,
673 				OV5693_GROUP_ACCESS, 0xa0);
674 	if (ret)
675 		return ret;
676 	return ret;
677 }
678 
679 static int ov5693_set_exposure(struct v4l2_subdev *sd, int exposure,
680 	int gain, int digitgain)
681 {
682 	struct ov5693_device *dev = to_ov5693_sensor(sd);
683 	int ret;
684 
685 	mutex_lock(&dev->input_lock);
686 	ret = __ov5693_set_exposure(sd, exposure, gain, digitgain);
687 	mutex_unlock(&dev->input_lock);
688 
689 	return ret;
690 }
691 
692 static long ov5693_s_exposure(struct v4l2_subdev *sd,
693 			       struct atomisp_exposure *exposure)
694 {
695 	u16 coarse_itg = exposure->integration_time[0];
696 	u16 analog_gain = exposure->gain[0];
697 	u16 digital_gain = exposure->gain[1];
698 
699 	/* we should not accept the invalid value below */
700 	if (analog_gain == 0) {
701 		struct i2c_client *client = v4l2_get_subdevdata(sd);
702 
703 		v4l2_err(client, "%s: invalid value\n", __func__);
704 		return -EINVAL;
705 	}
706 	return ov5693_set_exposure(sd, coarse_itg, analog_gain, digital_gain);
707 }
708 
709 static int ov5693_read_otp_reg_array(struct i2c_client *client, u16 size,
710 				     u16 addr, u8 *buf)
711 {
712 	u16 index;
713 	int ret;
714 	u16 *pVal = NULL;
715 
716 	for (index = 0; index <= size; index++) {
717 		pVal = (u16 *) (buf + index);
718 		ret =
719 			ov5693_read_reg(client, OV5693_8BIT, addr + index,
720 				    pVal);
721 		if (ret)
722 			return ret;
723 	}
724 
725 	return 0;
726 }
727 
728 static int __ov5693_otp_read(struct v4l2_subdev *sd, u8 *buf)
729 {
730 	struct i2c_client *client = v4l2_get_subdevdata(sd);
731 	struct ov5693_device *dev = to_ov5693_sensor(sd);
732 	int ret;
733 	int i;
734 	u8 *b = buf;
735 
736 	dev->otp_size = 0;
737 	for (i = 1; i < OV5693_OTP_BANK_MAX; i++) {
738 		/*set bank NO and OTP read mode. */
739 		ret = ov5693_write_reg(client, OV5693_8BIT, OV5693_OTP_BANK_REG, (i | 0xc0));	//[7:6] 2'b11 [5:0] bank no
740 		if (ret) {
741 			dev_err(&client->dev, "failed to prepare OTP page\n");
742 			return ret;
743 		}
744 		//pr_debug("write 0x%x->0x%x\n",OV5693_OTP_BANK_REG,(i|0xc0));
745 
746 		/*enable read */
747 		ret = ov5693_write_reg(client, OV5693_8BIT, OV5693_OTP_READ_REG, OV5693_OTP_MODE_READ);	// enable :1
748 		if (ret) {
749 			dev_err(&client->dev,
750 				"failed to set OTP reading mode page");
751 			return ret;
752 		}
753 		//pr_debug("write 0x%x->0x%x\n",OV5693_OTP_READ_REG,OV5693_OTP_MODE_READ);
754 
755 		/* Reading the OTP data array */
756 		ret = ov5693_read_otp_reg_array(client, OV5693_OTP_BANK_SIZE,
757 						OV5693_OTP_START_ADDR,
758 						b);
759 		if (ret) {
760 			dev_err(&client->dev, "failed to read OTP data\n");
761 			return ret;
762 		}
763 
764 		//pr_debug("BANK[%2d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", i, *b, *(b+1), *(b+2), *(b+3), *(b+4), *(b+5), *(b+6), *(b+7), *(b+8), *(b+9), *(b+10), *(b+11), *(b+12), *(b+13), *(b+14), *(b+15));
765 
766 		//Intel OTP map, try to read 320byts first.
767 		if (i == 21) {
768 			if ((*b) == 0) {
769 				dev->otp_size = 320;
770 				break;
771 			} else {
772 				b = buf;
773 				continue;
774 			}
775 		} else if (i == 24) {		//if the first 320bytes data doesn't not exist, try to read the next 32bytes data.
776 			if ((*b) == 0) {
777 				dev->otp_size = 32;
778 				break;
779 			} else {
780 				b = buf;
781 				continue;
782 			}
783 		} else if (i == 27) {		//if the prvious 32bytes data doesn't exist, try to read the next 32bytes data again.
784 			if ((*b) == 0) {
785 				dev->otp_size = 32;
786 				break;
787 			} else {
788 				dev->otp_size = 0;	// no OTP data.
789 				break;
790 			}
791 		}
792 
793 		b = b + OV5693_OTP_BANK_SIZE;
794 	}
795 	return 0;
796 }
797 
798 /*
799  * Read otp data and store it into a kmalloced buffer.
800  * The caller must kfree the buffer when no more needed.
801  * @size: set to the size of the returned otp data.
