1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Support for mt9m114 Camera Sensor.
4  *
5  * Copyright (c) 2010 Intel Corporation. All Rights Reserved.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License version
9  * 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  *
17  */
18 
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/string.h>
24 #include <linux/errno.h>
25 #include <linux/init.h>
26 #include <linux/kmod.h>
27 #include <linux/device.h>
28 #include <linux/fs.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/i2c.h>
32 #include <linux/acpi.h>
33 #include "../include/linux/atomisp_gmin_platform.h"
34 #include <media/v4l2-device.h>
35 
36 #include "mt9m114.h"
37 
38 #define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
39 
40 /*
41  * TODO: use debug parameter to actually define when debug messages should
42  * be printed.
43  */
44 static int debug;
45 static int aaalock;
46 module_param(debug, int, 0644);
47 MODULE_PARM_DESC(debug, "Debug level (0-1)");
48 
49 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
50 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
51 static int mt9m114_wait_state(struct i2c_client *client, int timeout);
52 
53 static int
54 mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
55 {
56 	int err;
57 	struct i2c_msg msg[2];
58 	unsigned char data[4];
59 
60 	if (!client->adapter) {
61 		v4l2_err(client, "%s error, no client->adapter\n", __func__);
62 		return -ENODEV;
63 	}
64 
65 	if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
66 	    && data_length != MISENSOR_32BIT) {
67 		v4l2_err(client, "%s error, invalid data length\n", __func__);
68 		return -EINVAL;
69 	}
70 
71 	msg[0].addr = client->addr;
72 	msg[0].flags = 0;
73 	msg[0].len = MSG_LEN_OFFSET;
74 	msg[0].buf = data;
75 
76 	/* high byte goes out first */
77 	data[0] = (u16)(reg >> 8);
78 	data[1] = (u16)(reg & 0xff);
79 
80 	msg[1].addr = client->addr;
81 	msg[1].len = data_length;
82 	msg[1].flags = I2C_M_RD;
83 	msg[1].buf = data;
84 
85 	err = i2c_transfer(client->adapter, msg, 2);
86 
87 	if (err >= 0) {
88 		*val = 0;
89 		/* high byte comes first */
90 		if (data_length == MISENSOR_8BIT)
91 			*val = data[0];
92 		else if (data_length == MISENSOR_16BIT)
93 			*val = data[1] + (data[0] << 8);
94 		else
95 			*val = data[3] + (data[2] << 8) +
96 			       (data[1] << 16) + (data[0] << 24);
97 
98 		return 0;
99 	}
100 
101 	dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
102 	return err;
103 }
104 
105 static int
106 mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
107 {
108 	int num_msg;
109 	struct i2c_msg msg;
110 	unsigned char data[6] = {0};
111 	__be16 *wreg;
112 	int retry = 0;
113 
114 	if (!client->adapter) {
115 		v4l2_err(client, "%s error, no client->adapter\n", __func__);
116 		return -ENODEV;
117 	}
118 
119 	if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
120 	    && data_length != MISENSOR_32BIT) {
121 		v4l2_err(client, "%s error, invalid data_length\n", __func__);
122 		return -EINVAL;
123 	}
124 
125 	memset(&msg, 0, sizeof(msg));
126 
127 again:
128 	msg.addr = client->addr;
129 	msg.flags = 0;
130 	msg.len = 2 + data_length;
131 	msg.buf = data;
132 
133 	/* high byte goes out first */
134 	wreg = (void *)data;
135 	*wreg = cpu_to_be16(reg);
136 
137 	if (data_length == MISENSOR_8BIT) {
138 		data[2] = (u8)(val);
139 	} else if (data_length == MISENSOR_16BIT) {
140 		u16 *wdata = (void *)&data[2];
141 
142 		*wdata = be16_to_cpu(*(__be16 *)&data[2]);
143 	} else {
144 		/* MISENSOR_32BIT */
145 		u32 *wdata = (void *)&data[2];
146 
147 		*wdata = be32_to_cpu(*(__be32 *)&data[2]);
148 	}
149 
150 	num_msg = i2c_transfer(client->adapter, &msg, 1);
151 
152 	/*
153 	 * HACK: Need some delay here for Rev 2 sensors otherwise some
154 	 * registers do not seem to load correctly.
155 	 */
156 	mdelay(1);
157 
158 	if (num_msg >= 0)
159 		return 0;
160 
161 	dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
162 		val, reg, num_msg);
163 	if (retry <= I2C_RETRY_COUNT) {
164 		dev_dbg(&client->dev, "retrying... %d", retry);
165 		retry++;
166 		msleep(20);
167 		goto again;
168 	}
169 
170 	return num_msg;
171 }
172 
173 /**
174  * misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
175  * device
176  * @client: i2c driver client structure
177  * @data_length: 8/16/32-bits length
178  * @reg: register address
179  * @mask: masked out bits
180  * @set: bits set
181  *
182  * Read/modify/write a value to a register in the  sensor device.
183  * Returns zero if successful, or non-zero otherwise.
184  */
185 static int
186 misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
187 		 u32 mask, u32 set)
188 {
189 	int err;
190 	u32 val;
191 
192 	/* Exit when no mask */
193 	if (mask == 0)
194 		return 0;
195 
196 	/* @mask must not exceed data length */
197 	switch (data_length) {
198 	case MISENSOR_8BIT:
199 		if (mask & ~0xff)
200 			return -EINVAL;
201 		break;
202 	case MISENSOR_16BIT:
203 		if (mask & ~0xffff)
204 			return -EINVAL;
205 		break;
206 	case MISENSOR_32BIT:
207 		break;
208 	default:
209 		/* Wrong @data_length */
210 		return -EINVAL;
211 	}
212 
213 	err = mt9m114_read_reg(client, data_length, reg, &val);
214 	if (err) {
215 		v4l2_err(client, "%s error exit, read failed\n", __func__);
216 		return -EINVAL;
217 	}
218 
219 	val &= ~mask;
220 
221 	/*
222 	 * Perform the OR function if the @set exists.
223 	 * Shift @set value to target bit location. @set should set only
224 	 * bits included in @mask.
225 	 *
226 	 * REVISIT: This function expects @set to be non-shifted. Its shift
227 	 * value is then defined to be equal to mask's LSB position.
228 	 * How about to inform values in their right offset position and avoid
229 	 * this unneeded shift operation?
230 	 */
231 	set <<= ffs(mask) - 1;
232 	val |= set & mask;
233 
234 	err = mt9m114_write_reg(client, data_length, reg, val);
235 	if (err) {
236 		v4l2_err(client, "%s error exit, write failed\n", __func__);
237 		return -EINVAL;
238 	}
239 
240 	return 0;
241 }
242 
243 static int __mt9m114_flush_reg_array(struct i2c_client *client,
244 				     struct mt9m114_write_ctrl *ctrl)
245 {
246 	struct i2c_msg msg;
247 	const int num_msg = 1;
248 	int ret;
249 	int retry = 0;
250 	__be16 *data16 = (void *)&ctrl->buffer.addr;
251 
252 	if (ctrl->index == 0)
253 		return 0;
254 
255 again:
256 	msg.addr = client->addr;
257 	msg.flags = 0;
258 	msg.len = 2 + ctrl->index;
259 	*data16 = cpu_to_be16(ctrl->buffer.addr);
260 	msg.buf = (u8 *)&ctrl->buffer;
261 
262 	ret = i2c_transfer(client->adapter, &msg, num_msg);
263 	if (ret != num_msg) {
264 		if (++retry <= I2C_RETRY_COUNT) {
265 			dev_dbg(&client->dev, "retrying... %d\n", retry);
266 			msleep(20);
267 			goto again;
268 		}
269 		dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
270 		return -EIO;
271 	}
272 
273 	ctrl->index = 0;
274 
275 	/*
276 	 * REVISIT: Previously we had a delay after writing data to sensor.