802  */
803 static void *ov5693_otp_read(struct v4l2_subdev *sd)
804 {
805 	struct i2c_client *client = v4l2_get_subdevdata(sd);
806 	u8 *buf;
807 	int ret;
808 
809 	buf = devm_kzalloc(&client->dev, (OV5693_OTP_DATA_SIZE + 16), GFP_KERNEL);
810 	if (!buf)
811 		return ERR_PTR(-ENOMEM);
812 
813 	//otp valid after mipi on and sw stream on
814 	ret = ov5693_write_reg(client, OV5693_8BIT, OV5693_FRAME_OFF_NUM, 0x00);
815 
816 	ret = ov5693_write_reg(client, OV5693_8BIT,
817 			       OV5693_SW_STREAM, OV5693_START_STREAMING);
818 
819 	ret = __ov5693_otp_read(sd, buf);
820 
821 	//mipi off and sw stream off after otp read
822 	ret = ov5693_write_reg(client, OV5693_8BIT, OV5693_FRAME_OFF_NUM, 0x0f);
823 
824 	ret = ov5693_write_reg(client, OV5693_8BIT,
825 			       OV5693_SW_STREAM, OV5693_STOP_STREAMING);
826 
827 	/* Driver has failed to find valid data */
828 	if (ret) {
829 		dev_err(&client->dev, "sensor found no valid OTP data\n");
830 		return ERR_PTR(ret);
831 	}
832 
833 	return buf;
834 }
835 
836 static int ov5693_g_priv_int_data(struct v4l2_subdev *sd,
837 				  struct v4l2_private_int_data *priv)
838 {
839 	struct i2c_client *client = v4l2_get_subdevdata(sd);
840 	struct ov5693_device *dev = to_ov5693_sensor(sd);
841 	u8 __user *to = priv->data;
842 	u32 read_size = priv->size;
843 	int ret;
844 
845 	/* No need to copy data if size is 0 */
846 	if (!read_size)
847 		goto out;
848 
849 	if (IS_ERR(dev->otp_data)) {
850 		dev_err(&client->dev, "OTP data not available");
851 		return PTR_ERR(dev->otp_data);
852 	}
853 
854 	/* Correct read_size value only if bigger than maximum */
855 	if (read_size > OV5693_OTP_DATA_SIZE)
856 		read_size = OV5693_OTP_DATA_SIZE;
857 
858 	ret = copy_to_user(to, dev->otp_data, read_size);
859 	if (ret) {
860 		dev_err(&client->dev, "%s: failed to copy OTP data to user\n",
861 			__func__);
862 		return -EFAULT;
863 	}
864 
865 	pr_debug("%s read_size:%d\n", __func__, read_size);
866 
867 out:
868 	/* Return correct size */
869 	priv->size = dev->otp_size;
870 
871 	return 0;
872 
873 }
874 
875 static long ov5693_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
876 {
877 
878 	switch (cmd) {
879 	case ATOMISP_IOC_S_EXPOSURE:
880 		return ov5693_s_exposure(sd, arg);
881 	case ATOMISP_IOC_G_SENSOR_PRIV_INT_DATA:
882 		return ov5693_g_priv_int_data(sd, arg);
883 	default:
884 		return -EINVAL;
885 	}
886 	return 0;
887 }
888 
889 /*
890  * This returns the exposure time being used. This should only be used
891  * for filling in EXIF data, not for actual image processing.
892  */
893 static int ov5693_q_exposure(struct v4l2_subdev *sd, s32 *value)
894 {
895 	struct i2c_client *client = v4l2_get_subdevdata(sd);
896 	u16 reg_v, reg_v2;
897 	int ret;
898 
899 	/* get exposure */
900 	ret = ov5693_read_reg(client, OV5693_8BIT,
901 					OV5693_EXPOSURE_L,
902 					&reg_v);
903 	if (ret)
904 		goto err;
905 
906 	ret = ov5693_read_reg(client, OV5693_8BIT,
907 					OV5693_EXPOSURE_M,
908 					&reg_v2);
909 	if (ret)
910 		goto err;
911 
912 	reg_v += reg_v2 << 8;
913 	ret = ov5693_read_reg(client, OV5693_8BIT,
914 					OV5693_EXPOSURE_H,
915 					&reg_v2);
916 	if (ret)
917 		goto err;
918 
919 	*value = reg_v + (((u32)reg_v2 << 16));
920 err:
921 	return ret;
922 }
923 
924 static int ad5823_t_focus_vcm(struct v4l2_subdev *sd, u16 val)
925 {
926 	struct i2c_client *client = v4l2_get_subdevdata(sd);
927 	int ret = -EINVAL;
928 	u8 vcm_code;
929 
930 	ret = ad5823_i2c_read(client, AD5823_REG_VCM_CODE_MSB, &vcm_code);
931 	if (ret)
932 		return ret;
933 
934 	/* set reg VCM_CODE_MSB Bit[1:0] */
935 	vcm_code = (vcm_code & VCM_CODE_MSB_MASK) |
936 		((val >> 8) & ~VCM_CODE_MSB_MASK);
937 	ret = ad5823_i2c_write(client, AD5823_REG_VCM_CODE_MSB, vcm_code);
938 	if (ret)
939 		return ret;
940 
941 	/* set reg VCM_CODE_LSB Bit[7:0] */
942 	ret = ad5823_i2c_write(client, AD5823_REG_VCM_CODE_LSB, (val & 0xff));
943 	if (ret)
944 		return ret;
945 
946 	/* set required vcm move time */
947 	vcm_code = AD5823_RESONANCE_PERIOD / AD5823_RESONANCE_COEF
948 		- AD5823_HIGH_FREQ_RANGE;
949 	ret = ad5823_i2c_write(client, AD5823_REG_VCM_MOVE_TIME, vcm_code);
950 
951 	return ret;
952 }
953 
954 int ad5823_t_focus_abs(struct v4l2_subdev *sd, s32 value)
955 {
956 	value = min(value, AD5823_MAX_FOCUS_POS);
957 	return ad5823_t_focus_vcm(sd, value);
958 }
959 
960 static int ov5693_t_focus_abs(struct v4l2_subdev *sd, s32 value)
961 {
962 	struct ov5693_device *dev = to_ov5693_sensor(sd);
963 	struct i2c_client *client = v4l2_get_subdevdata(sd);
964 	int ret = 0;
965 
966 	dev_dbg(&client->dev, "%s: FOCUS_POS: 0x%x\n", __func__, value);
967 	value = clamp(value, 0, OV5693_VCM_MAX_FOCUS_POS);
968 	if (dev->vcm == VCM_DW9714) {
969 		if (dev->vcm_update) {
970 			ret = vcm_dw_i2c_write(client, VCM_PROTECTION_OFF);
971 			if (ret)
972 				return ret;
973 			ret = vcm_dw_i2c_write(client, DIRECT_VCM);
974 			if (ret)
975 				return ret;
976 			ret = vcm_dw_i2c_write(client, VCM_PROTECTION_ON);
977 			if (ret)
978 				return ret;
979 			dev->vcm_update = false;
980 		}
981 		ret = vcm_dw_i2c_write(client,
982 				       vcm_val(value, VCM_DEFAULT_S));
983 	} else if (dev->vcm == VCM_AD5823) {
984 		ad5823_t_focus_abs(sd, value);
985 	}
986 	if (ret == 0) {
987 		dev->number_of_steps = value - dev->focus;
988 		dev->focus = value;
989 		dev->timestamp_t_focus_abs = ktime_get();
990 	} else
991 		dev_err(&client->dev,
992 			"%s: i2c failed. ret %d\n", __func__, ret);
993 
994 	return ret;
995 }
996 
997 static int ov5693_t_focus_rel(struct v4l2_subdev *sd, s32 value)
998 {
999 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1000 
1001 	return ov5693_t_focus_abs(sd, dev->focus + value);
1002 }
1003 
1004 #define DELAY_PER_STEP_NS	1000000
1005 #define DELAY_MAX_PER_STEP_NS	(1000000 * 1023)
1006 static int ov5693_q_focus_status(struct v4l2_subdev *sd, s32 *value)
1007 {
1008 	u32 status = 0;
1009 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1010 	ktime_t temptime;
1011 	ktime_t timedelay = ns_to_ktime(min_t(u32,
1012 			abs(dev->number_of_steps) * DELAY_PER_STEP_NS,
1013 			DELAY_MAX_PER_STEP_NS));
1014 
1015 	temptime = ktime_sub(ktime_get(), (dev->timestamp_t_focus_abs));
1016 	if (ktime_compare(temptime, timedelay) <= 0) {
1017 		status |= ATOMISP_FOCUS_STATUS_MOVING;
1018 		status |= ATOMISP_FOCUS_HP_IN_PROGRESS;
1019 	} else {
1020 		status |= ATOMISP_FOCUS_STATUS_ACCEPTS_NEW_MOVE;
1021 		status |= ATOMISP_FOCUS_HP_COMPLETE;
1022 	}
1023 
1024 	*value = status;
1025 
1026 	return 0;
1027 }
1028 
1029 static int ov5693_q_focus_abs(struct v4l2_subdev *sd, s32 *value)
1030 {
1031 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1032 	s32 val;
1033 
1034 	ov5693_q_focus_status(sd, &val);
1035 
1036 	if (val & ATOMISP_FOCUS_STATUS_MOVING)
1037 		*value  = dev->focus - dev->number_of_steps;
1038 	else
1039 		*value  = dev->focus;
1040 
1041 	return 0;
1042 }
1043 
1044 static int ov5693_t_vcm_slew(struct v4l2_subdev *sd, s32 value)
1045 {
1046 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1047 
1048 	dev->number_of_steps = value;
1049 	dev->vcm_update = true;
1050 	return 0;
1051 }
1052 
1053 static int ov5693_t_vcm_timing(struct v4l2_subdev *sd, s32 value)
1054 {
1055 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1056 
1057 	dev->number_of_steps = value;
1058 	dev->vcm_update = true;
1059 	return 0;
1060 }
1061 
1062 static int ov5693_s_ctrl(struct v4l2_ctrl *ctrl)
1063 {
1064 	struct ov5693_device *dev =
1065 	    container_of(ctrl->handler, struct ov5693_device, ctrl_handler);
1066 	struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
1067 	int ret = 0;
1068 
1069 	switch (ctrl->id) {
1070 	case V4L2_CID_FOCUS_ABSOLUTE:
1071 		dev_dbg(&client->dev, "%s: CID_FOCUS_ABSOLUTE:%d.\n",
1072 			__func__, ctrl->val);
1073 		ret = ov5693_t_focus_abs(&dev->sd, ctrl->val);
1074 		break;
1075 	case V4L2_CID_FOCUS_RELATIVE:
1076 		dev_dbg(&client->dev, "%s: CID_FOCUS_RELATIVE:%d.\n",
1077 			__func__, ctrl->val);
1078 		ret = ov5693_t_focus_rel(&dev->sd, ctrl->val);
1079 		break;
1080 	case V4L2_CID_VCM_SLEW:
1081 		ret = ov5693_t_vcm_slew(&dev->sd, ctrl->val);
1082 		break;
1083 	case V4L2_CID_VCM_TIMEING:
1084 		ret = ov5693_t_vcm_timing(&dev->sd, ctrl->val);
1085 		break;
1086 	default:
1087 		ret = -EINVAL;
1088 	}
1089 	return ret;
1090 }
1091 
1092 static int ov5693_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1093 {
1094 	struct ov5693_device *dev =
1095 	    container_of(ctrl->handler, struct ov5693_device, ctrl_handler);
1096 	int ret = 0;
1097 
1098 	switch (ctrl->id) {
1099 	case V4L2_CID_EXPOSURE_ABSOLUTE:
1100 		ret = ov5693_q_exposure(&dev->sd, &ctrl->val);
1101 		break;
1102 	case V4L2_CID_FOCAL_ABSOLUTE:
1103 		ret = ov5693_g_focal(&dev->sd, &ctrl->val);
1104 		break;
1105 	case V4L2_CID_FNUMBER_ABSOLUTE:
1106 		ret = ov5693_g_fnumber(&dev->sd, &ctrl->val);
1107 		break;
1108 	case V4L2_CID_FNUMBER_RANGE:
1109 		ret = ov5693_g_fnumber_range(&dev->sd, &ctrl->val);
1110 		break;
1111 	case V4L2_CID_FOCUS_ABSOLUTE:
1112 		ret = ov5693_q_focus_abs(&dev->sd, &ctrl->val);
1113 		break;
1114 	case V4L2_CID_FOCUS_STATUS:
1115 		ret = ov5693_q_focus_status(&dev->sd, &ctrl->val);
1116 		break;
1117 	case V4L2_CID_BIN_FACTOR_HORZ:
1118 		ret = ov5693_g_bin_factor_x(&dev->sd, &ctrl->val);
1119 		break;
1120 	case V4L2_CID_BIN_FACTOR_VERT:
1121 		ret = ov5693_g_bin_factor_y(&dev->sd, &ctrl->val);
1122 		break;
1123 	default:
1124 		ret = -EINVAL;
1125 	}
1126 
1127 	return ret;
1128 }
1129 
1130 static const struct v4l2_ctrl_ops ctrl_ops = {