277 	 * But it was removed as our tests have shown it is not necessary
278 	 * anymore.
279 	 */
280 
281 	return 0;
282 }
283 
284 static int __mt9m114_buf_reg_array(struct i2c_client *client,
285 				   struct mt9m114_write_ctrl *ctrl,
286 				   const struct misensor_reg *next)
287 {
288 	__be16 *data16;
289 	__be32 *data32;
290 	int err;
291 
292 	/* Insufficient buffer? Let's flush and get more free space. */
293 	if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
294 		err = __mt9m114_flush_reg_array(client, ctrl);
295 		if (err)
296 			return err;
297 	}
298 
299 	switch (next->length) {
300 	case MISENSOR_8BIT:
301 		ctrl->buffer.data[ctrl->index] = (u8)next->val;
302 		break;
303 	case MISENSOR_16BIT:
304 		data16 = (__be16 *)&ctrl->buffer.data[ctrl->index];
305 		*data16 = cpu_to_be16((u16)next->val);
306 		break;
307 	case MISENSOR_32BIT:
308 		data32 = (__be32 *)&ctrl->buffer.data[ctrl->index];
309 		*data32 = cpu_to_be32(next->val);
310 		break;
311 	default:
312 		return -EINVAL;
313 	}
314 
315 	/* When first item is added, we need to store its starting address */
316 	if (ctrl->index == 0)
317 		ctrl->buffer.addr = next->reg;
318 
319 	ctrl->index += next->length;
320 
321 	return 0;
322 }
323 
324 static int
325 __mt9m114_write_reg_is_consecutive(struct i2c_client *client,
326 				   struct mt9m114_write_ctrl *ctrl,
327 				   const struct misensor_reg *next)
328 {
329 	if (ctrl->index == 0)
330 		return 1;
331 
332 	return ctrl->buffer.addr + ctrl->index == next->reg;
333 }
334 
335 /*
336  * mt9m114_write_reg_array - Initializes a list of mt9m114 registers
337  * @client: i2c driver client structure
338  * @reglist: list of registers to be written
339  * @poll: completion polling requirement
340  * This function initializes a list of registers. When consecutive addresses
341  * are found in a row on the list, this function creates a buffer and sends
342  * consecutive data in a single i2c_transfer().
343  *
344  * __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
345  * __mt9m114_write_reg_is_consecutive() are internal functions to
346  * mt9m114_write_reg_array() and should be not used anywhere else.
347  *
348  */
349 static int mt9m114_write_reg_array(struct i2c_client *client,
350 				   const struct misensor_reg *reglist,
351 				   int poll)
352 {
353 	const struct misensor_reg *next = reglist;
354 	struct mt9m114_write_ctrl ctrl;
355 	int err;
356 
357 	if (poll == PRE_POLLING) {
358 		err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
359 		if (err)
360 			return err;
361 	}
362 
363 	ctrl.index = 0;
364 	for (; next->length != MISENSOR_TOK_TERM; next++) {
365 		switch (next->length & MISENSOR_TOK_MASK) {
366 		case MISENSOR_TOK_DELAY:
367 			err = __mt9m114_flush_reg_array(client, &ctrl);
368 			if (err)
369 				return err;
370 			msleep(next->val);
371 			break;
372 		case MISENSOR_TOK_RMW:
373 			err = __mt9m114_flush_reg_array(client, &ctrl);
374 			err |= misensor_rmw_reg(client,
375 						next->length &
376 						~MISENSOR_TOK_RMW,
377 						next->reg, next->val,
378 						next->val2);
379 			if (err) {
380 				dev_err(&client->dev, "%s read err. aborted\n",
381 					__func__);
382 				return -EINVAL;
383 			}
384 			break;
385 		default:
386 			/*
387 			 * If next address is not consecutive, data needs to be
388 			 * flushed before proceed.
389 			 */
390 			if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
391 								next)) {
392 				err = __mt9m114_flush_reg_array(client, &ctrl);
393 				if (err)
394 					return err;
395 			}
396 			err = __mt9m114_buf_reg_array(client, &ctrl, next);
397 			if (err) {
398 				v4l2_err(client, "%s: write error, aborted\n",
399 					 __func__);
400 				return err;
401 			}
402 			break;
403 		}
404 	}
405 
406 	err = __mt9m114_flush_reg_array(client, &ctrl);
407 	if (err)
408 		return err;
409 
410 	if (poll == POST_POLLING)
411 		return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
412 
413 	return 0;
414 }
415 
416 static int mt9m114_wait_state(struct i2c_client *client, int timeout)
417 {
418 	int ret;
419 	unsigned int val;
420 
421 	while (timeout-- > 0) {
422 		ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
423 		if (ret)
424 			return ret;
425 		if ((val & 0x2) == 0)
426 			return 0;
427 		msleep(20);
428 	}
429 
430 	return -EINVAL;
431 }
432 
433 static int mt9m114_set_suspend(struct v4l2_subdev *sd)
434 {
435 	struct i2c_client *client = v4l2_get_subdevdata(sd);
436 
437 	return mt9m114_write_reg_array(client,
438 				       mt9m114_standby_reg, POST_POLLING);
439 }
440 
441 static int mt9m114_init_common(struct v4l2_subdev *sd)
442 {
443 	struct i2c_client *client = v4l2_get_subdevdata(sd);
444 
445 	return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
446 }
447 
448 static int power_ctrl(struct v4l2_subdev *sd, bool flag)
449 {
450 	int ret;
451 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
452 
453 	if (!dev || !dev->platform_data)
454 		return -ENODEV;
455 
456 	if (flag) {
457 		ret = dev->platform_data->v2p8_ctrl(sd, 1);
458 		if (ret == 0) {
459 			ret = dev->platform_data->v1p8_ctrl(sd, 1);
460 			if (ret)
461 				ret = dev->platform_data->v2p8_ctrl(sd, 0);
462 		}
463 	} else {
464 		ret = dev->platform_data->v2p8_ctrl(sd, 0);
465 		ret = dev->platform_data->v1p8_ctrl(sd, 0);
466 	}
467 	return ret;
468 }
469 
470 static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
471 {
472 	int ret;
473 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
474 
475 	if (!dev || !dev->platform_data)
476 		return -ENODEV;
477 
478 	/*
479 	 * Note: current modules wire only one GPIO signal (RESET#),
480 	 * but the schematic wires up two to the connector.  BIOS
481 	 * versions have been unfortunately inconsistent with which
482 	 * ACPI index RESET# is on, so hit both
483 	 */
484 
485 	if (flag) {
486 		ret = dev->platform_data->gpio0_ctrl(sd, 0);
487 		ret = dev->platform_data->gpio1_ctrl(sd, 0);
488 		msleep(60);
489 		ret |= dev->platform_data->gpio0_ctrl(sd, 1);
490 		ret |= dev->platform_data->gpio1_ctrl(sd, 1);
491 	} else {
492 		ret = dev->platform_data->gpio0_ctrl(sd, 0);
493 		ret = dev->platform_data->gpio1_ctrl(sd, 0);
494 	}
495 	return ret;
496 }
497 
498 static int power_up(struct v4l2_subdev *sd)
499 {
500 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
501 	struct i2c_client *client = v4l2_get_subdevdata(sd);
502 	int ret;
503 
504 	if (!dev->platform_data) {
505 		dev_err(&client->dev, "no camera_sensor_platform_data");
506 		return -ENODEV;
507 	}
508 
509 	/* power control */
510 	ret = power_ctrl(sd, 1);
511 	if (ret)
512 		goto fail_power;
513 
514 	/* flis clock control */
515 	ret = dev->platform_data->flisclk_ctrl(sd, 1);
516 	if (ret)
517 		goto fail_clk;
518 
519 	/* gpio ctrl */
520 	ret = gpio_ctrl(sd, 1);
521 	if (ret)
522 		dev_err(&client->dev, "gpio failed 1\n");
523 	/*
524 	 * according to DS, 44ms is needed between power up and first i2c
525 	 * commend
526 	 */
527 	msleep(50);
528 
529 	return 0;
530 
531 fail_clk:
532 	dev->platform_data->flisclk_ctrl(sd, 0);
533 fail_power:
534 	power_ctrl(sd, 0);
535 	dev_err(&client->dev, "sensor power-up failed\n");
536 
537 	return ret;
538 }
539 
540 static int power_down(struct v4l2_subdev *sd)
541 {
542 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
543 	struct i2c_client *client = v4l2_get_subdevdata(sd);
544 	int ret;
545 
546 	if (!dev->platform_data) {
547 		dev_err(&client->dev, "no camera_sensor_platform_data");
548 		return -ENODEV;
549 	}
550 
551 	ret = dev->platform_data->flisclk_ctrl(sd, 0);
552 	if (ret)
553 		dev_err(&client->dev, "flisclk failed\n");
554 
555 	/* gpio ctrl */
556 	ret = gpio_ctrl(sd, 0);
557 	if (ret)
558 		dev_err(&client->dev, "gpio failed 1\n");
559 
560 	/* power control */
561 	ret = power_ctrl(sd, 0);
562 	if (ret)
563 		dev_err(&client->dev, "vprog failed.\n");
564 
565 	/* according to DS, 20ms is needed after power down */
566 	msleep(20);
567 
568 	return ret;
569 }
570 
571 static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
572 {
573 	if (power == 0) {
574 		return power_down(sd);
575 	} else {
576 		if (power_up(sd))
577 			return -EINVAL;
578 
579 		return mt9m114_init_common(sd);
580 	}
581 }
582 
583 /*
584  * distance - calculate the distance
585  * @res: resolution
586  * @w: width
587  * @h: height
588  *
589  * Get the gap between resolution and w/h.
590  * res->width/height smaller than w/h wouldn't be considered.
591  * Returns the value of gap or -1 if fail.
592  */
593 #define LARGEST_ALLOWED_RATIO_MISMATCH 600
594 static int distance(struct mt9m114_res_struct const *res, u32 w, u32 h)
595 {
596 	unsigned int w_ratio;
597 	unsigned int h_ratio;
598 	int match;
599 
600 	if (w == 0)
601 		return -1;
602 	w_ratio = (res->width << 13) / w;
603 	if (h == 0)
604 		return -1;
605 	h_ratio = (res->height << 13) / h;
606 	if (h_ratio == 0)
607 		return -1;
608 	match   = abs(((w_ratio << 13) / h_ratio) - 8192);
609 
610 	if ((w_ratio < 8192) || (h_ratio < 8192) ||
611 	    (match > LARGEST_ALLOWED_RATIO_MISMATCH))
612 		return -1;
613 
614 	return w_ratio + h_ratio;
615 }
616 
617 /* Return the nearest higher resolution index */
618 static int nearest_resolution_index(int w, int h)
619 {
620 	int i;
621 	int idx = -1;
622 	int dist;
623 	int min_dist = INT_MAX;
624 	const struct mt9m114_res_struct *tmp_res = NULL;
625 
626 	for (i = 0; i < ARRAY_SIZE(mt9m114_res); i++) {
627 		tmp_res = &mt9m114_res[i];
628 		dist = distance(tmp_res, w, h);
629 		if (dist == -1)
630 			continue;
631 		if (dist < min_dist) {
632 			min_dist = dist;
633 			idx = i;
634 		}
635 	}
636 
637 	return idx;
638 }
639 
640 static int mt9m114_try_res(u32 *w, u32 *h)
641 {
642 	int idx = 0;
643 
644 	if ((*w > MT9M114_RES_960P_SIZE_H)
645 	    || (*h > MT9M114_RES_960P_SIZE_V)) {
646 		*w = MT9M114_RES_960P_SIZE_H;
647 		*h = MT9M114_RES_960P_SIZE_V;
648 	} else {
649 		idx = nearest_resolution_index(*w, *h);
650 
651 		/*
652 		 * nearest_resolution_index() doesn't return smaller
653 		 *  resolutions. If it fails, it means the requested
654 		 *  resolution is higher than wecan support. Fallback
655 		 *  to highest possible resolution in this case.
656 		 */
657 		if (idx == -1)
658 			idx = ARRAY_SIZE(mt9m114_res) - 1;
659 
660 		*w = mt9m114_res[idx].width;
661 		*h = mt9m114_res[idx].height;
662 	}
663 
664 	return 0;
665 }
666 
667 static struct mt9m114_res_struct *mt9m114_to_res(u32 w, u32 h)
668 {
669 	int  index;
670 
671 	for (index = 0; index < N_RES; index++) {
672 		if ((mt9m114_res[index].width == w) &&
673 		    (mt9m114_res[index].height == h))
674 			break;
675 	}
676 
677 	/* No mode found */
678 	if (index >= N_RES)
679 		return NULL;
680 
681 	return &mt9m114_res[index];
682 }
683 
684 static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
685 {
686 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
687 	unsigned short hsize;
688 	unsigned short vsize;
689 
690 	switch (dev->res) {
691 	case MT9M114_RES_736P:
692 		hsize = MT9M114_RES_736P_SIZE_H;
693 		vsize = MT9M114_RES_736P_SIZE_V;
694 		break;
695 	case MT9M114_RES_864P:
696 		hsize = MT9M114_RES_864P_SIZE_H;
697 		vsize = MT9M114_RES_864P_SIZE_V;
698 		break;
699 	case MT9M114_RES_960P:
700 		hsize = MT9M114_RES_960P_SIZE_H;
701 		vsize = MT9M114_RES_960P_SIZE_V;
702 		break;
703 	default:
704 		v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
705 			 dev->res);
706 		return -EINVAL;
707 	}
708 
709 	if (h_size)
710 		*h_size = hsize;
711 	if (v_size)
712 		*v_size = vsize;
713 
714 	return 0;
715 }
716 
717 static int mt9m114_get_intg_factor(struct i2c_client *client,
718 				   struct camera_mipi_info *info,
719 				   const struct mt9m114_res_struct *res)
720 {
721 	struct atomisp_sensor_mode_data *buf = &info->data;
722 	u32 reg_val;
723 	int ret;
724 
725 	if (!info)
726 		return -EINVAL;
727 
728 	ret =  mt9m114_read_reg(client, MISENSOR_32BIT,
729 				REG_PIXEL_CLK, &reg_val);
730 	if (ret)
731 		return ret;
732 	buf->vt_pix_clk_freq_mhz = reg_val;
733 
734 	/* get integration time */
735 	buf->coarse_integration_time_min = MT9M114_COARSE_INTG_TIME_MIN;
736 	buf->coarse_integration_time_max_margin =
737 	    MT9M114_COARSE_INTG_TIME_MAX_MARGIN;
738 
739 	buf->fine_integration_time_min = MT9M114_FINE_INTG_TIME_MIN;
740 	buf->fine_integration_time_max_margin =
741 	    MT9M114_FINE_INTG_TIME_MAX_MARGIN;
742 
743 	buf->fine_integration_time_def = MT9M114_FINE_INTG_TIME_MIN;
744 
745 	buf->frame_length_lines = res->lines_per_frame;
746 	buf->line_length_pck = res->pixels_per_line;
747 	buf->read_mode = res->bin_mode;
748 
749 	/* get the cropping and output resolution to ISP for this mode. */
750 	ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
751 				REG_H_START, &reg_val);
752 	if (ret)
753 		return ret;
754 	buf->crop_horizontal_start = reg_val;
755 
756 	ret =  mt9m114_read_reg(client, MISENSOR_16BIT,
757 				REG_V_START, &reg_val);
758 	if (ret)
759 		return ret;
760 	buf->crop_vertical_start = reg_val;
761 
762 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
763 			       REG_H_END, &reg_val);
764 	if (ret)
765 		return ret;
766 	buf->crop_horizontal_end = reg_val;
767 
768 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
769 			       REG_V_END, &reg_val);
770 	if (ret)
771 		return ret;
772 	buf->crop_vertical_end = reg_val;
773 
774 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
775 			       REG_WIDTH, &reg_val);
776 	if (ret)
777 		return ret;
778 	buf->output_width = reg_val;
779 
780 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
781 			       REG_HEIGHT, &reg_val);
782 	if (ret)
783 		return ret;
784 	buf->output_height = reg_val;
785 
786 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
787 			       REG_TIMING_HTS, &reg_val);
788 	if (ret)
789 		return ret;
790 	buf->line_length_pck = reg_val;
791 
792 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
793 			       REG_TIMING_VTS, &reg_val);
794 	if (ret)
795 		return ret;
796 	buf->frame_length_lines = reg_val;
797 
798 	buf->binning_factor_x = res->bin_factor_x ?