1131 	.s_ctrl = ov5693_s_ctrl,
1132 	.g_volatile_ctrl = ov5693_g_volatile_ctrl
1133 };
1134 
1135 struct v4l2_ctrl_config ov5693_controls[] = {
1136 	{
1137 	 .ops = &ctrl_ops,
1138 	 .id = V4L2_CID_EXPOSURE_ABSOLUTE,
1139 	 .type = V4L2_CTRL_TYPE_INTEGER,
1140 	 .name = "exposure",
1141 	 .min = 0x0,
1142 	 .max = 0xffff,
1143 	 .step = 0x01,
1144 	 .def = 0x00,
1145 	 .flags = 0,
1146 	 },
1147 	{
1148 	 .ops = &ctrl_ops,
1149 	 .id = V4L2_CID_FOCAL_ABSOLUTE,
1150 	 .type = V4L2_CTRL_TYPE_INTEGER,
1151 	 .name = "focal length",
1152 	 .min = OV5693_FOCAL_LENGTH_DEFAULT,
1153 	 .max = OV5693_FOCAL_LENGTH_DEFAULT,
1154 	 .step = 0x01,
1155 	 .def = OV5693_FOCAL_LENGTH_DEFAULT,
1156 	 .flags = 0,
1157 	 },
1158 	{
1159 	 .ops = &ctrl_ops,
1160 	 .id = V4L2_CID_FNUMBER_ABSOLUTE,
1161 	 .type = V4L2_CTRL_TYPE_INTEGER,
1162 	 .name = "f-number",
1163 	 .min = OV5693_F_NUMBER_DEFAULT,
1164 	 .max = OV5693_F_NUMBER_DEFAULT,
1165 	 .step = 0x01,
1166 	 .def = OV5693_F_NUMBER_DEFAULT,
1167 	 .flags = 0,
1168 	 },
1169 	{
1170 	 .ops = &ctrl_ops,
1171 	 .id = V4L2_CID_FNUMBER_RANGE,
1172 	 .type = V4L2_CTRL_TYPE_INTEGER,
1173 	 .name = "f-number range",
1174 	 .min = OV5693_F_NUMBER_RANGE,
1175 	 .max = OV5693_F_NUMBER_RANGE,
1176 	 .step = 0x01,
1177 	 .def = OV5693_F_NUMBER_RANGE,
1178 	 .flags = 0,
1179 	 },
1180 	{
1181 	 .ops = &ctrl_ops,
1182 	 .id = V4L2_CID_FOCUS_ABSOLUTE,
1183 	 .type = V4L2_CTRL_TYPE_INTEGER,
1184 	 .name = "focus move absolute",
1185 	 .min = 0,
1186 	 .max = OV5693_VCM_MAX_FOCUS_POS,
1187 	 .step = 1,
1188 	 .def = 0,
1189 	 .flags = 0,
1190 	 },
1191 	{
1192 	 .ops = &ctrl_ops,
1193 	 .id = V4L2_CID_FOCUS_RELATIVE,
1194 	 .type = V4L2_CTRL_TYPE_INTEGER,
1195 	 .name = "focus move relative",
1196 	 .min = OV5693_VCM_MAX_FOCUS_NEG,
1197 	 .max = OV5693_VCM_MAX_FOCUS_POS,
1198 	 .step = 1,
1199 	 .def = 0,
1200 	 .flags = 0,
1201 	 },
1202 	{
1203 	 .ops = &ctrl_ops,
1204 	 .id = V4L2_CID_FOCUS_STATUS,
1205 	 .type = V4L2_CTRL_TYPE_INTEGER,
1206 	 .name = "focus status",
1207 	 .min = 0,
1208 	 .max = 100,		/* allow enum to grow in the future */
1209 	 .step = 1,
1210 	 .def = 0,
1211 	 .flags = 0,
1212 	 },
1213 	{
1214 	 .ops = &ctrl_ops,
1215 	 .id = V4L2_CID_VCM_SLEW,
1216 	 .type = V4L2_CTRL_TYPE_INTEGER,
1217 	 .name = "vcm slew",
1218 	 .min = 0,
1219 	 .max = OV5693_VCM_SLEW_STEP_MAX,
1220 	 .step = 1,
1221 	 .def = 0,
1222 	 .flags = 0,
1223 	 },
1224 	{
1225 	 .ops = &ctrl_ops,
1226 	 .id = V4L2_CID_VCM_TIMEING,
1227 	 .type = V4L2_CTRL_TYPE_INTEGER,
1228 	 .name = "vcm step time",
1229 	 .min = 0,
1230 	 .max = OV5693_VCM_SLEW_TIME_MAX,
1231 	 .step = 1,
1232 	 .def = 0,
1233 	 .flags = 0,
1234 	 },
1235 	{
1236 	 .ops = &ctrl_ops,
1237 	 .id = V4L2_CID_BIN_FACTOR_HORZ,
1238 	 .type = V4L2_CTRL_TYPE_INTEGER,
1239 	 .name = "horizontal binning factor",
1240 	 .min = 0,
1241 	 .max = OV5693_BIN_FACTOR_MAX,
1242 	 .step = 1,
1243 	 .def = 0,
1244 	 .flags = 0,
1245 	 },
1246 	{
1247 	 .ops = &ctrl_ops,
1248 	 .id = V4L2_CID_BIN_FACTOR_VERT,
1249 	 .type = V4L2_CTRL_TYPE_INTEGER,
1250 	 .name = "vertical binning factor",
1251 	 .min = 0,
1252 	 .max = OV5693_BIN_FACTOR_MAX,
1253 	 .step = 1,
1254 	 .def = 0,
1255 	 .flags = 0,
1256 	 },
1257 };
1258 
1259 static int ov5693_init(struct v4l2_subdev *sd)
1260 {
1261 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1262 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1263 	int ret;
1264 
1265 	pr_info("%s\n", __func__);
1266 	mutex_lock(&dev->input_lock);
1267 	dev->vcm_update = false;
1268 
1269 	if (dev->vcm == VCM_AD5823) {
1270 		ret = vcm_ad_i2c_wr8(client, 0x01, 0x01); /* vcm init test */
1271 		if (ret)
1272 			dev_err(&client->dev,
1273 				"vcm reset failed\n");
1274 		/*change the mode*/
1275 		ret = ad5823_i2c_write(client, AD5823_REG_VCM_CODE_MSB,
1276 				       AD5823_RING_CTRL_ENABLE);
1277 		if (ret)
1278 			dev_err(&client->dev,
1279 				"vcm enable ringing failed\n");
1280 		ret = ad5823_i2c_write(client, AD5823_REG_MODE,
1281 					AD5823_ARC_RES1);
1282 		if (ret)
1283 			dev_err(&client->dev,
1284 				"vcm change mode failed\n");
1285 	}
1286 
1287 	/*change initial focus value for ad5823*/
1288 	if (dev->vcm == VCM_AD5823) {
1289 		dev->focus = AD5823_INIT_FOCUS_POS;
1290 		ov5693_t_focus_abs(sd, AD5823_INIT_FOCUS_POS);
1291 	} else {
1292 		dev->focus = 0;
1293 		ov5693_t_focus_abs(sd, 0);
1294 	}
1295 
1296 	mutex_unlock(&dev->input_lock);
1297 
1298 	return 0;
1299 }
1300 
1301 static int power_ctrl(struct v4l2_subdev *sd, bool flag)
1302 {
1303 	int ret;
1304 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1305 
1306 	if (!dev || !dev->platform_data)
1307 		return -ENODEV;
1308 
1309 	/*
1310 	 * This driver assumes "internal DVDD, PWDNB tied to DOVDD".
1311 	 * In this set up only gpio0 (XSHUTDN) should be available
1312 	 * but in some products (for example ECS) gpio1 (PWDNB) is
1313 	 * also available. If gpio1 is available we emulate it being
1314 	 * tied to DOVDD here.
1315 	 */
1316 	if (flag) {
1317 		ret = dev->platform_data->v2p8_ctrl(sd, 1);
1318 		dev->platform_data->gpio1_ctrl(sd, 1);
1319 		if (ret == 0) {
1320 			ret = dev->platform_data->v1p8_ctrl(sd, 1);
1321 			if (ret) {
1322 				dev->platform_data->gpio1_ctrl(sd, 0);
1323 				ret = dev->platform_data->v2p8_ctrl(sd, 0);
1324 			}
1325 		}
1326 	} else {
1327 		dev->platform_data->gpio1_ctrl(sd, 0);
1328 		ret = dev->platform_data->v1p8_ctrl(sd, 0);
1329 		ret |= dev->platform_data->v2p8_ctrl(sd, 0);
1330 	}
1331 
1332 	return ret;
1333 }
1334 
1335 static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
1336 {
1337 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1338 
1339 	if (!dev || !dev->platform_data)
1340 		return -ENODEV;
1341 
1342 	return dev->platform_data->gpio0_ctrl(sd, flag);
1343 }
1344 
1345 static int __power_up(struct v4l2_subdev *sd)
1346 {
1347 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1348 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1349 	int ret;
1350 
1351 	if (!dev->platform_data) {
1352 		dev_err(&client->dev,
1353 			"no camera_sensor_platform_data");
1354 		return -ENODEV;
1355 	}
1356 
1357 	/* power control */
1358 	ret = power_ctrl(sd, 1);
1359 	if (ret)
1360 		goto fail_power;
1361 
1362 	/* according to DS, at least 5ms is needed between DOVDD and PWDN */
1363 	/* add this delay time to 10~11ms*/
1364 	usleep_range(10000, 11000);
1365 
1366 	/* gpio ctrl */
1367 	ret = gpio_ctrl(sd, 1);
1368 	if (ret) {
1369 		ret = gpio_ctrl(sd, 1);
1370 		if (ret)
1371 			goto fail_power;
1372 	}
1373 
1374 	/* flis clock control */
1375 	ret = dev->platform_data->flisclk_ctrl(sd, 1);
1376 	if (ret)
1377 		goto fail_clk;
1378 
1379 	__cci_delay(up_delay);
1380 
1381 	return 0;
1382 
1383 fail_clk:
1384 	gpio_ctrl(sd, 0);
1385 fail_power:
1386 	power_ctrl(sd, 0);
1387 	dev_err(&client->dev, "sensor power-up failed\n");
1388 
1389 	return ret;
1390 }
1391 
1392 static int power_down(struct v4l2_subdev *sd)
1393 {
1394 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1395 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1396 	int ret = 0;
1397 
1398 	dev->focus = OV5693_INVALID_CONFIG;
1399 	if (!dev->platform_data) {
1400 		dev_err(&client->dev,
1401 			"no camera_sensor_platform_data");
1402 		return -ENODEV;
1403 	}
1404 
1405 	ret = dev->platform_data->flisclk_ctrl(sd, 0);
1406 	if (ret)
1407 		dev_err(&client->dev, "flisclk failed\n");
1408 
1409 	/* gpio ctrl */
1410 	ret = gpio_ctrl(sd, 0);
1411 	if (ret) {
1412 		ret = gpio_ctrl(sd, 0);
1413 		if (ret)
1414 			dev_err(&client->dev, "gpio failed 2\n");
1415 	}
1416 
1417 	/* power control */
1418 	ret = power_ctrl(sd, 0);
1419 	if (ret)
1420 		dev_err(&client->dev, "vprog failed.\n");
1421 
1422 	return ret;
1423 }
1424 
1425 static int power_up(struct v4l2_subdev *sd)
1426 {
1427 	static const int retry_count = 4;
1428 	int i, ret;
1429 
1430 	for (i = 0; i < retry_count; i++) {
1431 		ret = __power_up(sd);
1432 		if (!ret)
1433 			return 0;
1434 
1435 		power_down(sd);
1436 	}
1437 	return ret;
1438 }
1439 
1440 static int ov5693_s_power(struct v4l2_subdev *sd, int on)
1441 {
1442 	int ret;
1443 
1444 	pr_info("%s: on %d\n", __func__, on);
1445 	if (on == 0)
1446 		return power_down(sd);
1447 	else {
1448 		ret = power_up(sd);
1449 		if (!ret) {
1450 			ret = ov5693_init(sd);
1451 			/* restore settings */
1452 			ov5693_res = ov5693_res_preview;
1453 			N_RES = N_RES_PREVIEW;
1454 		}
1455 	}
1456 	return ret;
1457 }
1458 
1459 /*
1460  * distance - calculate the distance
1461  * @res: resolution
1462  * @w: width
1463  * @h: height
1464  *
1465  * Get the gap between res_w/res_h and w/h.
1466  * distance = (res_w/res_h - w/h) / (w/h) * 8192
1467  * res->width/height smaller than w/h wouldn't be considered.
1468  * The gap of ratio larger than 1/8 wouldn't be considered.
1469  * Returns the value of gap or -1 if fail.