799 				res->bin_factor_x : 1;
800 	buf->binning_factor_y = res->bin_factor_y ?
801 				res->bin_factor_y : 1;
802 	return 0;
803 }
804 
805 static int mt9m114_get_fmt(struct v4l2_subdev *sd,
806 			   struct v4l2_subdev_state *sd_state,
807 			   struct v4l2_subdev_format *format)
808 {
809 	struct v4l2_mbus_framefmt *fmt = &format->format;
810 	int width, height;
811 	int ret;
812 
813 	if (format->pad)
814 		return -EINVAL;
815 	fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
816 
817 	ret = mt9m114_res2size(sd, &width, &height);
818 	if (ret)
819 		return ret;
820 	fmt->width = width;
821 	fmt->height = height;
822 
823 	return 0;
824 }
825 
826 static int mt9m114_set_fmt(struct v4l2_subdev *sd,
827 			   struct v4l2_subdev_state *sd_state,
828 			   struct v4l2_subdev_format *format)
829 {
830 	struct v4l2_mbus_framefmt *fmt = &format->format;
831 	struct i2c_client *c = v4l2_get_subdevdata(sd);
832 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
833 	struct mt9m114_res_struct *res_index;
834 	u32 width = fmt->width;
835 	u32 height = fmt->height;
836 	struct camera_mipi_info *mt9m114_info = NULL;
837 
838 	int ret;
839 
840 	if (format->pad)
841 		return -EINVAL;
842 	dev->streamon = 0;
843 	dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
844 
845 	mt9m114_info = v4l2_get_subdev_hostdata(sd);
846 	if (!mt9m114_info)
847 		return -EINVAL;
848 
849 	mt9m114_try_res(&width, &height);
850 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
851 		sd_state->pads->try_fmt = *fmt;
852 		return 0;
853 	}
854 	res_index = mt9m114_to_res(width, height);
855 
856 	/* Sanity check */
857 	if (unlikely(!res_index)) {
858 		WARN_ON(1);
859 		return -EINVAL;
860 	}
861 
862 	switch (res_index->res) {
863 	case MT9M114_RES_736P:
864 		ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
865 		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
866 					MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
867 		break;
868 	case MT9M114_RES_864P:
869 		ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
870 		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
871 					MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
872 		break;
873 	case MT9M114_RES_960P:
874 		ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
875 		/* set sensor read_mode to Normal */
876 		ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
877 					MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
878 		break;
879 	default:
880 		v4l2_err(sd, "set resolution: %d failed!\n", res_index->res);
881 		return -EINVAL;
882 	}
883 
884 	if (ret)
885 		return -EINVAL;
886 
887 	ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
888 	if (ret < 0)
889 		return ret;
890 
891 	if (mt9m114_set_suspend(sd))
892 		return -EINVAL;
893 
894 	if (dev->res != res_index->res) {
895 		int index;
896 
897 		/* Switch to different size */
898 		if (width <= 640) {
899 			dev->nctx = 0x00; /* Set for context A */
900 		} else {
901 			/*
902 			 * Context B is used for resolutions larger than 640x480
903 			 * Using YUV for Context B.
904 			 */
905 			dev->nctx = 0x01; /* set for context B */
906 		}
907 
908 		/*
909 		 * Marked current sensor res as being "used"
910 		 *
911 		 * REVISIT: We don't need to use an "used" field on each mode
912 		 * list entry to know which mode is selected. If this
913 		 * information is really necessary, how about to use a single
914 		 * variable on sensor dev struct?
915 		 */
916 		for (index = 0; index < N_RES; index++) {
917 			if ((width == mt9m114_res[index].width) &&
918 			    (height == mt9m114_res[index].height)) {
919 				mt9m114_res[index].used = true;
920 				continue;
921 			}
922 			mt9m114_res[index].used = false;
923 		}
924 	}
925 	ret = mt9m114_get_intg_factor(c, mt9m114_info,
926 				      &mt9m114_res[res_index->res]);
927 	if (ret) {
928 		dev_err(&c->dev, "failed to get integration_factor\n");
929 		return -EINVAL;
930 	}
931 	/*
932 	 * mt9m114 - we don't poll for context switch
933 	 * because it does not happen with streaming disabled.