1470  */
1471 #define LARGEST_ALLOWED_RATIO_MISMATCH 1024
1472 static int distance(struct ov5693_resolution *res, u32 w, u32 h)
1473 {
1474 	int ratio;
1475 	int distance;
1476 
1477 	if (w == 0 || h == 0 ||
1478 	    res->width < w || res->height < h)
1479 		return -1;
1480 
1481 	ratio = res->width << 13;
1482 	ratio /= w;
1483 	ratio *= h;
1484 	ratio /= res->height;
1485 
1486 	distance = abs(ratio - 8192);
1487 
1488 	if (distance > LARGEST_ALLOWED_RATIO_MISMATCH)
1489 		return -1;
1490 
1491 	return distance;
1492 }
1493 
1494 /* Return the nearest higher resolution index
1495  * Firstly try to find the approximate aspect ratio resolution
1496  * If we find multiple same AR resolutions, choose the
1497  * minimal size.
1498  */
1499 static int nearest_resolution_index(int w, int h)
1500 {
1501 	int i;
1502 	int idx = -1;
1503 	int dist;
1504 	int min_dist = INT_MAX;
1505 	int min_res_w = INT_MAX;
1506 	struct ov5693_resolution *tmp_res = NULL;
1507 
1508 	for (i = 0; i < N_RES; i++) {
1509 		tmp_res = &ov5693_res[i];
1510 		dist = distance(tmp_res, w, h);
1511 		if (dist == -1)
1512 			continue;
1513 		if (dist < min_dist) {
1514 			min_dist = dist;
1515 			idx = i;
1516 			min_res_w = ov5693_res[i].width;
1517 			continue;
1518 		}
1519 		if (dist == min_dist && ov5693_res[i].width < min_res_w)
1520 			idx = i;
1521 	}
1522 
1523 	return idx;
1524 }
1525 
1526 static int get_resolution_index(int w, int h)
1527 {
1528 	int i;
1529 
1530 	for (i = 0; i < N_RES; i++) {
1531 		if (w != ov5693_res[i].width)
1532 			continue;
1533 		if (h != ov5693_res[i].height)
1534 			continue;
1535 
1536 		return i;
1537 	}
1538 
1539 	return -1;
1540 }
1541 
1542 /* TODO: remove it. */
1543 static int startup(struct v4l2_subdev *sd)
1544 {
1545 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1546 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1547 	int ret = 0;
1548 
1549 	ret = ov5693_write_reg(client, OV5693_8BIT,
1550 					OV5693_SW_RESET, 0x01);
1551 	if (ret) {
1552 		dev_err(&client->dev, "ov5693 reset err.\n");
1553 		return ret;
1554 	}
1555 
1556 	ret = ov5693_write_reg_array(client, ov5693_global_setting);
1557 	if (ret) {
1558 		dev_err(&client->dev, "ov5693 write register err.\n");
1559 		return ret;
1560 	}
1561 
1562 	ret = ov5693_write_reg_array(client, ov5693_res[dev->fmt_idx].regs);
1563 	if (ret) {
1564 		dev_err(&client->dev, "ov5693 write register err.\n");
1565 		return ret;
1566 	}
1567 
1568 	return ret;
1569 }
1570 
1571 static int ov5693_set_fmt(struct v4l2_subdev *sd,
1572 			  struct v4l2_subdev_pad_config *cfg,
1573 			  struct v4l2_subdev_format *format)
1574 {
1575 	struct v4l2_mbus_framefmt *fmt = &format->format;
1576 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1577 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1578 	struct camera_mipi_info *ov5693_info = NULL;
1579 	int ret = 0;
1580 	int idx;
1581 
1582 	if (format->pad)
1583 		return -EINVAL;
1584 	if (!fmt)
1585 		return -EINVAL;
1586 	ov5693_info = v4l2_get_subdev_hostdata(sd);
1587 	if (ov5693_info == NULL)
1588 		return -EINVAL;
1589 
1590 	mutex_lock(&dev->input_lock);
1591 	idx = nearest_resolution_index(fmt->width, fmt->height);
1592 	if (idx == -1) {
1593 		/* return the largest resolution */
1594 		fmt->width = ov5693_res[N_RES - 1].width;
1595 		fmt->height = ov5693_res[N_RES - 1].height;
1596 	} else {
1597 		fmt->width = ov5693_res[idx].width;
1598 		fmt->height = ov5693_res[idx].height;
1599 	}
1600 
1601 	fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10;
1602 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1603 		cfg->try_fmt = *fmt;
1604 		mutex_unlock(&dev->input_lock);
1605 		return 0;
1606 	}
1607 
1608 	dev->fmt_idx = get_resolution_index(fmt->width, fmt->height);
1609 	if (dev->fmt_idx == -1) {
1610 		dev_err(&client->dev, "get resolution fail\n");
1611 		mutex_unlock(&dev->input_lock);
1612 		return -EINVAL;
1613 	}
1614 
1615 	ret = startup(sd);
1616 	if (ret) {
1617 		int i = 0;
1618 
1619 		dev_err(&client->dev, "ov5693 startup err, retry to power up\n");
1620 		for (i = 0; i < OV5693_POWER_UP_RETRY_NUM; i++) {
1621 			dev_err(&client->dev,
1622 				"ov5693 retry to power up %d/%d times, result: ",
1623 				i+1, OV5693_POWER_UP_RETRY_NUM);
1624 			power_down(sd);
1625 			ret = power_up(sd);
1626 			if (!ret) {
1627 				mutex_unlock(&dev->input_lock);
1628 				ov5693_init(sd);
1629 				mutex_lock(&dev->input_lock);
1630 			} else {
1631 				dev_err(&client->dev, "power up failed, continue\n");
1632 				continue;
1633 			}
1634 			ret = startup(sd);
1635 			if (ret) {
1636 				dev_err(&client->dev, " startup FAILED!\n");
1637 			} else {
1638 				dev_err(&client->dev, " startup SUCCESS!\n");
1639 				break;
1640 			}
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * After sensor settings are set to HW, sometimes stream is started.
1646 	 * This would cause ISP timeout because ISP is not ready to receive
1647 	 * data yet. So add stop streaming here.