934 	 */
935 	dev->res = res_index->res;
936 
937 	fmt->width = width;
938 	fmt->height = height;
939 	fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
940 	return 0;
941 }
942 
943 /* TODO: Update to SOC functions, remove exposure and gain */
944 static int mt9m114_g_focal(struct v4l2_subdev *sd, s32 *val)
945 {
946 	*val = (MT9M114_FOCAL_LENGTH_NUM << 16) | MT9M114_FOCAL_LENGTH_DEM;
947 	return 0;
948 }
949 
950 static int mt9m114_g_fnumber(struct v4l2_subdev *sd, s32 *val)
951 {
952 	/* const f number for mt9m114 */
953 	*val = (MT9M114_F_NUMBER_DEFAULT_NUM << 16) | MT9M114_F_NUMBER_DEM;
954 	return 0;
955 }
956 
957 static int mt9m114_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
958 {
959 	*val = (MT9M114_F_NUMBER_DEFAULT_NUM << 24) |
960 	       (MT9M114_F_NUMBER_DEM << 16) |
961 	       (MT9M114_F_NUMBER_DEFAULT_NUM << 8) | MT9M114_F_NUMBER_DEM;
962 	return 0;
963 }
964 
965 /* Horizontal flip the image. */
966 static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
967 {
968 	struct i2c_client *c = v4l2_get_subdevdata(sd);
969 	int ret;
970 	u32 data;
971 
972 	ret = mt9m114_read_reg(c, MISENSOR_16BIT,
973 			       (u32)MISENSOR_READ_MODE, &data);
974 	if (ret)
975 		return ret;
976 	*val = !!(data & MISENSOR_HFLIP_MASK);
977 
978 	return 0;
979 }
980 
981 static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
982 {
983 	struct i2c_client *c = v4l2_get_subdevdata(sd);
984 	int ret;
985 	u32 data;
986 
987 	ret = mt9m114_read_reg(c, MISENSOR_16BIT,
988 			       (u32)MISENSOR_READ_MODE, &data);
989 	if (ret)
990 		return ret;
991 	*val = !!(data & MISENSOR_VFLIP_MASK);
992 
993 	return 0;
994 }
995 
996 static long mt9m114_s_exposure(struct v4l2_subdev *sd,
997 			       struct atomisp_exposure *exposure)
998 {
999 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1000 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1001 	int ret = 0;
1002 	unsigned int coarse_integration = 0;
1003 	unsigned int f_lines = 0;
1004 	unsigned int frame_len_lines = 0; /* ExposureTime.FrameLengthLines; */
1005 	unsigned int analog_gain, digital_gain;
1006 	u32 analog_gain_to_write = 0;
1007 
1008 	dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
1009 		exposure->integration_time[0], exposure->gain[0],
1010 		exposure->gain[1]);
1011 
1012 	coarse_integration = exposure->integration_time[0];
1013 	/*
1014 	 * fine_integration = ExposureTime.FineIntegrationTime;
1015 	 * frame_len_lines = ExposureTime.FrameLengthLines;
1016 	 */
1017 	f_lines = mt9m114_res[dev->res].lines_per_frame;
1018 	analog_gain = exposure->gain[0];
1019 	digital_gain = exposure->gain[1];
1020 	if (!dev->streamon) {
1021 		/*Save the first exposure values while stream is off*/
1022 		dev->first_exp = coarse_integration;
1023 		dev->first_gain = analog_gain;
1024 		dev->first_diggain = digital_gain;
1025 	}
1026 	/* digital_gain = 0x400 * (((u16) digital_gain) >> 8) +		*/
1027 	/* ((unsigned int)(0x400 * (((u16) digital_gain) & 0xFF)) >>8); */
1028 
1029 	/* set frame length */
1030 	if (f_lines < coarse_integration + 6)
1031 		f_lines = coarse_integration + 6;
1032 	if (f_lines < frame_len_lines)
1033 		f_lines = frame_len_lines;
1034 	ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, f_lines);
1035 	if (ret) {
1036 		v4l2_err(client, "%s: fail to set f_lines\n", __func__);
1037 		return -EINVAL;
1038 	}
1039 
1040 	/* set coarse integration */
1041 	/*
1042 	 * 3A provide real exposure time.
1043 	 * should not translate to any value here.
1044 	 */
1045 	ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1046 				REG_EXPO_COARSE, (u16)(coarse_integration));
1047 	if (ret) {
1048 		v4l2_err(client, "%s: fail to set exposure time\n", __func__);
1049 		return -EINVAL;
1050 	}
1051 
1052 	/*
1053 	 * set analog/digital gain
1054 	switch(analog_gain)
1055 	{
1056 	case 0:
1057 	  analog_gain_to_write = 0x0;
1058 	  break;
1059 	case 1:
1060 	  analog_gain_to_write = 0x20;
1061 	  break;
1062 	case 2:
1063 	  analog_gain_to_write = 0x60;
1064 	  break;
1065 	case 4:
1066 	  analog_gain_to_write = 0xA0;
1067 	  break;
1068 	case 8:
1069 	  analog_gain_to_write = 0xE0;
1070 	  break;
1071 	default:
1072 	  analog_gain_to_write = 0x20;
1073 	  break;
1074 	}
1075 	*/
1076 	if (digital_gain >= 16 || digital_gain <= 1)
1077 		digital_gain = 1;
1078 	/*
1079 	 * analog_gain_to_write = (u16)((digital_gain << 12)
1080 	 *				| analog_gain_to_write);
1081 	 */
1082 	analog_gain_to_write = (u16)((digital_gain << 12) | (u16)analog_gain);
1083 	ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1084 				REG_GAIN, analog_gain_to_write);
1085 	if (ret) {
1086 		v4l2_err(client, "%s: fail to set analog_gain_to_write\n",
1087 			 __func__);
1088 		return -EINVAL;
1089 	}
1090 
1091 	return ret;
1092 }
1093 
1094 static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
1095 {
1096 	switch (cmd) {
1097 	case ATOMISP_IOC_S_EXPOSURE:
1098 		return mt9m114_s_exposure(sd, arg);
1099 	default:
1100 		return -EINVAL;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 /*
1107  * This returns the exposure time being used. This should only be used
1108  * for filling in EXIF data, not for actual image processing.
1109  */
1110 static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
1111 {
1112 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1113 	u32 coarse;
1114 	int ret;
1115 
1116 	/* the fine integration time is currently not calculated */
1117 	ret = mt9m114_read_reg(client, MISENSOR_16BIT,
1118 			       REG_EXPO_COARSE, &coarse);
1119 	if (ret)
1120 		return ret;
1121 
1122 	*value = coarse;
1123 	return 0;
1124 }
1125 
1126 /*
1127  * This function will return the sensor supported max exposure zone number.
1128  * the sensor which supports max exposure zone number is 1.
1129  */
1130 static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
1131 {
1132 	*val = 1;
1133 
1134 	return 0;
1135 }
1136 
1137 /*
1138  * set exposure metering, average/center_weighted/spot/matrix.
1139  */
1140 static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
1141 {
1142 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1143 	int ret;
1144 
1145 	switch (val) {
1146 	case V4L2_EXPOSURE_METERING_SPOT:
1147 		ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
1148 					      NO_POLLING);
1149 		if (ret) {
1150 			dev_err(&client->dev, "write exp_average reg err.\n");
1151 			return ret;
1152 		}
1153 		break;
1154 	case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
1155 	default:
1156 		ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
1157 					      NO_POLLING);
1158 		if (ret) {
1159 			dev_err(&client->dev, "write exp_default reg err");
1160 			return ret;
1161 		}
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /*
1168  * This function is for touch exposure feature.