1648 	 */
1649 	ret = ov5693_write_reg(client, OV5693_8BIT, OV5693_SW_STREAM,
1650 				OV5693_STOP_STREAMING);
1651 	if (ret)
1652 		dev_warn(&client->dev, "ov5693 stream off err\n");
1653 
1654 	ret = ov5693_get_intg_factor(client, ov5693_info,
1655 					&ov5693_res[dev->fmt_idx]);
1656 	if (ret) {
1657 		dev_err(&client->dev, "failed to get integration_factor\n");
1658 		goto err;
1659 	}
1660 
1661 	ov5693_info->metadata_width = fmt->width * 10 / 8;
1662 	ov5693_info->metadata_height = 1;
1663 	ov5693_info->metadata_effective_width = &ov5693_embedded_effective_size;
1664 
1665 err:
1666 	mutex_unlock(&dev->input_lock);
1667 	return ret;
1668 }
1669 static int ov5693_get_fmt(struct v4l2_subdev *sd,
1670 			  struct v4l2_subdev_pad_config *cfg,
1671 			  struct v4l2_subdev_format *format)
1672 {
1673 	struct v4l2_mbus_framefmt *fmt = &format->format;
1674 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1675 
1676 	if (format->pad)
1677 		return -EINVAL;
1678 
1679 	if (!fmt)
1680 		return -EINVAL;
1681 
1682 	fmt->width = ov5693_res[dev->fmt_idx].width;
1683 	fmt->height = ov5693_res[dev->fmt_idx].height;
1684 	fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10;
1685 
1686 	return 0;
1687 }
1688 
1689 static int ov5693_detect(struct i2c_client *client)
1690 {
1691 	struct i2c_adapter *adapter = client->adapter;
1692 	u16 high, low;
1693 	int ret;
1694 	u16 id;
1695 	u8 revision;
1696 
1697 	if (!i2c_check_functionality(adapter, I2C_FUNC_I2C))
1698 		return -ENODEV;
1699 
1700 	ret = ov5693_read_reg(client, OV5693_8BIT,
1701 					OV5693_SC_CMMN_CHIP_ID_H, &high);
1702 	if (ret) {
1703 		dev_err(&client->dev, "sensor_id_high = 0x%x\n", high);
1704 		return -ENODEV;
1705 	}
1706 	ret = ov5693_read_reg(client, OV5693_8BIT,
1707 					OV5693_SC_CMMN_CHIP_ID_L, &low);
1708 	id = ((((u16) high) << 8) | (u16) low);
1709 
1710 	if (id != OV5693_ID) {
1711 		dev_err(&client->dev, "sensor ID error 0x%x\n", id);
1712 		return -ENODEV;
1713 	}
1714 
1715 	ret = ov5693_read_reg(client, OV5693_8BIT,
1716 					OV5693_SC_CMMN_SUB_ID, &high);
1717 	revision = (u8) high & 0x0f;
1718 
1719 	dev_dbg(&client->dev, "sensor_revision = 0x%x\n", revision);
1720 	dev_dbg(&client->dev, "detect ov5693 success\n");
1721 	return 0;
1722 }
1723 
1724 static int ov5693_s_stream(struct v4l2_subdev *sd, int enable)
1725 {
1726 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1727 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1728 	int ret;
1729 
1730 	mutex_lock(&dev->input_lock);
1731 
1732 	ret = ov5693_write_reg(client, OV5693_8BIT, OV5693_SW_STREAM,
1733 				enable ? OV5693_START_STREAMING :
1734 				OV5693_STOP_STREAMING);
1735 
1736 	mutex_unlock(&dev->input_lock);
1737 
1738 	return ret;
1739 }
1740 
1741 
1742 static int ov5693_s_config(struct v4l2_subdev *sd,
1743 			   int irq, void *platform_data)
1744 {
1745 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1746 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1747 	int ret = 0;
1748 
1749 	if (platform_data == NULL)
1750 		return -ENODEV;
1751 
1752 	dev->platform_data =
1753 		(struct camera_sensor_platform_data *)platform_data;
1754 
1755 	mutex_lock(&dev->input_lock);
1756 	/* power off the module, then power on it in future
1757 	 * as first power on by board may not fulfill the
1758 	 * power on sequqence needed by the module
1759 	 */
1760 	ret = power_down(sd);
1761 	if (ret) {
1762 		dev_err(&client->dev, "ov5693 power-off err.\n");
1763 		goto fail_power_off;
1764 	}
1765 
1766 	ret = power_up(sd);
1767 	if (ret) {
1768 		dev_err(&client->dev, "ov5693 power-up err.\n");
1769 		goto fail_power_on;
1770 	}
1771 
1772 	if (!dev->vcm)
1773 		dev->vcm = vcm_detect(client);
1774 
1775 	ret = dev->platform_data->csi_cfg(sd, 1);
1776 	if (ret)
1777 		goto fail_csi_cfg;
1778 
1779 	/* config & detect sensor */
1780 	ret = ov5693_detect(client);
1781 	if (ret) {
1782 		dev_err(&client->dev, "ov5693_detect err s_config.\n");
1783 		goto fail_csi_cfg;
1784 	}
1785 
1786 	dev->otp_data = ov5693_otp_read(sd);
1787 
1788 	/* turn off sensor, after probed */
1789 	ret = power_down(sd);
1790 	if (ret) {
1791 		dev_err(&client->dev, "ov5693 power-off err.\n");
1792 		goto fail_csi_cfg;
1793 	}
1794 	mutex_unlock(&dev->input_lock);
1795 
1796 	return ret;
1797 
1798 fail_csi_cfg:
1799 	dev->platform_data->csi_cfg(sd, 0);
1800 fail_power_on:
1801 	power_down(sd);
1802 	dev_err(&client->dev, "sensor power-gating failed\n");
1803 fail_power_off:
1804 	mutex_unlock(&dev->input_lock);
1805 	return ret;
1806 }
1807 
1808 static int ov5693_g_frame_interval(struct v4l2_subdev *sd,
1809 				   struct v4l2_subdev_frame_interval *interval)
1810 {
1811 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1812 
1813 	interval->interval.numerator = 1;
1814 	interval->interval.denominator = ov5693_res[dev->fmt_idx].fps;
1815 
1816 	return 0;
1817 }
1818 
1819 static int ov5693_enum_mbus_code(struct v4l2_subdev *sd,