1169  */
1170 static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
1171 					struct v4l2_subdev_state *sd_state,
1172 					struct v4l2_subdev_selection *sel)
1173 {
1174 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1175 	struct misensor_reg exp_reg;
1176 	int width, height;
1177 	int grid_width, grid_height;
1178 	int grid_left, grid_top, grid_right, grid_bottom;
1179 	int win_left, win_top, win_right, win_bottom;
1180 	int i, j;
1181 	int ret;
1182 
1183 	if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
1184 	    sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1185 		return -EINVAL;
1186 
1187 	grid_left = sel->r.left;
1188 	grid_top = sel->r.top;
1189 	grid_right = sel->r.left + sel->r.width - 1;
1190 	grid_bottom = sel->r.top + sel->r.height - 1;
1191 
1192 	ret = mt9m114_res2size(sd, &width, &height);
1193 	if (ret)
1194 		return ret;
1195 
1196 	grid_width = width / 5;
1197 	grid_height = height / 5;
1198 
1199 	if (grid_width && grid_height) {
1200 		win_left = grid_left / grid_width;
1201 		win_top = grid_top / grid_height;
1202 		win_right = grid_right / grid_width;
1203 		win_bottom = grid_bottom / grid_height;
1204 	} else {
1205 		dev_err(&client->dev, "Incorrect exp grid.\n");
1206 		return -EINVAL;
1207 	}
1208 
1209 	win_left   = clamp_t(int, win_left, 0, 4);
1210 	win_top    = clamp_t(int, win_top, 0, 4);
1211 	win_right  = clamp_t(int, win_right, 0, 4);
1212 	win_bottom = clamp_t(int, win_bottom, 0, 4);
1213 
1214 	ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
1215 	if (ret) {
1216 		dev_err(&client->dev, "write exp_average reg err.\n");
1217 		return ret;
1218 	}
1219 
1220 	for (i = win_top; i <= win_bottom; i++) {
1221 		for (j = win_left; j <= win_right; j++) {
1222 			exp_reg = mt9m114_exp_win[i][j];
1223 
1224 			ret = mt9m114_write_reg(client, exp_reg.length,
1225 						exp_reg.reg, exp_reg.val);
1226 			if (ret) {
1227 				dev_err(&client->dev, "write exp_reg err.\n");
1228 				return ret;
1229 			}
1230 		}
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 static int mt9m114_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
1237 {
1238 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1239 
1240 	*val = mt9m114_res[dev->res].bin_factor_x;
1241 
1242 	return 0;
1243 }
1244 
1245 static int mt9m114_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
1246 {
1247 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1248 
1249 	*val = mt9m114_res[dev->res].bin_factor_y;
1250 
1251 	return 0;
1252 }
1253 
1254 static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
1255 {
1256 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1257 	s32 luma = 0x37;
1258 	int err;
1259 
1260 	/*
1261 	 * EV value only support -2 to 2
1262 	 * 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
1263 	 */
1264 	if (val < -2 || val > 2)
1265 		return -EINVAL;
1266 	luma += 0x10 * val;
1267 	dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
1268 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1269 	if (err) {
1270 		dev_err(&c->dev, "%s logic addr access error\n", __func__);
1271 		return err;
1272 	}
1273 	err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
1274 	if (err) {
1275 		dev_err(&c->dev, "%s write target_average_luma failed\n",
1276 			__func__);
1277 		return err;
1278 	}
1279 	udelay(10);
1280 
1281 	return 0;
1282 }
1283 
1284 static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
1285 {
1286 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1287 	int err;
1288 	u32 luma;
1289 
1290 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1291 	if (err) {
1292 		dev_err(&c->dev, "%s logic addr access error\n", __func__);
1293 		return err;
1294 	}
1295 	err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
1296 	if (err) {
1297 		dev_err(&c->dev, "%s read target_average_luma failed\n",
1298 			__func__);
1299 		return err;
1300 	}
1301 	luma -= 0x17;
1302 	luma /= 0x10;
1303 	*val = (s32)luma - 2;
1304 	dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
1305 
1306 	return 0;
1307 }
1308 
1309 /*
1310  * Fake interface
1311  * mt9m114 now can not support 3a_lock
1312  */
1313 static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
1314 {
1315 	aaalock = val;
1316 	return 0;
1317 }
1318 
1319 static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
1320 {
1321 	if (aaalock)
1322 		return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
1323 		       | V4L2_LOCK_FOCUS;
1324 	return 0;
1325 }
1326 
1327 static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
1328 {
1329 	struct mt9m114_device *dev =
1330 	    container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1331 	struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
1332 	int ret = 0;
1333 
1334 	switch (ctrl->id) {
1335 	case V4L2_CID_VFLIP:
1336 		dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
1337 			__func__, ctrl->val);
1338 		ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
1339 		break;
1340 	case V4L2_CID_HFLIP:
1341 		dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
1342 			__func__, ctrl->val);
1343 		ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
1344 		break;
1345 	case V4L2_CID_EXPOSURE_METERING:
1346 		ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
1347 		break;
1348 	case V4L2_CID_EXPOSURE:
1349 		ret = mt9m114_s_ev(&dev->sd, ctrl->val);
1350 		break;
1351 	case V4L2_CID_3A_LOCK:
1352 		ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
1353 		break;
1354 	default:
1355 		ret = -EINVAL;
1356 	}
1357 	return ret;
1358 }
1359 
1360 static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1361 {
1362 	struct mt9m114_device *dev =
1363 	    container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1364 	int ret = 0;
1365 
1366 	switch (ctrl->id) {
1367 	case V4L2_CID_VFLIP:
1368 		ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
1369 		break;
1370 	case V4L2_CID_HFLIP:
1371 		ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
1372 		break;
1373 	case V4L2_CID_FOCAL_ABSOLUTE:
1374 		ret = mt9m114_g_focal(&dev->sd, &ctrl->val);
1375 		break;
1376 	case V4L2_CID_FNUMBER_ABSOLUTE:
1377 		ret = mt9m114_g_fnumber(&dev->sd, &ctrl->val);
1378 		break;
1379 	case V4L2_CID_FNUMBER_RANGE:
1380 		ret = mt9m114_g_fnumber_range(&dev->sd, &ctrl->val);
1381 		break;
1382 	case V4L2_CID_EXPOSURE_ABSOLUTE:
1383 		ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
1384 		break;
1385 	case V4L2_CID_EXPOSURE_ZONE_NUM:
1386 		ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
1387 		break;
1388 	case V4L2_CID_BIN_FACTOR_HORZ:
1389 		ret = mt9m114_g_bin_factor_x(&dev->sd, &ctrl->val);
1390 		break;
1391 	case V4L2_CID_BIN_FACTOR_VERT:
1392 		ret = mt9m114_g_bin_factor_y(&dev->sd, &ctrl->val);
1393 		break;
1394 	case V4L2_CID_EXPOSURE:
1395 		ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
1396 		break;
1397 	case V4L2_CID_3A_LOCK:
1398 		ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
1399 		break;
1400 	default:
1401 		ret = -EINVAL;
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 static const struct v4l2_ctrl_ops ctrl_ops = {
1408 	.s_ctrl = mt9m114_s_ctrl,
1409 	.g_volatile_ctrl = mt9m114_g_volatile_ctrl