1820 				 struct v4l2_subdev_pad_config *cfg,
1821 				 struct v4l2_subdev_mbus_code_enum *code)
1822 {
1823 	if (code->index >= MAX_FMTS)
1824 		return -EINVAL;
1825 
1826 	code->code = MEDIA_BUS_FMT_SBGGR10_1X10;
1827 	return 0;
1828 }
1829 
1830 static int ov5693_enum_frame_size(struct v4l2_subdev *sd,
1831 				  struct v4l2_subdev_pad_config *cfg,
1832 				  struct v4l2_subdev_frame_size_enum *fse)
1833 {
1834 	int index = fse->index;
1835 
1836 	if (index >= N_RES)
1837 		return -EINVAL;
1838 
1839 	fse->min_width = ov5693_res[index].width;
1840 	fse->min_height = ov5693_res[index].height;
1841 	fse->max_width = ov5693_res[index].width;
1842 	fse->max_height = ov5693_res[index].height;
1843 
1844 	return 0;
1845 
1846 }
1847 
1848 static const struct v4l2_subdev_video_ops ov5693_video_ops = {
1849 	.s_stream = ov5693_s_stream,
1850 	.g_frame_interval = ov5693_g_frame_interval,
1851 };
1852 
1853 static const struct v4l2_subdev_core_ops ov5693_core_ops = {
1854 	.s_power = ov5693_s_power,
1855 	.ioctl = ov5693_ioctl,
1856 };
1857 
1858 static const struct v4l2_subdev_pad_ops ov5693_pad_ops = {
1859 	.enum_mbus_code = ov5693_enum_mbus_code,
1860 	.enum_frame_size = ov5693_enum_frame_size,
1861 	.get_fmt = ov5693_get_fmt,
1862 	.set_fmt = ov5693_set_fmt,
1863 };
1864 
1865 static const struct v4l2_subdev_ops ov5693_ops = {
1866 	.core = &ov5693_core_ops,
1867 	.video = &ov5693_video_ops,
1868 	.pad = &ov5693_pad_ops,
1869 };
1870 
1871 static int ov5693_remove(struct i2c_client *client)
1872 {
1873 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1874 	struct ov5693_device *dev = to_ov5693_sensor(sd);
1875 
1876 	dev_dbg(&client->dev, "ov5693_remove...\n");
1877 
1878 	dev->platform_data->csi_cfg(sd, 0);
1879 
1880 	v4l2_device_unregister_subdev(sd);
1881 
1882 	atomisp_gmin_remove_subdev(sd);
1883 
1884 	media_entity_cleanup(&dev->sd.entity);
1885 	v4l2_ctrl_handler_free(&dev->ctrl_handler);
1886 	kfree(dev);
1887 
1888 	return 0;
1889 }
1890 
1891 static int ov5693_probe(struct i2c_client *client)
1892 {
1893 	struct ov5693_device *dev;
1894 	int i2c;
1895 	int ret = 0;
1896 	void *pdata;
1897 	unsigned int i;
1898 
1899 	/*
1900 	 * Firmware workaround: Some modules use a "secondary default"
1901 	 * address of 0x10 which doesn't appear on schematics, and
1902 	 * some BIOS versions haven't gotten the memo.  Work around
1903 	 * via config.
1904 	 */
1905 	i2c = gmin_get_var_int(&client->dev, "I2CAddr", -1);
1906 	if (i2c != -1) {
1907 		dev_info(&client->dev,
1908 		"Overriding firmware-provided I2C address (0x%x) with 0x%x\n",
1909 			 client->addr, i2c);
1910 		client->addr = i2c;
1911 	}
1912 
1913 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1914 	if (!dev)
1915 		return -ENOMEM;
1916 
1917 	mutex_init(&dev->input_lock);
1918 
1919 	dev->fmt_idx = 0;
1920 	v4l2_i2c_subdev_init(&(dev->sd), client, &ov5693_ops);
1921 
1922 	pdata = gmin_camera_platform_data(&dev->sd,
1923 					  ATOMISP_INPUT_FORMAT_RAW_10,
1924 					  atomisp_bayer_order_bggr);
1925 	if (!pdata)
1926 		goto out_free;
1927 
1928 	ret = ov5693_s_config(&dev->sd, client->irq, pdata);
1929 	if (ret)
1930 		goto out_free;
1931 
1932 	ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
1933 	if (ret)
1934 		goto out_free;
1935 
1936 	dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1937 	dev->pad.flags = MEDIA_PAD_FL_SOURCE;
1938 	dev->format.code = MEDIA_BUS_FMT_SBGGR10_1X10;
1939 	dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1940 	ret =
1941 	    v4l2_ctrl_handler_init(&dev->ctrl_handler,
1942 				   ARRAY_SIZE(ov5693_controls));
1943 	if (ret) {
1944 		ov5693_remove(client);
1945 		return ret;
1946 	}
1947 
1948 	for (i = 0; i < ARRAY_SIZE(ov5693_controls); i++)
1949 		v4l2_ctrl_new_custom(&dev->ctrl_handler, &ov5693_controls[i],
1950 				     NULL);
1951 
1952 	if (dev->ctrl_handler.error) {
1953 		ov5693_remove(client);
1954 		return dev->ctrl_handler.error;
1955 	}
1956 
1957 	/* Use same lock for controls as for everything else. */
1958 	dev->ctrl_handler.lock = &dev->input_lock;
1959 	dev->sd.ctrl_handler = &dev->ctrl_handler;
1960 
1961 	ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
1962 	if (ret)
1963 		ov5693_remove(client);
1964 
1965 	return ret;
1966 out_free:
1967 	v4l2_device_unregister_subdev(&dev->sd);
1968 	kfree(dev);
1969 	return ret;
1970 }
1971 
1972 static const struct acpi_device_id ov5693_acpi_match[] = {
1973 	{"INT33BE"},
1974 	{},
1975 };
1976 MODULE_DEVICE_TABLE(acpi, ov5693_acpi_match);
1977 
1978 static struct i2c_driver ov5693_driver = {
1979 	.driver = {
1980 		.name = "ov5693",
1981 		.acpi_match_table = ov5693_acpi_match,
1982 	},
1983 	.probe_new = ov5693_probe,
1984 	.remove = ov5693_remove,
1985 };
1986 module_i2c_driver(ov5693_driver);
1987 
1988 MODULE_DESCRIPTION("A low-level driver for OmniVision 5693 sensors");
1989 MODULE_LICENSE("GPL");
1990