1410 };
1411 
1412 static struct v4l2_ctrl_config mt9m114_controls[] = {
1413 	{
1414 		.ops = &ctrl_ops,
1415 		.id = V4L2_CID_VFLIP,
1416 		.name = "Image v-Flip",
1417 		.type = V4L2_CTRL_TYPE_INTEGER,
1418 		.min = 0,
1419 		.max = 1,
1420 		.step = 1,
1421 		.def = 0,
1422 	},
1423 	{
1424 		.ops = &ctrl_ops,
1425 		.id = V4L2_CID_HFLIP,
1426 		.name = "Image h-Flip",
1427 		.type = V4L2_CTRL_TYPE_INTEGER,
1428 		.min = 0,
1429 		.max = 1,
1430 		.step = 1,
1431 		.def = 0,
1432 	},
1433 	{
1434 		.ops = &ctrl_ops,
1435 		.id = V4L2_CID_FOCAL_ABSOLUTE,
1436 		.name = "focal length",
1437 		.type = V4L2_CTRL_TYPE_INTEGER,
1438 		.min = MT9M114_FOCAL_LENGTH_DEFAULT,
1439 		.max = MT9M114_FOCAL_LENGTH_DEFAULT,
1440 		.step = 1,
1441 		.def = MT9M114_FOCAL_LENGTH_DEFAULT,
1442 		.flags = 0,
1443 	},
1444 	{
1445 		.ops = &ctrl_ops,
1446 		.id = V4L2_CID_FNUMBER_ABSOLUTE,
1447 		.name = "f-number",
1448 		.type = V4L2_CTRL_TYPE_INTEGER,
1449 		.min = MT9M114_F_NUMBER_DEFAULT,
1450 		.max = MT9M114_F_NUMBER_DEFAULT,
1451 		.step = 1,
1452 		.def = MT9M114_F_NUMBER_DEFAULT,
1453 		.flags = 0,
1454 	},
1455 	{
1456 		.ops = &ctrl_ops,
1457 		.id = V4L2_CID_FNUMBER_RANGE,
1458 		.name = "f-number range",
1459 		.type = V4L2_CTRL_TYPE_INTEGER,
1460 		.min = MT9M114_F_NUMBER_RANGE,
1461 		.max = MT9M114_F_NUMBER_RANGE,
1462 		.step = 1,
1463 		.def = MT9M114_F_NUMBER_RANGE,
1464 		.flags = 0,
1465 	},
1466 	{
1467 		.ops = &ctrl_ops,
1468 		.id = V4L2_CID_EXPOSURE_ABSOLUTE,
1469 		.name = "exposure",
1470 		.type = V4L2_CTRL_TYPE_INTEGER,
1471 		.min = 0,
1472 		.max = 0xffff,
1473 		.step = 1,
1474 		.def = 0,
1475 		.flags = 0,
1476 	},
1477 	{
1478 		.ops = &ctrl_ops,
1479 		.id = V4L2_CID_EXPOSURE_ZONE_NUM,
1480 		.name = "one-time exposure zone number",
1481 		.type = V4L2_CTRL_TYPE_INTEGER,
1482 		.min = 0,
1483 		.max = 0xffff,
1484 		.step = 1,
1485 		.def = 0,
1486 		.flags = 0,
1487 	},
1488 	{
1489 		.ops = &ctrl_ops,
1490 		.id = V4L2_CID_EXPOSURE_METERING,
1491 		.name = "metering",
1492 		.type = V4L2_CTRL_TYPE_MENU,
1493 		.min = 0,
1494 		.max = 3,
1495 		.step = 0,
1496 		.def = 1,
1497 		.flags = 0,
1498 	},
1499 	{
1500 		.ops = &ctrl_ops,
1501 		.id = V4L2_CID_BIN_FACTOR_HORZ,
1502 		.name = "horizontal binning factor",
1503 		.type = V4L2_CTRL_TYPE_INTEGER,
1504 		.min = 0,
1505 		.max = MT9M114_BIN_FACTOR_MAX,
1506 		.step = 1,
1507 		.def = 0,
1508 		.flags = 0,
1509 	},
1510 	{
1511 		.ops = &ctrl_ops,
1512 		.id = V4L2_CID_BIN_FACTOR_VERT,
1513 		.name = "vertical binning factor",
1514 		.type = V4L2_CTRL_TYPE_INTEGER,
1515 		.min = 0,
1516 		.max = MT9M114_BIN_FACTOR_MAX,
1517 		.step = 1,
1518 		.def = 0,
1519 		.flags = 0,
1520 	},
1521 	{
1522 		.ops = &ctrl_ops,
1523 		.id = V4L2_CID_EXPOSURE,
1524 		.name = "exposure biasx",
1525 		.type = V4L2_CTRL_TYPE_INTEGER,
1526 		.min = -2,
1527 		.max = 2,
1528 		.step = 1,
1529 		.def = 0,
1530 		.flags = 0,
1531 	},
1532 	{
1533 		.ops = &ctrl_ops,
1534 		.id = V4L2_CID_3A_LOCK,
1535 		.name = "3a lock",
1536 		.type = V4L2_CTRL_TYPE_BITMASK,
1537 		.min = 0,
1538 		.max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
1539 		.step = 1,
1540 		.def = 0,
1541 		.flags = 0,
1542 	},
1543 };
1544 
1545 static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
1546 {
1547 	struct i2c_adapter *adapter = client->adapter;
1548 	u32 retvalue;
1549 
1550 	if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
1551 		dev_err(&client->dev, "%s: i2c error", __func__);
1552 		return -ENODEV;
1553 	}
1554 	mt9m114_read_reg(client, MISENSOR_16BIT, (u32)MT9M114_PID, &retvalue);
1555 	dev->real_model_id = retvalue;
1556 
1557 	if (retvalue != MT9M114_MOD_ID) {
1558 		dev_err(&client->dev, "%s: failed: client->addr = %x\n",
1559 			__func__, client->addr);
1560 		return -ENODEV;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static int
1567 mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
1568 {
1569 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1570 	struct i2c_client *client = v4l2_get_subdevdata(sd);
1571 	int ret;
1572 
1573 	if (!platform_data)
1574 		return -ENODEV;
1575 
1576 	dev->platform_data =
1577 	    (struct camera_sensor_platform_data *)platform_data;
1578 
1579 	ret = power_up(sd);
1580 	if (ret) {
1581 		v4l2_err(client, "mt9m114 power-up err");
1582 		return ret;
1583 	}
1584 
1585 	/* config & detect sensor */
1586 	ret = mt9m114_detect(dev, client);
1587 	if (ret) {
1588 		v4l2_err(client, "mt9m114_detect err s_config.\n");
1589 		goto fail_detect;
1590 	}
1591 
1592 	ret = dev->platform_data->csi_cfg(sd, 1);
1593 	if (ret)
1594 		goto fail_csi_cfg;
1595 
1596 	ret = mt9m114_set_suspend(sd);
1597 	if (ret) {
1598 		v4l2_err(client, "mt9m114 suspend err");
1599 		return ret;
1600 	}
1601 
1602 	ret = power_down(sd);
1603 	if (ret) {
1604 		v4l2_err(client, "mt9m114 power down err");
1605 		return ret;
1606 	}
1607 
1608 	return ret;
1609 
1610 fail_csi_cfg:
1611 	dev->platform_data->csi_cfg(sd, 0);
1612 fail_detect:
1613 	power_down(sd);
1614 	dev_err(&client->dev, "sensor power-gating failed\n");
1615 	return ret;
1616 }
1617 
1618 /* Horizontal flip the image. */
1619 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
1620 {
1621 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1622 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1623 	int err;
1624 	/* set for direct mode */
1625 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1626 	if (value) {
1627 		/* enable H flip ctx A */
1628 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
1629 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
1630 		/* ctx B */
1631 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
1632 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
1633 
1634 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1635 					MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
1636 
1637 		dev->bpat = MT9M114_BPAT_GRGRBGBG;
1638 	} else {
1639 		/* disable H flip ctx A */
1640 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
1641 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
1642 		/* ctx B */
1643 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
1644 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
1645 
1646 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1647 					MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
1648 
1649 		dev->bpat = MT9M114_BPAT_BGBGGRGR;
1650 	}
1651 
1652 	err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1653 	udelay(10);
1654 
1655 	return !!err;
1656 }
1657 
1658 /* Vertically flip the image */
1659 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
1660 {
1661 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1662 	int err;
1663 	/* set for direct mode */
1664 	err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1665 	if (value >= 1) {
1666 		/* enable H flip - ctx A */
1667 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
1668 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
1669 		/* ctx B */
1670 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
1671 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
1672 
1673 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1674 					MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
1675 	} else {
1676 		/* disable H flip - ctx A */
1677 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
1678 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
1679 		/* ctx B */
1680 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
1681 		err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
1682 
1683 		err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1684 					MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
1685 	}
1686 
1687 	err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1688 	udelay(10);
1689 
1690 	return !!err;
1691 }
1692 
1693 static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
1694 				    struct v4l2_subdev_frame_interval *interval)
1695 {
1696 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1697 
1698 	interval->interval.numerator = 1;
1699 	interval->interval.denominator = mt9m114_res[dev->res].fps;
1700 
1701 	return 0;
1702 }
1703 
1704 static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
1705 {
1706 	int ret;
1707 	struct i2c_client *c = v4l2_get_subdevdata(sd);
1708 	struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1709 	struct atomisp_exposure exposure;
1710 
1711 	if (enable) {
1712 		ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
1713 					      POST_POLLING);
1714 		if (ret < 0)
1715 			return ret;
1716 
1717 		if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
1718 			exposure.integration_time[0] = dev->first_exp;
1719 			exposure.gain[0] = dev->first_gain;
1720 			exposure.gain[1] = dev->first_diggain;
1721 			mt9m114_s_exposure(sd, &exposure);
1722 		}
1723 		dev->streamon = 1;
1724 
1725 	} else {
1726 		dev->streamon = 0;
1727 		ret = mt9m114_set_suspend(sd);
1728 	}
1729 
1730 	return ret;
1731 }
1732 
1733 static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
1734 				  struct v4l2_subdev_state *sd_state,
1735 				  struct v4l2_subdev_mbus_code_enum *code)
1736 {
1737 	if (code->index)
1738 		return -EINVAL;
1739 	code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
1740 
1741 	return 0;
1742 }
1743 
1744 static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
1745 				   struct v4l2_subdev_state *sd_state,
1746 				   struct v4l2_subdev_frame_size_enum *fse)
1747 {
1748 	unsigned int index = fse->index;
1749 
1750 	if (index >= N_RES)
1751 		return -EINVAL;
1752 
1753 	fse->min_width = mt9m114_res[index].width;
1754 	fse->min_height = mt9m114_res[index].height;
1755 	fse->max_width = mt9m114_res[index].width;
1756 	fse->max_height = mt9m114_res[index].height;
1757 
1758 	return 0;
1759 }
1760 
1761 static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
1762 {
1763 	int index;
1764 	struct mt9m114_device *snr = to_mt9m114_sensor(sd);
1765 
1766 	if (!frames)
1767 		return -EINVAL;
1768 
1769 	for (index = 0; index < N_RES; index++) {
1770 		if (mt9m114_res[index].res == snr->res)
1771 			break;
1772 	}
1773 
1774 	if (index >= N_RES)
1775 		return -EINVAL;
1776 
1777 	*frames = mt9m114_res[index].skip_frames;
1778 
1779 	return 0;
1780 }
1781 
1782 static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
1783 	.s_stream = mt9m114_s_stream,
1784 	.g_frame_interval = mt9m114_g_frame_interval,
1785 };
1786 
1787 static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
1788 	.g_skip_frames	= mt9m114_g_skip_frames,
1789 };
1790 
1791 static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
1792 	.s_power = mt9m114_s_power,
1793 	.ioctl = mt9m114_ioctl,
1794 };
1795 
1796 /* REVISIT: Do we need pad operations? */
1797 static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
1798 	.enum_mbus_code = mt9m114_enum_mbus_code,
1799 	.enum_frame_size = mt9m114_enum_frame_size,
1800 	.get_fmt = mt9m114_get_fmt,
1801 	.set_fmt = mt9m114_set_fmt,
1802 	.set_selection = mt9m114_s_exposure_selection,
1803 };
1804 
1805 static const struct v4l2_subdev_ops mt9m114_ops = {
1806 	.core = &mt9m114_core_ops,
1807 	.video = &mt9m114_video_ops,
1808 	.pad = &mt9m114_pad_ops,
1809 	.sensor = &mt9m114_sensor_ops,
1810 };
1811 
1812 static int mt9m114_remove(struct i2c_client *client)
1813 {
1814 	struct mt9m114_device *dev;
1815 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1816 
1817 	dev = container_of(sd, struct mt9m114_device, sd);
1818 	dev->platform_data->csi_cfg(sd, 0);
1819 	v4l2_device_unregister_subdev(sd);
1820 	media_entity_cleanup(&dev->sd.entity);
1821 	v4l2_ctrl_handler_free(&dev->ctrl_handler);
1822 	kfree(dev);
1823 	return 0;
1824 }
1825 
1826 static int mt9m114_probe(struct i2c_client *client)
1827 {
1828 	struct mt9m114_device *dev;
1829 	int ret = 0;
1830 	unsigned int i;
1831 	void *pdata;
1832 
1833 	/* Setup sensor configuration structure */
1834 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1835 	if (!dev)
1836 		return -ENOMEM;
1837 
1838 	v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
1839 	pdata = gmin_camera_platform_data(&dev->sd,
1840 					  ATOMISP_INPUT_FORMAT_RAW_10,
1841 					  atomisp_bayer_order_grbg);
1842 	if (pdata)
1843 		ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
1844 	if (!pdata || ret) {
1845 		v4l2_device_unregister_subdev(&dev->sd);
1846 		kfree(dev);
1847 		return ret;
1848 	}
1849 
1850 	ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
1851 	if (ret) {
1852 		v4l2_device_unregister_subdev(&dev->sd);
1853 		kfree(dev);
1854 		/* Coverity CID 298095 - return on error */
1855 		return ret;
1856 	}
1857 
1858 	/* TODO add format code here */
1859 	dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1860 	dev->pad.flags = MEDIA_PAD_FL_SOURCE;
1861 	dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
1862 	dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1863 
1864 	ret =
1865 	    v4l2_ctrl_handler_init(&dev->ctrl_handler,
1866 				   ARRAY_SIZE(mt9m114_controls));
1867 	if (ret) {
1868 		mt9m114_remove(client);
1869 		return ret;
1870 	}
1871 
1872 	for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
1873 		v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
1874 				     NULL);
1875 
1876 	if (dev->ctrl_handler.error) {
1877 		mt9m114_remove(client);
1878 		return dev->ctrl_handler.error;
1879 	}
1880 
1881 	/* Use same lock for controls as for everything else. */
1882 	dev->ctrl_handler.lock = &dev->input_lock;
1883 	dev->sd.ctrl_handler = &dev->ctrl_handler;
1884 
1885 	/* REVISIT: Do we need media controller? */
1886 	ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
1887 	if (ret) {
1888 		mt9m114_remove(client);
1889 		return ret;
1890 	}
1891 	return 0;
1892 }
1893 
1894 static const struct acpi_device_id mt9m114_acpi_match[] = {
1895 	{ "INT33F0" },
1896 	{ "CRMT1040" },
1897 	{},
1898 };
1899 MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
1900 
1901 static struct i2c_driver mt9m114_driver = {
1902 	.driver = {
1903 		.name = "mt9m114",
1904 		.acpi_match_table = mt9m114_acpi_match,
1905 	},
1906 	.probe_new = mt9m114_probe,
1907 	.remove = mt9m114_remove,
1908 };
1909 module_i2c_driver(mt9m114_driver);
1910 
1911 MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
1912 MODULE_LICENSE("GPL");
1913